1
|
Sanchez JM, Voltà-Durán E, Parladé E, Mangues R, Villaverde A, Vázquez E, Unzueta U. Surpassing protein specificity in biomimetics of bacterial amyloids. Int J Biol Macromol 2025; 296:139635. [PMID: 39788253 DOI: 10.1016/j.ijbiomac.2025.139635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
In nature, nontoxic protein amyloids serve as dynamic, protein-specific depots, exemplified by both bacterial inclusion bodies and secretory granules from the endocrine system. Inspired by these systems, chemically defined and regulatory-compliant artificial protein microgranules have been developed for clinical applications as endocrine-like protein repositories. This has been achieved by exploiting the reversible coordination between histidine residues and divalent cations such as Zn+2, that promotes protein-protein interactions. While stereospecificity is a main architectonic feature of natural amyloids, the potential for synthetic approaches to create hybrid protein materials remains unexplored. Such materials could enable the occurrence and synchronized local application of diverse proteins in predefined molar ratios, for coupled enzymatic reactions or delivery of synergistically acting polypeptides. Here, we report on the fabrication of artificial protein granules with amyloidal architecture formed by combining two structurally distinct polypeptides. Specifically, we tested co-aggregation of the pairs GFP/IRFP and GFP/β-galactosidase. The formation of hybrid microparticles was confirmed through FRET and complementary methodologies, demonstrating that the His-Zn clustering technology does not require sequential or structural homologies between aggregating polypeptides. This approach opens new avenues for the development of functional depots that capitalize on synergistic protein functionalities, paving the way for next-generation functional materials.
Collapse
Affiliation(s)
- Julieta M Sanchez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramón Mangues
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ugutz Unzueta
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain.
| |
Collapse
|
2
|
J PKR, Tummuru M, Ramkumar KM. Engineering a high-throughput clone for industrial-scale production of long-acting GLP-1 analogue with retained bio-efficacy. Biotechnol Prog 2025:e3529. [PMID: 39846515 DOI: 10.1002/btpr.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity. This study focuses on engineering a high-throughput clone and evaluation of novel GLP-1 analogues with improved bio-efficacy and production yields. Five plasmid models were created using different N-terminal fusion partners and assessed for hydrophobicity, instability index, and isoelectric point. Three optimal plasmid models were selected based on high-valued hydrophobicity, solubility, and partial solubility. These plasmids were constructed with the pET24a vector, incorporating GLP-1 with fusion tags via recombinant DNA technology and transformed into E. coli BL21 DE3 hosts. The proteins were purified through enzyme digestion and chromatography, resulting in a high-yield peptide. The GLP-1 peptide was conjugated with in-house developed fatty acid compound n-Palmitoyl glutamic acid (n-PGA) and purified using C18 column chromatography, achieving a final product yield of 170-190 mg per liter of fermentation culture. Biological activity was confirmed by cyclic adenosine monophosphate (cAMP) generation and 3 T3 cell differentiation assays, showing a 1.5-fold increase in mRNA gene expression with the clone having n-terminal hydrophobic amino acids, thioredoxin-modified tag, and enterokinase cleavage site, indicating high purity and biological potency of the GLP-1 analogue.
Collapse
Affiliation(s)
- Praveen Kumar Reddy J
- Department of Research and Development Biologics, Virchow Biotech Private Ltd, Hyderabad, India
| | - Murali Tummuru
- Department of Research and Development Biologics, Virchow Biotech Private Ltd, Hyderabad, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
3
|
Bello MN, Sabri S, Mohd Yahaya N, Mohd Shariff F, Mohamad Ali MS. Catalytically active inclusion bodies as a potential tool for biotechnology. Biotechnol Appl Biochem 2024; 71:1235-1242. [PMID: 38863240 DOI: 10.1002/bab.2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The initial assumption that viewed inclusion bodies as a hindrance to the efficient production of protein is no longer held due to the emergence of catalytically active inclusion bodies (CatIBs). Recent studies revealed their potential to be used in free form or immobilized as biocatalysts. The curiosity to acquire suitable catalysts has remained the measure of concern for researchers and industrialists. Numerous processes and production in various sectors of food industries, petroleum, pharmaceutical, cosmetics, and many others are still searching for a robust catalyst with outstanding features such as recyclability, resistance to pH, as well as temperature. CatIBs are forms of inclusion bodies that possess catalytic activity, which can improve catalysis efficiency, stability, and recyclability. One of the advantages of CatIBs is their potential to be used as catalysts for numerous bioprocesses when generated by an enzyme. These aggregates can efficiently be used as a replacement for traditional enzyme immobilization. This review tends to focus on the possibility of its application in various processes. The novelty of this review is that it considered the production of CatIBs both from artificial and natural perspectives, as well as how to improve it. Inclusion bodies' immobilization may provide an efficient alternative in the area of biocatalysis, and hence it will improve industrial sectors and substantially provide a means of achieving excellent performance in the near future.
Collapse
Affiliation(s)
- Muhammad Nura Bello
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Biochemistry, Faculty of Science, Sokoto State University, Sokoto, Nigeria
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
4
|
Baltà-Foix R, Garcia-Fruitós E, Arís A. Time to consider ruling out inclusion bodies denaturing protocols for spontaneous solubilization of biologically active proteins. Sci Rep 2024; 14:26061. [PMID: 39472505 PMCID: PMC11522400 DOI: 10.1038/s41598-024-77899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
The formation of inclusion bodies (IBs) in microbial cell factories is a very common process occurring during recombinant protein production. Different protocols have been developed for the extraction of soluble proteins from IBs using several strategies, ranging from the use of harsh denaturing and high concentrations of chaotropic agents and reducing agents to the use of mild protocols based on the use of non-denaturing detergents. However, in recent years, the biological vision of IBs has changed and research studies have demonstrated that these protein aggregates contain biologically active and properly folded recombinant proteins. This drives us to redefine the methodologies currently used to obtain soluble protein using IB as a protein source. Hence, we propose the extraction of IB protein via the simple spontaneous solubilization of IB as a strategy broadly applicable to all kinds of recombinant proteins without the negative effects of detergents and chaotropic agents on final biological activity. We prove the wide applicability of spontaneous solubilization processes to different types of IBs and that protocols can be easily customized for each protein in terms of timing and incubation temperature by monitoring the protein activity of the solubilized fraction.
Collapse
Affiliation(s)
- Ricardo Baltà-Foix
- Ruminant Production, IRTA, Torre Marimon, 08140, Caldes de Montbui, Catalonia, Spain
| | - Elena Garcia-Fruitós
- Ruminant Production, IRTA, Torre Marimon, 08140, Caldes de Montbui, Catalonia, Spain.
| | - Anna Arís
- Ruminant Production, IRTA, Torre Marimon, 08140, Caldes de Montbui, Catalonia, Spain.
| |
Collapse
|
5
|
Paronyan M, Koloyan H, Aganyants H, Hambardzumyan A, Soghomonyan T, Avetisyan S, Kocharov S, Panosyan H, Sakanyan V, Hovsepyan A. Structural Analysis and Substrate Specificity of D-Carbamoylase from Pseudomonas. BIOTECH 2024; 13:40. [PMID: 39449370 PMCID: PMC11503299 DOI: 10.3390/biotech13040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The synthesis of enantiomeric forms of D-amino acids can be achieved by a two-step "hydantoinase process" based on the sequential catalysis of substrates by specific enzymes, D-carbamoylase and D-hydantoinase. Here, we describe the structural features of D-carbamoylase from Pseudomonas, the encoded gene of which was chemically synthesized and cloned into Escherichia coli. A significant fraction of the overexpressed recombinant protein forms insoluble inclusion bodies, which are partially converted to a soluble state upon treatment with N-lauroylsarcosine or upon incubation of cells at 28 °C. Purified His-tagged protein exhibits the highest activity towards N-carbamoyl-D-alanine and N-carbamoyl-D-tryptophan. Comprehensive virtual analysis of the interactions of bulky carbamylated amino acids with D-carbamoylase provided valuable information. Molecular docking analysis revealed the location of the substrate binding site in the three-dimensional structure of D-carbamoylase. Molecular dynamics simulations showed that the binding pocket of the enzyme in complex with N-carbamoyl-D-tryptophan was stabilized within 100 nanoseconds. The free energy data showed that Arg176 and Asn173 formed hydrogen bonds between the enzyme and substrates. The studies of D-carbamoylases and the properties of our previously obtained D-hydantoinase suggest the possibility of developing a harmonized biotechnological process for the production of new drugs and peptide hormones.
Collapse
Affiliation(s)
- Marina Paronyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Haykanush Koloyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Hovsep Aganyants
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Artur Hambardzumyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Tigran Soghomonyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Sona Avetisyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| | - Sergey Kocharov
- Scientific Technological Centre of Organic and Pharmaceutical Chemistry SNPO, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - Henry Panosyan
- Scientific Technological Centre of Organic and Pharmaceutical Chemistry SNPO, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - Vehary Sakanyan
- Faculty of Science and Technique, Nantes University, 44035 Nantes, France
| | - Anichka Hovsepyan
- Scientific and Production Center ”Armbiotechnology”, National Academy of Sciences of Armenia, Yerevan 0056, Armenia; (M.P.); (S.A.); (A.H.)
| |
Collapse
|
6
|
Lozada SL, Gómez JA, Menéndez K, Gómez T, Montes de Oca D, Durán JL, Fernández OL, Perera Y, Rivas G, Boggiano-Ayo T, Ledon N, Carmenate T. Oxidative refolding by Copper-catalyzed air oxidation consistently increases the homogeneity and activity of a Novel Interleukin-2 mutein. J Biotechnol 2024; 393:81-90. [PMID: 39032699 DOI: 10.1016/j.jbiotec.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Interleukin-2 (IL-2) has been used in cancer treatment for over 30 years. However, due to its high toxicity, new mutant variants have been developed. These variants retain some of the biological properties of the original molecule but offer other therapeutic advantages. At the Center of Molecular Immunology, the IL-2 no-alpha mutein, an IL-2 agonist with lower toxicity than wtIL-2, has been designed, produced, and is currently being evaluated in a Phase I/II clinical trial. The mutein is produced in E. coli as an insoluble material that must be refolded in vitro to yield a fully active protein. Controlled oxidation steps are essential in the purification process of recombinant proteins produced in E. coli to ensure the proper formation of the disulfide bonds in the molecules. In this case, the new purification process includes a copper-catalyzed air oxidation step to induce disulfide bond establishment. The optimal conditions of pH, copper, protein and detergent concentration for this step were determined through screening. The produced protein demonstrated a conserved 3D structure, higher purity, and greater biological activity than the obtained by established process without the oxidation step. Four batches were produced and evaluated, demonstrating the consistency of the new process.
Collapse
Affiliation(s)
- Sum Lai Lozada
- Bioprocess R&D Direction, Center of Molecular Immunology, Havana, Cuba.
| | - Jose Alberto Gómez
- Department of Quality Control. Center of Molecular Immunology, Havana, Cuba.
| | | | - Tania Gómez
- Department of Quality Control. Center of Molecular Immunology, Havana, Cuba.
| | | | - Jose L Durán
- Bioprocess R&D Direction, Center of Molecular Immunology, Havana, Cuba.
| | | | - Yoel Perera
- Centro Nacional de Biopreparados, Mayabeque, Cuba.
| | - Gabriela Rivas
- Department of Quality Control. Center of Molecular Immunology, Havana, Cuba.
| | | | - Nuris Ledon
- Research Direction, Center of Molecular Immunology, Havana, Cuba; School of Pharmacy, University of Havana, Havana, Cuba.
| | - Tania Carmenate
- Immune-regulation Department, Immunology and Immunotherapy Direction. Center of Molecular Immunology, PO Box 16040, Havana, Cuba.
| |
Collapse
|
7
|
Javid M, Shahverdi AR, Ghasemi A, Moosavi-Movahedi AA, Ebrahim-Habibi A, Sepehrizadeh Z. Decoding the Structure-Function Relationship of the Muramidase Domain in E. coli O157.H7 Bacteriophage Endolysin: A Potential Building Block for Chimeric Enzybiotics. Protein J 2024; 43:522-543. [PMID: 38662183 DOI: 10.1007/s10930-024-10195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
Bacteriophage endolysins are potential alternatives to conventional antibiotics for treating multidrug-resistant gram-negative bacterial infections. However, their structure-function relationships are poorly understood, hindering their optimization and application. In this study, we focused on the individual functionality of the C-terminal muramidase domain of Gp127, a modular endolysin from E. coli O157:H7 bacteriophage PhaxI. This domain is responsible for the enzymatic activity, whereas the N-terminal domain binds to the bacterial cell wall. Through protein modeling, docking experiments, and molecular dynamics simulations, we investigated the activity, stability, and interactions of the isolated C-terminal domain with its ligand. We also assessed its expression, solubility, toxicity, and lytic activity using the experimental data. Our results revealed that the C-terminal domain exhibits high activity and toxicity when tested individually, and its expression is regulated in different hosts to prevent self-destruction. Furthermore, we validated the muralytic activity of the purified refolded protein by zymography and standardized assays. These findings challenge the need for the N-terminal binding domain to arrange the active site and adjust the gap between crucial residues for peptidoglycan cleavage. Our study shed light on the three-dimensional structure and functionality of muramidase endolysins, thereby enriching the existing knowledge pool and laying a foundation for accurate in silico modeling and the informed design of next-generation enzybiotic treatments.
Collapse
Affiliation(s)
- Mehri Javid
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Azadeh Ebrahim-Habibi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Sánchez JM, López-Laguna H, Parladé E, Somma AD, Livieri AL, Álamo P, Mangues R, Unzueta U, Villaverde A, Vázquez E. Structural Stabilization of Clinically Oriented Oligomeric Proteins During their Transit through Synthetic Secretory Amyloids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309427. [PMID: 38501900 DOI: 10.1002/advs.202309427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Indexed: 03/20/2024]
Abstract
Developing time-sustained drug delivery systems is a main goal in innovative medicines. Inspired by the architecture of secretory granules from the mammalian endocrine system it has generated non-toxic microscale amyloid materials through the coordination between divalent metals and poly-histidine stretches. Like their natural counterparts that keep the functionalities of the assembled protein, those synthetic structures release biologically active proteins during a slow self-disintegration process occurring in vitro and upon in vivo administration. Being these granules formed by a single pure protein species and therefore, chemically homogenous, they act as highly promising time-sustained drug delivery systems. Despite their enormous clinical potential, the nature of the clustering process and the quality of the released protein have been so far neglected issues. By using diverse polypeptide species and their protein-only oligomeric nanoscale versions as convenient models, a conformational rearrangement and a stabilization of the building blocks during their transit through the secretory granules, being the released material structurally distinguishable from the original source is proved here. This fact indicates a dynamic nature of secretory amyloids that act as conformational arrangers rather than as plain, inert protein-recruiting/protein-releasing granular depots.
Collapse
Affiliation(s)
- Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA, FCEFyN, UNC, Av. Velez Sarsfield 1611, Córdoba, X5016GCA, Argentina
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| | - Angela Di Somma
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Department of Chemical Sciences, University of Naples "Federico II", Vicinale Cupa Cintia 26, Naples, 20126, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, Naples, 80131, Italy
| | - Andrea L Livieri
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
| | - Patricia Álamo
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, 08025, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, Barcelona, 08041, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, 08025, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, Barcelona, 08193, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08024, Spain
| |
Collapse
|
9
|
Liu Y, Huang S, Liu WQ, Ba F, Liu Y, Ling S, Li J. An In Vitro Hybrid Biocatalytic System Enabled by a Combination of Surface-Displayed, Purified, and Cell-Free Expressed Enzymes. ACS Synth Biol 2024; 13:1434-1441. [PMID: 38695987 DOI: 10.1021/acssynbio.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 μM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.
Collapse
Affiliation(s)
- Ying Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
10
|
Igwe CL, Müller DF, Gisperg F, Pauk JN, Kierein M, Elshazly M, Klausser R, Kopp J, Spadiut O, Přáda Brichtová E. Online monitoring of protein refolding in inclusion body processing using intrinsic fluorescence. Anal Bioanal Chem 2024; 416:3019-3032. [PMID: 38573344 PMCID: PMC11045631 DOI: 10.1007/s00216-024-05249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Inclusion bodies (IBs) are protein aggregates formed as a result of overexpression of recombinant protein in E. coli. The formation of IBs is a valuable strategy of recombinant protein production despite the need for additional processing steps, i.e., isolation, solubilization and refolding. Industrial process development of protein refolding is a labor-intensive task based largely on empirical approaches rather than knowledge-driven strategies. A prerequisite for knowledge-driven process development is a reliable monitoring strategy. This work explores the potential of intrinsic tryptophan and tyrosine fluorescence for real-time and in situ monitoring of protein refolding. In contrast to commonly established process analytical technology (PAT), this technique showed high sensitivity with reproducible measurements for protein concentrations down to 0.01 g L- 1 . The change of protein conformation during refolding is reflected as a shift in the position of the maxima of the tryptophan and tyrosine fluorescence spectra as well as change in the signal intensity. The shift in the peak position, expressed as average emission wavelength of a spectrum, was correlated to the amount of folding intermediates whereas the intensity integral correlates to the extent of aggregation. These correlations were implemented as an observation function into a mechanistic model. The versatility and transferability of the technique were demonstrated on the refolding of three different proteins with varying structural complexity. The technique was also successfully applied to detect the effect of additives and process mode on the refolding process efficiency. Thus, the methodology presented poses a generic and reliable PAT tool enabling real-time process monitoring of protein refolding.
Collapse
Affiliation(s)
- Chika Linda Igwe
- Competence Center CHASE GmbH, Hafenstraße 47-51, Linz, 4020, Austria
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
| | - Don Fabian Müller
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
| | - Florian Gisperg
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
- Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
| | - Jan Niklas Pauk
- Competence Center CHASE GmbH, Hafenstraße 47-51, Linz, 4020, Austria
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
| | - Matthias Kierein
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
| | - Mohamed Elshazly
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
- Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
| | - Robert Klausser
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
- Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
| | - Julian Kopp
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
- Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
| | - Oliver Spadiut
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
- Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria
| | - Eva Přáda Brichtová
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria.
- Christian Doppler Laboratory for Inclusion Body Processing 4.0, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, 1060, Austria.
| |
Collapse
|
11
|
Ahmad A, Joshi P, Mishra R. Amino acids and glycine derivatives differently affect refolding of mesophilic and thermophilic like α-amylases: implications in protein refolding and aggregation. J Biomol Struct Dyn 2024:1-14. [PMID: 38486406 DOI: 10.1080/07391102.2024.2327540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/02/2024] [Indexed: 03/29/2025]
Abstract
α-amylases are industrially important enzymes which are used in different starch-based industries. They are adapted to different environmental conditions like extremes of temperature, pH and salinity. Herein, α-amylases from Bacillus amyloliquifaciens (BAA) and Bacillus licheniformis (BLA), representing mesophilic and thermophilic-like proteins, respectively, have been used to investigate the effect of naturally occurring osmolytes like arginine, proline, glycine and its methyl derivatives, sarcosine and betaine on their refolding. In this study, we have shown that among amino acids and glycine derivatives, betaine is the most promising osmolyte, while arginine and glycine exhibit moderately positive effect at their lower concentrations on the refolding of BAA only. Except betaine, all other osmolytes above 0.25 M showed inhibitory effect on the native enzyme activity of BLA and BAA. However, aggregation kinetics monitored by static light scattering indicates suppression of aggregation by all of these osmolytes. Further investigation by tryptophan and ANS fluorescence spectroscopy indicates the formation of compact hydrophobic core in the presence of the osmolytes. The morphology of protein aggregates having different sizes was visualized by atomic force microscopy ,and it was observed that amorphous aggregates of variable heights were formed. Our study highlights the importance of differential effects of arginine, proline, glycine, sarcosine and betaine on the native state as well as on refolding of BLA and BAA which may be helpful in devising strategies for developing effective protein formulation and prevention of aggregation of industrially and therapeutically important proteins.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Prachi Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Igwe CL, Pauk JN, Müller DF, Jaeger M, Deuschitz D, Hartmann T, Spadiut O. Comprehensive evaluation of recombinant lactate dehydrogenase production from inclusion bodies. J Biotechnol 2024; 379:65-77. [PMID: 38036002 DOI: 10.1016/j.jbiotec.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
A broad application spectrum ranging from clinical diagnostics to biosensors in a variety of sectors, makes the enzyme Lactate dehydrogenase (LDH) highly interesting for recombinant protein production. Expression of recombinant LDH is currently mainly carried out in uncontrolled shake-flask cultivations leading to protein that is mostly produced in its soluble form, however in rather low yields. Inclusion body (IB) processes have gathered a lot of attention due to several benefits like increased space-time yields and high purity of the target product. Thus, to investigate the suitability of this processing strategy for ldhL1 production, a fed-batch fermentation steering the production of IBs rather than soluble product formation was developed. It was shown that the space-time-yield of the fermentation could be increased almost 3-fold by increasing qs to 0.25 g g-1 h-1 which corresponds to 21% of qs,max, and keeping the temperature at 37°C after induction. Solubilization and refolding unit operations were developed to regain full bioactivity of the ldhL1. The systematic approach in screening for solubilization and refolding conditions revealed buffer compositions and processing strategies that ultimately resulted in 50% product recovery in the refolding step, revealing major optimization potential in the downstream processing chain. The recovered ldhL1 showed an optimal activity at pH 5.5 and 30∘C with a high catalytic activity and KM values of 0.46 mM and 0.18 mM for pyruvate and NADH, respectively. These features, show that the here produced LDH is a valuable source for various commercial applications, especially considering low pH-environments.
Collapse
Affiliation(s)
- Chika Linda Igwe
- Competence Center CHASE GmbH, Hafenstraße 47-51, Linz 4020, Austria; Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | - Jan Niklas Pauk
- Competence Center CHASE GmbH, Hafenstraße 47-51, Linz 4020, Austria; Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | | | - Mira Jaeger
- Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | | | - Thomas Hartmann
- Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | - Oliver Spadiut
- Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria.
| |
Collapse
|
13
|
Wang J, Chen L, Qin S, Xie M, Luo SZ, Li W. Advances in biosynthesis of peptide drugs: Technology and industrialization. Biotechnol J 2024; 19:e2300256. [PMID: 37884278 DOI: 10.1002/biot.202300256] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Peptide drugs are developed from endogenous or synthetic peptides with specific biological activities. They have advantages of strong target specificity, high efficacy and low toxicity, thus showing great promise in the treatment of many diseases such as cancer, infections, and diabetes. Although an increasing number of peptide drugs have entered market in recent years, the preparation of peptide drug substances is yet a bottleneck problem for their industrial production. Comparing to the chemical synthesis method, peptide biosynthesis has advantages of simple synthesis, low cost, and low contamination. Therefore, the biosynthesis technology of peptide drugs has been widely used for manufacturing. Herein, we reviewed the development of peptide drugs and recent advances in peptide biosynthesis technology, in order to shed a light to the prospect of industrial production of peptide drugs based on biosynthesis technology.
Collapse
Affiliation(s)
- Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Mingyuan Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| |
Collapse
|
14
|
Chaurasia R, Liang C, How K, Vieira DS, Vinetz JM. Production and Purification of Cysteine-Rich Leptospiral Virulence-Modifying Proteins with or Without mCherry Fusion. Protein J 2023; 42:792-801. [PMID: 37653175 DOI: 10.1007/s10930-023-10152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Recombinant fluorescent fusion proteins are fundamental to advancing many aspects of protein science. Such proteins are typically used to enable the visualization of functional proteins in experimental systems, particularly cell biology. An important problem in biotechnology is the production of functional, soluble proteins. Here we report the use of mCherry-fusions of soluble, cysteine-rich, Leptospira-secreted exotoxins in the PF07598 gene family, the so-called virulence modifying (VM) proteins. The mCherry fusion proteins facilitated the visual detection of pink colonies of the VM proteins (LA3490 and LA1402) and following them through lysis and sequential chromatography steps. CD-spectroscopy analysis confirmed the stability and robustness of the mCherry-fusion protein, with a structure comparable to AlphaFold structural predictions. LA0591, a unique member of the PF07598 gene family that lacks N-terminal ricin B-like domains, was produced without mCherry tag that strengthens the recombinant protein production protocol without fusion protein as well. The current study provides the approaches for the synthesis of 50-125 kDa soluble, cysteine-rich, high-quality fast protein liquid chromatography (FPLC)-purified protein, with and without a mCherry tag. The use of mCherry-fusion proteins enables a streamlined, efficient process of protein production and qualitative and quantitative downstream analytical and functional studies. Approaches for troubleshooting and optimization were evaluated to overcome difficulties in recombinant protein expression and purification, demonstrating biotechnology utility in accelerating recombinant protein production.
Collapse
Affiliation(s)
- Reetika Chaurasia
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Cathleen Liang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth How
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dielson S Vieira
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Wang YS, Gong MH, Wang JH, Yu JC, Li MJ, Xue YP, Zheng YG. Heterologous expression of a deacetylase and its application in L-glufosinate preparation. Bioprocess Biosyst Eng 2023; 46:1639-1650. [PMID: 37733076 DOI: 10.1007/s00449-023-02925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
With potent herbicidal activity, biocatalysis synthesis of L-glufosinate has drawn attention. In present research, NAP-Das2.3, a deacetylase capable of stereoselectively resolving N-acetyl-L-glufosinate to L-glufosinate mined from Arenimonas malthae, was heterologously expressed and characterized. In Escherichia coli, NAP-Das2.3 activity only reached 0.25 U/L due to the formation of inclusive bodies. Efficient soluble expression of NAP-Das2.3 was achieved in Pichia pastoris. In shake flask and 5 L bioreactor fermentation, NAP-Das2.3 activity by recombinant P. pastoris reached 107.39 U/L and 1287.52 U/L, respectively. The optimum temperature and pH for N-acetyl-glufosinate hydrolysis by NAP-Das2.3 were 45 °C and pH 8.0, respectively. The Km and Vmax of NAP-Das2.3 towards N-acetyl-glufosinate were 25.32 mM and 19.23 μmol mg-1 min-1, respectively. Within 90 min, 92.71% of L-enantiomer in 100 mM racemic N-acetyl-glufosinate was converted by NAP-Das2.3. L-glufosinate with high optical purity (e.e.P above 99.9%) was obtained. Therefore, the recombinant NAP-Das2.3 might be an alternative for L-glufosinate biosynthesis.
Collapse
Affiliation(s)
- Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Mei-Hua Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jin-Hao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jia-Cheng Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Mei-Jing Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18,Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
16
|
Alias FL, Nezhad NG, Normi YM, Ali MSM, Budiman C, Leow TC. Recent Advances in Overexpression of Functional Recombinant Lipases. Mol Biotechnol 2023; 65:1737-1749. [PMID: 36971996 DOI: 10.1007/s12033-023-00725-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Heterologous functional expression of the recombinant lipases is typically a bottleneck due to the expression in the insoluble fraction as inclusion bodies (IBs) which are in inactive form. Due to the importance of lipases in various industrial applications, many investigations have been conducted to discover suitable approaches to obtain functional lipase or increase the expressed yield in the soluble fraction. The utilization of the appropriate prokaryotic and eukaryotic expression systems, along with the suitable vectors, promoters, and tags, has been recognized as a practical approach. One of the most powerful strategies to produce bioactive lipases is using the molecular chaperones co-expressed along with the target protein's genes into the expression host to produce the lipase in soluble fraction as a bioactive form. The refolding of expressed lipase from IBs (inactive) is another practical strategy which is usually carried out through chemical and physical methods. Based on recent investigations, the current review simultaneously highlights strategies to express the bioactive lipases and recover the bioactive lipases from the IBs in insoluble form.
Collapse
Affiliation(s)
- Fatin Liyana Alias
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Cahyo Budiman
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
Elsayed A, Jaber N, Al-Remawi M, Abu-Salah K. From cell factories to patients: Stability challenges in biopharmaceuticals manufacturing and administration with mitigation strategies. Int J Pharm 2023; 645:123360. [PMID: 37657507 DOI: 10.1016/j.ijpharm.2023.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Active ingredients of biopharmaceuticals consist of a wide array of biomolecular structures, including those of enzymes, monoclonal antibodies, nucleic acids, and recombinant proteins. Recently, these molecules have dominated the pharmaceutical industry owing to their safety and efficacy. However, their manufacturing is hindered by high cost, inadequate batch-to-batch equivalence, inherent instability, and other quality issues. This article is an up-to-date review of the challenges encountered during different stages of biopharmaceutical production and mitigation of problems arising during their development, formulation, manufacturing, and administration. It is a broad overview discussion of stability issues encountered during product life cycle i.e., upstream processing (aggregation, solubility, host cell proteins, color change), downstream bioprocessing (aggregation, fragmentation), formulation, manufacturing, and delivery to patients.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman 1196, Jordan.
| | - Khalid Abu-Salah
- King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Parladé E, Sánchez JM, López-Laguna H, Unzueta U, Villaverde A, Vázquez E. Protein features instruct the secretion dynamics from metal-supported synthetic amyloids. Int J Biol Macromol 2023; 250:126164. [PMID: 37549767 DOI: 10.1016/j.ijbiomac.2023.126164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Hexahistidine-tagged proteins can be clustered by divalent cations into self-containing, dynamic protein depots at the microscale, which under physiological conditions leak functional protein. While such protein granules show promise in clinics as time-sustained drug delivery systems, little is known about how the nature of their components, that is, the protein and the particular cation used as cross-linker, impact on the disintegration of the material and on its secretory performance. By using four model proteins and four different cation formulations to control aggregation, we have here determined a moderate influence of the used cation and a potent impact of some protein properties on the release kinetics and on the final fraction of releasable protein. In particular, the electrostatic charge at the amino terminus and the instability and hydropathicity indexes determine the disintegration profile of the depot. These data offer clues for the fabrication of efficient and fully exploitable secretory granules that being biocompatible and chemically homogenous allow their tailored use as drug delivery platforms in biological systems.
Collapse
Affiliation(s)
- Eloi Parladé
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Julieta M Sánchez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
19
|
Sorokina J, Sokolova I, Majorina M, Ungur A, Troitskiy V, Tukhvatulin A, Melnik B, Belyi Y. Oligomerization and Adjuvant Activity of Peptides Derived from the VirB4-like ATPase of Clostridioides difficile. Biomolecules 2023; 13:1012. [PMID: 37371592 DOI: 10.3390/biom13061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In a previous study, we demonstrated that the Clostridioides difficile VirB4-like ATPase forms oligomers in vitro. In the current investigation, to study the observed phenomenon in more detail, we prepared a library of VirB4-derived peptides (delVirB4s) fused to a carrier maltose-binding protein (MBP). Using gel chromatography and polyacrylamide gel electrophoresis, we found a set of overlapping fragments that contribute most significantly to protein aggregation, which were represented as water-soluble oligomers with molecular masses ranging from ~300 kD to several megadaltons. Membrane filtration experiments, sucrose gradient ultracentrifugation, and dynamic light scattering measurements indicated the size of the soluble complex to be 15-100 nm. It was sufficiently stable to withstand treatment with 1 M urea; however, it dissociated in a 6 M urea solution. As shown by the changes in GFP fluorescence and the circular dichroism spectra, the attachment of the delVirB4 peptide significantly altered the structure of the partner MBP. The immunization of mice with the hybrid consisting of the selected VirB4-derived peptide and MBP, GST, or GFP resulted in increased production of specific antibodies compared to the peptide-free carrier proteins, suggesting significant adjuvant activity of the VirB4 fragment. This feature could be useful for the development of new vaccines, especially in the case of "weak" antigens that are unable to elicit a strong immune response by themselves.
Collapse
Affiliation(s)
- Julya Sorokina
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Irina Sokolova
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Mariya Majorina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastasia Ungur
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Vasiliy Troitskiy
- Department of Infectious Diseases, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 2 Bolshaya Pirogovskaya St., Moscow 119435, Russia
| | - Amir Tukhvatulin
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Bogdan Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Yury Belyi
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| |
Collapse
|
20
|
Carratalá JV, Atienza-Garriga J, López-Laguna H, Vázquez E, Villaverde A, Sánchez JM, Ferrer-Miralles N. Enhanced recombinant protein capture, purity and yield from crude bacterial cell extracts by N-Lauroylsarcosine-assisted affinity chromatography. Microb Cell Fact 2023; 22:81. [PMID: 37098491 PMCID: PMC10131332 DOI: 10.1186/s12934-023-02081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Recombinant proteins cover a wide range of biomedical, biotechnological, and industrial needs. Although there are diverse available protocols for their purification from cell extracts or from culture media, many proteins of interest such as those containing cationic domains are difficult to purify, a fact that results in low yields of the final functional product. Unfortunately, this issue prevents the further development and industrial or clinical application of these otherwise interesting products. RESULTS Aiming at improving the purification of such difficult proteins, a novel procedure has been developed based on supplementing crude cell extracts with non-denaturing concentrations of the anionic detergent N-Lauroylsarcosine. The incorporation of this simple step in the downstream pipeline results in a substantial improvement of the protein capture by affinity chromatography, an increase of protein purity and an enhancement of the overall process yield, being the detergent not detectable in the final product. CONCLUSION By taking this approach, which represents a smart repurposing of N-Lauroylsarcosine applied to protein downstream, the biological activity of the protein is not affected. Being technologically simple, the N-Lauroylsarcosine-assisted protein purification might represent a critical improvement in recombinant protein production with wide applicability, thus smothering the incorporation of promising proteins into the protein market.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA, FCEFyN, UNC., Av. Velez Sarsfield 1611, X 5016GCA, Córdoba, Argentina.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
21
|
Ryan BJ, Kinsella GK, Henehan GT. Protein Extraction and Purification by Differential Solubilization. Methods Mol Biol 2023; 2699:349-368. [PMID: 37647006 DOI: 10.1007/978-1-0716-3362-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The preparation of purified soluble proteins for biochemical studies is essential and the solubility of a protein of interest in various media is central to this process. Selectively altering the solubility of a protein is a rapid and economical step in protein purification and is based on exploiting the inherent physicochemical properties of a polypeptide. Precipitation of proteins, released from cells upon lysis, is often used to concentrate a protein of interest before further purification steps (e.g., ion exchange chromatography, size exclusion chromatography etc).Recombinant proteins may be expressed in host cells as insoluble inclusion bodies due to various influences during overexpression. Such inclusion bodies can often be solubilized to be reconstituted as functional, correctly folded proteins.In this chapter, we examine strategies for extraction/precipitation/solubilization of proteins for protein purification. We also present bioinformatic tools to aid in understanding a protein's propensity to aggregate/solubilize that will be a useful starting point for the development of protein extraction, precipitation, and selective re-solubilization procedures.
Collapse
Affiliation(s)
- Barry J Ryan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin, Ireland
| | - Gemma K Kinsella
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin, Ireland
| | - Gary T Henehan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin, Ireland.
| |
Collapse
|
22
|
Rani AK, Naira VR, Rathore AS. Method for Inclusion Bodies Production via E. coli Host System: rGCSF as Model Biotherapeutic Protein. Methods Mol Biol 2023; 2617:249-256. [PMID: 36656530 DOI: 10.1007/978-1-0716-2930-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Escherichia coli is an industrial-relevant microbial host system, which is highly preferred for the large-scale production of recombinant biotherapeutics. Overexpression of these recombinant biotherapeutics in the E. coli system often results in the formation of insoluble protein aggregates termed as inclusion bodies (IBs). The yield and quality of IBs are affected by a spectrum of parameters like temperature, optical density, medium composition, induction time, and amount of inducer. Here, we present a protocol for the formation and processing of IBs for production of recombinant human granulocytes colony-stimulating factor (rGCSF).
Collapse
Affiliation(s)
- Abhilasha K Rani
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, India
| | - Venkateswara R Naira
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, India.
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
23
|
Abstract
Multiple E. coli cultivations, producing recombinant proteins, lead to the formation of inclusion bodies (IBs). IBs historically were considered as nondesired by-products, due to their time- and cost-intensive purification. Nowadays, many obstacles in IB processing can be overcome. As a consequence, several industrial processes with E. coli favor IB formation over soluble production options due to the high space time yields obtained. Within this chapter, we discuss the state-of-the art biopharmaceutical IB process, review its challenges, highlight the recent developments and perspectives, and also propose alternative solutions, compared to the state-of-the art processing.
Collapse
Affiliation(s)
- Julian Kopp
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| |
Collapse
|
24
|
Roufarshbaf M, Akbari V. Development of Solubilization and Refolding Buffers. Methods Mol Biol 2023; 2617:155-164. [PMID: 36656522 DOI: 10.1007/978-1-0716-2930-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Overexpression of heterologous protein in prokaryotic host cells, such as Escherichia coli, usually leads to formation of inactive and insoluble aggregates known as inclusion bodies (IBs). Recovery of refolded and functionally bioactive proteins from IBs is a challenging task, and a unique condition (e.g., solubilizing and refolding buffers) for each individual protein should be experimentally obtained. Here, we present a simple protocol for development of solubilizing and refolding buffers for successful recovery of pure bioactive proteins from IBs.
Collapse
Affiliation(s)
- Mohammad Roufarshbaf
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
25
|
López-Cano A, Sicilia P, Gaja C, Arís A, Garcia-Fruitós E. Quality comparison of recombinant soluble proteins and proteins solubilized from bacterial inclusion bodies. N Biotechnol 2022; 72:58-63. [PMID: 36150649 DOI: 10.1016/j.nbt.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Recombinant protein production in bacteria is often accompanied by the formation of aggregates, known as inclusion bodies (IBs). Although several strategies have been developed to minimize protein aggregation, many heterologous proteins are produced in aggregated form. For these proteins, purification necessarily requires processes of solubilization and refolding, often involving denaturing agents. However, the presence of biologically active recombinant proteins forming IBs has driven a redefinition of the protocols used to obtain soluble protein avoiding the protein denaturation step. Among the different strategies described, the detergent n-lauroylsarcosine (NLS) has proved to be effective. However, the impact of the NLS on final protein quality has not been evaluated so far. Here, the activity of three antimicrobial proteins (all as GFP fusions) obtained from the soluble fraction was compared with those solubilized from IBs. Results showed that NLS solubilized proteins from IBs efficiently, but that protein activity was impaired. Thus, a solubilization protocol without detergents was evaluated, demonstrating that this strategy efficiently solubilized proteins embedded in IBs while retaining their biological activity. These results showed that the protocol used for IB solubilization has an impact on final protein quality and that IBs can be solubilized through a very simple step, obtaining fully active proteins.
Collapse
Affiliation(s)
- Adrià López-Cano
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - Paula Sicilia
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - Clara Gaja
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain.
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain.
| |
Collapse
|
26
|
Roca-Pinilla R, Lisowski L, Arís A, Garcia-Fruitós E. The future of recombinant host defense peptides. Microb Cell Fact 2022; 21:267. [PMID: 36544150 PMCID: PMC9768982 DOI: 10.1186/s12934-022-01991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The antimicrobial resistance crisis calls for the discovery and production of new antimicrobials. Host defense peptides (HDPs) are small proteins with potent antibacterial and immunomodulatory activities that are attractive for translational applications, with several already under clinical trials. Traditionally, antimicrobial peptides have been produced by chemical synthesis, which is expensive and requires the use of toxic reagents, hindering the large-scale development of HDPs. Alternatively, HDPs can be produced recombinantly to overcome these limitations. Their antimicrobial nature, however, can make them toxic to the hosts of recombinant production. In this review we explore the different strategies that are used to fine-tune their activities, bioengineer them, and optimize the recombinant production of HDPs in various cell factories.
Collapse
Affiliation(s)
- Ramon Roca-Pinilla
- grid.1013.30000 0004 1936 834XTranslational Vectorology Research Unit, Faculty of Medicine and Health, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145 Australia
| | - Leszek Lisowski
- grid.1013.30000 0004 1936 834XTranslational Vectorology Research Unit, Faculty of Medicine and Health, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145 Australia ,grid.415641.30000 0004 0620 0839Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Anna Arís
- grid.8581.40000 0001 1943 6646Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries IRTA, 08140 Caldes de Montbui, Spain
| | - Elena Garcia-Fruitós
- grid.8581.40000 0001 1943 6646Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries IRTA, 08140 Caldes de Montbui, Spain
| |
Collapse
|
27
|
Kachhawaha K, Singh S, Joshi K, Nain P, Singh SK. Bioprocessing of recombinant proteins from Escherichia coli inclusion bodies: insights from structure-function relationship for novel applications. Prep Biochem Biotechnol 2022; 53:728-752. [PMID: 36534636 DOI: 10.1080/10826068.2022.2155835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of inclusion bodies (IBs) during expression of recombinant therapeutic proteins using E. coli is a significant hurdle in producing high-quality, safe, and efficacious medicines. The improved understanding of the structure-function relationship of the IBs has resulted in the development of novel biotechnologies that have streamlined the isolation, solubilization, refolding, and purification of the active functional proteins from the bacterial IBs. Together, this overall effort promises to radically improve the scope of experimental biology of therapeutic protein production and expand new prospects in IBs usage. Notably, the IBs are increasingly used for applications in more pristine areas such as drug delivery and material sciences. In this review, we intend to provide a comprehensive picture of the bio-processing of bacterial IBs, including assessing critical gaps that still need to be addressed and potential solutions to overcome them. We expect this review to be a useful resource for those working in the area of protein refolding and therapeutic protein production.
Collapse
Affiliation(s)
- Kajal Kachhawaha
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Santanu Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Khyati Joshi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Priyanka Nain
- Department of Chemical and Bimolecular Engineering, University of Delaware, Newark, DE, USA
| | - Sumit K Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
28
|
Matinja AI, Kamarudin NHA, Leow ATC, Oslan SN, Ali MSM. Cold-Active Lipases and Esterases: A Review on Recombinant Overexpression and Other Essential Issues. Int J Mol Sci 2022; 23:ijms232315394. [PMID: 36499718 PMCID: PMC9740821 DOI: 10.3390/ijms232315394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cold environments characterised by diverse temperatures close to or below the water freezing point dominate about 80% of the Earth's biosphere. One of the survival strategies adopted by microorganisms living in cold environments is their expression of cold-active enzymes that enable them to perform an efficient metabolic flux at low temperatures necessary to thrive and reproduce under those constraints. Cold-active enzymes are ideal biocatalysts that can reduce the need for heating procedures and improve industrial processes' quality, sustainability, and cost-effectiveness. Despite their wide applications, their industrial usage is still limited, and the major contributing factor is the lack of complete understanding of their structure and cold adaptation mechanisms. The current review looked at the recombinant overexpression, purification, and recent mechanism of cold adaptation, various approaches for purification, and three-dimensional (3D) crystal structure elucidation of cold-active lipases and esterase.
Collapse
Affiliation(s)
- Adamu Idris Matinja
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Science, Bauchi State University, Gadau 751105, Nigeria
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| |
Collapse
|
29
|
Buscajoni L, Martinetz MC, Berkemeyer M, Brocard C. Refolding in the modern biopharmaceutical industry. Biotechnol Adv 2022; 61:108050. [PMID: 36252795 DOI: 10.1016/j.biotechadv.2022.108050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
Inclusion bodies (IBs) often emerge upon overexpression of recombinant proteins in E. coli. From IBs, refolding is necessary to generate the native protein that can be further purified to obtain pure and active biologicals. This work focusses on refolding as a significant process step during biopharmaceutical manufacturing with an industrial perspective. A theoretical and historical background on protein refolding gives the reader a starting point for further insights into industrial process development. Quality requirements on IBs as starting material for refolding are discussed and further economic and ecological aspects are considered with regards to buffer systems and refolding conditions. A process development roadmap shows the development of a refolding process starting from first exploratory screening rounds to scale-up and implementation in manufacturing plant. Different aspects, with a direct influence on yield, such as the selection of chemicals including pH, ionic strength, additives, etc., and other often neglected aspects, important during scale-up, such as mixing, and gas-fluid interaction, are highlighted with the use of a quality by design (QbD) approach. The benefits of simulation sciences (process simulation and computer fluid dynamics) and process analytical technology (PAT) for seamless process development are emphasized. The work concludes with an outlook on future applications of refolding and highlights open research inquiries.
Collapse
Affiliation(s)
- Luisa Buscajoni
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Michael C Martinetz
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Matthias Berkemeyer
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Cécile Brocard
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| |
Collapse
|
30
|
Recombinant Globular Domain of TcpA Pilin from Vibrio cholerae El Tor: Recovery from Inclusion Bodies and Structural Characterization. Life (Basel) 2022; 12:life12111802. [DOI: 10.3390/life12111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The production of recombinant proteins in Escherichia coli cells is often hampered by aggregation of newly synthesized proteins and formation of inclusion bodies. Here we propose the use of transverse urea gradient electrophoresis (TUGE) in testing the capability of folding of a recombinant protein from inclusion bodies dissolved in urea. A plasmid encoding the amino acid sequence 55–224 of TcpA pilin (C-terminal globular domain: TcpA-C) from Vibrio cholerae El Tor enlarged by a His-tag on its N-terminus was expressed in E. coli cells. The major fraction (about 90%) of the target polypeptide was detected in cell debris. The polypeptide was isolated from the soluble fraction and recovered from inclusion bodies after their urea treatment. Some structural properties of the polypeptide from each sample proved identical. The refolding protocol was developed on the basis of TUGE data and successfully used for the protein large-scale recovery from inclusion bodies. Spectral, hydrodynamic, and thermodynamic characteristics of the recombinant TcpA recovered from inclusion bodies indicate the presence of a globular conformation with a pronounced secondary structure and a rigid tertiary structure, which is promising for the design of immunodiagnostics preparations aimed to assess the pilin level in different strains of V. cholerae and to develop cholera vaccines.
Collapse
|
31
|
Liu K, Wang FQ, Zhao M, Gao B, Xu H, Wei D. Economic optimization of expression of soluble human epidermal growth factor in Escherichia coli. Biotechnol Lett 2022; 44:1401-1414. [PMID: 36269495 DOI: 10.1007/s10529-022-03308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2022]
Abstract
Human epidermal growth factor (hEGF) has multiple biological functions, such as promoting cell proliferation, differentiation, and migration. In addition, it is a very expensive polypeptide with attractive market prospects. However, the production of hEGF needs for high cost to manufacture polypeptide demands reinvestigations of process conditions so as to enhance economic benefits. Improving the expression of soluble hEGF is the fundamental method to reduce the cost. In this study, a non-extracellular engineered strain of expressed hEGF was constructed, using plasmid pET-22b(+) in Escherichia coli. Preliminary fermentation and high cell density cultivation were carried out in shake flasks and in a 5 L bioreactor, respectively. A high yield of 98 ± 10 mg/L of soluble hEGF and a dry cell weight (DCW) of 6.98 ± 0.3 g/L were achieved in shake flasks. Then, fermentation conditions were optimized for large-scale production, while taking into consideration the expensive equipment required for cooling and conforming to industrial standards. A yield of 285 ± 10 mg/L of soluble hEGF, a final cell density of 57.4 ± 2 g/L DCW (OD600 141.1 ± 4.9), and hEGF productivity of 14.3 mg/L/h were obtained using a bioreactor at 32 °C for 20 h. The production method developed in this study for the biosynthesis of soluble hEGF is efficient and inexpensive.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.,College of Food Science and Light Industry, Nanjing Tech University, No.30 South Puzhu Road, Pukou District, Nanjing, 211816, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, No.30 South Puzhu Road, Pukou District, Nanjing, 211816, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
32
|
de Pinho Favaro MT, Atienza-Garriga J, Martínez-Torró C, Parladé E, Vázquez E, Corchero JL, Ferrer-Miralles N, Villaverde A. Recombinant vaccines in 2022: a perspective from the cell factory. Microb Cell Fact 2022; 21:203. [PMID: 36199085 PMCID: PMC9532831 DOI: 10.1186/s12934-022-01929-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| |
Collapse
|
33
|
Tarasca MV, Naser D, Schaefer A, Soule TG, Meiering EM. Quenched hydrogen-deuterium amide exchange optimization for high-resolution structural analysis of cellular protein aggregates. Anal Biochem 2022; 652:114675. [PMID: 35390328 DOI: 10.1016/j.ab.2022.114675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Inclusion bodies (IBs) are large, insoluble aggregates that often form during the overexpression of proteins in bacteria. These aggregates are of broad fundamental and practical significance, for recombinant protein preparation and due to their relevance to aggregation-related medical conditions and their recent emergence as promising functional nanomaterials. Despite their significance, high resolution knowledge of IB structure remains very limited. Such knowledge will advance understanding and control of IB formation and properties in myriad practical applications. Here, we report a detailed quenched hydrogen-deuterium amide exchange (qHDX) method with NMR readout to define the structure of IBs at the level of individual residues throughout the protein. Applying proper control of experimental conditions, such as sample pH, water content, temperature, and intrinsic rate of amide exchange, yields in depth results for these cellular protein aggregates. qHDX results illustrated for Cu, Zn superoxide dismutase 1 (SOD1) and Adnectins show their IBs include native-like structure and some but not all mutations alter IB structure.
Collapse
Affiliation(s)
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Tyler Gb Soule
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | | |
Collapse
|
34
|
Schaefer A, Naser D, Siebeneichler B, Tarasca MV, Meiering EM. Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. J Biol Chem 2022; 298:102197. [PMID: 35760099 PMCID: PMC9396402 DOI: 10.1016/j.jbc.2022.102197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins is at the nexus of molecular processes crucial to aging, disease, and employing proteins for biotechnology and medical applications. There has been much recent progress in determining the structural features of protein aggregates that form in cells; yet, owing to prevalent heterogeneity in aggregation, many aspects remain obscure and often experimentally intractable to define. Here, we review recent results of structural studies for cell-derived aggregates of normally globular proteins, with a focus on high-resolution methods for their analysis and prediction. Complementary results obtained by solid-state NMR spectroscopy, FTIR spectroscopy and microspectroscopy, cryo-EM, and amide hydrogen/deuterium exchange measured by NMR and mass spectrometry, applied to bacterial inclusion bodies and disease inclusions, are uncovering novel information on in-cell aggregation patterns as well as great diversity in the structural features of useful and aberrant protein aggregates. Using these advances as a guide, this review aims to advise the reader on which combination of approaches may be the most appropriate to apply to their unique system.
Collapse
Affiliation(s)
- Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
35
|
Restrepo-Pineda, Rosiles-BecerrilVargas-Castillo D, Ávila-Barrientos LP, Luviano A, Sánchez-Puig N, García-Hernández E, Pérez NO, Trujillo-Roldán MA, Valdez-Cruz NA. Induction temperature impacts the structure of recombinant HuGM-CSF inclusion bodies in thermoinducible E. coli. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Naser D, Tarasca MV, Siebeneichler B, Schaefer A, Deol HK, Soule TGB, Almey J, Kelso S, Mishra GG, Simon H, Meiering EM. High-Resolution NMR H/D Exchange of Human Superoxide Dismutase Inclusion Bodies Reveals Significant Native Features Despite Structural Heterogeneity. Angew Chem Int Ed Engl 2022; 61:e202112645. [PMID: 35316563 DOI: 10.1002/anie.202112645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/16/2023]
Abstract
Protein aggregation is central to aging, disease and biotechnology. While there has been recent progress in defining structural features of cellular protein aggregates, many aspects remain unclear due to heterogeneity of aggregates presenting obstacles to characterization. Here we report high-resolution analysis of cellular inclusion bodies (IBs) of immature human superoxide dismutase (SOD1) mutants using NMR quenched amide hydrogen/deuterium exchange (qHDX), FTIR and Congo red binding. The extent of aggregation is correlated with mutant global stability and, notably, the free energy of native dimer dissociation, indicating contributions of native-like monomer associations to IB formation. This is further manifested by a common pattern of extensive protection against H/D exchange throughout nine mutant SOD1s despite their diverse characteristics. These results reveal multiple aggregation-prone regions in SOD1 and illuminate how aggregation may occur via an ensemble of pathways.
Collapse
Affiliation(s)
- Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bruna Siebeneichler
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Harmeen K Deol
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Tyler G B Soule
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Johnathan Almey
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Susan Kelso
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Gyana G Mishra
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Current address: Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hilary Simon
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
37
|
Characterization of the enzymes involved in the diol synthase metabolic pathway in Pseudomonas aeruginosa. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Meena J, Singhvi P, Srichandan S, Dandotiya J, Verma J, Singh M, Ahuja R, Panwar N, Wani TQ, Khatri R, Siddiqui G, Gupta A, Samal S, Panda AK. RBD decorated PLA nanoparticle admixture with aluminum hydroxide elicit robust and long lasting immune response against SARS-CoV-2. Eur J Pharm Biopharm 2022; 176:43-53. [PMID: 35589003 PMCID: PMC9110063 DOI: 10.1016/j.ejpb.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Nanoparticles-based multivalent antigen display has the capability of mimicking natural virus infection characteristics, making it useful for eliciting potent long-lasting immune response. Several vaccines are developed against global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However these subunit vaccines use mammalian expression system, hence mass production with rapid pace is a bigger challenge. In contrast E. coli based subunit vaccine production circumvents these limitations.The objective of the present investigation was to develop nanoparticle vaccine with multivalent display of receptor binding domain (RBD) of SARS-CoV-2 expressed in E. coli. Results showed that RBD entrapped PLA (Poly lactic acid) nanoparticle in combination with aluminum hydroxide elicited 9-fold higher immune responses as compared to RBD adsorbed aluminum hydroxide, a common adjuvant used for human immunization. It was interesting to note that RBD entrapped PLA nanoparticle with aluminum hydroxide not only generated robust and long-lasting antibody response but also provided Th1 and Th2 balanced immune response. Moreover, challenge with 1 µg of RBD alone was able to generate secondary antibody response, suggesting that immunization with RBD-PLA nanoparticleshas the ability to elicit memory antibody against RBD. Plaque assay revealed that the antibody generated using the polymeric formulation was able to neutralize SARS-CoV-2.The RBD entrapped PLA nanoparticles blended with aluminum hydroxide thus has potential to develop asa subunit vaccine against COVID-19.
Collapse
Affiliation(s)
- Jairam Meena
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India.
| | - Priyank Singhvi
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sudeepa Srichandan
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jyotsna Dandotiya
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Juhi Verma
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mamta Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Ahuja
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Neha Panwar
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tabiya Qayoom Wani
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ritika Khatri
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, Gurgaon-Faridabad, India
| | - Gazala Siddiqui
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, Gurgaon-Faridabad, India
| | - Anuradha Gupta
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sweety Samal
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, Gurgaon-Faridabad, India
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
39
|
Naser D, Tarasca MV, Siebeneichler B, Schaefer A, Deol HK, Soule TGB, Almey J, Kelso S, Mishra GG, Simon H, Meiering EM. High‐Resolution NMR H/D Exchange of Human Superoxide Dismutase Inclusion Bodies Reveals Significant Native Features Despite Structural Heterogeneity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dalia Naser
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Michael V. Tarasca
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | | | - Anna Schaefer
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Harmeen K. Deol
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Tyler G. B. Soule
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Clinical Neurosciences University of Calgary Calgary, AB T2N 1N4 Canada
| | - Johnathan Almey
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Susan Kelso
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Molecular Genetics University of Toronto Toronto, ON M5S 1A1 Canada
| | - Gyana G. Mishra
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
- Current address: Department of Biology University of Waterloo Waterloo, ON N2L 3G1 Canada
| | - Hilary Simon
- Department of Chemistry University of Waterloo Waterloo, ON N2L 3G1 Canada
| | | |
Collapse
|
40
|
Restrepo-Pineda S, Sánchez-Puig N, Pérez NO, García-Hernández E, Valdez-Cruz NA, Trujillo-Roldán MA. The pre-induction temperature affects recombinant HuGM-CSF aggregation in thermoinducible Escherichia coli. Appl Microbiol Biotechnol 2022; 106:2883-2902. [PMID: 35412129 PMCID: PMC9002048 DOI: 10.1007/s00253-022-11908-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
The overproduction of recombinant proteins in Escherichia coli leads to insoluble aggregates of proteins called inclusion bodies (IBs). IBs are considered dynamic entities that harbor high percentages of the recombinant protein, which can be found in different conformational states. The production conditions influence the properties of IBs and recombinant protein recovery and solubilization. The E. coli growth in thermoinduced systems is generally carried out at 30 °C and then recombinant protein production at 42 °C. Since the heat shock response in E. coli is triggered above 34 °C, the synthesis of heat shock proteins can modify the yields of the recombinant protein and the structural quality of IBs. The objective of this work was to evaluate the effect of different pre-induction temperatures (30 and 34 °C) on the growth of E. coli W3110 producing the human granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) and on the IBs structure in a λpL/pR-cI857 thermoinducible system. The recombinant E. coli cultures growing at 34 °C showed a ~ 69% increase in the specific growth rate compared to cultures grown at 30 °C. The amount of rHuGM-CSF in IBs was significantly higher in cultures grown at 34 °C. Main folding chaperones (DnaK and GroEL) were associated with IBs and their co-chaperones (DnaJ and GroES) with the soluble protein fraction. Finally, IBs from cultures that grew at 34 °C had a lower content of amyloid-like structure and were more sensitive to proteolytic degradation than IBs obtained from cultures at 30 °C. Our study presents evidence that increasing the pre-induction temperature in a thermoinduced system allows obtaining higher recombinant protein and reducing amyloid contents of the IBs. KEY POINTS: • Pre-induction temperature determines inclusion bodies architecture • In pre-induction (above 34 °C), the heat shock response increases recombinant protein production • Inclusion bodies at higher pre-induction temperature show a lower amyloid content.
Collapse
Affiliation(s)
- Sara Restrepo-Pineda
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP, 04510, México
| | - Nuria Sánchez-Puig
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Néstor O Pérez
- Probiomed S.A. de C.V. Planta Tenancingo, Cruce de Carreteras Acatzingo-Zumpahuacan SN, Tenancingo, CP 52400, Estado de México, México
| | - Enrique García-Hernández
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP, 04510, México
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP, 04510, México.
- Departamento de Biología Molecular y Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP, 04510, México.
| |
Collapse
|
41
|
Maksum IP, Yosua Y, Nabiel A, Pratiwi RD, Sriwidodo S, Soedjanaatmadja UM. Refolding of bioactive human epidermal growth factor from E. coli BL21(DE3) inclusion bodies & evaluations on its in vitro & in vivo bioactivity. Heliyon 2022; 8:e09306. [PMID: 35497033 PMCID: PMC9039848 DOI: 10.1016/j.heliyon.2022.e09306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Human epidermal growth factor (hEGF) is a mitogenic protein widely used in pharmaceutical and cosmetic industries, thus recombinant DNA technology has been applied to meet the high demand for hEGF. The overexpression of recombinant protein in E. coli often leads to the formation of inclusion bodies (IBs). Mild solubilisation preserves the native secondary protein structure in IBs, thereby the high recovery of active protein from IBs. The redox system also plays a pivotal role in the formation of disulphide bonds during refolding of disulphide bond-containing protein. This study aimed to recover hEGF from bacterial IBs through freeze-thawing solubilisation and glutathione-based oxidative refolding. CBD-Ssp DnaB-hEGF fusion protein was expressed as IBs in E. coli, washed with Triton X-100 and urea to remove most protein contaminants, then the solubilised fusion protein was obtained by freeze-thawing with the addition of 2 M urea. The solubilised protein was subsequently refolded by intein cleavage via a glutathione-based redox system. The refolded hEGF demonstrated heat-resistant properties, interacted with specific antibodies on ELISA, stimulated keratinocyte proliferation and possessed significant in vivo wound healing properties on the 8th day, confirming that hEGF was correctly folded. In summary, the protocol described is suitable for the recovery of refolded hEGF from bacterial IBs by mild solubilisation and oxidative refolding.
Collapse
Affiliation(s)
- Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Yosua Yosua
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ahmad Nabiel
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Riyona Desvy Pratiwi
- Research Centre of Biotechnology, Indonesian Institute of Science, Bogor, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ukun M.S. Soedjanaatmadja
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
42
|
Singhvi P, Panda AK. Solubilization and Refolding of Inclusion Body Proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2406:371-387. [PMID: 35089569 DOI: 10.1007/978-1-0716-1859-2_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expression of heterologous proteins in E. coli often leads to the formation of protein aggregates known as inclusion bodies (IBs). Inclusion body aggregates pose a major hurdle in the recovery of bioactive proteins from E. coli. Usage of strong denaturing buffers for solubilization of bacterial IBs results in poor recovery of bioactive protein. Structure-function understanding of IBs in the last two decades have led to the development of several mild solubilization buffers, which improve the recovery of bioactive from IBs. Recently, combinatorial mild solubilization methods have paved the way for solubilization of wide range of inclusion bodies with appreciable refolding yield. Here, we describe a simple protocol for solubilization and refolding of an inclusion body protein with appreciable recovery.
Collapse
Affiliation(s)
- Priyank Singhvi
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Amulya K Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
43
|
Ganjave SD, Dodia H, Sunder AV, Madhu S, Wangikar PP. High cell density cultivation of E. coli in shake flasks for the production of recombinant proteins. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00694. [PMID: 35004235 PMCID: PMC8718739 DOI: 10.1016/j.btre.2021.e00694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 12/05/2022]
Abstract
True fed-batch strategy for high cell density cultivation of E. coli in shake flask. Cybernetic model-based optimization of the feeding recipe. Biomass of 19.9–21.5 g DCW/L, in agreement with the model prediction. Volumetric productivity for tested proteins increased 8–34-fold compared to batch. Scale up of fed-batch recipe to bioreactor resulted in further 2.8-fold increase.
Batch cultivation of recombinant bacteria in shake flasks typically results in low cell density due to nutrient depletion. Previous studies on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms. Here, we report a true fed-batch strategy to achieve high cell density of recombinant E. coli in shake flasks in 24 h by feeding a mixture of glycerol and yeast extract with a syringe pump. Feed composition and feed rate were obtained by cybernetic model-based, multi-objective optimization. Model parameters were estimated from time-course measurement of substrate, biomass, and dissolved oxygen levels. The optimized process yielded 20.7 g dry cell weight/L, in agreement with the model prediction. Volumetric protein productivity improved by 10–34-fold compared to batch cultivation with 2.8-fold further improvement when the fed-batch process was replicated in a 3 L bioreactor. The process has significance in the routine laboratory cultivations and in scaleup studies.
Collapse
Affiliation(s)
- Snehal D Ganjave
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Hardik Dodia
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avinash Vellore Sunder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Swati Madhu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
44
|
El-Dabaa E, Okasha H, Samir S, Adel El-Kalamawy H, Mohamed Nasr S, Ali Saber M. Optimization of high expression and purification of recombinant streptokinase and in vitro Evaluation of its thrombolytic activity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
45
|
Ko H, Kang M, Kim MJ, Yi J, Kang J, Bae JH, Sohn JH, Sung BH. A novel protein fusion partner, carbohydrate-binding module family 66, to enhance heterologous protein expression in Escherichia coli. Microb Cell Fact 2021; 20:232. [PMID: 34963459 PMCID: PMC8715580 DOI: 10.1186/s12934-021-01725-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022] Open
Abstract
Background Proteins with novel functions or advanced activities developed by various protein engineering techniques must have sufficient solubility to retain their bioactivity. However, inactive protein aggregates are frequently produced during heterologous protein expression in Escherichia coli. To prevent the formation of inclusion bodies, fusion tag technology has been commonly employed, owing to its good performance in soluble expression of target proteins, ease of application, and purification feasibility. Thus, researchers have continuously developed novel fusion tags to expand the expression capacity of high-value proteins in E. coli. Results A novel fusion tag comprising carbohydrate-binding module 66 (CBM66) was developed for the soluble expression of heterologous proteins in E. coli. The target protein solubilization capacity of the CBM66 tag was verified using seven proteins that are poorly expressed or form inclusion bodies in E. coli: four human-derived signaling polypeptides and three microbial enzymes. Compared to native proteins, CBM66-fused proteins exhibited improved solubility and high production titer. The protein-solubilizing effect of the CBM66 tag was compared with that of two commercial tags, maltose-binding protein and glutathione-S-transferase, using poly(ethylene terephthalate) hydrolase (PETase) as a model protein; CBM66 fusion resulted in a 3.7-fold higher expression amount of soluble PETase (approximately 370 mg/L) compared to fusion with the other commercial tags. The intact PETase was purified from the fusion protein upon serial treatment with enterokinase and affinity chromatography using levan-agarose resin. The bioactivity of the three proteins assessed was maintained even when the CBM66 tag was fused. Conclusions The use of the CBM66 tag to improve soluble protein expression facilitates the easy and economic production of high-value proteins in E. coli. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01725-w.
Collapse
Affiliation(s)
- Hyunjun Ko
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiyeon Yi
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
46
|
Singhvi P, Saneja A, Ahuja R, Panda AK. Solubilization and refolding of variety of inclusion body proteins using a novel formulation. Int J Biol Macromol 2021; 193:2352-2364. [PMID: 34798190 DOI: 10.1016/j.ijbiomac.2021.11.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Formation of protein aggregates as inclusion bodies (IBs) still poses a major hurdle in the recovery of bioactive proteins from E. coli. Despite the development of many mild solubilization buffers in last two decades, high-throughput recovery of functional protein from wide range of IBs is still a challenge at an academic and industrial scale. Herein, a novel formulation for improved recovery of bioactive protein from variety of bacterial IBs is developed. This novel formulation is comprised of 20% trifluoroethanol, 20% n-propanol and 2 M urea at pH 12.5 which disrupts the major dominant forces involved in protein aggregation. An extensive comparative study of novel formulation conducted on different IBs demonstrates its high solubilization and refolding efficiency. The overall yield of bioactive protein from human growth hormone expressed as bacterial IBs is reported to be around 50%. This is attributed to the capability of novel formulation to disrupt the tertiary structure of the protein while protecting the secondary structure of the protein, thereby reducing the formation of soluble aggregates during refolding. Thus, the formulation can eliminate the need of screening and optimizing various solubilization formulation and will improve the efficiency of recovering bioactive protein from variety of IB aggregates.
Collapse
Affiliation(s)
- Priyank Singhvi
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Ankit Saneja
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Rahul Ahuja
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amulya K Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
47
|
Trainor K, Doyle CM, Metcalfe-Roach A, Steckner J, Lipovšek D, Malakian H, Langley D, Krystek SR, Meiering EM. Design for Solubility May Reveal Induction of Amide Hydrogen/Deuterium Exchange by Protein Self-Association. J Mol Biol 2021; 434:167398. [PMID: 34902431 DOI: 10.1016/j.jmb.2021.167398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Structural heterogeneity often constrains the characterization of aggregating proteins to indirect or low-resolution methods, obscuring mechanistic details of association. Here, we report progress in understanding the aggregation of Adnectins, engineered binding proteins with an immunoglobulin-like fold. We rationally design Adnectin solubility and measure amide hydrogen/deuterium exchange (HDX) under conditions that permit transient protein self-association. Protein-protein binding commonly slows rates of HDX; in contrast, we find that Adnectin association may induce faster HDX for certain amides, particularly in the C-terminal β-strand. In aggregation-prone proteins, we identify a pattern of very different rates of amide HDX for residues linked by reciprocal hydrogen bonds in the native structure. These results may be explained by local loss of native structure and formation of an inter-protein interface. Amide HDX induced by self-association, detected here by deliberate modulation of propensity for such interactions, may be a general phenomenon with the potential to expose mechanisms of aggregation by diverse proteins.
Collapse
Affiliation(s)
- Kyle Trainor
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| | - Avril Metcalfe-Roach
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| | - Julia Steckner
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Daša Lipovšek
- Bristol Myers Squibb, Cambridge, MA 02140, United States.
| | | | - David Langley
- Bristol Myers Squibb, Cambridge, MA 02140, United States
| | | | - Elizabeth M Meiering
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| |
Collapse
|
48
|
Jugniot N, Bam R, Paulmurugan R. Expression and purification of a native Thy1-single-chain variable fragment for use in molecular imaging. Sci Rep 2021; 11:23026. [PMID: 34845270 PMCID: PMC8630227 DOI: 10.1038/s41598-021-02445-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Molecular imaging using singlechain variable fragments (scFv) of antibodies targeting cancer specific antigens have been considered a non-immunogenic approach for early diagnosis in the clinic. Usually, production of proteins is performed within Escherichia coli. Recombinant proteins are either expressed in E. coli cytoplasm as insoluble inclusion bodies, that often need cumbersome denaturation and refolding processes, or secreted toward the periplasm as soluble proteins that highly reduce the overall yield. However, production of active scFvs in their native form, without any heterologous fusion, is required for clinical applications. In this study, we expressed an anti-thymocyte differentiation antigen-scFv (Thy1-scFv) as a fusion protein with a N-terminal sequence including 3 × hexa-histidines, as purification tags, together with a Trx-tag and a S-tag for enhanced-solubility. Our strategy allowed to recover ~ 35% of Thy1-scFv in the soluble cytoplasmic fraction. An enterokinase cleavage site in between Thy1-scFv and the upstream tags was used to regenerate the protein with 97.7 ± 2.3% purity without any tags. Thy1-scFv showed functionality towards its target on flow cytometry assays. Finally, in vivo molecular imaging using Thy1-scFv conjugated to an ultrasound contrast agent (MBThy1-scFv) demonstrated signal enhancement on a transgenic pancreatic ductal adenocarcinoma (PDAC) mouse model (3.1 ± 1.2 a.u.) compared to non-targeted control (0.4 ± 0.4 a.u.) suggesting potential for PDAC early diagnosis. Overall, our strategy facilitates the expression and purification of Thy1-scFv while introducing its ability for diagnostic molecular imaging of pancreatic cancer. The presented methodology could be expanded to other important eukaryotic proteins for various applications, including but not limited to molecular imaging.
Collapse
Affiliation(s)
- Natacha Jugniot
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Rakesh Bam
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
49
|
Siew YY, Rai A, Pek HB, Ow DSW, Zhang W. New and efficient purification process for recombinant human insulin produced in Escherichia coli. Appl Microbiol Biotechnol 2021; 105:9137-9151. [PMID: 34821966 DOI: 10.1007/s00253-021-11697-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023]
Abstract
A new and efficient purification process for recombinant human insulin production was developed by exploring new resins and optimizing purification steps from E. coli inclusion body washing to insulin polishing. A combined additives inclusion body wash protocol drastically improved efficiency in clarifying ZZ-proinsulin samples. ZZ-proinsulin recovery increased three-fold under optimized solubilization and sulfitolysis incubation temperature and duration. Desalting with Bio-Gel P4 and P6 resulted in higher sample loading and product recovery compared to conventional resins. A higher recovery (96%) and purity (81%) of ZZ-proinsulin were achievable with the Nuvia S cation exchanger for proinsulin purification compared to a reported process using expensive affinity chromatography resin. As the first step for insulin purification, process scale-up is more economical and practical when Nuvia HR-S cation exchanger was used instead of commonly used reversed-phase chromatography. Nuvia HR-S was highly effective in removing ZZ fusion protein (90% removal) after enzymatic cleavage, although ZZ fusion protein has a very close theoretical pI to human insulin, which was supposedly challenging to be removed by cation exchange chromatography. Also, insulin can be eluted at a lower ethanol % using Nuvia HR-S compared to other reported processes and is thus more environmentally sustainable. Recombinant human insulin was obtained with over 98% purity in just a single reversed-phase polishing step, which is comparable to the reference standard. The process workflow presented here can be potentially applied for the development of purification workflow for insulin analogs or other peptide products derived from E. coli inclusion body.Key points• Drastic efficiency improvement for inclusion body wash with combined additives.• High recovery of proinsulin purification with high capacity cation exchange resin.• Effective removal of fusion tag at lower ethanol % with high-resolution resin.
Collapse
Affiliation(s)
- Yin Yin Siew
- Downstream Processing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Amrita Rai
- Downstream Processing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Han Bin Pek
- Microbial Cell Bioprocessing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cell Bioprocessing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, A*STAR Research Entities, Singapore, Singapore.
| |
Collapse
|
50
|
Esteves AM, Papaevangelou E, Smolarek D, Dasgupta P, Galustian C. Cytotopic (Cyto-) IL-15 as a New Immunotherapy for Prostate Cancer: Recombinant Production in Escherichia coli and Purification. Front Mol Biosci 2021; 8:755764. [PMID: 34778376 PMCID: PMC8578882 DOI: 10.3389/fmolb.2021.755764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022] Open
Abstract
Interleukin-15 (IL-15) is a cytokine previously suggested as a potential immunotherapy for cancer treatment. IL-15 can effectively reduce tumor growth in many preclinical tumor models including prostate cancer. This is due to its ability to expand and activate immune cells, such as CD8+ T cells and natural killer cells. To increase the potency of IL-15, we have engineered a protein variant that can be modified to localize and be retained in tissues where it is administered. However, the production of recombinant IL-15, the purity, and correct refolding of the final protein is not always ideal. In the current study, we aimed to optimize the methodology for production and purification of a modified recombinant human IL-15 and investigate the efficacy of the produced protein in the treatment of prostate tumors. Human IL-15 with its polypeptide sequence modified at the C-terminus to enable thiol conjugation with membrane localizing peptides, was produced in E. coli and purified using mild denaturing conditions (2M urea) from a washing step or from solubilization of inclusion bodies. The purified protein from the wash fraction was conjugated to a myristoylated peptide to form a membrane-localizing IL-15 (cyto-IL-15). The efficacy of cyto-IL-15 was investigated in subcutaneous TRAMP-C2 prostate tumors in mice and compared with cyto-IL-15 derived from protein purified from inclusion bodies (cyto-IL-15 Gen). When mild denaturing conditions were used for purification, the largest amount of IL-15 was collected from the wash fraction and a smaller amount from inclusion bodies. The protein from the wash fraction was mainly present as a monomer, whereas the one from inclusion bodies formed homodimers and higher complexes. After cytotopic modification, the purified IL-showed great efficacy in delaying prostate tumor growth (∼50%) and increased mice survival by ∼1.8-fold compared with vehicle. This study demonstrates an alternative, inexpensive and efficient method to produce and purify a modified version of IL-15 using mild denaturing conditions. This IL-15, when cytotopically modified, showed great efficacy as a monotherapy in prostate tumors in mice further highlighting the potential of IL-15 as a cancer immunotherapy.
Collapse
Affiliation(s)
- Ana M Esteves
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Efthymia Papaevangelou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Dorota Smolarek
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Prokar Dasgupta
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom.,Urology Centre, Guy's Hospital, London, United Kingdom
| | - Christine Galustian
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|