1
|
Chueh TY, Tsai YJ, Wu JH, Chu CL, Wu CT, Hung TM. Superior motor competence in children with ADHD is associated with optimized neurocognitive development of inhibitory control processing: An ERP study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2025; 162:104993. [PMID: 40239545 DOI: 10.1016/j.ridd.2025.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Neurocognitive deficits, especially inhibitory control processing, are common developmental challenges in children with attention-deficit/hyperactivity disorder (ADHD). Although previous studies have suggested that greater motor competence (MC) is associated with better inhibitory control on both behavioral and neuroelectric levels in children with ADHD, some limitations exist. AIMS To examine whether higher MC is associated with improved neurocognitive development in children with ADHD, as indexed by behavioral and neuroelectric indices of inhibitory control in a well-designed study. METHODS Sixty children with ADHD were divided into high MC (n = 30) and low MC (n = 30) groups, based on the median total composite scores from the Bruininks-Oseretsky Test of Motor Proficiency. Forty-four typically developing (TD) children were recruited as the healthy control. The Stroop task was administered to assess inhibitory control while electroencephalography was recorded to derive P3 component. RESULTS The TD children group demonstrated higher accuracy rate (AR), shorter reaction time (RT), and greater P3 amplitude relative to the Low MC ADHD group (ps = .02). However, the TD children group had higher AR compared to the High MC ADHD group, with no significant differences in RT (p = .927) and P3 amplitude (p = .796). Further, the High MC ADHD group demonstrated shorter RT (p = .019) and greater P3 amplitude (p = .041) regardless of congruency compared to the Low MC ADHD group while accounting for intelligence quotient and aerobic fitness. CONCLUSIONS Superior MC in children with ADHD is associated with favorable neurocognitive development, as evidenced not only by the association of MC with enhanced inhibitory control performance and increased P3 amplitude but also by that such neurocognitive performance is comparable to those of TD children. These findings suggest that enhanced MC plays a role in mitigating typical neurocognitive deficits associated with inhibitory control processing in children with ADHD.
Collapse
Affiliation(s)
- Ting-Yu Chueh
- Master's Program of Transition and Leisure Education for Individuals with Disabilities, University of Taipei, Taiwan.
| | - Yu-Jung Tsai
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan.
| | - Jia-Hao Wu
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA.
| | - Chiung-Ling Chu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan.
| | - Chien-Ting Wu
- Department of Exercise and Sport Science, St. Mary's University, San Antonio, TX, United States.
| | - Tsung-Min Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan; Institute for Research Excellence and Learning Sciences, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
2
|
Hwang H, Kim SM, Kim HJ, Han DH. Comparison of attention and brain functional connectivity between patient groups with schizophrenia and attention deficit hyperactivity disorder. Psychiatry Res 2025; 345:116376. [PMID: 39908657 DOI: 10.1016/j.psychres.2025.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Schizophrenia and attention deficit hyperactivity disorder (ADHD) have many contradicting features, but both these disorders share inattention as a core symptom. This study explored how the characteristics of inattention differ between the two disorders. 20 patients with schizophrenia, 20 patients with adult ADHD and 20 healthy controls participated in this study. Comprehensive attention test, Korean Wechsler adult intelligence scale-IV and resting-state functional magnetic resonance imaging (fMRI) were collected, among other things. The schizophrenia and ADHD groups showed low and high levels of functional connectivity in the default mode network (DMN), respectively. Functional connectivity level within the DMN was also positively correlated with processing speed index in the schizophrenia group and positively correlated with the number of divided-attention commission errors in the ADHD group. These results show that schizophrenia and adult ADHD have similarities in the characteristics of attention deficit, in that both may arise from dysregulation within the DMN. However, the differences in the levels of functional connectivity in the DMN between these groups affect how inattention manifests in each group.
Collapse
Affiliation(s)
- Hyunchan Hwang
- Department of Psychiatry, College of Medicine, Chung Ang University, Seoul, South Korea
| | - Sun Mi Kim
- Department of Psychiatry, College of Medicine, Chung Ang University, Seoul, South Korea
| | - Hee Jin Kim
- Department of Psychiatry, College of Medicine, Chung Ang University, Seoul, South Korea
| | - Doug Hyun Han
- Department of Psychiatry, College of Medicine, Chung Ang University, Seoul, South Korea.
| |
Collapse
|
3
|
Koirala S, Grimsrud G, Mooney MA, Larsen B, Feczko E, Elison JT, Nelson SM, Nigg JT, Tervo-Clemmens B, Fair DA. Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers. Nat Rev Neurosci 2024; 25:759-775. [PMID: 39448818 DOI: 10.1038/s41583-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Extensive investigations spanning multiple levels of inquiry, from genetic to behavioural studies, have sought to unravel the mechanistic foundations of attention-deficit hyperactivity disorder (ADHD), with the aspiration of developing efficacious treatments for this condition. Despite these efforts, the pathogenesis of ADHD remains elusive. In this Review, we reflect on what has been learned about ADHD while also providing a framework that may serve as a roadmap for future investigations. We emphasize that ADHD is a highly heterogeneous disorder with multiple aetiologies that necessitates a multifactorial dimensional phenotype, rather than a fixed dichotomous conceptualization. We highlight new findings that suggest a more brain-wide, 'global' view of the disorder, rather than the traditional localizationist framework, which asserts that a limited set of brain regions or networks underlie ADHD. Last, we underscore how underpowered studies that have aimed to associate neurobiology with ADHD phenotypes have long precluded the field from making progress. However, a new age of ADHD research with refined phenotypes, advanced methods, creative study designs and adequately powered investigations is beginning to put the field on a good footing. Indeed, the field is at a promising juncture to advance the neurobiological understanding of ADHD and fulfil the promise of clinical utility.
Collapse
Affiliation(s)
- Sanju Koirala
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joel T Nigg
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Sadozai AK, Sun C, Demetriou EA, Lampit A, Munro M, Perry N, Boulton KA, Guastella AJ. Executive function in children with neurodevelopmental conditions: a systematic review and meta-analysis. Nat Hum Behav 2024; 8:2357-2366. [PMID: 39424962 DOI: 10.1038/s41562-024-02000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 08/30/2024] [Indexed: 10/21/2024]
Abstract
Executive function (EF) delays are well documented in paediatric neurodevelopmental conditions (NDCs). There is no consensus about whether EF delay represents a transdiagnostic feature of NDCs. This systematic review and meta-analysis synthesized 180 studies reporting two or more NDC comparisons on EF, examined differences between NDCs, and the moderating effects of gender, age, publication year, DSM editions and assessment types. Studies using established EF measures across seven domains (attention, fluency, set-shifting, set-switching, response inhibition, planning and working memory) in participants under 18 were included. Summary effects were compared: (1) for all reported NDCs relative to control, (2) for each individual NDC relative to control and (3) between NDC groups. Results confirmed that EF delay was a transdiagnostic feature of neurodevelopmental delay, with a moderate effect size of delay across all NDCs (g = 0.56, 95% confidence interval (CI) 0.49-0.63) compared with control. This effect increased with comorbidities (g = 0.72, 95% CI 0.59-0.86), DSM-5 criteria and informant measures. Comparisons between NDCs revealed few differences: children with tic disorders (TD) showed smaller EF delays, children with attention-deficit/hyperactivity disorder (ADHD) showed larger delays in attention, response inhibition, planning and working memory compared with TD and specific learning disorders, while children with autism spectrum disorders showed greater delays on set-switching compared with ADHD. Findings support transdiagnostic models of neurodevelopment to further a developmentally sensitive science that can reveal how EF delays contribute to brain circuitry, symptom profiles and functioning, and ultimately support early interventions and outcomes for all children with NDCs.
Collapse
Affiliation(s)
- Ayesha K Sadozai
- Clinic for Autism and Neurodevelopment (CAN) Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Carter Sun
- Clinic for Autism and Neurodevelopment (CAN) Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, Australia
| | - Eleni A Demetriou
- Clinic for Autism and Neurodevelopment (CAN) Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Amit Lampit
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
| | - Martha Munro
- Clinic for Autism and Neurodevelopment (CAN) Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Nina Perry
- Clinic for Autism and Neurodevelopment (CAN) Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Kelsie A Boulton
- Clinic for Autism and Neurodevelopment (CAN) Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Adam J Guastella
- Clinic for Autism and Neurodevelopment (CAN) Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
- Child Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, Australia.
| |
Collapse
|
5
|
Wu G, He Q, Li D, Zhang Z, Miao J, Shu Y. Comparative Efficacy of Neurofeedback Interventions for Attention-Deficit/Hyperactivity Disorder in Children: A Network Meta-Analysis. Brain Behav 2024; 14:e70194. [PMID: 39711044 DOI: 10.1002/brb3.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE This study aimed to synthesize and encapsulate findings from recent research (May 1, 2018 to August 1, 2023) on neurofeedback interventions for children diagnosed with attention deficit hyperactivity disorder (ADHD). METHODS A comprehensive search was conducted across major databases and platforms, including randomized controlled trials s focusing on children aged 5-11 years with ADHD. The inclusion was broad, not restricted by ADHD subtype, gender, IQ, socioeconomic status, or coexisting conditions. RESULTS From the study screening process, 13 studies were included in the network meta-analysis, involving 1370 children. Most neurofeedback therapies surpassed placebo in ADHD symptoms. In the acceptability outcome, five neurofeedback therapies (HEG, SCP training, TBR training, SMR training, and active control) outperformed the inactive control, physical activity, and EMG therapies. CONCLUSIONS The potential efficacy of nonpharmacological interventions in ADHD management among children is illuminated. The findings advocate for a holistic, child-centered approach, emphasizing the need for further in-depth research to understand and refine these interventions.
Collapse
Affiliation(s)
- Gang Wu
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Qiang He
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Da Li
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Zhang Zhang
- The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, Zhejiang, China
| | - Jinli Miao
- The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, Zhejiang, China
| | - Yanping Shu
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Heiskanen MA, Nevalainen J, Pahkala K, Juonala M, Hutri N, Kähönen M, Jokinen E, Laitinen TP, Tossavainen P, Taittonen L, Viikari JSA, Raitakari OT, Rovio SP. Cognitive performance from childhood to old age and intergenerational correlations in the multigenerational Young Finns Study. J Neurol 2024; 271:7294-7308. [PMID: 39306829 PMCID: PMC11561001 DOI: 10.1007/s00415-024-12693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 11/14/2024]
Abstract
BACKGROUND Cognitive performance changes during the lifespan, but the information is gathered from studies on separate age cohorts. Computerized neurocognitive testing enables efficient and similar assessments for all ages. We investigated (i) the effect of age at different stages of life and (ii) intergenerational correlations across cognitive domains in the multigenerational Young Finns Study. METHODS Participants in three familiarly related generations (n = 6486, aged 7-92 years) performed the Cambridge Neuropsychological Test Automated Battery (CANTAB). Overall cognitive performance and domains representing learning and memory, working memory, information processing, and reaction time were extracted by common principal component analysis from the cognitive data with several age groups. Linear models were used to study the association of age, sex, and education with overall cognitive performance and in the cognitive domains. Age-adjusted intergenerational correlations were calculated. RESULTS Learning and memory peaked earlier during the lifespan compared to working memory and information processing, and the rate of decline toward old age differed by domain. Weak intergenerational correlations existed between two consecutive generations but were nonsignificant between grandparents and grandchildren. There was no systematic sex-specific transmission in any cognitive domain. CONCLUSION This study describes the natural course of cognitive performance across the lifespan and proves that cognitive performance changes differently across cognitive domains with weak intergenerational transmission.
Collapse
Affiliation(s)
- Marja A Heiskanen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | | | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Paavo Nurmi Centre, Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | - Nina Hutri
- Tampere Centre for Skills Training and Simulation, Tampere University, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Eero Jokinen
- Department of Pediatric Cardiology, Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tomi P Laitinen
- Department of Clinical Physiology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Päivi Tossavainen
- Department of Pediatrics, Research Unit of Clinical Medicine, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Leena Taittonen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Jorma S A Viikari
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Deng L, Wu H, Ruan H, Xu D, Pang S, Shi M. Effects of fancy rope-skipping on motor coordination and selective attention in children aged 7-9 years: a quasi-experimental study. Front Psychol 2024; 15:1383397. [PMID: 39171233 PMCID: PMC11337131 DOI: 10.3389/fpsyg.2024.1383397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Recent studies have emphasized the intricate connection between exercise and cognition, focusing on specific cognitive processes and their correlations with specific motor skills. However, research on the impact of the qualitative aspects of movement on both short- and long-term cognitive performance is limited. In this quasi-experimental study, we investigate the impact of a 10-week fancy rope-skipping intervention on motor coordination and selective attention of 7-9-year-old children. Methods A total of 60 primary school students from Changbin School in Haikou participated and completed the study from October to December 2022. The 60 participants were divided into a fancy rope-skipping group and a control group. Children's motor coordination was assessed using the Körperkoordinations Test für Kinder (KTK), while selective attention was evaluated using the d2 Test of Attention. Children were assessed at baseline and after the 10-week intervention. Results Compared with the control group, the scores for the total KTK and for the hopping for height, jumping sideways, and moving sideways sub-items were significantly higher in the rope-skipping group after the intervention, with a significant interaction effect between time and intervention. Attention concentration improved in the rope-skipping group and had a significant interaction effect between time and intervention compared with the control group; the effects of the intervention on other aspects of selective attention were unclear. Conclusions Our study suggests that a 10-week fancy rope-skipping intervention may potentially enhance motor coordination and selective attention accuracy in children aged 7-9 years.
Collapse
Affiliation(s)
- Libo Deng
- Faculty of Physical Education, Hainan Normal University, Haikou, China
- Faculty of Mathematics and Statistics, Yulin Normal University, Yulin, China
| | - Hua Wu
- Faculty of Physical Education, Hainan Normal University, Haikou, China
| | - Hui Ruan
- Faculty of Physical Education, Hainan Normal University, Haikou, China
| | - Dan Xu
- Faculty of Sports Training and Education, Hainan Provincial Sports Academy, Haikou, China
| | - Shibo Pang
- Faculty of Physical Education and Health, Hainan College of Economics and Business, Haikou, China
| | - Min Shi
- School of Public Education, Hainan College of Software Technology, Qionghai, China
| |
Collapse
|
8
|
El-Saied MM, Afify O, Abdelraouf ER, Oraby A, Hashish AF, Zeidan HM. BDNF, proBDNF and proBDNF/BDNF ratio with electroencephalographic abnormalities in children with attention deficit hyperactivity disorder: Possible relations to cognition and severity. Int J Dev Neurosci 2024; 84:368-380. [PMID: 38712701 DOI: 10.1002/jdn.10332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) with and without subclinical epileptogenic discharges (SED) have been suggested to negatively affect cognitive abilities of children with ADHD. The role of brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in ADHD is in need of being investigated. The aims were to evaluate the levels of serum BDNF, proBDNF and the proBDNF/BDNF ratio in addition to the potential impacts of SED on the children's cognitive abilities and the severity of ADHD. The included participants with ADHD were 30 children with normal electroencephalogram (EEG) (G1) and 30 children with SED (G2), together with 30 healthy children (G3). The cognitive abilities and severity of the disorder were evaluated. The biochemical measures were determined by ELISA. The presence of coexisting SED and nocturnal enuresis has led to a deleterious effect on cognitive processes but not on the severity. The focal epileptogenic discharge was the most common among children in G2. The levels of BDNF in Groups 1 and 2 were less than those in G3. The higher proBDNF/BDNF ratio could be related to the low BDNF levels rather than high proBDNF levels. The findings of this study highlight the importance of investigating the presence of SED and nocturnal enuresis in children with ADHD. Targeting strengthening of cognitive abilities in children with coexisting ADHD and SED is advised. The role of proBDNF in the pathophysiology of ADHD needs further investigation.
Collapse
Affiliation(s)
- Mostafa M El-Saied
- Department of Research on Children with Special Needs, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo, Egypt
- Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Omneya Afify
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ehab R Abdelraouf
- Department of Research on Children with Special Needs, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo, Egypt
- Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Azza Oraby
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Adel F Hashish
- Department of Research on Children with Special Needs, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo, Egypt
| | - Hala M Zeidan
- Department of Research on Children with Special Needs, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Perzanowski MS, Rauh V, Ramphal B, Acosta L, Hoepner L, Rundle AG, Perera FP, Herbstman J, Miller RL, Margolis AE. Rhinorrhea and watery eyes in infancy and risk of attention-deficit hyperactivity disorder in school-age children. Dev Psychobiol 2024; 66:e22497. [PMID: 38689370 DOI: 10.1002/dev.22497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Increased parasympathetic nervous system (PNS) activity is associated with attention-deficit/hyperactivity disorder (ADHD) inattentive symptoms, but not hyperactive-impulsive symptoms, and may contribute to inattentive subtype etiology. Guided by prior work linking infant rhinorrhea and watery eyes without a cold (RWWC) to PNS dysregulation, we examined associations between infant RWWC and childhood ADHD symptoms in a longitudinal cohort of Black and Latinx children living in the context of economic disadvantage (N = 301 youth: 158 females, 143 males). Infant RWWC predicted higher inattentive (relative risk [RR] 2.16, p < .001) but not hyperactive-impulsive (RR 1.53, p = .065) ADHD symptoms (DuPaul scale), administered to caregivers at child age 8-14 years. Stratified analyses revealed that these associations were present in females but not males, who were three times more likely to have higher ADHD current total symptoms if they had infant RWWC than if they did not. Additionally, associations between RWWC and inattention symptoms were observed only in females. RWWC may thus serve as a novel risk marker of ADHD inattentive-type symptoms, especially for females.
Collapse
Affiliation(s)
- Matthew S Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Virginia Rauh
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Bruce Ramphal
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Luis Acosta
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Lori Hoepner
- Data Coordinating Center, Columbia University, New York, New York, USA
- Department of Environmental and Occupational Health Sciences, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, New York, USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Frederica P Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Julie Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy E Margolis
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
10
|
Yang G, Liu Q, Wang W, Liu W, Li J. Effect of aerobic exercise on the improvement of executive function in children with attention deficit hyperactivity disorder: a systematic review and meta-analysis. Front Psychol 2024; 15:1376354. [PMID: 38952825 PMCID: PMC11216162 DOI: 10.3389/fpsyg.2024.1376354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/22/2024] [Indexed: 07/03/2024] Open
Abstract
Objective Aerobic exercise (AE) interventions are beginning to be used as an emerging adjunctive treatment modality in the treatment of children with Attention Deficit Hyperactivity Disorder (ADHD). However, to date, there is no substantial evidence to support the improved effects of aerobic exercise intervention in children with ADHD aged 6-12 years. This study aims to investigate the effect of aerobic exercise therapy on executive function in children with attention deficit hyperactivity disorder aged 6-12 years. Method We conducted a systematic review and meta-analysis using PubMed and Web of Science. The cut-off date was June 1, 2023. The aim was to assess the impact of aerobic exercise interventions on children with ADHD and all randomized controlled trials eligible for aerobic exercise interventions for children with ADHD were included. Nine randomized controlled trials were screened for eligibility for systematic evaluation, and the nine studies were assessed for risk of bias using the PEDro score and the GRADE Quality of Evidence Evaluation System for quality grading of outcome indicators. After testing for heterogeneity, a random-effects model was selected for analysis. Finally, meta-analyses and regression analyses were performed on the core functions (inhibitory control, cognitive flexibility, and working memory) and subgroups of the nine studies on executive function using Revman 5.4 and Stata 16.0. Results The risk of bias evaluation showed a mean PEDro score of 7.78, and of the nine studies, two were rated as having excellent methodological quality, while the remaining seven had a good level of evidence, and the GRADE evidence evaluation showed that the outcome indicators were all of moderate quality. Inhibitory control [SMD = 0.83,95% CI (0.37-1.29), Z = 3.51, p = 0.0005], cognitive flexibility [SMD = 0.65,95% CI (0.37-0.93), Z = 4.58, p < 0.00001], and working memory [SMD = 0.48,95% CI (0.02-0.95), Z = 2.03, p = 0.04] were statistically significant, with effect sizes of moderate or higher; furthermore, in subgroup analyses type of intervention, duration, intensity, and medication use had different effects on inhibitory control and cognitive flexibility, and the combined IC, CF statistic found that a single category of aerobic exercise ( β = 0.867, p < 0.001), moderate intensity ( β = 0.928, p < 0.001), 6-12 weeks (β = 0.804, p < 0.001), 60-90 min ( β = 0.894, p < 0.001), and the use of medication ( β = 1.202, p = 0.002) were better for overall improvement in EF. Conclusion Aerobic exercise therapy significantly improved executive functioning in children with ADHD, showing above moderate effect sizes especially in inhibitory control, cognitive flexibility, and working memory. Aerobic exercise therapy can be used as a reference in improving executive function in children with ADHD, but given the limitations of this study, it should be used with caution when applied in clinical settings.
Collapse
Affiliation(s)
- Gao Yang
- College of Sports and Health, Medicine & Technology College of Zunyi Medical University, Zunyi, China
- Institute of Motor Quotient, Southwest University, Chongqing, China
| | - Qiang Liu
- Department of Physical Education, Central South University, Changsha, China
| | - Wei Wang
- School of Physical Education and Health, Zunyi Medical University, Zunyi, China
| | - Wei Liu
- Institute of Physical Education, Xuzhou Kinder Garten Teachers College, Xuzhou, China
| | - Junfeng Li
- Ministry of Sports, Shandong Technology and Business University, Yantai, China
| |
Collapse
|
11
|
Haque MT, Segreti M, Giuffrida V, Ferraina S, Brunamonti E, Pani P. Attentional spatial cueing of the stop-signal affects the ability to suppress behavioural responses. Exp Brain Res 2024; 242:1429-1438. [PMID: 38652274 PMCID: PMC11108874 DOI: 10.1007/s00221-024-06825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
The ability to adapt to the environment is linked to the possibility of inhibiting inappropriate behaviours, and this ability can be enhanced by attention. Despite this premise, the scientific literature that assesses how attention can influence inhibition is still limited. This study contributes to this topic by evaluating whether spatial and moving attentional cueing can influence inhibitory control. We employed a task in which subjects viewed a vertical bar on the screen that, from a central position, moved either left or right where two circles were positioned. Subjects were asked to respond by pressing a key when the motion of the bar was interrupted close to the circle (go signal). In about 40% of the trials, following the go signal and after a variable delay, a visual target appeared in either one of the circles, requiring response inhibition (stop signal). In most of the trials the stop signal appeared on the same side as the go signal (valid condition), while in the others, it appeared on the opposite side (invalid condition). We found that spatial and moving cueing facilitates inhibitory control in the valid condition. This facilitation was observed especially for stop signals that appeared within 250ms of the presentation of the go signal, thus suggesting an involvement of exogenous attentional orienting. This work demonstrates that spatial and moving cueing can influence inhibitory control, providing a contribution to the investigation of the relationship between spatial attention and inhibitory control.
Collapse
Affiliation(s)
- Md Tanbeer Haque
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Mariella Segreti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
12
|
Ji J, Chao H, Chen H, Liao J, Shi W, Ye Y, Wang T, You Y, Liu N, Ji J, Petretto E. Decoding frontotemporal and cell-type-specific vulnerabilities to neuropsychiatric disorders and psychoactive drugs. Open Biol 2024; 14:240063. [PMID: 38864245 DOI: 10.1098/rsob.240063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
Frontotemporal lobe abnormalities are linked to neuropsychiatric disorders and cognition, but the role of cellular heterogeneity between temporal lobe (TL) and frontal lobe (FL) in the vulnerability to genetic risk factors remains to be elucidated. We integrated single-nucleus transcriptome analysis in 'fresh' human FL and TL with genetic susceptibility, gene dysregulation in neuropsychiatric disease and psychoactive drug response data. We show how intrinsic differences between TL and FL contribute to the vulnerability of specific cell types to both genetic risk factors and psychoactive drugs. Neuronal populations, specifically PVALB neurons, were most highly vulnerable to genetic risk factors for psychiatric disease. These psychiatric disease-associated genes were mostly upregulated in the TL, and dysregulated in the brain of patients with obsessive-compulsive disorder, bipolar disorder and schizophrenia. Among these genes, GRIN2A and SLC12A5, implicated in schizophrenia and bipolar disorder, were significantly upregulated in TL PVALB neurons and in psychiatric disease patients' brain. PVALB neurons from the TL were twofold more vulnerable to psychoactive drugs than to genetic risk factors, showing the influence and specificity of frontotemporal lobe differences on cell vulnerabilities. These studies provide a cell type resolved map of the impact of brain regional differences on cell type vulnerabilities in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiatong Ji
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Huimei Chen
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jun Liao
- High Performance Computing Center, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
| | - Wenqian Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yangfan Ye
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Tian Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yongping You
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
- Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Xinjiang, Artux 845350, People's Republic of China
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Enrico Petretto
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
- Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
13
|
Gao Z, Duberg K, Warren SL, Zheng L, Hinshaw SP, Menon V, Cai W. Reduced temporal and spatial stability of neural activity patterns predict cognitive control deficits in children with ADHD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596493. [PMID: 38854066 PMCID: PMC11160739 DOI: 10.1101/2024.05.29.596493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This study explores the neural underpinnings of cognitive control deficits in ADHD, focusing on overlooked aspects of trial-level variability of neural coding. We employed a novel computational approach to neural decoding on a single-trial basis alongside a cued stop-signal task which allowed us to distinctly probe both proactive and reactive cognitive control. Typically developing (TD) children exhibited stable neural response patterns for efficient proactive and reactive dual control mechanisms. However, neural coding was compromised in children with ADHD. Children with ADHD showed increased temporal variability and diminished spatial stability in neural responses in salience and frontal-parietal network regions, indicating disrupted neural coding during both proactive and reactive control. Moreover, this variability correlated with fluctuating task performance and with more severe symptoms of ADHD. These findings underscore the significance of modeling single-trial variability and representational similarity in understanding distinct components of cognitive control in ADHD, highlighting new perspectives on neurocognitive dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Zhiyao Gao
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Duberg
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stacie L Warren
- Department of Psychology, University of Texas, Dallas, TX, USA
| | - Li Zheng
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Stephen P. Hinshaw
- Department of Psychology, University of California, Berkeley
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford, CA, USA
| | - Weidong Cai
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford, CA, USA
| |
Collapse
|
14
|
Liu Y, Lin W, Liu J, Zhu H. Structural and temporal dynamics analysis of neural circuit from 2002 to 2022: A bibliometric analysis. Heliyon 2024; 10:e24649. [PMID: 38298625 PMCID: PMC10828061 DOI: 10.1016/j.heliyon.2024.e24649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Background In the pursuit of causal insights into neural circuit functionality, various interventions, including electrical, genetic, and pharmacological approaches, have been applied over recent decades. This study employs a comprehensive bibliometric perspective to explore the field of neural circuits. Methods Reviews and articles on neural circuits were obtained from the Web of Science Core Collection (WOSCC) database on Apr. 12, 2023. In this article, co-authorship analysis, co-occurrence analysis, citation analysis, bibliographic analysis, and co-citation analysis were used to clarify the authors, journals, institutions, countries, topics, and internal associations between them. Results More than 2000 organizations from 52 different countries published 3975 articles in the field of "neural circuit" were used to analysis. Luo liqun emerged as the most prolific author, and Deisseroth Karl garners the highest co-citations (3643). The Journal of Neuroscience leaded in publications, while Nature toped in citations. Chinese Academy of Science recorded the highest article count institutionally, with Stanford University ranking first with 14,350 citations. Since 2020, neurodynamic, anxiety-related mechanisms, and GABAergic neurons have gained prominence, shaping the trajectory of neural circuitry research. Conclusions Our investigation has discerned a paradigmatic reorientation towards neurodynamic processes, anxiety-related mechanisms, and GABAergic neurons within the domain of neural circuit research. This identification intimates a prospective trajectory for the field. In the future, it is imperative for research endeavors to accord priority to the translational application of these discernments, with the aim of materializing tangible clinical solutions.
Collapse
Affiliation(s)
- Yuan Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Wei Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Jie Liu
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Haixia Zhu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
15
|
Zhang Y, Chen S, Zhang Z, Duan W, Zhao L, Weinschenk G, Luh WM, Anderson AK, Dai W. Effect of Meditation on Brain Activity during an Attention Task: A Comparison Study of ASL and BOLD Task fMRI. Brain Sci 2023; 13:1653. [PMID: 38137100 PMCID: PMC10741430 DOI: 10.3390/brainsci13121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Focused attention meditation (FAM) training has been shown to improve attention, but the neural basis of FAM on attention has not been thoroughly understood. Here, we aim to investigate the neural effect of a 2-month FAM training on novice meditators in a visual oddball task (a frequently adopted task to evaluate attention), evaluated with both ASL and BOLD fMRI. Using ASL, activation was increased in the middle cingulate (part of the salience network, SN) and temporoparietal (part of the frontoparietal network, FPN) regions; the FAM practice time was negatively associated with the longitudinal changes in activation in the medial prefrontal (part of the default mode network, DMN) and middle frontal (part of the FPN) regions. Using BOLD, the FAM practice time was positively associated with the longitudinal changes of activation in the inferior parietal (part of the dorsal attention network, DAN), dorsolateral prefrontal (part of the FPN), and precentral (part of the DAN) regions. The effect sizes for the activation changes and their association with practice time using ASL are significantly larger than those using BOLD. Our study suggests that FAM training may improve attention via modulation of the DMN, DAN, SN, and FPN, and ASL may be a sensitive tool to study the FAM effect on attention.
Collapse
Affiliation(s)
- Yakun Zhang
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Shichun Chen
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Zongpai Zhang
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Wenna Duan
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Li Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - George Weinschenk
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| | - Wen-Ming Luh
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21225, USA
| | - Adam K. Anderson
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA;
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA (S.C.)
| |
Collapse
|
16
|
Warsi NM, Wong SM, Germann J, Boutet A, Arski ON, Anderson R, Erdman L, Yan H, Suresh H, Gouveia FV, Loh A, Elias GJB, Kerr E, Smith ML, Ochi A, Otsubo H, Sharma R, Jain P, Donner E, Lozano AM, Snead OC, Ibrahim GM. Dissociable default-mode subnetworks subserve childhood attention and cognitive flexibility: Evidence from deep learning and stereotactic electroencephalography. Neural Netw 2023; 167:827-837. [PMID: 37741065 DOI: 10.1016/j.neunet.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 09/25/2023]
Abstract
Cognitive flexibility encompasses the ability to efficiently shift focus and forms a critical component of goal-directed attention. The neural substrates of this process are incompletely understood in part due to difficulties in sampling the involved circuitry. We leverage stereotactic intracranial recordings to directly resolve local-field potentials from otherwise inaccessible structures to study moment-to-moment attentional activity in children with epilepsy performing a flexible attentional task. On an individual subject level, we employed deep learning to decode neural features predictive of task performance indexed by single-trial reaction time. These models were subsequently aggregated across participants to identify predictive brain regions based on AAL atlas and FIND functional network parcellations. Through this approach, we show that fluctuations in beta (12-30 Hz) and gamma (30-80 Hz) power reflective of increased top-down attentional control and local neuronal processing within relevant large-scale networks can accurately predict single-trial task performance. We next performed connectomic profiling of these highly predictive nodes to examine task-related engagement of distributed functional networks, revealing exclusive recruitment of the dorsal default mode network during shifts in attention. The identification of distinct substreams within the default mode system supports a key role for this network in cognitive flexibility and attention in children. Furthermore, convergence of our results onto consistent functional networks despite significant inter-subject variability in electrode implantations supports a broader role for deep learning applied to intracranial electrodes in the study of human attention.
Collapse
Affiliation(s)
- Nebras M Warsi
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Simeon M Wong
- Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Olivia N Arski
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Lauren Erdman
- Vector Institute for Artificial Intelligence, University Health Network, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Hrishikesh Suresh
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Kerr
- Department of Psychology, The Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, Ontario, Canada, M5G 1X8
| | - Mary Lou Smith
- Department of Psychology, The Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, Ontario, Canada, M5G 1X8
| | - Ayako Ochi
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Hiroshi Otsubo
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Roy Sharma
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Puneet Jain
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Elizabeth Donner
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - O Carter Snead
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Alwood JS, Mulavara AP, Iyer J, Mhatre SD, Rosi S, Shelhamer M, Davis C, Jones CW, Mao XW, Desai RI, Whitmire AM, Williams TJ. Circuits and Biomarkers of the Central Nervous System Relating to Astronaut Performance: Summary Report for a NASA-Sponsored Technical Interchange Meeting. Life (Basel) 2023; 13:1852. [PMID: 37763256 PMCID: PMC10532466 DOI: 10.3390/life13091852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Biomarkers, ranging from molecules to behavior, can be used to identify thresholds beyond which performance of mission tasks may be compromised and could potentially trigger the activation of countermeasures. Identification of homologous brain regions and/or neural circuits related to operational performance may allow for translational studies between species. Three discussion groups were directed to use operationally relevant performance tasks as a driver when identifying biomarkers and brain regions or circuits for selected constructs. Here we summarize small-group discussions in tables of circuits and biomarkers categorized by (a) sensorimotor, (b) behavioral medicine and (c) integrated approaches (e.g., physiological responses). In total, hundreds of biomarkers have been identified and are summarized herein by the respective group leads. We hope the meeting proceedings become a rich resource for NASA's Human Research Program (HRP) and the community of researchers.
Collapse
Affiliation(s)
| | | | - Janani Iyer
- Universities Space Research Association (USRA), Moffett Field, CA 94035, USA
| | | | - Susanna Rosi
- Department of Physical Therapy & Rehabilitation Science, University of California, San Francisco, CA 94110, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94110, USA
| | - Mark Shelhamer
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Catherine Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20814, USA
| | - Christopher W. Jones
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Rajeev I. Desai
- Integrative Neurochemistry Laboratory, Behavioral Biology Program, McLean Hospital-Harvard Medical School, Belmont, MA 02478, USA
| | | | | |
Collapse
|
18
|
Huang H, Li R, Zhang J. A review of visual sustained attention: neural mechanisms and computational models. PeerJ 2023; 11:e15351. [PMID: 37334118 PMCID: PMC10274610 DOI: 10.7717/peerj.15351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/13/2023] [Indexed: 06/20/2023] Open
Abstract
Sustained attention is one of the basic abilities of humans to maintain concentration on relevant information while ignoring irrelevant information over extended periods. The purpose of the review is to provide insight into how to integrate neural mechanisms of sustained attention with computational models to facilitate research and application. Although many studies have assessed attention, the evaluation of humans' sustained attention is not sufficiently comprehensive. Hence, this study provides a current review on both neural mechanisms and computational models of visual sustained attention. We first review models, measurements, and neural mechanisms of sustained attention and propose plausible neural pathways for visual sustained attention. Next, we analyze and compare the different computational models of sustained attention that the previous reviews have not systematically summarized. We then provide computational models for automatically detecting vigilance states and evaluation of sustained attention. Finally, we outline possible future trends in the research field of sustained attention.
Collapse
Affiliation(s)
- Huimin Huang
- National Engineering Research Center for E-learning, Central China Normal University, Wuhan, Hubei, China
| | - Rui Li
- National Engineering Research Center for E-learning, Central China Normal University, Wuhan, Hubei, China
| | - Junsong Zhang
- Brain Cognition and Intelligent Computing Lab, Department of Artificial Intelligence, School of Informatics, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
19
|
Lee SY, Li SC, Yang CY, Kuo HC, Chou WJ, Wang LJ. Gut Leakage Markers and Cognitive Functions in Patients with Attention-Deficit/Hyperactivity Disorder. CHILDREN 2023; 10:children10030513. [PMID: 36980071 PMCID: PMC10047799 DOI: 10.3390/children10030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a commonly seen mental disorder in children. Intestinal permeability may be associated with the pathogenesis of ADHD. The study herein investigated the role of gut leakage biomarkers in the susceptibility of ADHD. A total of 130 children with ADHD and 73 healthy controls (HC) individuals were recruited. Serum concentrations of zonulin, occludin, and defensin (DEFA1) were determined. Visual attention was assessed with Conners’ continuous performance test (CPT). In order to rate participants’ ADHD core symptoms at home and school, their parents and teachers completed the Swanson, Nolan, and Pelham—Version IV Scale (SNAP-IV), respectively. We found significantly lower DEFA1 levels in the ADHD group compared to that in the HC group (p = 0.008), but not serum levels of zonulin and occludin. The serum levels of DEFA1 showed an inverse correlation with the inattention scores in the SNAP-IV parent form (p = 0.042) and teacher form (p = 0.010), and the hyperactivity/impulsivity scores in the SNAP-IV teacher form (p = 0.014). The serum levels of occludin showed a positive correlation with the subtest of detectability in the CPT (p = 0.020). Our study provides new reference into the relation between gut leakage markers and cognition, which may advance research of the pathophysiology of ADHD.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chia-Yu Yang
- Department of Microbiology and Immunology/Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8753); Fax: +886-7-7326817
| |
Collapse
|
20
|
Mizuno Y, Cai W, Supekar K, Makita K, Takiguchi S, Silk TJ, Tomoda A, Menon V. Methylphenidate Enhances Spontaneous Fluctuations in Reward and Cognitive Control Networks in Children With Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:271-280. [PMID: 36717325 DOI: 10.1016/j.bpsc.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Methylphenidate, a first-line treatment for attention-deficit/hyperactivity disorder (ADHD), is thought to influence dopaminergic neurotransmission in the nucleus accumbens (NAc) and its associated brain circuitry, but this hypothesis has yet to be systematically tested. METHODS We conducted a randomized, placebo-controlled, double-blind crossover trial including 27 children with ADHD. Children with ADHD were scanned twice with resting-state functional magnetic resonance imaging under methylphenidate and placebo conditions, along with assessment of sustained attention. We examined spontaneous neural activity in the NAc and the salience, frontoparietal, and default mode networks and their links to behavioral changes. Replicability of methylphenidate effects on spontaneous neural activity was examined in a second independent cohort. RESULTS Methylphenidate increased spontaneous neural activity in the NAc and the salience and default mode networks. Methylphenidate-induced changes in spontaneous activity patterns in the default mode network were associated with improvements in intraindividual response variability during a sustained attention task. Critically, despite differences in clinical trial protocols and data acquisition parameters, the NAc and the salience and default mode networks showed replicable patterns of methylphenidate-induced changes in spontaneous activity across two independent cohorts. CONCLUSIONS We provide reproducible evidence demonstrating that methylphenidate enhances spontaneous neural activity in NAc and cognitive control networks in children with ADHD, resulting in more stable sustained attention. Our findings identified a novel neural mechanism underlying methylphenidate treatment in ADHD to inform the development of clinically useful biomarkers for evaluating treatment outcomes.
Collapse
Affiliation(s)
- Yoshifumi Mizuno
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| | - Weidong Cai
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Maternal & Child Health Research Institute, Stanford University, Stanford, California
| | - Kaustubh Supekar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Maternal & Child Health Research Institute, Stanford University, Stanford, California
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Shinichiro Takiguchi
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Timothy J Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California; Maternal & Child Health Research Institute, Stanford University, Stanford, California.
| |
Collapse
|
21
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
Almeida AS, Nunes F, Marques DM, Machado ACL, Oliveira CB, Porciuncula LO. Sex differences in maternal odor preferences and brain levels of GAP-43 and sonic hedgehog proteins in infant SHR and Wistar Kyoto rats. Behav Brain Res 2023; 436:114102. [DOI: 10.1016/j.bbr.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
|
23
|
Luo C, Gao Y, Fan J, Liu Y, Yu Y, Zhang X. Compromised word-level neural tracking in the high-gamma band for children with attention deficit hyperactivity disorder. Front Hum Neurosci 2023; 17:1174720. [PMID: 37213926 PMCID: PMC10196181 DOI: 10.3389/fnhum.2023.1174720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023] Open
Abstract
Children with attention deficit hyperactivity disorder (ADHD) exhibit pervasive difficulties in speech perception. Given that speech processing involves both acoustic and linguistic stages, it remains unclear which stage of speech processing is impaired in children with ADHD. To investigate this issue, we measured neural tracking of speech at syllable and word levels using electroencephalography (EEG), and evaluated the relationship between neural responses and ADHD symptoms in 6-8 years old children. Twenty-three children participated in the current study, and their ADHD symptoms were assessed with SNAP-IV questionnaires. In the experiment, the children listened to hierarchical speech sequences in which syllables and words were, respectively, repeated at 2.5 and 1.25 Hz. Using frequency domain analyses, reliable neural tracking of syllables and words was observed in both the low-frequency band (<4 Hz) and the high-gamma band (70-160 Hz). However, the neural tracking of words in the high-gamma band showed an anti-correlation with the ADHD symptom scores of the children. These results indicate that ADHD prominently impairs cortical encoding of linguistic information (e.g., words) in speech perception.
Collapse
Affiliation(s)
- Cheng Luo
- Research Center for Applied Mathematics and Machine Intelligence, Research Institute of Basic Theories, Zhejiang Lab, Hangzhou, China
- Cheng Luo,
| | - Yayue Gao
- Department of Psychology, School of Humanities and Social Sciences, Beihang University, Beijing, China
- *Correspondence: Yayue Gao,
| | - Jianing Fan
- Department of Psychology, School of Humanities and Social Sciences, Beihang University, Beijing, China
| | - Yang Liu
- Department of Psychology, School of Humanities and Social Sciences, Beihang University, Beijing, China
| | - Yonglin Yu
- Department of Rehabilitation, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Yonglin Yu,
| | - Xin Zhang
- Department of Neurology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Xin Zhang,
| |
Collapse
|
24
|
Mizuno Y, Cai W, Supekar K, Makita K, Takiguchi S, Tomoda A, Menon V. Methylphenidate remediates aberrant brain network dynamics in children with attention-deficit/hyperactivity disorder: A randomized controlled trial. Neuroimage 2022; 257:119332. [PMID: 35640787 PMCID: PMC9286726 DOI: 10.1016/j.neuroimage.2022.119332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Methylphenidate is a widely used first-line treatment for attention deficit/hyperactivity disorder (ADHD), but the underlying circuit mechanisms are poorly understood. Here we investigate whether a single dose of osmotic release oral system methylphenidate can remediate attention deficits and aberrancies in functional circuit dynamics in cognitive control networks, which have been implicated in ADHD. In a randomized placebo-controlled double-blind crossover design, 27 children with ADHD were scanned twice with resting-state functional MRI and sustained attention was examined using a continuous performance task under methylphenidate and placebo conditions; 49 matched typically-developing (TD) children were scanned once for comparison. Dynamic time-varying cross-network interactions between the salience (SN), frontoparietal (FPN), and default mode (DMN) networks were examined in children with ADHD under both administration conditions and compared with TD children. Methylphenidate improved sustained attention on a continuous performance task in children with ADHD, when compared to the placebo condition. Children with ADHD under placebo showed aberrancies in dynamic time-varying cross-network interactions between the SN, FPN and DMN, which were remediated by methylphenidate. Multivariate classification analysis confirmed that methylphenidate remediates aberrant dynamic brain network interactions. Furthermore, dynamic time-varying network interactions under placebo conditions predicted individual differences in methylphenidate-induced improvements in sustained attention in children with ADHD. These findings suggest that a single dose of methylphenidate can remediate deficits in sustained attention and aberrant brain circuit dynamics in cognitive control circuits in children with ADHD. Findings identify a novel brain circuit mechanism underlying a first-line pharmacological treatment for ADHD, and may inform clinically useful biomarkers for evaluating treatment outcomes.
Collapse
Affiliation(s)
- Yoshifumi Mizuno
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA; Research Center for Child Mental Development, University of Fukui, Fukui, 910-1193, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, 910-1193, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, 910-1193, Japan.
| | - Weidong Cai
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94304, USA; Maternal & Child Health Research Institute, Stanford University, Stanford, CA 94304, USA
| | - Kaustubh Supekar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94304, USA; Maternal & Child Health Research Institute, Stanford University, Stanford, CA 94304, USA
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, 910-1193, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, 910-1193, Japan
| | - Shinichiro Takiguchi
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, 910-1193, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, 910-1193, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, 910-1193, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, 910-1193, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, 910-1193, Japan.
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94304, USA; Maternal & Child Health Research Institute, Stanford University, Stanford, CA 94304, USA
| |
Collapse
|
25
|
Xue C, Kramer LE, Cohen MR. Dynamic task-belief is an integral part of decision-making. Neuron 2022; 110:2503-2511.e3. [PMID: 35700735 PMCID: PMC9357195 DOI: 10.1016/j.neuron.2022.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
Natural decisions involve two seemingly separable processes: inferring the relevant task (task-belief) and performing the believed-relevant task. The assumed separability has led to the traditional practice of studying task-switching and perceptual decision-making individually. Here, we used a novel paradigm to manipulate and measure macaque monkeys' task-belief and demonstrated inextricable neuronal links between flexible task-belief and perceptual decision-making. We showed that in animals, but not in artificial networks that performed as well or better than the animals, stronger task-belief is associated with better perception. Correspondingly, recordings from neuronal populations in cortical areas 7a and V1 revealed that stronger task-belief is associated with better discriminability of the believed-relevant, but not the believed-irrelevant, feature. Perception also impacts belief updating; noise fluctuations in V1 help explain how task-belief is updated. Our results demonstrate that complex tasks and multi-area recordings can reveal fundamentally new principles of how biology affects behavior in health and disease.
Collapse
Affiliation(s)
- Cheng Xue
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Lily E Kramer
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marlene R Cohen
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
26
|
Warsi NM, Wong SM, Suresh H, Arski ON, Yan H, Ebden M, Kerr E, Smith ML, Ochi A, Otsubo H, Sharma R, Jain P, Donner EJ, Snead OC, Ibrahim GM. Interictal discharges delay target-directed eye movements and impair attentional set-shifting in children with epilepsy. Epilepsia 2022; 63:2571-2582. [PMID: 35833751 DOI: 10.1111/epi.17365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The theory of transient cognitive impairment in epilepsy posits that lapses in attention result from ephemeral disruption of attentional circuitry by interictal events. Eye movements are intimately associated with human attention and can be monitored in real -time using eye-tracking technologies. Here, we sought to characterize the associations between interictal discharges (IEDs), gaze, and attentional behaviour in children with epilepsy. METHODS Eleven consecutive children undergoing invasive monitoring with stereotactic electrodes for localization-related epilepsy performed an attentional set-shifting task while tandem intracranial electroencephalographic signals and eye-tracking data were recorded. Using an established algorithm, IEDs were detected across all intracranial electrodes on a trial-by-trial basis. Hierarchical mixed-effects modelling was performed to delineate associations between trial reaction time (RT), eye movements, and IEDs. RESULTS Hierarchical mixed-effects modelling revealed that both the presence of an IED (β±SE=72.74±24.21ms, p=0.003) and the frequency of epileptiform events (β±SE=67.54±17.30ms, p<0.001) were associated with prolonged RT on the attentional set-shifting task. IED occurrence at the time of stimulus presentation was associated with delays in gaze initiation toward the visual targets (p=0.017). SIGNIFICANCE The occurrence of epileptiform activity in close temporal association with stimulus presentation is associated with delays in target-directed gaze and prolonged response time, hallmarks of momentary lapses in attention. These findings provide novel insights into the mechanisms of transient impairments in children and support the use of visual tracking as a correlate of higher-order attentional behaviour.
Collapse
Affiliation(s)
- Nebras M Warsi
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Simeon M Wong
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Olivia N Arski
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Han Yan
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON
| | - Mark Ebden
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Elizabeth Kerr
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Mary Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - Roy Sharma
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - Puneet Jain
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | | | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, Toronto, ON
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON
| |
Collapse
|
27
|
Khanna HN, Roy S, Shaikh A, Bandi V. Emerging Role and Place of Probiotics in the Management of Pediatric Neurodevelopmental Disorders. Euroasian J Hepatogastroenterol 2022; 12:102-108. [PMID: 36959989 PMCID: PMC10028704 DOI: 10.5005/jp-journals-10018-1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The current decade has witnessed significant developments with the latest therapeutic agents for managing various infectious diseases to complex hemato-oncological conditions, leading to a decrease in morbidity and mortality, while improving the quality of life (QoL), and increasing the life span. Non-communicable diseases (NCDs), which are on the rise across all age-groups, are being driven by unhealthy lifestyles and improved mental health issues. The current therapeutic agents were found to offer only symptomatic relief of varying efficacy and significant adverse effects, leading clinicians to evaluate other options for the management of both neurodevelopmental and neurodegenerative disorders. The role of gut microbiota has emerged as a potential target for the treatment of both neurodegenerative diseases and neurodevelopmental disorders like attention-deficit hyperactivity disorder (ADHD)/autism spectrum disorders (ASD) as a result of the decoding of the human genome and advances in our understanding of the human gut microbiome, including its interactions with the human brain. This review has been undertaken to understand on date level of understanding of human microbiota and towards identifying probiotic strains with proven efficacy and safety. According to recent investigations, several lactobacillus strains, including L. Paracasei 37, L. Planetarium 128, L. reuteri DSM 17938, and Bifidobacterium longum, have been effective in treating children's neurodevelopmental disorders such as ASD and ADHD. Future clinical studies are nonetheless required to confirm the long-term safety and effectiveness of probiotic strains in managing the primary and comorbid symptoms, hence improving patient and family quality of life. How to cite this article Khanna HN, Roy S, Shaikh A, et al. Emerging Role and Place of Probiotics in the Management of Pediatric Neurodevelopmental Disorders. Euroasian J Hepato-Gastroenterol 2022;12(2):102-108.
Collapse
Affiliation(s)
- Himani Narula Khanna
- Department of community Medicine, HIMSR, Jamia-Hamdard University, New Delhi, India
| | - Sushovan Roy
- Department of Community Medicine, HIMSR, New Delhi, India
| | - Aqsa Shaikh
- Department of Community Medicine, HIMSR, New Delhi, India
| | - Viswanath Bandi
- Research Scholar, Faculty of management studies, ICFAI University, Ranchi, Jharkhand, India
| |
Collapse
|
28
|
Gorohovsky N, Magen H. Visuo-spatial working memory for objects and configurations in natural scenes in university students with ADHD. Memory 2022; 30:1046-1056. [PMID: 35620835 DOI: 10.1080/09658211.2022.2078841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Adults with ADHD typically show reduced performance in visuo-spatial working memory (VSWM) tasks. These limitations have been observed mainly in tasks probing VSWM for low-level visual information. The current study investigated whether these limitations extended to memory for real-world objects, and memory for the spatial context in which they were presented. Sixty-four university students with and without ADHD memorised the form of real-world objects embedded in natural scenes. Following a short delay, participants were probed on a single object in the scene that could change in token or orientation, and that could appear within the original scene or in isolation. Consistent with previous studies, memory for the individual objects was impaired in the ADHD group relative to the control group, demonstrating that this deficit extends to complex real-world objects. Nevertheless, participants in the ADHD group benefited from the reinstatement of the scene during retrieval to the same extent as participants in the control group. This finding suggests that participants in the ADHD group formed and maintained a representation of the spatial context of the scene that aided memory retrieval. Overall, the results support an emerging view that VSWM operates on multiple, possibly independent, representations at different hierarchal levels.
Collapse
Affiliation(s)
- Neta Gorohovsky
- School of Occupational Therapy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagit Magen
- School of Occupational Therapy, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
29
|
Mind-body exercise affects attention switching and sustained attention in female adults with Attention Deficit/Hyperactivity Disorder: A randomized, controlled trial with 6-month follow-up. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Ni AM, Bowes BS, Ruff DA, Cohen MR. Methylphenidate as a causal test of translational and basic neural coding hypotheses. Proc Natl Acad Sci U S A 2022; 119:e2120529119. [PMID: 35467980 PMCID: PMC9169912 DOI: 10.1073/pnas.2120529119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Most systems neuroscience studies fall into one of two categories: basic science work aimed at understanding the relationship between neurons and behavior, or translational work aimed at developing treatments for neuropsychiatric disorders. Here we use these two approaches to inform and enhance each other. Our study both tests hypotheses about basic science neural coding principles and elucidates the neuronal mechanisms underlying clinically relevant behavioral effects of systemically administered methylphenidate (Ritalin). We discovered that orally administered methylphenidate, used clinically to treat attention deficit hyperactivity disorder (ADHD) and generally to enhance cognition, increases spatially selective visual attention, enhancing visual performance at only the attended location. Further, we found that this causal manipulation enhances vision in rhesus macaques specifically when it decreases the mean correlated variability of neurons in visual area V4. Our findings demonstrate that the visual system is a platform for understanding the neural underpinnings of both complex cognitive processes (basic science) and neuropsychiatric disorders (translation). Addressing basic science hypotheses, our results are consistent with a scenario in which methylphenidate has cognitively specific effects by working through naturally selective cognitive mechanisms. Clinically, our findings suggest that the often staggeringly specific symptoms of neuropsychiatric disorders may be caused and treated by leveraging general mechanisms.
Collapse
Affiliation(s)
- Amy M. Ni
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| | - Brittany S. Bowes
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| | - Douglas A. Ruff
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| | - Marlene R. Cohen
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
31
|
Wang ML, Wei XE, Yu MM, Li WB. Cognitive impairment in mild traumatic brain injury: a diffusion kurtosis imaging and volumetric study. Acta Radiol 2022; 63:504-512. [PMID: 33641452 DOI: 10.1177/0284185121998317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND A significant number of patients with mild traumatic brain injury (mTBI) would experience cognitive deficit. PURPOSE To investigate the brain structural changes in sub-acute mTBI by diffusion kurtosis imaging (DKI) and volumetric analysis, and to assess the relationship between brain structural changes and cognitive functions. MATERIAL AND METHODS A total of 23 patients with sub-acute mTBI and 24 control participants were recruited. All the participants underwent examinations of neuropsychological tests, DKI, and magnetic resonance imaging (MRI)-based morphological scans. Images were investigated using whole brain-based analysis and further regions of interest-based analysis for subcortical nuclei. The neuropsychological tests were compared between the mTBI and the control group. Correlation analysis was performed to examine the relationship between gray matter (GM) volume, DKI parameters, and cognitive functions. RESULTS Compared with control participants, mTBI patients performed worse in the domains of verbal memory, attention and executive function (P < 0.05). No regional GM volume differences were observed between the mTBI and control groups (P > 0.05). Using DKI, patients with mTBI showed lower mean kurtosis (MK) in widespread white matter (WM) regions and several subcortical nuclei (P < 0.05), and higher mean diffusivity (MD) in the right pallidum (P < 0.05). Lower MK value of multiple WM regions and several subcortical nuclei correlated with cognitive impairment (P < 0.05). CONCLUSION DKI was sensitive in detecting brain microstructural changes in patients with sub-acute mTBI showing lower MK value in widespread WM regions and several subcortical nuclei, which were statistically associated with cognitive deficits.
Collapse
Affiliation(s)
- Ming-Liang Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Er Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Meng-Meng Yu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wen-Bin Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Imaging center, Kashgar Prefecture Second People’s Hospital, Kashgar, PR China
| |
Collapse
|
32
|
Gu C, Liu ZX, Woltering S. Electroencephalography complexity in resting and task states in adults with attention-deficit/hyperactivity disorder. Brain Commun 2022; 4:fcac054. [PMID: 35368615 PMCID: PMC8971899 DOI: 10.1093/braincomms/fcac054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/19/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
Analysing EEG complexity could provide insight into neural connectivity underlying attention-deficit/hyperactivity disorder symptoms. EEG complexity was calculated through multiscale entropy and compared between adults with attention-deficit/hyperactivity disorder and their peers during resting and go/nogo task states. Multiscale entropy change from the resting state to the task state was also examined as an index of the brain’s ability to change from a resting to an active state. Thirty unmedicated adults with attention-deficit/hyperactivity disorder were compared with 30 match-paired healthy peers on the multiscale entropy in the resting and task states as well as their multiscale entropy change. Results showed differences in multiscale entropy between individuals with attention-deficit/hyperactivity disorder and their peers during the resting state as well as the task state. The multiscale entropy measured from the comparison group was larger than that from the attention-deficit/hyperactivity disorder group in the resting state, whereas the reverse pattern was found during the task state. Our most robust finding showed that the multiscale entropy change from individuals with attention-deficit/hyperactivity disorder was smaller than that from their peers, specifically at frontal sites. Interestingly, individuals without attention-deficit/hyperactivity disorder performed better with decreasing multiscale entropy changes, demonstrating higher accuracy, faster reaction time and less variability in their reaction times. These data suggest that multiscale entropy could not only provide insight into neural connectivity differences between adults with attention-deficit/hyperactivity disorder and their peers but also into their behavioural performance.
Collapse
Affiliation(s)
- Chao Gu
- Department of Neuroscience, Texas A&M University, USA
- Department of Psychiatry, Massachusetts General Hospital, USA
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, USA
| | - Steven Woltering
- Department of Educational Psychology, Texas A&M University, USA
- Department of Applied Psychology and Human Development, University of Toronto, Canada
| |
Collapse
|
33
|
Baskin-Sommers A, Brazil IA. The importance of an exaggerated attention bottleneck for understanding psychopathy. Trends Cogn Sci 2022; 26:325-336. [PMID: 35120814 DOI: 10.1016/j.tics.2022.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/22/2022]
Abstract
The psychopath has long captured the imagination. A name such as Ted Bundy evokes a morbid curiosity. The crimes committed by Bundy are so cruel that it is hard to imagine how someone could do such things. In this review we discuss evidence that exaggeration in an attention bottleneck is one mechanism that makes it possible for psychopathic individuals to be adept at focusing on a single stimulus feature or goal but struggle to process multiple streams of information simultaneously. This exaggeration may partly explain the behavioral, affective, and social deficits that are apparent among psychopathic individuals. Further research on this attentional mechanism may promote a science that adequately captures the complexity of psychopathic behavior and offers new avenues for intervention.
Collapse
Affiliation(s)
| | - Inti A Brazil
- Radboud University, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Biele G, Overgaard KR, Friis S, Zeiner P, Aase H. Cognitive, emotional, and social functioning of preschoolers with attention deficit hyperactivity problems. BMC Psychiatry 2022; 22:78. [PMID: 35105343 PMCID: PMC8808769 DOI: 10.1186/s12888-021-03638-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Attention Deficit Hyperactivity Disorder (ADHD) is associated with deficits in different functional domains. It remains unclear if deficits in different domains are equally strong in early childhood, and which deficits are specific to ADHD. Here, we describe functional domains in preschoolers and assess deficits in children with ADHD problems, by comparing them to preschoolers with other mental health problems or who develop typically. METHODS The ADHD Study assessed 1195 ca. 3.5 years old preschoolers through a semi-structured parent interview, parent questionnaires, and with neuropsychological tests. We determined functional domains by applying factor analytic methods to a broad set of questionnaire- and test-scales. Using resulting factor scores, we employed a Bayesian hierarchical regression to estimate functional deficits in children with ADHD. RESULTS We found that preschoolers' functioning could be described along the seven relatively independent dimensions activity level and regulation, executive function, cognition, language, emotion regulation, introversion, and sociability. Compared to typically developing preschoolers, those with ADHD had deficits in all domains except introversion and sociability. Only deficits in activity level regulation and executive functions were larger than 0.5 standardised mean deviations and larger than deficits of children with other mental health problems. CONCLUSIONS Preschoolers with ADHD have deficits in multiple functional domains, but only impairments in activity level and regulation and executive functions are specific for ADHD and large enough to be clinically significant. Research on functioning in these domains will be important for understanding the development of ADHD, and for improving treatment and prevention approaches.
Collapse
Affiliation(s)
- Guido Biele
- Norwegian Institute of Public Health, Oslo, Norway.
| | | | - Svein Friis
- grid.55325.340000 0004 0389 8485Oslo University Hospital, Oslo, Norway
| | - Pal Zeiner
- grid.55325.340000 0004 0389 8485Oslo University Hospital, Oslo, Norway
| | - Heidi Aase
- grid.418193.60000 0001 1541 4204Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
35
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
36
|
Nakajima R, Kinoshita M, Nakada M. Simultaneous Damage of the Cingulate Cortex Zone II and Fronto-Striatal Circuit Causes Prolonged Selective Attentional Deficits. Front Hum Neurosci 2022; 15:762578. [PMID: 35002655 PMCID: PMC8740164 DOI: 10.3389/fnhum.2021.762578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Selective attention is essential for successful cognitive performance. Although several brain areas are known to be involved in selective attention, damage to some of these areas does not necessarily cause attentional deficits. In the current study, we hypothesized that damage to specific parts of the right cerebral hemisphere, especially the cingulate cortex (CC), causes prolonged selective attentional deficits, and examined the influence of focal brain damage on selective attention. We recruited 36 patients with right cerebral hemispheric WHO grade 2 and 3 brain tumors who underwent surgery. We assessed selective attention over time from pre-operation to 3 months postoperatively using the cancelation test and color Stroop test, and calculated the percentage of deficit. Additionally, two types of imaging analyses were performed: voxel-based lesion symptom mapping (VLSM) and multiple logistic regression analysis, to reveal related brain regions for selective attention. Consequently, we found that the CC and deep part of the middle frontal gyrus were associated with deficits in selective attention via VLSM. Using multiple logistic regression analysis, the CC zone II at the cortical level (p < 0.0001) and the fronto-striatal tract (FST) at the subcortical level (p = 0.0079) were associated with attentional deficit among several regions identified in the VLSM. At 3 months postoperatively, selective attention was impaired in patients who underwent resection of these regions. Moreover, only patients with simultaneous damage of the CC zone II and FST had prolonged attentional deficits until the chronic phase. Our results suggest that the right CC zone II and FST are critical areas for the selective attentional networks.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
37
|
Kenton JA, Young JW. Preclinical Evaluation of Attention and Impulsivity Relevant to Determining ADHD Mechanisms and Treatments. Curr Top Behav Neurosci 2022; 57:291-320. [PMID: 35606639 DOI: 10.1007/7854_2022_340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
People with Attention-Deficit Hyperactivity Disorder (ADHD) exhibit inattention, hyperactivity, and/or impulsivity. Symptoms of ADHD emerge in childhood and can continue throughout adulthood. Clinical assessments to diagnose ADHD can include administration of continuous performance tests (CPTs). CPTs provide an objective measure of inattention, requiring individuals to respond to targets (attention), and inhibit response to non-targets (impulsivity). When investigating the mechanisms of, and novel treatments for, ADHD it is important to measure such behavioral domains (attention and impulsivity). Some well-established preclinical tasks purport to assess attention in rodents but, unlike CPTs, do not require non-target inhibition, limiting their ADHD-relevance.Recently developed tasks recreate CPTs for rodents. The 5-Choice CPT (5C-CPT) contains non-target stimuli, enabling use of signal detection theory to evaluate performance, consistent with CPTs. The 5C-CPT has been adapted for use in humans, enabling direct cross-species comparisons of performance. A newer task, the rodent CPT (rCPT), is a touchscreen-based analog of CPTs, utilizing symbols instead of a simple stimulus array. Currently, the rCPT may be more akin to a go/no-go task, equally presenting targets/non-targets, although numerous variants exist - a strength. The 5C-CPT and rCPT emulate human CPTs and provide the most up-to-date information on ADHD-relevant studies for understanding attention/impulsivity.
Collapse
Affiliation(s)
- Johnny A Kenton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
38
|
Ludyga S, Ishihara T. Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index. NEUROIMAGE: CLINICAL 2022; 35:103141. [PMID: 36002962 PMCID: PMC9421503 DOI: 10.1016/j.nicl.2022.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Children with ADHD show deficits in interference control during preadolescence. Abnormalities in gray-white matter ratio contributed contribute to these deficits. Higher physical activity and lower body mass index predict higher interference control. Gray-white matter ratio underlies the predictive value of body mass index. Brain structure does not explain the predictive value of physical activity.
Background Children with ADHD face deficits in interference control due to abnormalities in brain structure. A low body mass index and high physical activity are factors promoting brain health and may have the potential to reduce ADHD-related cognitive deficits. We aimed to investigate the predictive values of ADHD, body mass index and physical activity for interference control and the potential mediation of these associations by brain structure. Method At 9 and 11 years, 4576 children with ADHD and neurotypical peers from the ABCD-cohort completed a Flanker task, anthropometric assessments and reported physical activity. Additionally, T1- and T2-weighted magnet resonance images were collected at both measurement time points. Results ADHD, lower physical activity and higher body mass index at baseline predicted lower interference control. Gray matter volume, surface area and gray-white matter ratio contributed to interference control. The longitudinal association between body mass index and interference control was mediated by gray-white-matter ratio. This mediating effect was stronger for children with ADHD than neurotypical peers and mainly restricted to regions associated with cognitive control. Conclusion The maintenance of a lower body mass index contributes to interference control by a tendency to normalize regional alterations in grey-white-matter ratio. Being compliant with physical activity also promises higher interference control, but brain structure does not seem to underlie this association.
Collapse
|
39
|
Higgins GA, Silenieks LB. The Effects of Drug Treatments for ADHD in Measures of Cognitive Performance. Curr Top Behav Neurosci 2022; 57:321-362. [PMID: 35606638 DOI: 10.1007/7854_2022_341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Based on core symptoms of inattention and deficient impulse control, and the identification of effective pharmacotherapies such as amphetamine (AMP; Adderall®), methylphenidate (MPH; Ritalin®), and atomoxetine (ATX; Strattera®), ADHD is a clinical condition which provides opportunity for translational research. Neuropsychological tests such as the 5-Choice and Continuous Performance Tasks, which measure aspects of attention and impulse control in animals and humans, provide scope for both forward (animal to human) and reverse (human to animal) translation. Rodent studies support pro-attentive effects of AMP and MPH and effectiveness in controlling some forms of impulsive behavior. In contrast, any pro-attentive effects of ATX appear to be less consistent, the most reliable effects of ATX are recorded in tests of impulsivity. These differences may account for AMP and MPH being recognized as first-line treatments for ADHD with a higher efficacy relative to ATX. DSM-5 classifies three "presentations" of ADHD: predominantly inattentive type (ADHD-I), predominantly hyperactive/impulsive type (ADHD-HI), or combined (ADHD-C). Presently, it is unclear whether AMP, MPH, or ATX has differential levels of efficacy across these presentation types. Nonetheless, these studies encourage confidence for the forward translation of NCEs in efforts to identify newer pharmacotherapies for ADHD.
Collapse
Affiliation(s)
- Guy A Higgins
- Intervivo Solutions, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
40
|
Cavicchioli M, Ogliari A, Movalli M, Maffei C. Persistent Deficits in Self-Regulation as a Mediator between Childhood Attention-Deficit/Hyperactivity Disorder Symptoms and Substance Use Disorders. Subst Use Misuse 2022; 57:1837-1853. [PMID: 36096483 DOI: 10.1080/10826084.2022.2120358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The link between attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUDs) has been largely demonstrated. Some scholars have hypothesized that self-regulation mechanisms might play a key role in explaining this association. Objective(s): The current study tested the hypothesis that retrospective childhood ADHD symptoms might lead to more severe SUDs and this association should be mediated by current self-ratings of behavioral disinhibition, inattention, and emotional dysregulation among 204 treatment-seeking adults (male: 67.3%; female: 32.7%) with a primary diagnosis of alcohol use disorder and other SUDs. Methods: The mediational model was estimated through self-report measures of childhood ADHD symptoms (independent variable; WURS), current self-regulation mechanisms (mediators)-behavioral disinhibition (BIS-11 motor subscale), difficulties with attention regulation (MAAS) and emotion regulation (DERS)-and severity of SUDs (dependent variable; SPQ alcohol, illicit and prescribed drugs). Results: The analysis showed that alterations in the self-regulation system fully mediated the association between the severity of childhood ADHD symptoms and SUDs in adulthood. Behavioral disinhibition and difficulties in attention regulation were the most representative alterations in self-regulation processes that explained this association. Conclusions: These findings suggest it is useful to implement several therapeutic approaches (e.g. behavioral, mindfulness-based, and pharmacological) to increase the self-regulation abilities of children and adolescents with ADHD in order to reduce the probability of SUD onset in adulthood. However, future longitudinal neuroimaging and neuropsychological studies are needed to further support the role of self-regulation mechanisms in explaining the prospective association between childhood ADHD symptoms and SUDs in adulthood.
Collapse
Affiliation(s)
- Marco Cavicchioli
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| | - Anna Ogliari
- Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy.,Child in Mind Lab, University "Vita-Salute San Raffaele", Milan, Italy
| | - Mariagrazia Movalli
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| | - Cesare Maffei
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| |
Collapse
|
41
|
Hadas I, Hadar A, Lazarovits A, Daskalakis ZJ, Zangen A. Right prefrontal activation predicts ADHD and its severity: A TMS-EEG study in young adults. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110340. [PMID: 33957168 DOI: 10.1016/j.pnpbp.2021.110340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Here we bring a neurophysiological diagnostic tool, based on pathophysiologically-relevant brain region, that is critical for reducing the variability between clinicians, and necessary for quantitative measures of ADHD severity. METHODS 54 healthy and 57 ADHD adults participated in the study. Electroencephalography (EEG) was recorded when combined with transcranial magnetic stimulation (TMS) over the right prefrontal cortex and also recorded during the Stop Signal task. RESULTS TMS evoked potentials (TEPs) and the event related potential (ERP) components in the Stop Signal task were found to be significantly reduced in ADHD relative to the matched healthy controls. Stop signal reaction time (SSRT) and stopping accuracy was found to correlate with the ERP signal, and ADHD severity correlated with the TEP signal. Cortical activity (early TEP and Stop Signal ERP) diagnostic model yielded accuracy of 72%. CONCLUSION TEPs and ERPs reveal that right PFC excitability was associated with ADHD severity, and with behavioral impulsivity - as a hallmark of ADHD pathology. This electrophysiological biomarker supports the potential of objective diagnosis for ADHD. SIGNIFICANCE Such tools would allow better assessment of treatment efficacy and prognosis, may advance understanding of the pathophysiology of the disease and better the public's attitudes and stigma towards ADHD. TRIAL REGISTRATION Trial to Evaluate the Efficacy of the HLPFC Coil Deep Transcranial Magnetic Stimulation System in Treating Attention Deficit and Hyperactivity Disorder (ADHD) in Adults, https://clinicaltrials.gov/ct2/show/NCT01737476, ClinicalTrials.govnumberNCT01737476.
Collapse
Affiliation(s)
- Itay Hadas
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA 92093-0603, USA; Life Science Department and the Zlotowski Center for Neuroscience, Ben Gurion University in the Negev, Beer Sheva, Israel.
| | - Aviad Hadar
- Shalvata Mental Health Center, Hod-Hasharon, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Lazarovits
- Life Science Department and the Zlotowski Center for Neuroscience, Ben Gurion University in the Negev, Beer Sheva, Israel
| | - Zafiris J Daskalakis
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Abraham Zangen
- Life Science Department and the Zlotowski Center for Neuroscience, Ben Gurion University in the Negev, Beer Sheva, Israel
| |
Collapse
|
42
|
Song I, Neal J, Lee TH. Age-Related Intrinsic Functional Connectivity Changes of Locus Coeruleus from Childhood to Older Adults. Brain Sci 2021; 11:1485. [PMID: 34827484 PMCID: PMC8615904 DOI: 10.3390/brainsci11111485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
The locus coeruleus is critical for selective information processing by modulating the brain's connectivity configuration. Increasingly, studies have suggested that LC controls sensory inputs at the sensory gating stage. Furthermore, accumulating evidence has shown that young children and older adults are more prone to distraction and filter out irrelevant information less efficiently, possibly due to the unoptimized LC connectivity. However, the LC connectivity pattern across the life span is not fully examined yet, hampering our ability to understand the relationship between LC development and the distractibility. In this study, we examined the intrinsic network connectivity of the LC using a public fMRI dataset with wide-range age samples. Based on LC-seed functional connectivity maps, we examined the age-related variation in the LC connectivity with a quadratic model. The analyses revealed two connectivity patterns explicitly. The sensory-related brain regions showed a positive quadratic age effect (u-shape), and the frontal regions for the cognitive control showed a negative quadratic age effect (inverted u-shape). Our results imply that such age-related distractibility is possibly due to the impaired sensory gating by the LC and the insufficient top-down controls by the frontal regions. We discuss the underlying neural mechanisms and limitations of our study.
Collapse
Affiliation(s)
- Inuk Song
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
| | - Joshua Neal
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
43
|
Gunnar MR, Bowen M. What was learned from studying the effects of early institutional deprivation. Pharmacol Biochem Behav 2021; 210:173272. [PMID: 34509501 PMCID: PMC8501402 DOI: 10.1016/j.pbb.2021.173272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
The effect of experiences in infancy on human development is a central question in developmental science. Children raised in orphanage-like institutions for their first year or so of life and then adopted into well-resourced and supportive families provide a lens on the long-term effects of early deprivation and the capacity of children to recover from this type of early adversity. While it is challenging to identify cause-and-effect relations in the study of previously institutionalized individuals, finding results that are consistent with animal experimental studies and the one randomized study of removal from institutional care support the conclusion that many of the outcomes for these children were induced by early institutional deprivation. This review examines the behavioral and neural evidence for altered executive function, declarative memory, affective disorders, reward processing, reactivity to threat, risk-taking and sensation-seeking. We then provide a brief overview of the neurobiological mechanisms that may transduce early institutional experiences into effects on brain and behavior. In addition, we discuss implications for policy and practice.
Collapse
Affiliation(s)
- Megan R Gunnar
- University of Minnesota Institute of Child Development, 51 E River Rd, Minneapolis, MN 55455, USA.
| | - Maya Bowen
- University of Minnesota Institute of Child Development, 51 E River Rd, Minneapolis, MN 55455, USA
| |
Collapse
|
44
|
Nobukawa S, Wagatsuma N, Nishimura H, Doho H, Takahashi T. An Approach for Stabilizing Abnormal Neural Activity in ADHD Using Chaotic Resonance. Front Comput Neurosci 2021; 15:726641. [PMID: 34539367 PMCID: PMC8442914 DOI: 10.3389/fncom.2021.726641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Reduced integrity of neural pathways from frontal to sensory cortices has been suggested as a potential neurobiological basis of attention-deficit hyperactivity disorder. Neurofeedback has been widely applied to enhance reduced neural pathways in attention-deficit hyperactivity disorder by repeated training on a daily temporal scale. Clinical and model-based studies have demonstrated that fluctuations in neural activity underpin sustained attention deficits in attention-deficit hyperactivity disorder. These aberrant neural fluctuations may be caused by the chaos–chaos intermittency state in frontal-sensory neural systems. Therefore, shifting the neural state from an aberrant chaos–chaos intermittency state to a normal stable state with an optimal external sensory stimulus, termed chaotic resonance, may be applied in neurofeedback for attention-deficit hyperactivity disorder. In this study, we applied a neurofeedback method based on chaotic resonance induced by “reduced region of orbit” feedback signals in the Baghdadi model for attention-deficit hyperactivity disorder. We evaluated the stabilizing effect of reduced region of orbit feedback and its robustness against noise from errors in estimation of neural activity. The effect of chaotic resonance successfully shifted the abnormal chaos-chaos intermittency of neural activity to the intended stable activity. Additionally, evaluation of the influence of noise due to measurement errors revealed that the efficiency of chaotic resonance induced by reduced region of orbit feedback signals was maintained over a range of certain noise strengths. In conclusion, applying chaotic resonance induced by reduced region of orbit feedback signals to neurofeedback methods may provide a promising treatment option for attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Chiba, Japan
| | - Nobuhiko Wagatsuma
- Department of Information Science, Faculty of Science, Toho University, Chiba, Japan
| | - Haruhiko Nishimura
- Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan
| | - Hirotaka Doho
- Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan.,Faculty of Education, Teacher Training Division, Kochi University, Kochi, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan.,Department of Neuropsychiatry, University of Fukui, Fukui, Japan.,Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
45
|
Li T, van Rooij D, Roth Mota N, Buitelaar JK, Hoogman M, Arias Vasquez A, Franke B. Characterizing neuroanatomic heterogeneity in people with and without ADHD based on subcortical brain volumes. J Child Psychol Psychiatry 2021; 62:1140-1149. [PMID: 33786843 PMCID: PMC8403135 DOI: 10.1111/jcpp.13384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder. Neuroanatomic heterogeneity limits our understanding of ADHD's etiology. This study aimed to parse heterogeneity of ADHD and to determine whether patient subgroups could be discerned based on subcortical brain volumes. METHODS Using the large ENIGMA-ADHD Working Group dataset, four subsamples of 993 boys with and without ADHD and to subsamples of 653 adult men, 400 girls, and 447 women were included in analyses. We applied exploratory factor analysis (EFA) to seven subcortical volumes in order to constrain the complexity of the input variables and ensure more stable clustering results. Factor scores derived from the EFA were used to build networks. A community detection (CD) algorithm clustered participants into subgroups based on the networks. RESULTS Exploratory factor analysis revealed three factors (basal ganglia, limbic system, and thalamus) in boys and men with and without ADHD. Factor structures for girls and women differed from those in males. Given sample size considerations, we concentrated subsequent analyses on males. Male participants could be separated into four communities, of which one was absent in healthy men. Significant case-control differences of subcortical volumes were observed within communities in boys, often with stronger effect sizes compared to the entire sample. As in the entire sample, none were observed in men. Affected men in two of the communities presented comorbidities more frequently than those in other communities. There were no significant differences in ADHD symptom severity, IQ, and medication use between communities in either boys or men. CONCLUSIONS Our results indicate that neuroanatomic heterogeneity in subcortical volumes exists, irrespective of ADHD diagnosis. Effect sizes of case-control differences appear more pronounced at least in some of the subgroups.
Collapse
Affiliation(s)
- Ting Li
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Daan van Rooij
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Nina Roth Mota
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegen
The Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Martine Hoogman
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Alejandro Arias Vasquez
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegen
The Netherlands
| | - Barbara Franke
- Department of Human GeneticsDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegen
The Netherlands
| |
Collapse
|
46
|
Jhang CL, Lee HY, Chen JC, Liao W. Dopaminergic loss of cyclin-dependent kinase-like 5 recapitulates methylphenidate-remediable hyperlocomotion in mouse model of CDKL5 deficiency disorder. Hum Mol Genet 2021; 29:2408-2419. [PMID: 32588892 DOI: 10.1093/hmg/ddaa122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5), a serine-threonine kinase encoded by an X-linked gene, is highly expressed in the mammalian forebrain. Mutations in this gene cause CDKL5 deficiency disorder, a neurodevelopmental encephalopathy characterized by early-onset seizures, motor dysfunction, and intellectual disability. We previously found that mice lacking CDKL5 exhibit hyperlocomotion and increased impulsivity, resembling the core symptoms in attention-deficit hyperactivity disorder (ADHD). Here, we report the potential neural mechanisms and treatment for hyperlocomotion induced by CDKL5 deficiency. Our results showed that loss of CDKL5 decreases the proportion of phosphorylated dopamine transporter (DAT) in the rostral striatum, leading to increased levels of extracellular dopamine and hyperlocomotion. Administration of methylphenidate (MPH), a DAT inhibitor clinically effective to improve symptoms in ADHD, significantly alleviated the hyperlocomotion phenotype in Cdkl5 null mice. In addition, the improved behavioral effects of MPH were accompanied by a region-specific restoration of phosphorylated dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa, a key signaling protein for striatal motor output. Finally, mice carrying a Cdkl5 deletion selectively in DAT-expressing dopaminergic neurons, but not dopamine receptive neurons, recapitulated the hyperlocomotion phenotype found in Cdkl5 null mice. Our findings suggest that CDKL5 is essential to control locomotor behavior by regulating region-specific dopamine content and phosphorylation of dopamine signaling proteins in the striatum. The direct, as well as indirect, target proteins regulated by CDKL5 may play a key role in movement control and the therapeutic development for hyperactivity disorders.
Collapse
Affiliation(s)
- Cian-Ling Jhang
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan
| | - Hom-Yi Lee
- Department of Psychology, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Speech Language Pathology and Audiology, Chung Shan Medical University, Taichung 402, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Wenlin Liao
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan.,Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 116, Taiwan
| |
Collapse
|
47
|
Mei X, Wang L, Yang B, Li X. Sex differences in noradrenergic modulation of attention and impulsivity in rats. Psychopharmacology (Berl) 2021; 238:2167-2177. [PMID: 33834255 DOI: 10.1007/s00213-021-05841-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
RATIONALE Noradrenaline (NE) is closely related to attentive performance and impulsive control. However, the potential sex differences regarding attention and impulsivity under the noradrenergic modulation have been largely neglected. Therefore, our study aimed to investigate whether male and female rats exhibit differential responses to NE-related drugs during the five-choice serial reaction time task (5CSRT). METHODS Male and female rats were trained in 5CSRT and administered with different NE drugs after obtaining stable baseline performance: atipamezole, a highly selective α2 receptor antagonist; prazosin, an α1 receptor antagonist; and atomoxetine, a selective NE reuptake inhibitor. Later, prazosin was selected to co-administration with atomoxetine. RESULTS Male and female rats exhibited equal learning speed, and no significant baseline differences were found as measured by the 5CSRT. Atomoxetine decreased premature responses in both sexes, but the extent of this reduction was different, with the reduction greater in males. Besides, atomoxetine (1.8 mg/kg) increased the error of omissions in females. The high dose of prazosin (0.5 mg/kg) decreased the accuracy only in male rats, but this was ameliorated by the co-administration with atomoxetine. CONCLUSIONS Atomoxetine showed significant improvement in impulsivity, but atomoxetine had less beneficial effects on impulsive control in females than in males, and it even impaired attentional performance in female rats. The α1 receptors were mainly responsible for NE drug-related sex differences in attention rather than impulsivity. The results obtained in this study indicate that the sex differences exist in both attention and impulsivity by the modulation of noradrenaline and raise the concern to improve sex-specific treatments.
Collapse
Affiliation(s)
- Xiaolin Mei
- College of Psychology, Capital Normal University, Beijing, 100048, China
- Department of Psychology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lutong Wang
- College of Psychology, Capital Normal University, Beijing, 100048, China
| | - Bo Yang
- Department of Psychology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xinwang Li
- College of Psychology, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
48
|
Alger JR, O'Neill J, O'Connor MJ, Kalender G, Ly R, Ng A, Dillon A, Narr KL, Loo SK, Levitt JG. Neuroimaging of Supraventricular Frontal White Matter in Children with Familial Attention-Deficit Hyperactivity Disorder and Attention-Deficit Hyperactivity Disorder Due to Prenatal Alcohol Exposure. Neurotox Res 2021; 39:1054-1075. [PMID: 33751467 PMCID: PMC8442735 DOI: 10.1007/s12640-021-00342-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is common in patients with (ADHD+PAE) and without (ADHD-PAE) prenatal alcohol exposure (PAE). Many patients diagnosed with idiopathic ADHD actually have covert PAE, a treatment-relevant distinction. To improve differential diagnosis, we sought to identify brain differences between ADHD+PAE and ADHD-PAE using neurobehavioral, magnetic resonance spectroscopy, and diffusion tensor imaging metrics that had shown promise in past research. Children 8-13 were recruited in three groups: 23 ADHD+PAE, 19 familial ADHD-PAE, and 28 typically developing controls (TD). Neurobehavioral instruments included the Conners 3 Parent Behavior Rating Scale and the Delis-Kaplan Executive Function System (D-KEFS). Two dimensional magnetic resonance spectroscopic imaging was acquired from supraventricular white matter to measure N-acetylaspartate compounds, glutamate, creatine + phosphocreatine (creatine), and choline-compounds (choline). Whole brain diffusion tensor imaging was acquired and used to to calculate fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from the same superventricular white matter regions that produced magnetic resonance spectroscopy data. The Conners 3 Parent Hyperactivity/Impulsivity Score, glutamate, mean diffusivity, axial diffusivity, and radial diffusivity were all higher in ADHD+PAE than ADHD-PAE. Glutamate was lower in ADHD-PAE than TD. Within ADHD+PAE, inferior performance on the D-KEFS Tower Test correlated with higher neurometabolite levels. These findings suggest white matter differences between the PAE and familial etiologies of ADHD. Abnormalities detected by magnetic resonance spectroscopy and diffusion tensor imaging co-localize in supraventricular white matter and are relevant to executive function symptoms of ADHD.
Collapse
Affiliation(s)
- Jeffry R Alger
- Department of Neurology, University of California Los Angeles, MC 708522, Los Angeles, CA, 90024, USA.
- Neurospectroscopics, LLC, Sherman Oaks, CA, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hura Imaging Inc, Calabas, CA, USA.
| | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Mary J O'Connor
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Guldamla Kalender
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Ronald Ly
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Andrea Ng
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Andrea Dillon
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Katherine L Narr
- Department of Neurology, University of California Los Angeles, MC 708522, Los Angeles, CA, 90024, USA
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Sandra K Loo
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer G Levitt
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
49
|
Khaksarian M, Ahangari N, Masjedi-Arani A, Mirr I, Jafari H, Kordian S, Nooripour R, Hassanvandi S. A Comparison of Methylphenidate (MPH) and Combined Methylphenidate with Crocus sativus (Saffron) in the Treatment of Children and Adolescents with ADHD: A Randomized, Double-blind, Parallel-Group, Clinical Trial. IRANIAN JOURNAL OF PSYCHIATRY AND BEHAVIORAL SCIENCES 2021; 15. [DOI: 10.5812/ijpbs.108390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Attention-deficit/hyperactivity disorder (ADHD) is characterized by behavioral and neurodevelopmental problems. It is estimated that 3 - 7% of children and adolescents suffer from this problem. Apart from synthetic drugs, other effective types of medication like herbal medicines are of great importance. Objectives: This study aimed to evaluate the effectiveness of methylphenidate (MPH) and its combination with Crocus sativus (saffron) in the treatment of children suffering from ADHD. Methods: The sample included 70 children aged between 6 and 16 years who had been diagnosed with ADHD. The patients were randomly assigned into two equal groups (n = 35 in each group). While both groups received 20 or 30 mg/d of MPH (20 and 30 mg/d for < 30 and > 30, respectively), one of them also received 20 or 30 mg/d of saffron in a capsule based on BMI (20 and 30 mg/d for < 30 and > 30, respectively). To collect data, parents and teachers completed Attention-Deficit/Hyperactivity Disorder Rating Scale-IV (ADHD-RS-IV). Also, for analyzing the data, the repeated measures analysis of variance (RMANOVA) was used. Results: The results of general linear model (GLM) repeated measures indicated that in both groups, the patients had less symptoms after eight weeks of treatment. However, after four weeks, the average score assigned by the parents and teachers in the MPH with saffron group was lower than the average total score in the MPH group (P < 0.05). Conclusions: Using MPH combined with saffron proved to be more effective in the treatment of patients suffering from ADHD compared to separate treatments. It seems that the duration of therapy can be reduced and the effectiveness be improved by prescribing proposed combined treatment.
Collapse
|
50
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|