1
|
Gallego I, Medic N, Pedersen JS, Ramasamy PK, Robbens J, Vereecke E, Romeis J. The microalgal sector in Europe: Towards a sustainable bioeconomy. N Biotechnol 2025; 86:1-13. [PMID: 39778767 DOI: 10.1016/j.nbt.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Microalgae are a diverse group of photosynthetic microorganisms that can be exploited to produce sustainable food and feed products, alleviate environmental pollution, or sequester CO2 to mitigate climate change, among other uses. To optimize resource use and integrate industrial waste streams, it is essential to consider factors such as the biology and cultivation parameters of the microalgal strains, as well as the cultivation system and processing technologies employed. This paper reviews the main commercial applications of microalgae (including cyanobacteria) and examines the biological and biotechnological aspects critical to the sustainable processing of microalgal biomass and its derived compounds. We also provide an up-to-date overview of the microalgal sector in Europe considering the strain, cultivation system and commercial application. We have identified 146 different microalgal-derived products from 66 European microalgae producers, and 49 additional companies that provide services and technologies, such as optimization and scalability of the microalgal production. The most widely cultivated microalga is 'spirulina' (Limnospira spp.), followed by Chlorella spp. and Nannochloropsis spp., mainly for human consumption and cosmetics. The preferred cultivation system in Europe is the photobioreactor. Finally, we discuss the logistic and regulatory challenges of producing microalgae at industrial scale, particularly in the European Union, and explore the potential of new genomic techniques and bioprocessing to foster a sustainable bioeconomy in the microalgal sector.
Collapse
Affiliation(s)
- Irene Gallego
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland.
| | - Nikola Medic
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | - Jakob Skov Pedersen
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | | | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Elke Vereecke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| |
Collapse
|
2
|
Zhong QL, Xiong JQ. A Globally Distributed Cyanobacterial Nitroreductase Capable of Conferring Biodegradation of Chloramphenicol. RESEARCH (WASHINGTON, D.C.) 2025; 8:0692. [PMID: 40352947 PMCID: PMC12063702 DOI: 10.34133/research.0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025]
Abstract
Cyanobacteria play pivotal roles in global biogeochemical cycles and aquatic ecosystems due to their widespread distribution and significant contributions to primary production. Yet, the interactions between cyanobacteria and antibiotics remain unclear. This study revealed that Synechocystis sp., a cyanobacterial species, removed 94.27% of 0.1 mg l-1 chloramphenicol (CAP) through enzyme-mediated degradation. While cytochrome P450 enzymes (CYP450s) were found unnecessary for CAP removal, a gene encoding cyanobacterial nitroreductase was significantly up-regulated (7.85-fold) under CAP exposure. The purified nitroreductase exhibited strong binding affinity to CAP (K d = 2.9 nM) and a Michaelis constant (K m) of 104.0 μM. By engineering a bacterial strain with nitroreductase, 94.43% of 0.1 mg l-1 CAP was removed within 2 h. Metagenomic and metatranscriptomic analyses showed that nitroreductase genes and transcripts are globally distributed across diverse microbial phyla. These findings uncover a novel enzyme for CAP degradation and advance sustainable biotechnologies to mitigate antibiotic pollution, addressing critical environmental challenges in aquaculture and other industries globally.
Collapse
Affiliation(s)
- Qiu-Lian Zhong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse,
Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
3
|
Zhang B, Muhammad G, Deng L, Alam MA, Zhao A, Butler TO, Li Z, Zhang X, Xu J. A sustainable and efficient method for sequential extraction of lutein and lipid from deep eutectic solvent pretreated Chlorella pyrenoidosa. RSC Adv 2025; 15:14072-14078. [PMID: 40309118 PMCID: PMC12042739 DOI: 10.1039/d5ra00423c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Microalgae biomass is regarded as a potential feedstock for valuable compounds such as pigments, lipids and proteins. However, development of single molecule extraction processes is the most common practice. A green multiproduct extraction approach is needed for economically sustainable process development of the microalgal industry. Therefore, this study aims to investigate the sequential extraction of lutein and lipid from dry and wet Chlorella pyrenoidosa biomass pretreated with a choline chloride-based deep eutectic solvent (DES) under a sustainable biorefinery scheme. In this context, we have assessed the kinetic modeling of the solid-liquid extraction process for the aforementioned compounds, focusing on the effects of temperature and time. The maximum lutein (3.80 mg g-1) and lipid (95.0 mg g-1) contents from dry biomass were obtained at 45 °C in 40 min and at 70 °C in 90 min, respectively. From wet biomass, the maximum lutein (2.57 mg g-1) and lipid contents (87.47 mg g-1) were obtained at 35 °C in 40 min and at 70 °C in 90 min, respectively. The kinetics of the solvent-based extraction process for lutein and lipids were assessed via first-order and second-order kinetic models with an associated investigation of kinetic parameters, such as rate constants, saturation concentration and activation energies. We found that temperature is an important parameter that influences the extraction of all compounds and also has a significant impact on the kinetic parameters. Toxicity evaluation of the DES and economic assessment of DES vs. ionic liquids (ILs) were performed. The synthesis cost of the DES is lower than that of ILs, and Escherichia coli JM109 survivability assessment confirms the DES as a non-toxic solvent. The present study provides valuable insights into the sequential extraction for a high-value multiproduct biorefinery.
Collapse
Affiliation(s)
- Beixiao Zhang
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Gul Muhammad
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 China
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou 310058 China
- Institute of Zhejiang University-Quzhou Quzhou 324000 China
| | - Liya Deng
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University Zhengzhou 450001 Henan China
| | - Thomas O Butler
- Lgem/Synalgae Achterweg 65 1424 PP De Kwakel The Netherlands
| | - Zhenglong Li
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou 310058 China
- Institute of Zhejiang University-Quzhou Quzhou 324000 China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou 310058 China
- Institute of Zhejiang University-Quzhou Quzhou 324000 China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
4
|
Chen H, Jiang J, Ledesma-Amaro R. Microalgae-based vaccines for aquaculture. Trends Biotechnol 2025:S0167-7799(25)00128-3. [PMID: 40268646 DOI: 10.1016/j.tibtech.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Microalgae-based oral vaccines bolster aquaculture by sustainably enhancing fish immunity and curbing disease outbreaks. Here, we introduce the rational design of vaccine antigens and discuss the oral delivery and immune benefits of microalgae-based vaccines. We expect advances in synthetic biology and fish immune metabolism to drive microalgae-based vaccine innovation.
Collapse
Affiliation(s)
- Haohong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College London, London, SW7 2AZ, UK; Engineering Biology Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Jianguo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College London, London, SW7 2AZ, UK; Engineering Biology Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Gerszberg A, Kolek L, Hnatuszko-Konka K. In Vitro Culture, Genetic Transformation and the Production of Biopharmaceuticals in Microalgae. Int J Mol Sci 2025; 26:3890. [PMID: 40332780 PMCID: PMC12028317 DOI: 10.3390/ijms26083890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Microalgae represent a promising platform for the synthesis of recombinant proteins, particularly in the context of biopharmaceutical applications. Their unique combination of eukaryotic cellular machinery and prokaryotic-like simplicity offers several advantages, including the ability to perform complex post-translational modifications, rapid growth rates, and cost-effective culture conditions. Advances in genome sequencing, genetic engineering tools, and omics technologies have significantly enhanced the feasibility and efficiency of using microalgae for therapeutic protein production. These advancements, coupled with the development of well-established transformation methods and optimized vectors, have enabled the successful expression of various biopharmaceuticals, ranging from vaccines to enzymes. Here, the main stages and current status of the production of exogenic recombinant proteins dedicated to human therapy are presented.
Collapse
Affiliation(s)
- Aneta Gerszberg
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Ludmiła Kolek
- Institute of Ichthyobiology and Aquaculture in Gołysz, Polish Academy of Science, Zaborze, Kalinowa St 2, 43-520 Chybie, Poland
| | - Katarzyna Hnatuszko-Konka
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
6
|
Kang K, Santo ÉDE, Diaz CJ, Oliver A, Saxton L, May L, Mayfield S, Molino JVD. Engineering the green algae Chlamydomonas incerta for recombinant protein production. PLoS One 2025; 20:e0321071. [PMID: 40238798 PMCID: PMC12002436 DOI: 10.1371/journal.pone.0321071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/28/2025] [Indexed: 04/18/2025] Open
Abstract
Chlamydomonas incerta, a genetically close relative of the model green alga Chlamydomonas reinhardtii, shows significant potential as a host for recombinant protein expression. Because of the close genetic relationship between C. incerta and C. reinhardtii, this species offers an additional reference point for advancing our understanding of photosynthetic organisms, and also provides a potential new candidate for biotechnological applications. This study investigates C. incerta's capacity to express three recombinant proteins: the fluorescent protein mCherry, the hemicellulose-degrading enzyme xylanase, and the plastic-degrading enzyme PHL7. We have also examined the capacity to target protein expression to various cellular compartments in this alga, including the cytosol, secretory pathway, cytoplasmic membrane, and cell wall. When compared directly with C. reinhardtii, C. incerta exhibited a distinct but notable capacity for recombinant protein production. Cellular transformation with a vector encoding mCherry revealed that C. incerta produced approximately 3.5 times higher fluorescence levels and a 3.7-fold increase in immunoblot intensity compared to C. reinhardtii. For xylanase expression and secretion, both C. incerta and C. reinhardtii showed similar secretion capacities and enzymatic activities, with comparable xylan degradation rates, highlighting the industrial applicability of xylanase expression in microalgae. Finally, C. incerta showed comparable PHL7 activity levels to C. reinhardtii, as demonstrated by the in vitro degradation of a polyester polyurethane suspension, Impranil® DLN. Finally, we also explored the potential of cellular fusion for the generation of genetic hybrids between C. incerta and C. reinhardtii as a means to enhance phenotypic diversity and augment genetic variation. We were able to generate genetic fusion that could exchange both the recombinant protein genes, as well as associated selectable marker genes into recombinant offspring. These findings emphasize C. incerta's potential as a robust platform for recombinant protein production, and as a powerful tool for gaining a better understanding of microalgal biology.
Collapse
Affiliation(s)
- Kalisa Kang
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Évellin do Espirito Santo
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Crisandra Jade Diaz
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Lisa Saxton
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lauren May
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, United States of America,
| | - Stephen Mayfield
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Algenesis Materials, San Diego, California, United States of America
| | - João Vitor Dutra Molino
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
7
|
Bleisch R, Ihadjadene Y, Torrisi A, Walther T, Mühlstädt G, Steingröwer J, Streif S, Krujatz F. Physiological Adaptation of Chromochloris zofingiensis in Three-Phased Cultivation Performed in a Pilot-Scale Photobioreactor. Life (Basel) 2025; 15:648. [PMID: 40283202 PMCID: PMC12028653 DOI: 10.3390/life15040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Chromochloris zofingiensis is a green alga that serves as a valuable source of lipids, proteins, and carotenoids. Compared to well-studied microalgal carotenoid producers, C. zofingiensis offers several advantages, including high biomass, lipid and carotenoid productivity as well as less susceptibility to contaminations. C. zofingiensis can achieve growth rates up to four times higher than those of H. pluvialis under optimal phototrophic conditions. Although several studies have examined its cultivation and carotenogenesis under different tropic growth modes at laboratory scale, few have focused on pilot-scale systems. The goal of this study is to investigate the microalga's physiological adaptation in a 200 L tubular photobioreactor during a three-phase semi-continuous cultivation strategy, particularly focusing on the changes in macromolecular and pigment composition. After an initial biomass accumulation phase, a two-phased stress phase was applied combining nutrient depletion (phase 1) and osmotic salt stress conditions (phase 2). Following this procedure, the cellular protein content dropped to 44.7% of its initial level, while the lipid content rose by up to 320%. Additionally, the astaxanthin concentration increased from 1.1 mg/gDW to 4.9 mg/gDW during the last osmotic stress phases, aligning with results from published laboratory-scale studies.
Collapse
Affiliation(s)
- Richard Bleisch
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (Y.I.); (T.W.); (J.S.)
- Chair of Automatic Control & System Dynamics, Technische Universität Chemnitz, 09126 Chemnitz, Germany;
| | - Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (Y.I.); (T.W.); (J.S.)
- Chair of Automatic Control & System Dynamics, Technische Universität Chemnitz, 09126 Chemnitz, Germany;
| | - Agnese Torrisi
- Department of Industrial Engineering DII, University of Padova, 35131 Padova, Italy;
| | - Thomas Walther
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (Y.I.); (T.W.); (J.S.)
| | | | - Juliane Steingröwer
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (Y.I.); (T.W.); (J.S.)
| | - Stefan Streif
- Chair of Automatic Control & System Dynamics, Technische Universität Chemnitz, 09126 Chemnitz, Germany;
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, 35392 Giessen, Germany
| | - Felix Krujatz
- Chair of Automatic Control & System Dynamics, Technische Universität Chemnitz, 09126 Chemnitz, Germany;
- biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, 01454 Radeberg, Germany
| |
Collapse
|
8
|
Calvo-Baltanás V, Vilcinskas A, Brück T, Kloas W, Wilke T, Rufino M, Henkel M, Zorn H, Monje O, Asseng S. The future potential of controlled environment agriculture. PNAS NEXUS 2025; 4:pgaf078. [PMID: 40177662 PMCID: PMC11961353 DOI: 10.1093/pnasnexus/pgaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/08/2025] [Indexed: 04/05/2025]
Abstract
The production of high-quality food needs to increase to feed the growing global population. Controlled environment agriculture (CEA) systems in a vertical farm setting-in which several layers are stacked above each other, thus increasing the area for growth-can substantially boost productivity for crops, algae, mushrooms, fish, insects, and cultured meat. These systems are independent of climate, weather, and region, offering reduced environmental impact, although they come with high energy demands. An easy-to-understand, quantitative performance assessment of the theoretical potential for these 6 CEA systems is proposed here. It compares them against the world's main food production system: field production of maize, wheat, rice, and soybean. CEA could play a pivotal role in the global food supply if efficiencies in energy, control of growth environments, and waste stream utilization are vastly improved. Technological advancements, targeted policy support and public engagement strategies will be necessary to significantly reduce production costs and increase public acceptance.
Collapse
Affiliation(s)
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Thomas Brück
- TUM CREATE, 1 Create Way #10-02 Create Tower, 138602 Singapore, Singapore
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
- TUM AlgaeTech Center, Department of Aerospace and Geodesy, School of Engineering and Design, Technical University of Munich, Lise-Meitner Str. 9, 85521 Ottobrunn, Germany
| | - Werner Kloas
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Faculty of Life Sciences, Humboldt University of Berlin, Invalidenstr. 42, 10099 Berlin, Germany
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Mariana Rufino
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Holger Zorn
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Oscar Monje
- Aetos Systems Inc., Air Revitalization Lab, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Senthold Asseng
- TUM CREATE, 1 Create Way #10-02 Create Tower, 138602 Singapore, Singapore
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
- Digital Agriculture, HEF World Agricultural Systems Center, Technical University of Munich, Liesel-Beckmann-Straße 2, D-85354 Freising, Germany
| |
Collapse
|
9
|
Bhagat N, Gupta GK, Minhas AK, Chhabra D, Shukla P. Artificial Neural Network - Multi-Objective Genetic Algorithm based optimization for the enhanced pigment accumulation in Synechocystis sp. PCC 6803. BMC Biotechnol 2025; 25:23. [PMID: 40089695 PMCID: PMC11910872 DOI: 10.1186/s12896-025-00955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Natural colorants produced by the cyanobacterium include carotenoids, chlorophyll a and phycocyanin. The current study used the Synechocystis sp. PCC 6803 to examine how abiotic stress conditions, such as low temperature as well as high light intensity, affect the pigment accumulations in comparison to the control conditions. Additionally, using the response surface methodology (RSM) and artificial neural network - multi-objective genetic algorithm (ANN-MOGA), the impact of several nitrogen sources such as urea, ammonium chloride, and sodium nitrate as nutritional stress on the pigment accumulations in the Synechocystis sp. PCC 6803 was examined. RESULTS The results showed that the pigment accumulation was more pronounced when urea and ammonium chloride was used in combination with nitrate, respectively, as nitrogen source. With the help of our prediction model that used ANN-MOGA, we were able to enhance the synthesis of chlorophyll a, carotenoids, and phycocyanin by 21.93 µg/mL, 9.78 µg/mL, and 0.05 µg/mL, respectively compared to control with 6.37, 3.88 and 0.008 µg/mL. The significant scavenging activity of pigment was showed with 7.66 ± 0.001 values of IC50. Additionally, a very good correlation of coefficient (R2) value 0.99, 0.99 and 0.92 was obtained for APX, CAT and GPX enzyme activity, respectively. CONCLUSIONS The findings lays the groundwork for future attempts to turn cyanobacteria into a commercially viable source of natural pigments by demonstrating the benefits of using the RSM and machine learning techniques like ANN-MOGA to optimise the production of cyanobacterial pigments. The significant scavenging and antioxidant activities like CAT, GPX and APX were also shown by the pigments of the Synechocystis sp. PCC 6803. Furthermore, these machine learning tools can be used as a model to improve and optimize the yields for other metabolites production.
Collapse
Affiliation(s)
- Namrata Bhagat
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Guddu Kumar Gupta
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amritpreet Kaur Minhas
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India
| | - Deepak Chhabra
- Department of Mechanical Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Navalho S, Ferrer-Ledo N, Barbosa MJ, Varela J. Nannochloropsis Lipids and Polyunsaturated Fatty Acids: Potential Applications and Strain Improvement. Mar Drugs 2025; 23:128. [PMID: 40137314 PMCID: PMC11943726 DOI: 10.3390/md23030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The genus Nannochloropsis comprises a group of oleaginous microalgae that accumulate polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA). These molecules are essential for the correct development and health of humans and animals. Thanks to their attractive lipid profile, Nannochloropsis is mainly marketed as a feed ingredient in aquaculture. In microalgae of this genus, contents and cellular location of PUFAs are affected by the growth conditions and gene expression. Strain improvement through non-recombinant approaches can generate more productive strains and efficient bioprocesses for PUFA production. Nevertheless, the lack of specific markers, detection methods, and selective pressure for isolating such mutants remains a bottleneck in classical mutagenesis approaches or lipid quality assessment during cultivation. This review encompasses the importance of PUFAs and lipid classes from Nannochloropsis species and their potential applications. Additionally, a revision of the different ways to increase PUFA content in Nannochloropsis sp. by using classical mutagenesis and adaptive laboratory evolution is also presented, as well as various methods to label and quantify lipids and PUFAs from Nannochloropsis microalgae.
Collapse
Affiliation(s)
- Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Narcis Ferrer-Ledo
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
| | - Maria J. Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Joshi JS, Fladung L, Kruse O, Patel A. Novel Co-Cultivation Bioprocess with Immobilized Paenibacillus polymyxa and Scenedesmus obliquus for Lipid and Butanediol Production. Microorganisms 2025; 13:606. [PMID: 40142499 PMCID: PMC11945626 DOI: 10.3390/microorganisms13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Microalgal biotechnology is gaining attention due to its potential to produce pigments, lipids, biofuels, and value-added products. However, challenges persist in terms of the economic viability of microalgal lipid production in photobioreactors due to slow growth rates, expensive media, complex downstream processing, limited product yields, and contamination risks. Recent studies suggest that co-cultivating microalgae with bacteria can enhance the profitability of microalgal bioprocesses. Immobilizing bacteria offers advantages such as protection against shear forces, the prevention of overgrowth, and continuous product secretion. Previous work has shown that biopolymeric immobilization of Paenibacillus polymyxa enhances 2,3-butanediol production. In this study, a novel co-fermentation process was developed by exploiting the chemical crosstalk between a freshwater microalga Scenedesmus obliquus, also known as Tetradesmus obliquus, and an immobilized plant-growth-promoting bacterium, Paenibacillus polymyxa. This co-cultivation resulted in increased metabolite production, with a 1.5-fold increase in the bacterial 2,3-butanediol concentration and a 3-fold increase in the microalgal growth rates compared to these values in free-cell co-cultivation. Moreover, the co-culture with the immobilized bacterium exhibited a 5-fold increase in the photosynthetic pigments and a 3-fold increase in the microalgal lipid concentration compared to these values in free-cell co-cultivation. A fixed bed photobioreactor was further constructed, and the co-cultivation bioprocess was implemented to improve the bacterial 2,3-butanediol and microalgal lipid production. In conclusion, this study provides conclusive evidence for the potential of co-cultivation and biopolymeric immobilization techniques to enhance 2,3-butanediol and lipid production.
Collapse
Affiliation(s)
- Jnanada Shrikant Joshi
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Laura Fladung
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Olaf Kruse
- Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Anant Patel
- Bielefeld Institute of Applied Materials Research, Hochschule Bielefeld—University of Applied Sciences and Arts, 33619 Bielefeld, Germany; (J.S.J.); (L.F.)
| |
Collapse
|
12
|
Kieffer JRN, Kandemir H, Stegemüller L, Hiemstra I, Eppink MHM, Wijffels RH, Boboescu IZ. Numerical analysis of a multiproduct biorefinery on a chip: Exploiting acoustic waves to process the microalgae Tisochrysis lutea. ULTRASONICS SONOCHEMISTRY 2025; 114:107280. [PMID: 39985823 PMCID: PMC11904573 DOI: 10.1016/j.ultsonch.2025.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Microalgae can provide a more sustainable alternative to traditional food systems which are dominated by terrestrial crops. The main economic challenges, however, relate to the downstream processing of microalgae and the valorization of their side streams. The present work explores the scientific principles and data required to develop an integrated biorefinery-on-a-chip, which replaces many of the common downstream processing unit operations by employing acoustic fields. The acoustic parameters of Tisochrysis lutea microalgal cells and their cell components are determined using the neutrally buoyant state method. Culture conditions which result in a high carbohydrate or high protein to lipid ratio led to a higher acoustic contrast factor than culture conditions favoring a high composition of lipids. The collected acoustic data is used as input in a numerical model which studies the harvesting of microalgal cells and the fractionation of microalgal cell components. High separation levels are achieved based on the size and composition of microalgal cells and the type of cell component. Subsequent studies are envisioned to determine the practical feasibility of applying these concepts and even scaling them out. Nevertheless, this study represents a steppingstone towards a novel, label-free approach to processing microalgal cells of different biomass compositions.
Collapse
Affiliation(s)
- Jacques R N Kieffer
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Hakan Kandemir
- Department of Electrical Engineering and Automation, Aalto University, Helsinki, Finland
| | - Lars Stegemüller
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Isa Hiemstra
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Iulian Z Boboescu
- Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
13
|
Stegemüller L, Caccavale F, Valverde-Pérez B, Angelidaki I. Online monitoring of Haematococcus lacustris cell cycle using machine and deep learning techniques. BIORESOURCE TECHNOLOGY 2025; 418:131976. [PMID: 39675638 DOI: 10.1016/j.biortech.2024.131976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Optimal control and process optimization of astaxanthin production from Haematococcuslacustris is directly linked to its complex cell cycle ranging from vegetative green cells to astaxanthin-rich cysts. This study developed an automated online monitoring system classifying four different cell cycle stages using a scanning microscope. Decision-tree based machine learning and deep learning convolutional neural network algorithms were developed, validated, and evaluated. SHapley Additive exPlanations was used to examine the most important system requirements for accurate image classification. The models achieved accuracies on unseen data of 92.4 and 90.9%, respectively. Furthermore, both models were applied to a photobioreactor culturing H.lacustris, effectively monitoring the transition from a green culture in the exponential growth phase to a stationary red culture. Therefore, online image analysis using artificial intelligence models has great potential for process optimization and as a data-driven decision support tool during microalgae cultivation.
Collapse
Affiliation(s)
- Lars Stegemüller
- Department of Chemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, Lyngby 2800, Denmark.
| | - Fiammetta Caccavale
- Department of Chemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, Lyngby 2800, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Bygningstorvet 115, Lyngby 2800, Denmark
| | - Irini Angelidaki
- Department of Chemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, Lyngby 2800, Denmark
| |
Collapse
|
14
|
Li J, Chisti Y, Meng C, Abd-El-Aziz A, Agathos SN. Editorial: Microalgae as sustainable food resources: prospects, novel species, bioactive compounds, cultivation process and food processing. Front Nutr 2025; 11:1543087. [PMID: 39882035 PMCID: PMC11775833 DOI: 10.3389/fnut.2024.1543087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Affiliation(s)
- Jian Li
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
| | - Yusuf Chisti
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ahmad Abd-El-Aziz
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
| | - Spiros N. Agathos
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
Gupta A, Dutra Molino JV, Wnuk-Fink KMJ, Bruckbauer A, Tessman M, Kang K, Diaz CJ, Saucedo B, Malik A, Burkart MD, Mayfield SP. Engineering the Novel Extremophile Alga Chlamydomonas pacifica for High Lipid and High Starch Production as a Path to Developing Commercially Relevant Strains. ACS ES&T ENGINEERING 2025; 5:36-49. [PMID: 39816185 PMCID: PMC11730947 DOI: 10.1021/acsestengg.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 01/18/2025]
Abstract
Microalgae offer a compelling platform for the production of commodity products, due to their superior photosynthetic efficiency, adaptability to nonarable lands and nonpotable water, and their capacity to produce a versatile array of bioproducts, including biofuels and biomaterials. However, the scalability of microalgae as a bioresource has been hindered by challenges such as costly biomass production related to vulnerability to pond crashes during large-scale cultivation. This study presents a pipeline for the genetic engineering and pilot-scale production of biodiesel and thermoplastic polyurethane precursors in the extremophile species Chlamydomonas pacifica. This extremophile microalga exhibits exceptional resilience to high pH (>11.5), high salinity (up to 2% NaCl), and elevated temperatures (up to 42 °C). Initially, we evolved this strain to also have a high tolerance to high light intensity (>2000 μE/m2/s) through mutagenesis, breeding, and selection. We subsequently genetically engineered C. pacifica to significantly enhance lipid production by 28% and starch accumulation by 27%, all without affecting its growth rate. We demonstrated the scalability of these engineered strains by cultivating them in pilot-scale raceway ponds and converting the resulting biomass into biodiesel and thermoplastic polyurethanes. This study showcases the complete cycle of transforming a newly discovered species into a commercially relevant commodity production strain. This research underscores the potential of extremophile algae, including C. pacifica, as a key species for the burgeoning sustainable bioeconomy, offering a viable path forward in mitigating environmental challenges and supporting global bioproduct demands.
Collapse
Affiliation(s)
- Abhishek Gupta
- Department
of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - João Vitor Dutra Molino
- Department
of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Kathryn M. J. Wnuk-Fink
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Aaron Bruckbauer
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Marissa Tessman
- Algenesis
Corporation, 11760 Sorrento
Valley Road, Suite J, San Diego, California 92121, United States
| | - Kalisa Kang
- Department
of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Crisandra J. Diaz
- Department
of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Barbara Saucedo
- Department
of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Ashleyn Malik
- Department
of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Michael D. Burkart
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, San Diego, California 92093, United States
- Algenesis
Corporation, 11760 Sorrento
Valley Road, Suite J, San Diego, California 92121, United States
| | - Stephen P. Mayfield
- Department
of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
- California
Center for Algae Biotechnology, University
of California San Diego, La Jolla, San Diego, California 92093, United States
- Algenesis
Corporation, 11760 Sorrento
Valley Road, Suite J, San Diego, California 92121, United States
| |
Collapse
|
16
|
Sánchez-Quintero Á, Parsy A, Adrien A, Spitzer L, Jiménez-Lamana J, Fernandes SCM, Beigbeder JB. Effects of CO 2 and liquid digestate concentrations on the growth performance and biomass composition of Tetradesmus obliquus and Chlorella vulgaris microalgal strains. Front Bioeng Biotechnol 2025; 12:1459756. [PMID: 39850510 PMCID: PMC11755043 DOI: 10.3389/fbioe.2024.1459756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/11/2024] [Indexed: 01/25/2025] Open
Abstract
This study evaluated the growth performance of Tetradesmus obliquus and Chlorella vulgaris microalgae cultivated in diluted liquid digestate supplemented with CO2, comparing their efficiency to that of a conventional synthetic media. The presence of an initial concentration of ammonium of 125 mg N-NH4 +.L-1 combined with the continuous injection of 1% v/v CO2 enhanced the optimal growth responses and bioremediation potential for both strains in 200-mL cultures. In 6-L flat panel reactors, T. obliquus exhibited superior biomass production, achieving a final biomass concentration of 1.29 ± 0.06 g.L-1, while C. vulgaris reached only 0.36 ± 0.02 g.L-1. Both strains effectively contributed to the bioremediation of the digestate-based culture media, with up to 100% of N-NH4 +, 50% of COD, and 55% of P-PO4 3- removals. The high nitrogen levels in the digestate-based medium significantly increased protein content, with 46.21% ± 3.98% dry weight (DW) for T. obliquus and 44.17% ± 2.24% DW for C. vulgaris as compared to the microalgae cultivated in commercial media. Additionally, the metal content of the microalgal biomass was analyzed to assess its potential use as biostimulants in compliance with European regulations. While chromium concentrations slightly exceeded regulatory thresholds in both strains, the levels of other metals remained within permissible limits.
Collapse
Affiliation(s)
- Ángela Sánchez-Quintero
- APESA Pôle valorisation, Montardon, France
- Université de Pau et des Pays de l’Adour, E2S UPPA, IPREM, CNRS, Pau, France
- MANTA—Marine Materials Research Group, Université de Pau et des Pays de l’Adour, E2S UPPA, Anglet, France
| | | | - Amandine Adrien
- Université de Pau et des Pays de l’Adour, E2S UPPA, IPREM, CNRS, Pau, France
- MANTA—Marine Materials Research Group, Université de Pau et des Pays de l’Adour, E2S UPPA, Anglet, France
| | - Lea Spitzer
- Université de Pau et des Pays de l’Adour, E2S UPPA, IPREM, CNRS, Pau, France
| | | | - Susana C. M. Fernandes
- Université de Pau et des Pays de l’Adour, E2S UPPA, IPREM, CNRS, Pau, France
- MANTA—Marine Materials Research Group, Université de Pau et des Pays de l’Adour, E2S UPPA, Anglet, France
| | | |
Collapse
|
17
|
Chan MZA, Hau VJH, Perez B, Haberkorn I, Mathys A, Liu SQ. Soy whey and brewer's spent grain hydrolysates wholly replace conventional medium for microalgae growth: Process performance and economic considerations. BIORESOURCE TECHNOLOGY 2024; 413:131460. [PMID: 39255947 DOI: 10.1016/j.biortech.2024.131460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
To enhance circularity in heterotrophic microalgal bioprocesses, this study completely substituted glucose and Bold's basal medium (BBM) with brewer's spent grain (BSG) and soy whey (SW) hydrolysates. Mild acid hydrolysis conditions of BSG (0.2 M H2SO4, 130 °C, 36 min) and SW (0.1 M HCl, 95 °C, 30 min) were optimised for glucose release, and their hydrolysates were optimally mixed (15 % SW-85 % BSG) to obtain a medium that best supported Auxenochlorella protothecoides growth. Maximum biomass production (Xmax) and productivity (PXmax) obtained in the hydrolysate medium containing 50.75 g/L endogenous glucose (Xmax: 22.17 g/L; PXmax: 7.06 g/L/day) were comparable to that in BBM containing 50.44 g/L exogenous glucose (Xmax: 20.02 g/L; PXmax: 6.34 g/L/day). Moreover, estimated hydrolysate medium production costs were within an order of magnitude to BBM. Overall, the integrated approach of tailored hydrolytic treatments and complementary side-streams presents a promising technical and economic feasibility, with applications extending beyond A. protothecoides.
Collapse
Affiliation(s)
- Mei Zhi Alcine Chan
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Vivian Jing Han Hau
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Byron Perez
- ETH Singapore SEC Ltd, CREATE Tower #06-01, 1 Create Way, Singapore 138602, Singapore; ETH Zürich, Department of Health Science and Technology, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Iris Haberkorn
- ETH Singapore SEC Ltd, CREATE Tower #06-01, 1 Create Way, Singapore 138602, Singapore
| | - Alexander Mathys
- ETH Singapore SEC Ltd, CREATE Tower #06-01, 1 Create Way, Singapore 138602, Singapore; ETH Zürich, Department of Health Science and Technology, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shao-Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
18
|
Plouviez M, Brown N. Polyphosphate accumulation in microalgae and cyanobacteria: recent advances and opportunities for phosphorus upcycling. Curr Opin Biotechnol 2024; 90:103207. [PMID: 39303380 DOI: 10.1016/j.copbio.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Phosphorus (P) must continuously be added to soils as it is lost in the food chain and via leaching. Unfortunately, the mining and import of P to produce fertiliser is unsustainable and costly. Potential solutions to the global issues of P rock depletion and pollution lie in microalgae and cyanobacteria. With an ability to intracellularly store P as polyphosphates, microalgae and cyanobacteria could provide the basis for removing P from water streams, thereby mitigating eutrophication, and even enabling P recovery as P-rich biomass. Metabolic engineering or changes in growing conditions have been demonstrated to improve P removal and recovery by triggering polyphosphates synthesis in the laboratory. This now needs to be replicated at full scale.
Collapse
Affiliation(s)
| | - Nicola Brown
- College of Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
19
|
Zan Z, Huang X, Hussain Z, Zhong M, Hou C, Ren M, Xie X. Effects of Culture Medium Enrichment with Zinc on Astaxanthin Accumulation in a New Strain of the Microalga Dysmorphococcus globosus. PLANTS (BASEL, SWITZERLAND) 2024; 13:3338. [PMID: 39683131 DOI: 10.3390/plants13233338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
High Zn2+ concentrations in microalgal cells that produce astaxanthin as a feed additive can reduce the symptoms of malnutrition in aquatic animals. Therefore, in this study, we analysed the effect of Zn2+ in the culture medium on the growth of a newly isolated microalgal strain Dysmorphococcus globosus ZY24. Zn2+ and white light stress altered the pigment content in microalgal cells. In addition, high Zn2+ concentrations in the culture medium altered cell morphology and chlorophyll fluorescence and also increased intracellular Zn2+ accumulation. Further, an optimal Zn2+ concentration in the culture medium promoted the synthesis of astaxanthin and other pigments. When the concentration of Zn2+ was 45.5 mg L-1, Dysmorphococcus globosus ZY24 produced 0.31 mg g-1 astaxanthin, whereas the total zinc content of the microalgae was 4337 mg kg-1. This study confirmed that microalgae have a high capacity for Zn2+ enrichment, providing a theoretical basis for studying Zn2+ enrichment in microalgae. Furthermore, Zn2+ supplementation to stimulate astaxanthin production in microalgae is a practical method to enhance their nutritional value.
Collapse
Affiliation(s)
- Zhaohui Zan
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xinxin Huang
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zahid Hussain
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Moyu Zhong
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Chenyang Hou
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Maozhi Ren
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Xiulan Xie
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
20
|
Gundersen E, Jakobsen J, Holdt SL, Jacobsen C. Nannochloropsis oceanica as a Source of Bioactive Compounds: Mapping the Effects of Cultivation Conditions on Biomass Productivity and Composition Using Response Surface Methodology. Mar Drugs 2024; 22:505. [PMID: 39590785 PMCID: PMC11595521 DOI: 10.3390/md22110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Microalga Nannochloropsis oceanica presents a promising source of high-value food ingredients such as protein, omega-3 fatty acids, and vitamins. To fully unlock its potential, a thorough understanding of how cultivation conditions affect both growth and the nutritional composition is required. Hence, this study aimed to test and model the effects of temperature, light intensity, and salinity on biomass productivity and the final contents of protein, eicosapentaenoic acid (EPA), and vitamin K2 using response surface methodology (RSM). The RSM experiment revealed that the highest temperature and light intensity tested favored biomass productivity and protein content. According to the generated models, the two responses peaked with 0.135 g DM·L-1·day-1 and 0.559 g·g-1 DM, respectively, at 27 °C and 300-350 µmol·m-2·s-1. In contrast, the contents of both EPA and menaquinone-4 (MK-4), the only detected K vitamer, were stimulated at the lowest tested temperature. Based on the generated models, the two responses peaked with 0.037 g·g-1 DM and 89.3 µg·g-1 DM, respectively, at 19 °C combined with 3.0% salinity (EPA) or 120 µmol·m-2·s-1 (MK-4). Although additional optima may exist beyond the tested conditions, these findings provide valuable information on N. oceanica's cellular response to changes in key cultivation conditions. Furthermore, it shows that two-stage cultivation may be needed to fully unlock the potential of this microalga as a future source of valuable lipid ingredients.
Collapse
Affiliation(s)
| | | | | | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kemitorvet Bygning 202, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
21
|
Kang K, do Espirito Santo É, Diaz CJ, Oliver A, Saxton L, May L, Mayfield S, Molino JVD. Establishing the green algae Chlamydomonas incerta as a platform for recombinant protein production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.618925. [PMID: 39484490 PMCID: PMC11527144 DOI: 10.1101/2024.10.25.618925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Chlamydomonas incerta, a genetically close relative of the model green alga Chlamydomonas reinhardtii, shows significant potential as a host for recombinant protein expression. Because of the close genetic relationship between C. incerta and C. reinhardtii, this species offers an additional reference point for advancing our understanding of photosynthetic organisms, and also provides a potential new candidate for biotechnological applications. This study investigates C. incerta's capacity to express three recombinant proteins: the fluorescent protein mCherry, the hemicellulose-degrading enzyme xylanase, and the plastic-degrading enzyme PHL7. We have also examined the capacity to target protein expression to various cellular compartments in this alga, including the cytosol, secretory pathway, cytoplasmic membrane, and cell wall. When compared directly with C. reinhardtii, C. incerta exhibited a distinct but notable capacity for recombinant protein production. Cellular transformation with a vector encoding mCherry revealed that C. incerta produced approximately 3.5 times higher fluorescence levels and a 3.7-fold increase in immunoblot intensity compared to C. reinhardtii. For xylanase expression and secretion, both C. incerta and C. reinhardtii showed similar secretion capacities and enzymatic activities, with comparable xylan degradation rates, highlighting the industrial applicability of xylanase expression in microalgae. Finally, C. incerta showed comparable PHL7 activity levels to C. reinhardtii, as demonstrated by the in vitro degradation of a polyester polyurethane suspension, Impranil® DLN. Finally, we also explored the potential of cellular fusion for the generation of genetic hybrids between C. incerta and C. reinhardtii as a means to enhance phenotypic diversity and augment genetic variation. We were able to generate genetic fusion that could exchange both the recombinant protein genes, as well as associated selectable marker genes into recombinant offspring. These findings emphasize C. incerta's potential as a robust platform for recombinant protein production, and as a powerful tool for gaining a better understanding of microalgal biology.
Collapse
Affiliation(s)
- Kalisa Kang
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Évellin do Espirito Santo
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Pãulo, Brazil
| | - Crisandra Jade Diaz
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Lisa Saxton
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Lauren May
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States of America
| | - Stephen Mayfield
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
- Algenesis Inc., 1238 Sea Village Dr., Cardiff, CA, United States of America
| | - João Vitor Dutra Molino
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
22
|
Panchal SK, Heimann K, Brown L. Improving Undernutrition with Microalgae. Nutrients 2024; 16:3223. [PMID: 39339823 PMCID: PMC11435262 DOI: 10.3390/nu16183223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Undernutrition is an important global health problem, especially in children and older adults. Both reversal of maternal and child undernutrition and heathy ageing have become United Nations-supported global initiatives, leading to increased attention to nutritional interventions targeting undernutrition. One feasible option is microalgae, the precursor of all terrestrial plants. Most commercially farmed microalgae are photosynthetic single-celled organisms producing organic carbon compounds and oxygen. This review will discuss commercial opportunities to grow microalgae. Microalgae produce lipids (including omega-3 fatty acids), proteins, carbohydrates, pigments and micronutrients and so can provide a suitable and underutilised alternative for addressing undernutrition. The health benefits of nutrients derived from microalgae have been identified, and thus they are suitable candidates for addressing nutritional issues globally. This review will discuss the potential benefits of microalgae-derived nutrients and opportunities for microalgae to be converted into food products. The advantages of microalgae cultivation include that it does not need arable land or pesticides. Additionally, most species of microalgae are still unexplored, presenting options for further development. Further, the usefulness of microalgae for other purposes such as bioremediation and biofuels will increase the knowledge of these microorganisms, allowing the development of more efficient production of these microalgae as nutritional interventions.
Collapse
Affiliation(s)
- Sunil K Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Kirsten Heimann
- College of Medicine and Public Health, Flinders University, Health Science Building, Building 4, Registry Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
23
|
Hubáček M, Wey LT, Kourist R, Malihan-Yap L, Nikkanen L, Allahverdiyeva Y. Strong heterologous electron sink outcompetes alternative electron transport pathways in photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2500-2513. [PMID: 39008444 DOI: 10.1111/tpj.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Improvement of photosynthesis requires a thorough understanding of electron partitioning under both natural and strong electron sink conditions. We applied a wide array of state-of-the-art biophysical and biochemical techniques to thoroughly investigate the fate of photosynthetic electrons in the engineered cyanobacterium Synechocystis sp. PCC 6803, a blueprint for photosynthetic biotechnology, expressing the heterologous gene for ene-reductase, YqjM. This recombinant enzyme catalyses the reduction of an exogenously added substrate into the desired product by utilising photosynthetically produced NAD(P)H, enabling whole-cell biotransformation. Through coupling the biotransformation reaction with biophysical measurements, we demonstrated that the strong artificial electron sink, outcompetes the natural electron valves, the flavodiiron protein-driven Mehler-like reaction and cyclic electron transport. These results show that ferredoxin-NAD(P)H-oxidoreductase is the preferred route for delivering photosynthetic electrons from reduced ferredoxin and the cellular NADPH/NADP+ ratio as a key factor in orchestrating photosynthetic electron flux. These insights are crucial for understanding molecular mechanisms of photosynthetic electron transport and harnessing photosynthesis for sustainable bioproduction by engineering the cellular source/sink balance. Furthermore, we conclude that identifying the bioenergetic bottleneck of a heterologous electron sink is a crucial prerequisite for targeted engineering of photosynthetic biotransformation platforms.
Collapse
Affiliation(s)
- Michal Hubáček
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Laura T Wey
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Robert Kourist
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| |
Collapse
|
24
|
Ahmad A, Amin KA, Ashraf SS. Biological effects of culture medium on Tetraselmis chuii and Dunaliella tertiolecta: Implications for emerging pollutants degradation. CHEMOSPHERE 2024; 363:142868. [PMID: 39025305 DOI: 10.1016/j.chemosphere.2024.142868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
In this study, laboratory-scale cultivation of T. chuii and D. tertiolecta was conducted using Conway, F/2, and TMRL media to evaluate their biochemical composition and economic costs. The highest cell density (30.36 × 106 cells/mL) and dry weight (0.65 g/L) for T. chuii were achieved with Conway medium. This medium also produced biomass with maximum lipid content (25.65%), proteins (27.84%), and total carbohydrates (8.45%) compared with F/2 and TMRL media. D. tertiolecta reached a maximum cell density of 17.50 × 106 cells/mL in F/2 medium, which was notably lower than that of T. chuii. Furthermore, the media cost varied from US$0.23 to US$0.74 for each 1 L of media, primarily due to the addition of Na3PO4, KNO3, and cyanocobalamin. Thus, biomass production rates varied between US$38.81 and US$128.80 per kg on a dry weight basis. These findings comprehensively compare laboratory conditions and the costs associated with biomass production in different media. Additionally, this study explored the potential of T. chuii and D. tertiolecta strains, as well as their consortia with bacteria, for the degradation of various emerging pollutants (EPs), including caffeine, salicylic acid, DEET, imidacloprid, MBT, cimetidine, venlafaxine, methylparaben, thiabendazole, and paracetamol. Both microalgal strains demonstrated effective degradation of EPs, with enhanced degradation observed in microalgae-bacterial consortia. These results suggest that the symbiotic relationship between microalgae and bacteria can be harnessed for the bioremediation of EPs, thereby offering valuable insights into the environmental applications of microalgal cultivation.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Khadije Ahmad Amin
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Syed Salman Ashraf
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
25
|
Russo NP, Ballotta M, Usai L, Torre S, Giordano M, Fais G, Casula M, Dessì D, Nieri P, Damergi E, Lutzu GA, Concas A. Mixotrophic Cultivation of Arthrospira platensis (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content. Mar Drugs 2024; 22:381. [PMID: 39330262 PMCID: PMC11433411 DOI: 10.3390/md22090381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Arthrospira platensis holds promise for biotechnological applications due to its rapid growth and ability to produce valuable bioactive compounds like phycocyanin (PC). This study explores the impact of salinity and brewery wastewater (BWW) on the mixotrophic cultivation of A. platensis. Utilizing BWW as an organic carbon source and seawater (SW) for salt stress, we aim to optimize PC production and biomass composition. Under mixotrophic conditions with 2% BWW and SW, A. platensis showed enhanced biomass productivity, reaching a maximum of 3.70 g L-1 and significant increases in PC concentration. This study also observed changes in biochemical composition, with elevated protein and carbohydrate levels under salt stress that mimics the use of seawater. Mixotrophic cultivation with BWW and SW also influenced the FAME profile, enhancing the content of C16:0 and C18:1 FAMES. The purity (EP of 1.15) and yield (100 mg g-1) of PC were notably higher in mixotrophic cultures, indicating the potential for commercial applications in food, cosmetics, and pharmaceuticals. This research underscores the benefits of integrating the use of saline water with waste valorization in microalgae cultivation, promoting sustainability and economic efficiency in biotechnological processes.
Collapse
Affiliation(s)
- Nicola Pio Russo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41123 Modena, MO, Italy; (N.P.R.); (M.B.)
| | - Marika Ballotta
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41123 Modena, MO, Italy; (N.P.R.); (M.B.)
| | - Luca Usai
- Teregroup Srl, Via David Livingstone 37, 41123 Modena, MO, Italy;
| | - Serenella Torre
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 12, 56126 Pisa, PI, Italy; (S.T.); (P.N.)
| | | | - Giacomo Fais
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, CA, Italy; (G.F.); (M.C.)
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, CA, Italy
| | - Mattia Casula
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, CA, Italy; (G.F.); (M.C.)
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, CA, Italy
| | - Debora Dessì
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Blocco A, SP8 Km 0.700, 09042 Monserrato, CA, Italy;
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 12, 56126 Pisa, PI, Italy; (S.T.); (P.N.)
| | - Eya Damergi
- Algaltek SARL, R&D Departments, Route de la Petite-Glane 26, 1566 Saint Aubin, FR, Switzerland;
| | | | - Alessandro Concas
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, CA, Italy; (G.F.); (M.C.)
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, CA, Italy
| |
Collapse
|
26
|
Goswami M, Ovissipour R, Bomkamp C, Nitin N, Lakra W, Post M, Kaplan DL. Cell-cultivated aquatic food products: emerging production systems for seafood. J Biol Eng 2024; 18:43. [PMID: 39113103 PMCID: PMC11304657 DOI: 10.1186/s13036-024-00436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024] Open
Abstract
The demand for fish protein continues to increase and currently accounts for 17% of total animal protein consumption by humans. About 90% of marine fish stocks are fished at or above maximum sustainable levels, with aquaculture propagating as one of the fastest growing food sectors to address some of this demand. Cell-cultivated seafood production is an alternative approach to produce nutritionally-complete seafood products to meet the growing demand. This cellular aquaculture approach offers a sustainable, climate resilient and ethical biotechnological approach as an alternative to conventional fishing and fish farming. Additional benefits include reduced antibiotic use and the absence of mercury. Cell-cultivated seafood also provides options for the fortification of fish meat with healthier compositions, such as omega-3 fatty acids and other beneficial nutrients through scaffold, media or cell approaches. This review addresses the biomaterials, production processes, tissue engineering approaches, processing, quality, safety, regulatory, and social aspects of cell-cultivated seafood, encompassing where we are today, as well as the road ahead. The goal is to provide a roadmap for the science and technology required to bring cellular aquaculture forward as a mainstream food source.
Collapse
Affiliation(s)
- Mukunda Goswami
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, PanchMarg, Of Yari Road, Versova, Andheri West, Mumbai, 400061, India.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Bomkamp
- The Good Food Institute, PO Box 96503 PMB 42019, Washington, DC, 20090-6503, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - Wazir Lakra
- National Academy of Agricultural Sciences, NASC, 110 012, New Delhi, India
| | - Mark Post
- Mosa Meat B.V, Maastricht, Limburg, 6229 PM, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, Limburg, 6229 ER, the Netherlands
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02215, USA.
| |
Collapse
|
27
|
Mehariya S, Annamalai SN, Thaher MI, Quadir MA, Khan S, Rahmanpoor A, Abdurahman Kashem, Faisal M, Sayadi S, Al Hawari A, Al-Jabri H, Das P. A comprehensive review on versatile microalga Tetraselmis: Potentials applications in wastewater remediation and bulk chemical production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121520. [PMID: 38917540 DOI: 10.1016/j.jenvman.2024.121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Microalgae are considered sustainable resources for the production of biofuel, feed, and bioactive compounds. Among various microalgal genera, the Tetraselmis genus, containing predominantly marine microalgal species with wide tolerance to salinity and temperature, has a high potential for large-scale commercialization. Until now, Tetraselmis sp. are exploited at smaller levels for aquaculture hatcheries and bivalve production. However, its prolific growth rate leads to promising areal productivity and energy-dense biomass, so it is considered a viable source of third-generation biofuel. Also, microbial pathogens and contaminants are not generally associated with Tetraselmis sp. in outdoor conditions due to faster growth as well as dominance in the culture. Numerous studies revealed that the metabolite compositions of Tetraselmis could be altered favorably by changing the growth conditions, taking advantage of its acclimatization or adaptation ability in different conditions. Furthermore, the biorefinery approach produces multiple fractions that can be successfully upgraded into various value-added products along with biofuel. Overall, Tetraselmis sp. could be considered a potential strain for further algal biorefinery development under the circular bioeconomy framework. In this aspect, this review discusses the recent advancements in the cultivation and harvesting of Tetraselmis sp. for wider application in different sectors. Furthermore, this review highlights the key challenges associated with large-scale cultivation, biomass harvesting, and commercial applications for Tetraselmis sp.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Senthil Nagappan Annamalai
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Ali Rahmanpoor
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Abdurahman Kashem
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohamed Faisal
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa Al Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Hareb Al-Jabri
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
28
|
Auñon-Lopez A, Alberdi-Cedeño J, Pignitter M, Castejón N. Microalgae as a New Source of Oxylipins: A Comprehensive LC-MS-Based Analysis Using Conventional and Green Extraction Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16749-16760. [PMID: 39016675 PMCID: PMC11299188 DOI: 10.1021/acs.jafc.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Microalgae are promising sources of essential lipids, including omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFA) and novel lipid metabolites like oxylipins. However, limited data exist on the oxylipin profile, its characterization, and the potential impact of the extraction process on these metabolites in microalgae. Thus, our study aimed to investigate the fatty acid and oxylipin profile of four microalgal species of interest (Microchloropsis gaditana, Tisochrysis lutea, Phaeodactylum tricornutum, and Porphyridium cruentum) while also examining the impact of the extraction method, with a focus on developing a greener process using ultrasound-assisted extraction (UAE) and ethanol. The UAE method showed similar oxylipin profiles, generally yielding concentrations comparable to those of the conventional Folch method. In total, 68 oxylipins derived from n-3 and n-6 PUFA were detected, with the highest concentrations of n-3 oxylipins found in P. tricornutum and T. lutea and of n-6 oxylipins in P. cruentum. This study provides the most extensive oxylipin characterization of these microalgae species to date, offering insights into alternative extraction methods and opening new avenues for further investigation of the significance of oxylipins in microalgae.
Collapse
Affiliation(s)
- Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jon Alberdi-Cedeño
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Alava), Spain
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Natalia Castejón
- Institute of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
29
|
Stanić M, Jevtović M, Kovačević S, Dimitrijević M, Danilović Luković J, McIntosh OA, Zechmann B, Lizzul AM, Spasojević I, Pittman JK. Low-dose ionizing radiation generates a hormetic response to modify lipid metabolism in Chlorella sorokiniana. Commun Biol 2024; 7:821. [PMID: 38969726 PMCID: PMC11226653 DOI: 10.1038/s42003-024-06526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
Algal biomass is a viable source of chemicals and metabolites for various energy, nutritional, medicinal and agricultural uses. While stresses have commonly been used to induce metabolite accumulation in microalgae in attempts to enhance high-value product yields, this is often very detrimental to growth. Therefore, understanding how to modify metabolism without deleterious consequences is highly beneficial. We demonstrate that low-doses (1-5 Gy) of ionizing radiation in the X-ray range induces a non-toxic, hormetic response in microalgae to promote metabolic activation. We identify specific radiation exposure parameters that give reproducible metabolic responses in Chlorella sorokiniana caused by transcriptional changes. This includes up-regulation of >30 lipid metabolism genes, such as genes encoding an acetyl-CoA carboxylase subunit, phosphatidic acid phosphatase, lysophosphatidic acid acyltransferase, and diacylglycerol acyltransferase. The outcome is an increased lipid yield in stationary phase cultures by 25% in just 24 hours, without any negative effects on cell viability or biomass.
Collapse
Affiliation(s)
- Marina Stanić
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia
| | - Mima Jevtović
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Snežana Kovačević
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia
| | - Milena Dimitrijević
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia
| | - Jelena Danilović Luković
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia
- Institute for Application of Nuclear Energy-INEP, University of Belgrade, Belgrade, Serbia
| | - Owen A McIntosh
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | | | - Ivan Spasojević
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia.
| | - Jon K Pittman
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
30
|
Tammas I, Bitchava K, Gelasakis AI. Transforming Aquaculture through Vaccination: A Review on Recent Developments and Milestones. Vaccines (Basel) 2024; 12:732. [PMID: 39066370 PMCID: PMC11281524 DOI: 10.3390/vaccines12070732] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Aquaculture has rapidly emerged as one of the fastest growing industries, expanding both on global and on national fronts. With the ever-increasing demand for proteins with a high biological value, the aquaculture industry has established itself as one of the most efficient forms of animal production, proving to be a vital component of global food production by supplying nearly half of aquatic food products intended for human consumption. As in classic animal production, the prevention of diseases constitutes an enduring challenge associated with severe economic and environmental repercussions. Nevertheless, remarkable strides in the development of aquaculture vaccines have been recently witnessed, offering sustainable solutions to persistent health-related issues challenging resilient aquaculture production. These advancements are characterized by breakthroughs in increased species-specific precision, improved vaccine-delivery systems, and innovations in vaccine development, following the recent advent of nanotechnology, biotechnology, and artificial intelligence in the -omics era. The objective of this paper was to assess recent developments and milestones revolving around aquaculture vaccinology and provide an updated overview of strengths, weaknesses, opportunities, and threats of the sector, by incorporating and comparatively discussing various diffuse advances that span across a wide range of topics, including emerging vaccine technologies, innovative delivery methods, insights on novel adjuvants, and parasite vaccine development for the aquaculture sector.
Collapse
Affiliation(s)
- Iosif Tammas
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy & Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
31
|
Demir-Yilmaz I, Pappa M, Lama S, Guiraud P, Vandamme D, Formosa-Dague C. The Biophysical Properties of Microalgal Cell Surfaces Govern Their Interactions with an Amphiphilic Chitosan Derivative Used for Flocculation and Flotation. ACS APPLIED BIO MATERIALS 2024; 7:4017-4028. [PMID: 38788153 DOI: 10.1021/acsabm.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Microalgae show great promise for producing valuable molecules like biofuels, but their large-scale production faces challenges, with harvesting being particularly expensive due to their low concentration in water, necessitating extensive treatment. While methods such as centrifugation and filtration have been proposed, their efficiency and cost-effectiveness are limited. Flotation, involving air-bubbles lifting microalgae to the surface, offers a viable alternative, yet the repulsive interaction between bubbles and cells can hinder its effectiveness. Previous research from our group proposed using an amphiphilic chitosan derivative, polyoctyl chitosan (PO-chitosan), to functionalize bubbles used in dissolved air flotation (DAF). Molecular-scale studies performed using atomic force microscopy (AFM) revealed that PO-chitosan's efficiency correlates with cell surface properties, particularly hydrophobic ones, raising the question of whether this molecule can in fact be used more generally to harvest different microalgae. Evaluating this, we used a different strain of Chlorella vulgaris and first characterized its surface properties using AFM. Results showed that cells were hydrophilic but could still interact with PO-chitosan on bubble surfaces through a different mechanism based on specific interactions. Although force levels were low, flotation resulted in 84% separation, which could be explained by the presence of AOM (algal organic matter) that also interacts with functionalized bubbles, enhancing the overall separation. Finally, flocculation was also shown to be efficient and pH-independent, demonstrating the potential of PO-chitosan for harvesting microalgae with different cell surface properties and thus for further sustainable large-scale applications.
Collapse
Affiliation(s)
- Irem Demir-Yilmaz
- TBI, Université de Toulouse, INSA, INRAE, CNRS, Toulouse 31 400, France
| | - Michaela Pappa
- Analytical and Circular Chemistry, Institute for Material Research, Hasselt University, Diepenbeek 3590, Belgium
| | - Sanjaya Lama
- Analytical and Circular Chemistry, Institute for Material Research, Hasselt University, Diepenbeek 3590, Belgium
| | - Pascal Guiraud
- TBI, Université de Toulouse, INSA, INRAE, CNRS, Toulouse 31 400, France
| | - Dries Vandamme
- Analytical and Circular Chemistry, Institute for Material Research, Hasselt University, Diepenbeek 3590, Belgium
| | | |
Collapse
|
32
|
Hammel A, Cucos LM, Caras I, Ionescu I, Tucureanu C, Tofan V, Costache A, Onu A, Hoepfner L, Hippler M, Neupert J, Popescu CI, Stavaru C, Branza-Nichita N, Bock R. The red alga Porphyridium as a host for molecular farming: Efficient production of immunologically active hepatitis C virus glycoprotein. Proc Natl Acad Sci U S A 2024; 121:e2400145121. [PMID: 38833465 PMCID: PMC11181018 DOI: 10.1073/pnas.2400145121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Microalgae are promising production platforms for the cost-effective production of recombinant proteins. We have recently established that the red alga Porphyridium purpureum provides superior transgene expression properties, due to the episomal maintenance of transformation vectors as multicopy plasmids in the nucleus. Here, we have explored the potential of Porphyridium to synthesize complex pharmaceutical proteins to high levels. Testing expression constructs for a candidate subunit vaccine against the hepatitis C virus (HCV), we show that the soluble HCV E2 glycoprotein can be produced in transgenic algal cultures to high levels. The antigen undergoes faithful posttranslational modification by N-glycosylation and is recognized by conformationally selective antibodies, suggesting that it adopts a proper antigenic conformation in the endoplasmic reticulum of red algal cells. We also report the experimental determination of the structure of the N-glycan moiety that is attached to glycosylated proteins in Porphyridium. Finally, we demonstrate the immunogenicity of the HCV antigen produced in red algae when administered by injection as pure protein or by feeding of algal biomass.
Collapse
Affiliation(s)
- Alexander Hammel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, D-14476Potsdam-Golm, Germany
| | - Lia-Maria Cucos
- Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, 060031Bucharest, Romania
| | - Iuliana Caras
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Irina Ionescu
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Catalin Tucureanu
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Vlad Tofan
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Adriana Costache
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Adrian Onu
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Lara Hoepfner
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143Münster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki710-0046, Japan
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, D-14476Potsdam-Golm, Germany
| | - Costin-Ioan Popescu
- Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, 060031Bucharest, Romania
| | - Crina Stavaru
- ”Cantacuzino” Medico-Military National Research Institute, 050096Bucharest, Romania
| | - Norica Branza-Nichita
- Institute of Biochemistry of the Romanian Academy, Department of Viral Glycoproteins, 060031Bucharest, Romania
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, D-14476Potsdam-Golm, Germany
- NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway
| |
Collapse
|
33
|
Einhaus A, Baier T, Kruse O. Molecular design of microalgae as sustainable cell factories. Trends Biotechnol 2024; 42:728-738. [PMID: 38092627 DOI: 10.1016/j.tibtech.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Microalgae are regarded as sustainable and potent chassis for biotechnology. Their capacity for efficient photosynthesis fuels dynamic growth independent from organic carbon sources and converts atmospheric CO2 directly into various valuable hydrocarbon-based metabolites. However, approaches to gene expression and metabolic regulation have been inferior to those in more established heterotrophs (e.g., prokaryotes or yeast) since the genetic tools and insights in expression regulation have been distinctly less advanced. In recent years, however, these tools and their efficiency have dramatically improved. Various examples have demonstrated new trends in microalgal biotechnology and the potential of microalgae for the transition towards a sustainable bioeconomy.
Collapse
Affiliation(s)
- Alexander Einhaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
34
|
Muhammad G, Xu J, Li Z, Zhao L, Zhang X. Current progress and future perspective of microalgae biomass pretreatment using deep eutectic solvents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171547. [PMID: 38458467 DOI: 10.1016/j.scitotenv.2024.171547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Pretreatment process is considered as the most important step for effective microalgae biomass refining and has gained more interest since last decades. However, the main obstacles to commercialize microalgae products are recalcitrant cell wall and lack of cost-effective, green, and sustainable pretreatment approaches. Till now, various microalgae pretreatment approaches have been applied prior to extraction steps to enhance the accessibility of solvent inside the cells. However, high energy consumption and the hazardousness of solvents are considerable problem for these pretreatment methods. In this regard, deep eutectic solvents are recognized as sustainable and green solvents possessing great potential for microalgae biomass processing due to their low toxicity, low cost, biodegradability, easy recycling, and reuse. This article provides the fundamentals of DES composition, synthesis, properties, and the current advances in the application of microalgae biomass process.
Collapse
Affiliation(s)
- Gul Muhammad
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Jingliang Xu
- School of Chemical Engineering Zhengzhou, University, Zhengzhou 450001, Henan, China
| | - Zhenglong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China; National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhao
- College of Engineering, Shenyang Agricultural University, Shenyang 110161, China.
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China; National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Abiusi F, Tumulero B, Neutsch L, Mathys A. Productivity, amino acid profile, and protein bioaccessibility in heterotrophic batch cultivation of Galdieria sulphuraria. BIORESOURCE TECHNOLOGY 2024; 399:130628. [PMID: 38521173 DOI: 10.1016/j.biortech.2024.130628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The polyextremophilic Galdieria sulphuraria is emerging as a promising microalgal species for food applications. This work explores the potential of heterotrophically cultivated G. sulphuraria as a protein producer for human consumption. To this end, the performances of four G. sulphuraria strains grown under the same conditions were compared. Amino acid profiles varied among strains and growth phases, but all samples met FAO dietary requirements for adults. The specific growth rates were between 1.01 and 1.48 day-1. After glucose depletion, all strains showed an increase of 38-49 % in nitrogen content within 48 h, reaching 7.8-12.0 % w/w. An opposite trend was observed in protein bioaccessibility, which decreased on average from 69 % during the exponential phase to a minimum of 32 % 48 h after stationary phase, with significant differences among the strains. Therefore, selecting the appropriate strain and harvesting time is crucial for successful single-cell protein production.
Collapse
Affiliation(s)
- F Abiusi
- ETH Zurich, Laboratory of Sustainable Food Processing, Zurich, Switzerland.
| | - B Tumulero
- ETH Zurich, Laboratory of Sustainable Food Processing, Zurich, Switzerland; ZHAW, Campus Grüental, Wädenswil, Switzerland
| | - L Neutsch
- ZHAW, Campus Grüental, Wädenswil, Switzerland
| | - A Mathys
- ETH Zurich, Laboratory of Sustainable Food Processing, Zurich, Switzerland
| |
Collapse
|
36
|
Olsen ML, Olsen K, Jensen PE. Consumer acceptance of microalgae as a novel food - Where are we now? And how to get further. PHYSIOLOGIA PLANTARUM 2024; 176:e14337. [PMID: 38716544 DOI: 10.1111/ppl.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024]
Abstract
Microalgae provide a potential new food resource for sustainable human nutrition. Many microalgae species can produce a high content of total protein with a balanced composition of essential amino acids, healthy oils rich in polyunsaturated fatty acids, carotenoids, fibers, and vitamins. These components can be made available via unprocessed microalgae or refined as individual ingredients. In either case, if added to foods, microalgae may affect taste, smell, texture, and appearance. This review focuses on how consumer acceptance of new foods - such as microalgae - can be accessed in the world of sensory science by bringing together examples from recent consumer surveys. The main aim is to obtain an overview of the attitude towards microalgae as a food ingredient in Europe. The overarching finding suggests that European consumers generally find microalgae acceptable as ingredients in food products. However, there is a prevailing preference for keeping inclusion levels low, primarily attributed to the vivid green color that algae impart to food items upon addition. Additionally, consumers tend to favor the taste of freshwater algae over marine species, often finding the latter's pronounced fishy flavor less appealing.
Collapse
Affiliation(s)
- Malene Lihme Olsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Karsten Olsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
37
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
38
|
Goold HD, Moseley JL, Lauersen KJ. The synthetic future of algal genomes. CELL GENOMICS 2024; 4:100505. [PMID: 38395701 PMCID: PMC10943592 DOI: 10.1016/j.xgen.2024.100505] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae. Efforts to redesign and rebuild entire genomes to create fit-for-purpose organisms currently being explored in heterotrophic prokaryotes and eukaryotic microbes could also be applied to photosynthetic algae. Future algal genome engineering will enhance yields of native products and permit the expression of complex biochemical pathways to produce novel metabolites from sustainable inputs. We present a historical perspective on advances in engineering algae, discuss the requisite genetic traits to enable algal genome optimization, take inspiration from whole-genome engineering efforts in other microbes for algal systems, and present candidate algal species in the context of these engineering goals.
Collapse
Affiliation(s)
- Hugh D Goold
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia; ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia; School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeffrey L Moseley
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Phycoil Biotechnology International, Inc., Fremont, CA 94538, USA
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
39
|
Williamson E, Ross IL, Wall BT, Hankamer B. Microalgae: potential novel protein for sustainable human nutrition. TRENDS IN PLANT SCIENCE 2024; 29:370-382. [PMID: 37690907 DOI: 10.1016/j.tplants.2023.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
To support a global population of ~10 billion people in 2050, dietary protein demand is forecast to increase 32-78% compared to 2017, requiring significantly higher planetary resources. Microalgae are an attractive sustainable protein source compared with current plant and animal sources. Benefits include mass scalability, low CO2 emissions, and significantly reduced land and freshwater use per unit protein. Microalgae are already used as food products and numerous species exhibit high total protein contents and well-balanced essential amino acid (EAA) compositions for human dietary requirements. Microalgae proteins are also bioavailable for human digestion, and downstream processing steps are likely to further enhance protein digestibility. Species, cultivation, and process/product optimisation are actively being developed to enhance their nutritional, social, and environmental benefits.
Collapse
Affiliation(s)
- Ellen Williamson
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, EX1 2LU, UK; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian L Ross
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin T Wall
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Benjamin Hankamer
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
40
|
Zhou J, Hollmann F, He Q, Chen W, Ma Y, Wang Y. Continuous Fatty Acid Decarboxylation using an Immobilized Photodecarboxylase in a Membrane Reactor. CHEMSUSCHEM 2024; 17:e202301326. [PMID: 37985235 DOI: 10.1002/cssc.202301326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The realm of photobiocatalytic alkane biofuel synthesis has burgeoned recently; however, the current dearth of well-established and scalable production methodologies in this domain remains conspicuous. In this investigation, we engineered a modified form of membrane-associated fatty acid photodecarboxylase sourced from Micractinium conductrix (McFAP). This endeavour resulted in creating an innovative assembled photoenzyme-membrane (protein load 5 mg cm-2 ), subsequently integrated into an illuminated flow apparatus to achieve uninterrupted generation of alkane biofuels. Through batch experiments, the photoenzyme-membrane exhibited its prowess in converting fatty acids spanning varying chain lengths (C6-C18). Following this, the membrane-flow mesoscale reactor attained a maximum space-time yield of 1.2 mmol L-1 h-1 (C8) and demonstrated commendable catalytic proficiency across eight consecutive cycles, culminating in a cumulative runtime of eight hours. These findings collectively underscored the photoenzyme-membrane's capability to facilitate the biotransformation of diverse fatty acids, furnishing valuable benchmarks for the conversion of biomass via photobiocatalysis.
Collapse
Affiliation(s)
- Jianle Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Qi He
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wen Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yunjian Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Co. Ltd, Foshan, Guangdong, 528200, China
| |
Collapse
|
41
|
LaPanse AJ, Krishnan A, Dennis G, Karns DAJ, Dahlin LR, Van Wychen S, Burch TA, Guarnieri MT, Weissman JC, Posewitz MC. Proximate biomass characterization of the high productivity marine microalga Picochlorum celeri TG2. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108364. [PMID: 38232496 DOI: 10.1016/j.plaphy.2024.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Microalgae are compelling renewable resources with applications including biofuels, bioplastics, nutrient supplements, and cosmetic products. Picochlorum celeri is an alga with high industrial interest due to exemplary outdoor areal biomass productivities in seawater. Detailed proximate analysis is needed in multiple environmental conditions to understand the dynamic biomass compositions of P. celeri, and how these compositions might be leveraged in biotechnological applications. In this study, biomass characterization of P. celeri was performed under nutrient-replete, nitrogen-restricted, and hyper-saline conditions. Nutrient-replete cultivation of P. celeri resulted in protein-rich biomass (∼50% ash-free dry weight) with smaller carbohydrate (∼12% ash-free dry weight) and lipid (∼11% ash-free dry weight) partitions. Gradual nitrogen depletion elicited a shift from proteins to carbohydrates (∼50% ash-free dry weight, day 3) as cells transitioned into the production of storage metabolites. Importantly, dilutions in nitrogen-restricted 40 parts per million (1.43 mM nitrogen) media generated high-carbohydrate (∼50% ash-free dry weight) biomass without substantially compromising biomass productivity (36 g ash-free dry weight m-2 day-1) despite decreased chlorophyll (∼2% ash-free dry weight) content. This strategy for increasing carbohydrate content allowed for the targeted production of polysaccharides, which could potentially be utilized to produce fuels, oligosaccharides, and bioplastics. Cultivation at 2X sea salts resulted in a shift towards carbohydrates from protein, with significantly increased levels of the amino acid proline, which putatively acts as an osmolyte. A detailed understanding of the biomass composition of P. celeri in nutrient-replete, nitrogen-restricted, and hyper saline conditions informs how this strain can be useful in the production of biotechnological products.
Collapse
Affiliation(s)
- Alaina J LaPanse
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA.
| | - Anagha Krishnan
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Galen Dennis
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Devin A J Karns
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Lukas R Dahlin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Stefanie Van Wychen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Tyson A Burch
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Michael T Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Joseph C Weissman
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| |
Collapse
|
42
|
Yu T, Fan F, Huang L, Wang W, Wan M, Li Y. Artificial neural networks prediction and optimization based on four light regions for light utilization from Synechocystis sp. PCC 6803. BIORESOURCE TECHNOLOGY 2024; 394:130166. [PMID: 38072072 DOI: 10.1016/j.biortech.2023.130166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Light is crucial in microalgae growth. However, dividing the microalgae growth region into light and dark regions has limitations. In this study, the light response of Synechocystis sp. PCC 6803 was investigated to define four light regions (FLRs): light compensation region, light limitation region, light saturation region, and photoinhibition region. The proportions of cells' residence time in the FLRs and the number of times cells (NTC) passed through the FLRs in photobioreactors were calculated by using MATLAB. Based on the FLRs and NTC passed through the FLRs, a growth model was established by using artificial neural network (ANN).The ANN model had a validation R2 value of 0.97, which was 76.36% higher than the model based on light-dark regions. The high accuracy of the ANN model was further verified through dynamic adjustment of light intensity experiments.This study confirmed the importance of the FLRs for studying microalgae growth dynamics.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Fei Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lei Huang
- Military Representative Bureau of the Army Armaments Department in Nanjing, Nanjing 210000, PR China
| | - Weiliang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Minxi Wan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yuanguang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
43
|
Zhao Y, Wang Q, Gu D, Huang F, Liu J, Yu L, Yu X. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges. BIORESOURCE TECHNOLOGY 2024; 393:130093. [PMID: 38000641 DOI: 10.1016/j.biortech.2023.130093] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
High-value metabolites, such as carotenoids, lipids, and proteins, are synthesized by microalgae and find applications in various fields, including food, health supplements, and cosmetics. However, the potential of the microalgal industry to serve these sectors is constrained by low productivity and high energy consumption. Environmental stressors can not only stimulate the accumulation of secondary metabolites in microalgae but also induce oxidative stress, suppressing cell growth and activity, thereby resulting in a decrease in overall productivity. Using melatonin (MT) under stressful conditions is an effective approach to enhance the productivity of microalgal metabolites. This review underscores the role of MT in promoting the accumulation of high-value metabolites and enhancing stress resistance in microalgae under stressful and wastewater conditions. It discusses the underlying mechanisms whereby MT enhances metabolite synthesis and improves stress resistance. The review also offers new perspectives on utilizing MT to improve microalgal productivity and stress resistance in challenging environments.
Collapse
Affiliation(s)
- Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Qingwei Wang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyan Huang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Jiani Liu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Lei Yu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
44
|
Gupta A, Kang K, Pathania R, Saxton L, Saucedo B, Malik A, Torres-Tiji Y, Diaz CJ, Dutra Molino JV, Mayfield SP. Harnessing genetic engineering to drive economic bioproduct production in algae. Front Bioeng Biotechnol 2024; 12:1350722. [PMID: 38347913 PMCID: PMC10859422 DOI: 10.3389/fbioe.2024.1350722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Our reliance on agriculture for sustenance, healthcare, and resources has been essential since the dawn of civilization. However, traditional agricultural practices are no longer adequate to meet the demands of a burgeoning population amidst climate-driven agricultural challenges. Microalgae emerge as a beacon of hope, offering a sustainable and renewable source of food, animal feed, and energy. Their rapid growth rates, adaptability to non-arable land and non-potable water, and diverse bioproduct range, encompassing biofuels and nutraceuticals, position them as a cornerstone of future resource management. Furthermore, microalgae's ability to capture carbon aligns with environmental conservation goals. While microalgae offers significant benefits, obstacles in cost-effective biomass production persist, which curtails broader application. This review examines microalgae compared to other host platforms, highlighting current innovative approaches aimed at overcoming existing barriers. These approaches include a range of techniques, from gene editing, synthetic promoters, and mutagenesis to selective breeding and metabolic engineering through transcription factors.
Collapse
Affiliation(s)
- Abhishek Gupta
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ruchi Pathania
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Lisa Saxton
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Barbara Saucedo
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ashleyn Malik
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Crisandra J. Diaz
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - João Vitor Dutra Molino
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
- California Center for Algae Biotechnology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
45
|
Verspreet J, Schoeters F, Bastiaens L. The Impact of Non-Concentrated Storage on the Centrifugation Yield of Microchloropsis gaditana: A Pilot-Scale Study. Life (Basel) 2024; 14:131. [PMID: 38255748 PMCID: PMC10821389 DOI: 10.3390/life14010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Non-concentrated algae storage can bridge the period between algae harvesting and processing while avoiding the stress conditions associated with the concentration step required for concentrate storage. This study aimed to examine organic matter losses during the non-concentrated storage of Microchloropsis gaditana at pilot-scale. Algae cultures (400-500 L) were stored for up to 12 days either at an 8 °C target temperature or at 19 °C as the average temperature. The centrifugation yield of stored algal cultures decreased from day 5 or day 8 onwards for all storage conditions. After 12 days, the centrifugation yields were between 57% and 93% of the initial yields. Large differences in centrifugation yields were noted between the algae batches. The batch-to-batch difference outweighed the effect of storage temperature, and the highest yield loss was observed for the 8 °C cooled algae batch. The analysis of stored algae before and after centrifugation suggested that the decreasing yields were not related to respiration losses, but rather, the decreasing efficiency with which organic matter is collected during the centrifugation step.
Collapse
Affiliation(s)
- Joran Verspreet
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium;
| | - Floris Schoeters
- Radius, Thomas More University of Applied Sciences, 2440 Geel, Belgium;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium;
| |
Collapse
|
46
|
Blifernez-Klassen O, Hassa J, Reinecke DL, Busche T, Klassen V, Kruse O. Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms. Microorganisms 2023; 11:2994. [PMID: 38138138 PMCID: PMC10745310 DOI: 10.3390/microorganisms11122994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.
Collapse
Affiliation(s)
- Olga Blifernez-Klassen
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (O.B.-K.); (V.K.)
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany (T.B.)
| | - Diana L. Reinecke
- Institute of Bio- and Geosciences, Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428 Juelich, Germany;
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany (T.B.)
- Medical School East Westphalia-Lippe, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Viktor Klassen
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (O.B.-K.); (V.K.)
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (O.B.-K.); (V.K.)
| |
Collapse
|
47
|
Dubey KK, Kumar A, Baldia A, Rajput D, Kateriya S, Singh R, Nikita, Tandon R, Mishra YK. Biomanufacturing of glycosylated antibodies: Challenges, solutions, and future prospects. Biotechnol Adv 2023; 69:108267. [PMID: 37813174 DOI: 10.1016/j.biotechadv.2023.108267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Traditionally, recombinant protein production has been done in several expression hosts of bacteria, fungi, and majorly CHO (Chinese Hamster Ovary) cells; few have high production costs and are susceptible to harmful toxin contamination. Green algae have the potential to produce recombinant proteins in a more sustainable manner. Microalgal diversity leads to offer excellent opportunities to produce glycosylated antibodies. An antibody with humanized glycans plays a crucial role in cellular communication that works to regulate cells and molecules, to control disease, and to stimulate immunity. Therefore, it becomes necessary to understand the role of abiotic factors (light, temperature, pH, etc.) in the production of bioactive molecules and molecular mechanisms of product synthesis from microalgae which would lead to harnessing the potential of algal bio-refinery. However, the potential of microalgae as the source of bio-refinery has been less explored. In the present review, omics approaches for microalgal engineering, methods of humanized glycoproteins production focusing majorly on N-glycosylation pathways, light-based regulation of glycosylation machinery, and production of antibodies with humanized glycans in microalgae with a major emphasis on modulation of post-translation machinery of microalgae which might play a role in better understanding of microalgal potential as a source for antibody production along with future perspectives.
Collapse
Affiliation(s)
- Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Kumar
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajani Singh
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark.
| |
Collapse
|
48
|
Awwad F, Fantino EI, Héneault M, Diaz-Garza AM, Merindol N, Custeau A, Gélinas SE, Meddeb-Mouelhi F, Li J, Lemay JF, Karas BJ, Desgagne-Penix I. Bioengineering of the Marine Diatom Phaeodactylum tricornutum with Cannabis Genes Enables the Production of the Cannabinoid Precursor, Olivetolic Acid. Int J Mol Sci 2023; 24:16624. [PMID: 38068947 PMCID: PMC10706280 DOI: 10.3390/ijms242316624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom Phaeodactylum tricornutum through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). P. tricornutum is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds. Through genetic engineering techniques, we successfully integrated the cannabis genes TKS and OAC into the diatom. P. tricornutum transconjugants expressing these genes showed the production of the recombinant TKS and OAC enzymes, detected via Western blot analysis, and the production of cannabinoids precursor (OA) detected using the HPLC/UV spectrum when compared to the wild-type strain. Quantitative analysis revealed significant olivetolic acid accumulation (0.6-2.6 mg/L), demonstrating the successful integration and functionality of the heterologous genes. Furthermore, the introduction of TKS and OAC genes led to the synthesis of novel molecules, potentially expanding the repertoire of bioactive compounds accessible through diatom-based biotechnology. This study demonstrates the successful bioengineering of P. tricornutum with cannabis genes, enabling the production of OA as a precursor for cannabinoid production and the synthesis of novel molecules with potential pharmaceutical applications.
Collapse
Affiliation(s)
- Fatima Awwad
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Elisa Ines Fantino
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Marianne Héneault
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Aracely Maribel Diaz-Garza
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Riviere, QC G9A 5H7, Canada
| | - Alexandre Custeau
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Sarah-Eve Gélinas
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Riviere, QC G9A 5H7, Canada
| | - Jessica Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jean-François Lemay
- Centre National en Électrochimie et en Technologies Environnementales Inc., 2263 Avenue du Collège, Shawinigan, QC G9N 6V8, Canada
| | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Isabel Desgagne-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Riviere, QC G9A 5H7, Canada
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Riviere, QC G9A 5H7, Canada
| |
Collapse
|
49
|
Jareonsin S, Mahanil K, Phinyo K, Srinuanpan S, Pekkoh J, Kameya M, Arai H, Ishii M, Chundet R, Sattayawat P, Pumas C. Unlocking microalgal host-exploring dark-growing microalgae transformation for sustainable high-value phytochemical production. Front Bioeng Biotechnol 2023; 11:1296216. [PMID: 38026874 PMCID: PMC10666632 DOI: 10.3389/fbioe.2023.1296216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Microalgae have emerged as a promising, next-generation sustainable resource with versatile applications, particularly as expression platforms and green cell factories. They possess the ability to overcome the limitations of terrestrial plants, such non-arable land, water scarcity, time-intensive growth, and seasonal changes. However, the heterologous expression of interested genes in microalgae under heterotrophic cultivation (dark mode) remains a niche area within the field of engineering technologies. In this study, the green microalga, Chlorella sorokiniana AARL G015 was chosen as a potential candidate due to its remarkable capacity for rapid growth in complete darkness, its ability to utilize diverse carbon sources, and its potential for wastewater treatment in a circular bioeconomy model. The aims of this study were to advance microalgal genetic engineering via dark cultivation, thereby positioning the strain as promising dark-host for expressing heterologous genes to produce high-value phytochemicals and ingredients for food and feed. To facilitate comprehensive screening based on resistance, eleven common antibiotics were tested under heterotrophic condition. As the most effective selectable markers for this strain, G418, hygromycin, and streptomycin exhibited growth inhibition rates of 98%, 93%, and 92%, respectively, ensuring robust long-term transgenic growth. Successful transformation was achieved through microalgal cell cocultivation with Agrobacterium under complete darkness verified through the expression of green fluorescence protein and β-glucuronidase. In summary, this study pioneers an alternative dark-host microalgal platform, using, Chlorella, under dark mode, presenting an easy protocol for heterologous gene transformation for microalgal host, devoid of the need for expensive equipment and light for industrial production. Furthermore, the developed genetic transformation methodology presents a sustainable way for production of high-value nutrients, dietary supplements, nutraceuticals, proteins and pharmaceuticals using heterotrophic microalgae as an innovative host system.
Collapse
Affiliation(s)
- Surumpa Jareonsin
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kanjana Mahanil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Masafumi Kameya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ruttaporn Chundet
- Division of Biotechnology, Faculty of Science, Maejo University, Chiangmai, Chiang Mai, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
50
|
Qin J, Kurt E, LBassi T, Sa L, Xie D. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Front Microbiol 2023; 14:1280296. [PMID: 38029217 PMCID: PMC10662050 DOI: 10.3389/fmicb.2023.1280296] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Omega-3 fatty acids, including alpha-linolenic acids (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have shown major health benefits, but the human body's inability to synthesize them has led to the necessity of dietary intake of the products. The omega-3 fatty acid market has grown significantly, with a global market from an estimated USD 2.10 billion in 2020 to a predicted nearly USD 3.61 billion in 2028. However, obtaining a sufficient supply of high-quality and stable omega-3 fatty acids can be challenging. Currently, fish oil serves as the primary source of omega-3 fatty acids in the market, but it has several drawbacks, including high cost, inconsistent product quality, and major uncertainties in its sustainability and ecological impact. Other significant sources of omega-3 fatty acids include plants and microalgae fermentation, but they face similar challenges in reducing manufacturing costs and improving product quality and sustainability. With the advances in synthetic biology, biotechnological production of omega-3 fatty acids via engineered microbial cell factories still offers the best solution to provide a more stable, sustainable, and affordable source of omega-3 fatty acids by overcoming the major issues associated with conventional sources. This review summarizes the current status, key challenges, and future perspectives for the biotechnological production of major omega-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|