1
|
Tang T, Zhang M, Jia H, Bhandari B, Guo Z. Intelligent monitoring of fruit and vegetable freshness in supply chain based on 3D printing and lightweight deep convolutional neural networks (DCNN). Food Chem 2025; 480:143886. [PMID: 40112721 DOI: 10.1016/j.foodchem.2025.143886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
In this study, an innovative intelligent system for supervising the quality of fresh produce was proposed, which combined 3D printing technology and deep convolutional neural networks (DCNN). Through 3D printing technology, sensitive, lightweight, and customizable dual-color CO2 monitoring labels were fabricated using bromothymol blue and methyl red as indicators. These labels were applied to sensitively monitor changes in CO2 levels during the storage of vegetables such as green vegetables, cucumbers, okras, plums, and jujubes. The ΔE of the labels was found to have a significant positive correlation with CO2 levels and weight loss rate, while showing a strong inverse relationship with hardness, indirectly reflecting the freshness of the produce. In addition, four lightweight DCNN models (GhostNet, MobileNetv2, ShuffleNet, and Xception) were applied to recognize label images from different storage days, with MobileNetv2 achieving the best performance. The classification accuracy for three freshness levels of okra was 96.06 %, 91.12 %, and 93.86 %, respectively. A mobile application was developed based on this model, which demonstrated excellent performance in recognizing labels at different storage stages, making it suitable for practical applications and effectively distinguishing freshness levels. By combining the novel labels with advanced DCNN models, the accuracy and real-time capabilities of food monitoring can be significantly improved.
Collapse
Affiliation(s)
- Tiantian Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Huijie Jia
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, 214122 Wuxi, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Zhimei Guo
- Wuxi Haihe Equipment Scientific & Technological Co., Wuxi, China
| |
Collapse
|
2
|
Huang JY, Chen YL, Lin DQ, Sun LC, Liu K, Zhang LJ, Hu YQ, Cao MJ. Updated insights into steady-modified anthocyanin food packaging: Novel strategies, characterization, application and future challenges. Food Chem 2025; 483:144113. [PMID: 40239574 DOI: 10.1016/j.foodchem.2025.144113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Rising attentions on food safety and quality as well as disadvantages of conventional plastic food packaging motivates extensive study in anthocyanin-based food packaging. However, anthocyanins are susceptible to environmental conditions, resulting in easily-degradable properties of anthocyanin-based food packaging. Therefore, steady-modified anthocyanin-based food packaging are highly demanded for further deeper application. Based on this, thorough insights into steady-modified anthocyanin-based food packaging are provided in the current review. The degradation phenomenon and factors affecting stability of anthocyanin-based film during long-term storage were investigated. Novel steady-modification strategies to improve film stability were systemically summarized. Also, their effects on film physical (structure/mechanical/hydrophobic) properties and functional (pH-responsive, antioxidant and antibacterial) properties were explored. Meanwhile, application cases of steady-modified anthocyanin-based film regarding freshness monitoring and quality maintenance were comprehensively discussed. Finally, major challenges and future prospects were also proposed for further development.
Collapse
Affiliation(s)
- Jia-Yin Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Duan-Quan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Le-Chang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Kang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ya-Qin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China.
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
3
|
Wang W, Yang X, Yin H, Lu Y, Dou H, Liu Y, Yu DG. Polymeric Nanofibers via Green Electrospinning for Safe Food Engineering. Macromol Rapid Commun 2025:e2401152. [PMID: 39985431 DOI: 10.1002/marc.202401152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Electrospun functional nanofibers enable controlled release of the loaded active ingredient and an adjustable dissolution rate. However, the widespread use of toxic organic solvents in electrospinning poses risks to human health and the environment whereas increasing production costs and complexity. This article examines the application of eco-friendly electrospinning technologies in food engineering, with a focus on water-based and melt electrospinning methods. It provides a detailed analysis of water-soluble biopolymers and synthetic polymers, highlighting their current applications and challenges in food engineering. Water-based electrospinning is proposed as a sustainable alternative, offering scalability and reduced environmental impact. This transition is essential for advancing food engineering toward more sustainable and environmentally responsible practices.
Collapse
Affiliation(s)
- Weiqiang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xingjian Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hongyi Yin
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yi Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hailong Dou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
4
|
Oliveira Filho JGD, de Souza BB, Robles JR, Azeredo HMCD, Tonon RV, Abiade J, Mattoso LHC, Yarin AL. Fast production of highly sensitive nanotextured nonwovens for detection of volatile amines, bacterial growth, and pH monitoring: New tools for real-time food quality monitoring. Food Chem 2025; 464:141896. [PMID: 39515155 DOI: 10.1016/j.foodchem.2024.141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
An efficient manufacturing of colorimetric nonwoven indicators represents a promising alternative to enable applications of such materials in food quality monitoring. The objective of this study is to use the solution blow spinning technique (SBS) to rapidly produce colorimetric nonwoven indicators based on polycaprolactone, incorporating natural or synthetic pH indicators to detect volatile amines, bacterial growth and monitor pH. Produced via the SBS method, these indicators were characterized aiming their physical, mechanical, thermal, and spectroscopic properties, evaluating their efficacy in detecting amines, monitoring bacterial growth, and pH, as well as assessing color stability during storage. The thermal stability and mechanical properties of the nonwovens practically always increased with the incorporation of natural and synthetic indicators. When exposed to volatile amines, the nonwoven indicators, particularly those embedded with bromophenol blue, displayed remarkable color change abilities in the presence of five volatile amines. These smart nonwovens in direct contact with E. coli K-12 or its volatiles in 24 h changed their color perceptible to the naked eye. The nanofiber nonwovens displayed visible color changes (ΔE ≥ 3) in response to buffer solutions (pH between 3 and 10). The smart nonwovens rapidly produced by the solution blow spinning method prove to be a promising tool for real-time monitoring of food freshness.
Collapse
Affiliation(s)
- Josemar Gonçalves de Oliveira Filho
- Nanotechnology National Laboratory for Agriculture (LNNA), Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, Brazil; Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA.
| | - Breno Bezerra de Souza
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA.
| | - Jaqueline Rojas Robles
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA.
| | - Henriette Monteiro Cordeiro de Azeredo
- Nanotechnology National Laboratory for Agriculture (LNNA), Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, Brazil.
| | - Renata Valeriano Tonon
- Brazilian Agricultural Research Corporation, Embrapa Agroindústria de Alimentos, Rio de Janeiro, RJ, Brazil.
| | - Jeremiah Abiade
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA.
| | - Luiz Henrique Capparelli Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, Brazil.
| | - Alexander L Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor St., Chicago, IL 60607-7022, USA.
| |
Collapse
|
5
|
Cortés-Avendaño P, Macavilca EA, Ponce-Rosas FC, Murillo-Baca SM, Quispe-Neyra J, Alvarado-Zambrano F, Condezo-Hoyos L. Microfluidic paper-based analytical device for measurement of pH using as sensor red cabbage anthocyanins and gum arabic. Food Chem 2025; 462:140964. [PMID: 39213972 DOI: 10.1016/j.foodchem.2024.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The objective of this study was to develop and validate a novel microfluidic paper-based analytical device (μPADpH) for determining the pH levels in foods. Anthocyanins from red cabbage aqueous extract (RCAE) were used as its analytical sensor. Whatman No. 1 filter paper was the most suitable for the device due to its porosity and fiber organization, which allows for maximum color intensity and minimal color heterogeneity of the RCAE in the detection zone of the μPADpH. To ensure the color stability of the RCAE for commercial use of the μPADpH, gum arabic was added. The geometric design of the μPADpH, including the channel length and separation zone diameter, was systematically optimized using colored food. The validation showed that the μPADpH did not differ from the pH meter when analyzing natural foods. However, certain additives in processed foods were found to increase the pH values.
Collapse
Affiliation(s)
- Paola Cortés-Avendaño
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru; Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular, Lima, Peru
| | - Edwin A Macavilca
- Universidad Nacional Jose Faustino Sanchez Carrion, Departamento de Ingenieria en Industrias Alimentarias, Functional Food Research Laboratory, Huacho, Peru
| | - Fortunato C Ponce-Rosas
- Universidad Nacional Daniel Alcides Carrión, Facultad de Ciencias Agropecuarias. Escuela de Formación Profesional de Industrias Alimentarias, La Merced, Chanchamayo, Peru
| | - Silvia M Murillo-Baca
- Universidad Nacional Daniel Alcides Carrión, Facultad de Ciencias Agropecuarias. Escuela de Formación Profesional de Industrias Alimentarias, La Merced, Chanchamayo, Peru
| | - Juan Quispe-Neyra
- Universidad Nacional de Piura, Escuela Profesional de Ingeniería Agroindustrial e Industrias Alimentarias, Piura, Peru
| | - Fredy Alvarado-Zambrano
- Universidad Nacional Santiago Antúnez de Mayolo, Facultad de Ingenieria de Industrias Alimentarias, Huaraz, Peru
| | - Luis Condezo-Hoyos
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru; Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular, Lima, Peru.
| |
Collapse
|
6
|
Matheus JRV, Maragoni-Santos C, de Freitas TF, Hackbart EFC, Ribeiro-Santos R, Perrone D, de Sousa AMF, Luchese CL, de Andrade CJ, Fai AEC. Starch-pectin smart tag containing purple carrot peel anthocyanins as a potential indicator of analogous meat freshness. Int J Biol Macromol 2024; 283:137161. [PMID: 39500436 DOI: 10.1016/j.ijbiomac.2024.137161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/05/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Smart films of starch/pectin and purple carrot peel (PCP) containing anthocyanins were developed, characterized, and used as pH-responsive tags to monitor plant-based chicken analogous. This study innovates by incorporating PCP in the film solution both as an extract and as a powder, and the resulting tags were applied to a plant-based food. PCP powder <100-mesh was directly incorporated into the film-forming suspension. For powder >100-mesh, two extracts were tested: an aqueous solution and a 1 % NADES solution added to the film-forming suspension. Quantification of PCP anthocyanins by HPLC showed a higher extraction under acidic conditions (1664 mg C3G equivalents 100 g-1). Films with PCP presented greater light protection. Films with 15 % and 25 % PCP and those with added extract showed better tensile strength (3.0-3.6 MPa), elongation at break (16-20 %) and a water contact angle of 52°. All films responded to pH variations (1 to 14) and ammonia vapor and showed ΔE* values >5. After 3 days, films used as smart tags monitoring chicken analogous presented noticeable color differences for PCPNADES (55 ± 8) and 15%PCP (40 ± 1). PCP showed strong potential as a pigmenting agent in films, especially as an aqueous extract with NADES for use as pH-responsive tags in chicken analogous.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Carollyne Maragoni-Santos
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Thalita Ferreira de Freitas
- Laboratory of Multidisciplinary Practices for Sustainability (LAMPS), Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Emily Farias Costa Hackbart
- Laboratory of Multidisciplinary Practices for Sustainability (LAMPS), Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Regiane Ribeiro-Santos
- Laboratório de Bioquímica Nutricional e de Alimentos, Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Cláudia Leites Luchese
- Latin American Institute of Technology, Infrastructure and Territory (ILATIT), Federal University of Latin American Integration (UNILA), Foz do Iguaçu, PR, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, SC, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil; Laboratory of Multidisciplinary Practices for Sustainability (LAMPS), Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Li MN, Jia XZ, Yao QB, Zhu F, Huang YY, Zeng XA. Recent advance for animal-derived polysaccharides in nanomaterials. Food Chem 2024; 459:140208. [PMID: 39053112 DOI: 10.1016/j.foodchem.2024.140208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024]
Abstract
Inspired by the structure characteristics of natural products, the size and morphology of particles are carefully controlled using a bottom-up approach to construct nanomaterials with specific spatial unit distribution. Animal polysaccharide nanomaterials, such as chitosan and chondroitin sulfate nanomaterials, exhibit excellent biocompatibility, degradability, customizable surface properties, and novel physical and chemical properties. These nanomaterials hold great potential for development in achieving a sustainable bio-economy. This paper provides a summary of the latest research results on the preparation of nanomaterials from animal polysaccharides. The mechanism for preparing nanomaterials through the bottom-up method from different sources of animal polysaccharides is introduced. Furthermore, this paper discusses the potential hazards posed by industrial applications to the environment and human health, as well as the challenges and future prospects associated with using animal polysaccharides in nanomaterials.
Collapse
Affiliation(s)
- Meng-Na Li
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Xiang-Ze Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Qing-Bo Yao
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Feng Zhu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Yan-Yan Huang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China.
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China.
| |
Collapse
|
8
|
Peydayesh M, Kovacevic A, Hoffmann L, Donat F, Wobill C, Baraldi L, Zhou J, Müller CR, Mezzenga R. Sustainable Smart Packaging from Protein Nanofibrils. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414658. [PMID: 39568233 DOI: 10.1002/adma.202414658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Smart packaging technologies are revolutionizing the food industry by extending shelf life and enhancing quality monitoring through environmental responsiveness. Here, a novel smart packaging concept is presented, based on amyloid fibrils (AM) and red radish anthocyanins (RRA), to effectively monitor food spoilage by color change. A protein nanofibrils biofilm is developed from whey protein, which is functionalized with RRA to endow the resulting films with advanced monitoring capabilities. A comprehensive characterization, including pH responsiveness, water vapor permeability, thermal and mechanical testing, and colorimetric responses, demonstrates the superiority of AM/RRA films compared to control films based on whey monomer building blocks. The findings indicate that the AM/RRA films can effectively monitor, for example, shrimp freshness, showing visible changes within one day at room temperature and significant alterations in color after two days. Furthermore, these films exhibit high antibacterial and antioxidant activities, reinforcing their suitability for efficient food packaging. By integrating bio-based materials from whey and natural anthocyanins, this research presents a biodegradable, sustainable, and cost-effective smart packaging solution, contributing to eco-friendly innovations in food preservation.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Alan Kovacevic
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Leah Hoffmann
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, CH-8092, Switzerland
| | - Ciatta Wobill
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Laura Baraldi
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Jiangtao Zhou
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, CH-8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
- Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
9
|
Shalileh F, Shamani N, Golbashy M, Dadmehr M, Hosseini M. Synergistic applications of quantum dots and magnetic nanomaterials in pathogen detection: a comprehensive review. NANOTECHNOLOGY 2024; 36:052002. [PMID: 39413804 DOI: 10.1088/1361-6528/ad8751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
The rapid and accurate detection of pathogens is crucial for effective disease prevention and management in healthcare, food safety, and environmental monitoring. While conventional pathogen detection methods like culture-based techniques and PCR are sensitive and selective, they are often time-consuming, require skilled operators, and are not suitable for point-of-care or on-site testing. To address these limitations, innovative sensor technologies have emerged that leverage the unique properties of nanomaterials. Quantum dots (QDs) and magnetic nanomaterials are two classes of nanomaterials that have shown particular promise for pathogen sensing. This review comprehensively examines the synergistic applications of QDs and magnetic nanomaterials for detecting bacteria, viruses, phages, and parasites.
Collapse
Affiliation(s)
- Farzaneh Shalileh
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Negin Shamani
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Golbashy
- Department of Plant Production and Genetics Engineering, College of Agriculture, Agricultural Sciences and Natural Resources, University of Khuzestan, Mollasani, Iran
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Luo S, Hu CY, Huang S, Xu X. Polyacrylic Acid-Reinforced gelatin hydrogels with enhanced mechanical properties, temperature-responsiveness and antimicrobial activity for smart encryption and salmon freshness monitoring. J Colloid Interface Sci 2024; 680:725-741. [PMID: 39536549 DOI: 10.1016/j.jcis.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Hydrogels hold great potential for use in intelligent packaging, yet they often suffer from limited functionality and inadequate mechanical strength when applied to anticounterfeiting and freshness monitoring. In this study, we present a straightforward method to create a multifunctional hydrogel by in-situ polymerizing acrylic acid (PAA) within a gelatin-Al3+ system. The resulting hydrogels exhibited an elongation at break of over 1200 %, a tensile stress of 1.20 MPa, and impressive toughness reaching 5.15 MJ/m3, significantly outperforming traditional gelatin-based hydrogels that typically achieve less than 800 % strain and below 1 MPa stress. These hydrogels also showed exceptional antifatigue and tear resistance, with a tearing energy of 5200 J/m2, greatly exceeding the 1000 J/m2 standard of typical double network hydrogels, and were capable of supporting weights 1560 times their own mass. The strong hydrogen bonding between the -COOH groups of PAA and the -NH2 groups of gelatins contributed to an upper critical solution temperature above 40°C, with adaptable PAA content allowing for anticounterfeiting applications. The hydrogel could encode information such as self-erasing numbers, QR codes, and ASCII binary codes, changing its encoded data with temperature shifts and erasing at room temperature to enhance data security. Additionally, it exhibited potent antibacterial properties against S. aureus and E. coli, immobilized anthocyanin as an ammonia-responsive indicator, and accurately tracked salmon spoilage by correlating color changes with total volatile basic nitrogen content. These characteristics make the hydrogel highly suitable for smart packaging applications within the food industry.
Collapse
Affiliation(s)
- Siyao Luo
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Chang-Ying Hu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Shiqing Huang
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Xiaowen Xu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China.
| |
Collapse
|
11
|
Jansen ET, Cruz EPD, Fonseca LM, Hackbart HCDS, Radünz M, Siebeneichler TJ, Gandra EA, Rombaldi CV, Dias ARG, Zavareze EDR. Anthocyanin-rich grape pomace extract encapsulated in protein fibers: Colorimetric profile, in vitro release, thermal resistance, and biological activities. Food Res Int 2024; 196:115081. [PMID: 39614503 DOI: 10.1016/j.foodres.2024.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Red wine grape pomace is an important source of bioactive compounds with biological activities of interest. Grape pomace extract can be encapsulated in ultrafine fibers using the electrospinning technique. Encapsulation is used to increase stability and protect the phenolic compounds in the extract. In this study, zein fibers were developed for encapsulation of grape pomace extract (0 %, 5 %, 10 %, and 15 % w/w). The extract was evaluated for colorimetric profile, whereas the ultrafine zein fibers carrying the extract were assessed for morphology, loading capacity, in vitro release profile, thermal and thermogravimetric properties, thermal resistance, hydrophilicity, and antioxidant and antimicrobial activities. The grape pomace extract changed color depending on pH, ranging from pink (pH 1) to yellow (pH 13 and 14). The fibers presented a smooth and uniform structure, with diameters of approximately 450 nm and a loading capacity of up to 82 %. The membranes of ultrafine fibers demonstrated hydrophilic behavior, and the in vitro release profile was dependent on the concentration of the added extract. Furthermore, the fibers were observed thermally protect the encapsulated compounds and maintain their antioxidant and antimicrobial activities. These findings indicate that the produced material has potential applications in the development of active and intelligent packaging for the food industry.
Collapse
Affiliation(s)
- Estefani Tavares Jansen
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil.
| | - Elder Pacheco da Cruz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil.
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Helen Cristina Dos Santos Hackbart
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Marjana Radünz
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Tatiane Jéssica Siebeneichler
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Eliezer Avila Gandra
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Cesar Valmor Rombaldi
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Alvaro Renato Guerra Dias
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Elessandra da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil.
| |
Collapse
|
12
|
Kafashan A, Babaei A. Development and investigation of a polysaccharide ternary nanocomposite based on basil seed gum/graphene oxide/anthocyanin for intelligent food packaging. Int J Biol Macromol 2024; 280:135537. [PMID: 39306180 DOI: 10.1016/j.ijbiomac.2024.135537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
A new pH-sensitive intelligent packaging system was developed composed of extracted and purified basil seed gum (BG) containing aqueous malva sylvestris extract (MS) and varying amounts of synthesized graphene oxide (GO). In the following, the characteristics of prepared films including spectroscopic, physio-mechanical, thermogravimetry, fracture-surface morphology, anthocyanin release, and pH and TVB-N sensitivity, were investigated. Our results revealed that the addition of 0.5 wt % MS into the BG matrix induced pH sensitivity to the film and resulted in a visible color change from pH 2.0 to 14.0; however, it reduced the thermal and physio-mechanical properties. In this regard, the effective presence of the optimum concentration of GO (0.25 wt%) in enhancing the mechanical and thermal properties of the BG-MS films was shown. Moreover, inspecting the release kinetics demonstrated a controllable release for BG-MS-GO film compared to the BG-MS film in 48 h. Furthermore, the total volatile basic nitrogen (TVB-N) content and pH value were shown to be highly correlated with the color changes of the freshness indicator film during the storage of salmon fillets at 25 °C for 36 h. Therefore, it was shown that BG-MS-GO film can be used as a highly effective freshness/spoilage indicator of proteinic products.
Collapse
Affiliation(s)
- Azade Kafashan
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| |
Collapse
|
13
|
Kwak M, Min SC. Monitoring Meat Freshness with Intelligent Colorimetric Labels Containing Red Cabbage Anthocyanins Copigmented with Gelatin and Gallic Acid. Foods 2024; 13:3464. [PMID: 39517248 PMCID: PMC11545453 DOI: 10.3390/foods13213464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Polyvinyl alcohol (PVA)-based pH-responsive color indicators were developed using red cabbage anthocyanin (Anth) copigmented with gelatin and gallic acid (GA). The indicator prepared with gelatin and GA (GA/gelatin/Anth/PVA) was highly resistant to light exposure. GA/gelatin/Anth/PVA exhibited distinct color changes in pH 2-11 buffer solutions and stable color indication in acidic and neutral solid systems (pH 2 and 7) at 97% relative humidity. GA/gelatin/Anth/PVA exhibited the highest sensitivity to dimethylamine, followed by ammonia and trimethylamine. The addition of gelatin and GA facilitated hydrogen bonding, which enhanced thermal stability and water solubility without compromising tensile properties. A color change from purple to blue signaled spoilage when total volatile basic nitrogen values for beef and squid reached 21.0 and 37.8 mg/100 g, respectively. The GA/gelatin/Anth/PVA indicator shows potential for indicating the freshness of raw beef.
Collapse
Affiliation(s)
| | - Sea C. Min
- Department of Food Science and Technology, Seoul Women’s University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
| |
Collapse
|
14
|
Remedio LN, Parada Quinayá C. Intelligent Packaging Systems with Anthocyanin: Influence of Different Polymers and Storage Conditions. Polymers (Basel) 2024; 16:2886. [PMID: 39458714 PMCID: PMC11511127 DOI: 10.3390/polym16202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024] Open
Abstract
With the aim of meeting the growing demand for safe food, intelligent packaging has emerged, which monitors the conditions of the food and informs the consumer about its quality directly at the time of purchase. Among intelligent packaging options, colorimetric indicator films, which change color in response to changes in the food, such as the release of volatile compounds, have been widely studied. Among them, pH indicator films composed of dyes sensitive to small variations in the pH value of the food surface have received greater attention in recent years. Anthocyanins, which are natural pigments, have stood out as one of the most commonly used sources of dyes in the production of these indicator films. In this context, the present review aims to present an updated overview of research employing anthocyanins in indicator films, including their stability under different storage conditions, the influence of different polymers used in their production, and alternative techniques for maintaining stability.
Collapse
Affiliation(s)
- Leandro Neodini Remedio
- Faculty of Animal Science and Food Engineering, University of São Paulo USP, Av. Duque de Caxias Norte 225, Pirassununga 13635-900, SP, Brazil
- Bioengineering and Chemical Engineering Department, Universidad de Ingenieria y Tecnologia UTEC, Jr. Medrano Silva 165, Lima 15063, Peru;
| | - Carolina Parada Quinayá
- Bioengineering and Chemical Engineering Department, Universidad de Ingenieria y Tecnologia UTEC, Jr. Medrano Silva 165, Lima 15063, Peru;
| |
Collapse
|
15
|
Zhai X, Xue Y, Song W, Sun Y, Shen T, Zhang X, Li Y, Zhang D, Zhou C, Zhang J, Arslan M, Tahir HE, Li Z, Shi J, Huang X, Zou X, Holmes M, Povey MJ. Rapid and Facile Synthesis of Homoporous Colorimetric Films Using Leaf Vein-Mediated Emulsion Evaporation Method for Visual Monitoring of Food Freshness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21854-21868. [PMID: 39308150 DOI: 10.1021/acs.jafc.4c06547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
A new method for rapid and facile fabrication of homoporous films with high volatile amine sensitivity was developed. First, red cabbage anthocyanin was encapsulated in ethyl cellulose to form water-in-organic (W/O) emulsion. Afterward, the W/O emulsion was rapidly dried using the supporting matrix Magnolia Grandiflora Linn leaf vein at 60% relative humidity and 50 °C to form a colorimetric film with regular hexagonal pores with an average side length of about 23 μm. The films exhibited good sensitivity to ammonia (NH3), dimethylamine, and trimethylamine, with limit of detection of 0.26, 0.24, and 0.38 μM, respectively, and high stability when stored in high humid environments. An obvious color change of the films from pink to green was clearly observed during the freshness monitoring of pork, chicken, salmon, and shrimp. Thus, this work offered a novel and reliable method for the development of porous films for food freshness monitoring.
Collapse
Affiliation(s)
- Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Yuhong Xue
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Wenjun Song
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Di Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chenguang Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Muhammad Arslan
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haroon Elrasheid Tahir
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Jiangsu Jicui Future Food Technology Research Institute, Yixing 214200, China
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, U.K
| | - Megan James Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, U.K
| |
Collapse
|
16
|
Amjadi S, Almasi H, Gholizadeh S, Hamishehkar H. Double layer packaging based on active black chickpea protein isolate electrospun nanofibers and intelligent salep film containing black chickpea peel anthocyanins for seafood products. Int J Biol Macromol 2024; 278:134897. [PMID: 39168199 DOI: 10.1016/j.ijbiomac.2024.134897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
In this study, a double-layer active and intelligent packaging system was developed based on two main natural macromolecules i.e. protein and carbohydrate with green perspective. Firstly, the salep-based films containing different concentrations (0-8 % w/w) of the inclusion complex of β-cyclodextrin/black chickpea anthocyanins (βCD/BCPA) were produced. The salep film containing 8 % of βCD/BCPA complex was specified as the optimized film sample based on its performance as a color indicator. The electrospinning of black chickpea protein isolate nanofibers (BCPI NFs) containing citral nanoliposomes (NLPs) was done on the optimized salep film. The cross-sectional field emission scanning electron microscopy approved the creation of double-layer structure of the developed film. The study of chemical and crystalline structure, as well as the thermal properties of the film exhibited the physical attachment of BCPI electrospun NFs on salep film. The effectiveness of the developed system was studied in detection of spoilage and increasing the shelf life of seafood products, including shrimp and fish fillet. The performance of the intelligent layer in detection of freshness/spoilage was acceptable for both seafood products. In addition, the active layer of the film controlled the changes of pH, total volatile basic nitrogen, oxidation, and microbial load in samples during storage time.
Collapse
Affiliation(s)
- Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| | - Sara Gholizadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Zheng R, Liao G, Kang J, Xiong S, Liu Y. An intelligent myofibrillar protein film for monitoring fish freshness by recognizing differences in anthocyanin (Lycium ruthenicum)-induced color change. Food Res Int 2024; 192:114777. [PMID: 39147462 DOI: 10.1016/j.foodres.2024.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
A novel smart film MP/BNC/ACN for real-time monitoring of fish freshness was developed using myofibrillar protein (MP) and bacterial nanocellulose (BNC) as film raw materials and anthocyanin (Lycium ruthenicum, ACN) as an indicator. Firstly, the film containing 1 % ACN (MP/BNC/ACN1) was found to have a moderate thickness (0.44 ± 0.01 mm) and superior mechanical properties (tensile strength (TS) = 8.53 ± 0.11 MPa; elongation at break (EB) = 24.85 ± 1.38 %) by determining the physical structure. The covalent, electrostatic, and hydrogen bonding interactions between anthocyanin and the film matrix were identified and confirmed by FT-IR spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM) analysis. A comprehensive evaluation concluded that MP/BNC/ACN1 exhibited excellent trimethylamine (TMA) sensitivity (total color difference (ΔE), ΔETMA0-1000 = 4.47-31.05; limit of detection (LOD), LOD = 1.03) and UV stability (ΔE96h = 4.16 ± 0.13). The performance of the films in assessing fish freshness was evaluated, principal component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that MP/BNC/ACN1 (ΔE2-10d = 16.84-32.05) could clearly distinguish between fresh (0-2 d), sub-fresh (4-6 d), and spoiled (8-10 d) stages of fish, which corresponded to the film colors of red, light red, and gray-black. In conclusion, this study addresses the limitation that intelligent films cannot visually discern real-time freshness during fish storage and provides a promising approach for real-time fish freshness monitoring.
Collapse
Affiliation(s)
- Renyu Zheng
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, P. R. China
| | - Guangming Liao
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, P. R. China
| | - Jiajia Kang
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, P. R. China
| | - Youming Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu'han 710119, China.
| |
Collapse
|
18
|
Kuswandi B, Seftyani M, Pratoko DK. Edible colorimetric label based on immobilized purple sweet potato anthocyanins onto edible film for packaged mushrooms freshness monitoring. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1811-1822. [PMID: 39049922 PMCID: PMC11263321 DOI: 10.1007/s13197-024-05960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/23/2023] [Accepted: 02/21/2024] [Indexed: 07/27/2024]
Abstract
An edible colorimetric label has been developed to determine the freshness level of mushrooms, i.e. white oyster mushrooms (Pleurotus ostreatus). The edible indicator label has been fabricated based on purple sweet potato (Ipomoea batatas L.) anthocyanins (PSPA) immobilized onto an edible film made of chitosan and cornstarch with added PVA. The freshness parameters of the mushrooms were pH, weight loss, texture, and sensory evaluation. The results showed that the colorimetric label was dark purple when the mushroom was fresh, and turn to light purple when the mushroom was still fresh, and finally green when the mushroom was no longer fresh. The color value (mean Red) of the label was measured using the ImageJ program, where its color value (mean Red) increased with decreasing freshness level of the mushrooms. The edible label can distinguish fresh mushrooms from spoilage, making it suitable to be used in a packaged mushroom as a freshness indicator.
Collapse
Affiliation(s)
- Bambang Kuswandi
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, 68121 Indonesia
| | - Mita Seftyani
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, 68121 Indonesia
| | - Dwi Koko Pratoko
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, 68121 Indonesia
| |
Collapse
|
19
|
Dăescu DI, Dreavă DM, Todea A, Peter F, Păușescu I. Intelligent Biopolymer-Based Films: Promising New Solutions for Food Packaging Applications. Polymers (Basel) 2024; 16:2256. [PMID: 39204476 PMCID: PMC11359790 DOI: 10.3390/polym16162256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The development of biopolymer-based films represents a promising direction in the packaging industry that responds to stringent needs for sustainability, reducing the ecological impact. Traditional fossil-derived polymers present major concerns because of their long decomposition time and their significant contribution to the pollution of the environment. On the contrary, biopolymers such as chitosan, PVA, and PLA offer viable alternatives. This study aimed to obtain an innovative pH indicator for smart packaging using a synthetic non-toxic anthocyanin analogue dye incorporated in bio-based films to indicate meat freshness and quality. The pH-responsive color-changing properties of the dye make it suitable for developing intelligent films to monitor food freshness. The obtained polymeric films were characterized by FT-IR and UV-VIS spectroscopy, and their thermal properties were assessed using thermogravimetric methods. Moisture content, swelling capacity, and water solubility of the polymeric films were also evaluated. The sensitivity of the biopolymer-flavylium composite films to pH variations was studied in the pH range of 2 to 12 and noticeable color variations were observed, allowing the monitoring of the meat's quality damage through pH changes. The pH-responsive films were applied directly on the surface or in the proximity of pork and chicken meat samples, to evaluate their colorimetric response to fresh and spoilt meat. This study can be the starting point for creating more durable packaging solutions leading to a circular economy.
Collapse
Affiliation(s)
| | | | | | | | - Iulia Păușescu
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timișoara, 300001, Vasile Pârvan 6, 300001 Timișoara, Romania; (D.I.D.); (D.M.D.); (A.T.); (F.P.)
| |
Collapse
|
20
|
Wu X, Yan X, Zhang J, Wu X, Zhang Q, Zhang B. Intelligent films based on dual-modified starch and microencapsulated Aronia melanocarpa anthocyanins: Functionality, stability and application. Int J Biol Macromol 2024; 275:134076. [PMID: 39053820 DOI: 10.1016/j.ijbiomac.2024.134076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
This study aims to enhance the physical properties and color stability of anthocyanin-based intelligent starch films. Three dual-modified starches, namely crosslinked-oxidized starch (COS), acetylated distarch phosphate (ADSP), and hydroxypropyl distarch phosphate (HDSP), were utilized as film matrices. Aronia melanocarpa anthocyanins were incorporated through three different pre-treatments (free, spray-drying microencapsulation, and freeze-drying microencapsulation) to assess the prepared films' functionality, stability, and applicability. The results indicate that the ADSP film exhibited an approximately two-fold increase in elongation at break (EAB) compared to native starch film. Specifically, the ADSP film's water contact angle (WCA) reached 90°, demonstrating excellent flexibility and hydrophobicity. Scanning electron microscopy (SEM) revealed stronger interactions between anthocyanins and the film matrix after microencapsulation. Furthermore, after 30 days of exposure to 37 °C heat and light radiation, the freeze-dried anthocyanin-based intelligent film (FDA film) exhibited minimal fading, displaying the highest stability among the tested films. Notably, during beef freshness monitoring, the intelligent films underwent significant color changes as the beef deteriorated. In conclusion, the developed FDA film, with its outstanding stability and responsive pH characteristics, holds immense potential as a novel packaging material for food applications.
Collapse
Affiliation(s)
- Xiuli Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Xiangxuan Yan
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Jianwen Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Xuexu Wu
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Qing Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| | - Bingqian Zhang
- College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun, Jilin Province 130022, China.
| |
Collapse
|
21
|
Liu T, Zheng N, Ma Y, Zhang Y, Lei H, Zhen X, Wang Y, Gou D, Zhao J. Recent advancements in chitosan-based intelligent food freshness indicators: Categorization, advantages, and applications. Int J Biol Macromol 2024; 275:133554. [PMID: 38950804 DOI: 10.1016/j.ijbiomac.2024.133554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
With an increasing emphasis on food safety and public health, there is an ongoing effort to develop reliable, non-invasive methods to assess the freshness of diverse food products. Chitosan-based food freshness indicators, leveraging properties such as biocompatibility, biodegradability, non-toxicity, and high stability, offer an innovative approach for real-time monitoring of food quality during storage and transportation. This review introduces intelligent food freshness indicators, specifically those utilizing pH-sensitive dyes like anthocyanins, curcumin, alizarin, shikonin, and betacyanin. It highlights the benefits of chitosan-based intelligent food freshness indicators, emphasizing improvements in barrier and mechanical properties, antibacterial activity, and composite film solubility. The application of these indicators in the food industry is then explored, alongside a concise overview of chitosan's limitations. The paper concludes by discussing the challenges and potential areas for future research in the development of intelligent food freshness indicators using chitosan. Thus, chitosan-based smart food preservation indicators represent an innovative approach to providing real-time data for monitoring food quality, offering valuable insights to both customers and retailers, and playing a pivotal role in advancing the food industry.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Nan Zheng
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yaomei Ma
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China.
| |
Collapse
|
22
|
Liu W, Ning Y, Yun Y, Wei N, Pan Z, Wang L. Development of pH-responsive intelligent films based on κ-carrageenan/straw lignin and anthocyanin from Padus virginiana peel for real-time monitoring of chicken. Int J Biol Macromol 2024; 270:132464. [PMID: 38772469 DOI: 10.1016/j.ijbiomac.2024.132464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
A series of intelligent films with pH-responsive properties were prepared using Padus virginiana peel extract (PVE) as a smart response factor, κ-carrageenan (κC) as a matrix, and complexed with rice straw lignin (SL). Following the addition of 5 mL PVE at a concentration of 430.99 mg/L, tensile strength and elongation at break of the films increased to a maximum value of 21.25 ± 0.75 MPa and 24.04 ± 0.69 %, respectively. The water vapour permeability of the films decreased with increasing PVE addition, and the minimum value was 5.85 ± 0.09 × 10-11 g m-1 s-1 Pa-1. All the films had favourable thermal stability, transparency, haze and antioxidant properties. PVE-containing films all exhibited excellent pH and ammonia response properties. The higher the humidity of the environment, the faster the ammonia response, and the films were capable of rapid discoloration at 75 % relative humidity. κC/SL-PVE5 can be used to monitor the freshness of chicken breast meat. When the total volatile basic nitrogen of chicken breast meat was increased to 14.27 mg/100 g, κC/SL-PVE5 changed from pink to greyish-yellow. In conclusion, κC/SL-PVE intelligent films hold great promise for real-time monitoring of meat freshness.
Collapse
Affiliation(s)
- Wenhua Liu
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Yuping Ning
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Yalu Yun
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Na Wei
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Zijing Pan
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China
| | - Lijuan Wang
- Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China.
| |
Collapse
|
23
|
He Y, Yuan Y, Gao Y, Chen M, Li Y, Zou Y, Liao L, Li X, Wang Z, Li J, Zhou W. Enhancement of Colorimetric pH-Sensitive Film Incorporating Amomum tsao-ko Essential Oil as Antibacterial for Mantis Shrimp Spoilage Tracking and Fresh-Keeping. Foods 2024; 13:1638. [PMID: 38890874 PMCID: PMC11171633 DOI: 10.3390/foods13111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Anthocyanin-based smart packaging has been widely used for food freshness monitoring, but it cannot meet the requirements of smart films with antibacterial properties. This study aimed to enhance the antibacterial properties of intelligent films by incorporating Amomum tsao-ko essential oil (AEO) for mantis shrimp spoilage tracking and keeping the product fresh. A smart film was designed by introducing AEO and purple potato anthocyanin (PPA) to a polyvinyl alcohol/cellulose nanocrystal (PVA/CNC) polymer matrix. Our findings revealed that APP and AEO imparted the smart film with a favorable oxygen barrier, UV protection, mechanical properties, and antioxidant and pH/NH3-sensitive functions. Interestingly, the PVA/CNC-AEO-PPA film achieved 45.41% and 48.25% bactericidal efficacy against S. putrefaciens and V. parahaemolyticus, respectively. Furthermore, a visual observation confirmed that the target film (PVA/CNC-AEO-PPA) changed color significantly during mantis shrimp spoilage: rose red-light red-pink-light gray-dark gray. Meanwhile, the PVA/CNC-AEO-PPA film retarded the quality deterioration of the mantis shrimp effectively. The PVA/CNC-AEO-PPA film shows great application potential in mantis shrimp preservation and freshness monitoring; it is expected to become a rapid sensor for detecting seafood quality non-destructively and a multifunctional film for better preservation of product quality.
Collapse
Affiliation(s)
- Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yuan Yuan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yuanyuan Gao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Yingying Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Ying Zou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Liangkun Liao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Xiaotong Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Y.H.); (Y.Y.); (Y.G.); (M.C.); (Y.L.); (Y.Z.); (L.L.); (X.L.); (J.L.)
| |
Collapse
|
24
|
Yue R, Zhang Y, Liu J, Sun J. Preparation of Steamed Purple Sweet Potato-Based Films Containing Mandarin Essential Oil for Smart Packaging. Molecules 2024; 29:2314. [PMID: 38792175 PMCID: PMC11124375 DOI: 10.3390/molecules29102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Anthocyanin-rich steamed purple sweet potato (SPSP) is a suitable raw material to produce smart packaging films. However, the application of SPSP-based films is restricted by the low antimicrobial activity of anthocyanins. In this study, SPSP-based smart packaging films were produced by adding mandarin essential oil (MEO) as an antimicrobial agent. The impact of MEO content (3%, 6%, and 9%) on the structures, properties, and application of SPSP-based films was measured. The results showed that MEO created several pores within films and reduced the hydrogen bonding system and crystallinity of films. The dark purple color of the SPSP films was almost unchanged by MEO. MEO significantly decreased the light transmittance, water vapor permeability, and tensile strength of the films, but remarkably increased the oxygen permeability, thermal stability, and antioxidant and antimicrobial properties of the films. The SPSP-MEO films showed intuitive color changes at different acid-base conditions. The purple-colored SPSP-MEO films turned blue when chilled shrimp and pork were not fresh. The MEO content greatly influenced the structures, physical properties, and antioxidant and antimicrobial activities of the films. However, the MEO content had no impact on the color change ability of the films. The results suggested that SPSP-MEO films have potential in the smart packaging of protein-rich foods.
Collapse
Affiliation(s)
- Ruixue Yue
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| | - Yiren Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| |
Collapse
|
25
|
Song X, Wei X, Liu L, Liu Y. Gelatin/agar pH-indicator film based on cranberry extract loaded with linalool nanoparticle: Survey on physical, antimicrobial, and antioxidant properties. Int J Biol Macromol 2024; 268:131767. [PMID: 38657918 DOI: 10.1016/j.ijbiomac.2024.131767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
In this study, linalool-nanoparticles (L-NPs) were prepared (encapsulation efficiency was 68.54 %) and introduced pH-indicator film based on cranberry-extract (CEF) to develop multifunctional smart films. XRD analysis and FTIR spectroscopy indicated that cranberry-extract (CE) and L-NPs were uniformly distributed in the gelatin/agar matrix and could change the intermolecular structure of the film. Color change of smart films showed that CE endowed the film with pH-sensitive property. As CE and L-NPs were added to the film, the water contact angle (WCA) was increased from 57.03° to 117.73°, the elongation at break (EAB) was increased from 12.30 % to 34.60 %. Additionally, the introduction of L-NPs enhanced the antioxidant activity (DPPH free radical scavenging rate increased from 26.80 % to 36.35 %) and antibacterial activity (against S. aureus and E. coli) of the smart film, which were verified by its retarding effect on pork spoilage.
Collapse
Affiliation(s)
- Xueying Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xingyan Wei
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Liu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
26
|
Kuasnei M, Benvenutti L, Fernando dos Santos D, Ferreira SRS, Pinto VZ, Ferreira Zielinski AA. Efficient Anthocyanin Recovery from Black Bean Hulls Using Eutectic Mixtures: A Sustainable Approach for Natural Dye Development. Foods 2024; 13:1374. [PMID: 38731745 PMCID: PMC11083087 DOI: 10.3390/foods13091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
There is a growing interest in exploring new natural sources of colorants. This study aimed to extract anthocyanins from broken black bean hulls (Phaseolus vulgaris L.) by modifying water with a eutectic mixture (choline chloride:citric acid (ChCl:Ca)). Ultrasound-assisted extraction (UAE) was employed and optimized in terms of temperature (30-70 °C), ultrasound power (150-450 W), and eutectic mixture concentration in water (1-9% (w/v)), resulting in an optimal condition of 66 °C, 420 W, and 8.2% (w/v), respectively. The main quantified anthocyanins were delphinidin-3-O-glycoside, petunidin-3-O-glycoside, and malvidin-3-O-glycoside. The half-life of the anthocyanins at 60 °C increased twelvefold in the eutectic mixture extract compared to the control, and when exposed to light, the half-life was 10 times longer, indicating greater resistance of anthocyanins in the extracted eutectic mixture. Additionally, the extracts were concentrated through centrifuge-assisted cryoconcentration, with the initial cycle almost double the extract value, making this result more favorable regarding green metrics. The first concentration cycle, which showed vibrant colors of anthocyanins, was selected to analyze the color change at different pH levels. In general, the technology that uses eutectic mixtures as water modifiers followed by cryoconcentration proved to be efficient for use as indicators in packaging, both in quantity and quality of anthocyanins.
Collapse
Affiliation(s)
- Mayara Kuasnei
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.K.); (L.B.); (S.R.S.F.)
| | - Laís Benvenutti
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.K.); (L.B.); (S.R.S.F.)
| | | | - Sandra Regina Salvador Ferreira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.K.); (L.B.); (S.R.S.F.)
| | - Vânia Zanella Pinto
- Food Engineering, Federal University of Fronteira Sul, Laranjeiras do Sul 85301-970, PR, Brazil;
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.K.); (L.B.); (S.R.S.F.)
| |
Collapse
|
27
|
Saini RK, Khan MI, Shang X, Kumar V, Kumari V, Kesarwani A, Ko EY. Dietary Sources, Stabilization, Health Benefits, and Industrial Application of Anthocyanins-A Review. Foods 2024; 13:1227. [PMID: 38672900 PMCID: PMC11049351 DOI: 10.3390/foods13081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Natural phytochemicals are well known to protect against numerous metabolic disorders. Anthocyanins are vacuolar pigments belonging to the parent class of flavonoids. They are well known for their potent antioxidant and gut microbiome-modulating properties, primarily responsible for minimizing the risk of cardiovascular diseases, diabetes, obesity, neurodegenerative diseases, cancer, and several other diseases associated with metabolic syndromes. Berries are the primary source of anthocyanin in the diet. The color and stability of anthocyanins are substantially influenced by external environmental conditions, constraining their applications in foods. Furthermore, the significantly low bioavailability of anthocyanins greatly diminishes the extent of the actual health benefits linked to these bioactive compounds. Multiple strategies have been successfully developed and utilized to enhance the stability and bioavailability of anthocyanins. This review provides a comprehensive view of the recent advancements in chemistry, biosynthesis, dietary sources, stabilization, bioavailability, industrial applications, and health benefits of anthocyanins. Finally, we summarize the prospects and challenges of applications of anthocyanin in foods.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Varsha Kumari
- Department of Plant Breeding and Genetics, Sri Karan Narendra Agriculture University, Jobner, Jaipur 302001, Rajasthan, India;
| | - Amit Kesarwani
- Department of Agronomy, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India;
| | - Eun-Young Ko
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
28
|
Khan S, Shakeri A, Monteiro JK, Tariq S, Prasad A, Gu J, Filipe CDM, Li Y, Didar TF. Comprehensive fluorescence profiles of contamination-prone foods applied to the design of microcontact-printed in situ functional oligonucleotide sensors. Sci Rep 2024; 14:8277. [PMID: 38594334 PMCID: PMC11004136 DOI: 10.1038/s41598-024-58698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
With both foodborne illness and food spoilage detrimentally impacting human health and the economy, there is growing interest in the development of in situ sensors that offer real-time monitoring of food quality within enclosed food packages. While oligonucleotide-based fluorescent sensors have illustrated significant promise, the development of such on-food sensors requires consideration towards sensing-relevant fluorescence properties of target food products-information that has not yet been reported. To address this need, comprehensive fluorescence profiles for various contamination-prone food products are established in this study across several wavelengths and timepoints. The intensity of these food backgrounds is further contextualized to biomolecule-mediated sensing using overlaid fluorescent oligonucleotide arrays, which offer perspective towards the viability of distinct wavelengths and fluorophores for in situ food monitoring. Results show that biosensing in the Cyanine3 range is optimal for all tested foods, with the Cyanine5 range offering comparable performance with meat products specifically. Moreover, recognizing that mass fabrication of on-food sensors requires rapid and simple deposition of sensing agents onto packaging substrates, RNA-cleaving fluorescent nucleic acid probes are successfully deposited via microcontact printing for the first time. Direct incorporation onto food packaging yields cost-effective sensors with performance comparable to ones produced using conventional deposition strategies.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Simrun Tariq
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
| |
Collapse
|
29
|
Pang H, Wu Y, Tao Q, Xiao Y, Ji W, Li L, Wang H. Active cellulose acetate/purple sweet potato anthocyanins@cyclodextrin metal-organic framework/eugenol colorimetric film for pork preservation. Int J Biol Macromol 2024; 263:130523. [PMID: 38428771 DOI: 10.1016/j.ijbiomac.2024.130523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
As a natural pH-sensing colorant, purple sweet potato anthocyanins (PSPAs) have demonstrated great potential in colorimetric film for freshness monitoring. However, the photothermal instability of PSPAs is still a challengeable issue. Herein, γ-cyclodextrin metal-organic framework (CD-MOF) loaded with PSPAs (PSPAs@CD-MOF, i.e., PM) and eugenol (EUG) were incorporated in cellulose acetate (CA) matrix for developing a smart active colorimetric film of CA/PM/EUG, where PM and EUG were hydrogen-bonded with CA. Attentions were focused on the photothermal colorimetric stability, colorimetric response, and antibacterial activity of the films. The presence of PM and EUG endowed the film outstanding UV-blocking performance and enhanced the barrier against water vapor and oxygen. Target film of CA/PM15/EUG10 had good photothermal colorimetric stability due to the protection of CD-MOF on PSPAs and the color changes with pH-stimuli were sensitive and reversible. In addition to antioxidant activity, CA/PM15/EUG10 had antibacterial activity against Escherichia coli and Staphylococcus aureus. The application trial results indicated that the CA/PM15/EUG10 was valid to indicate pork freshness and extended the shelf-life by 100 % at 25 °C, which has demonstrated a good perspective on smart active packaging for freshness monitoring and shelf-life extension.
Collapse
Affiliation(s)
- Huaiting Pang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yimin Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Qianlan Tao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yewen Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Wei Ji
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Linlin Li
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, Anhui, China; Province Key Laboratory of Agricultural Products Modern Processing, 230601 Hefei, Anhui, China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; Anhui Province Engineering Research Center of Flexible and Intelligent Materials, 230009 Hefei, Anhui, China; Province Key Laboratory of Agricultural Products Modern Processing, 230601 Hefei, Anhui, China.
| |
Collapse
|
30
|
Zheng D, Cao S, Li D, Wu Y, Duan P, Liu S, Li X, Zhang X, Chen Y. Fabrication and characterization of chitosan/anthocyanin intelligent packaging film fortified by cellulose nanocrystal for shrimp preservation and visual freshness monitoring. Int J Biol Macromol 2024; 264:130692. [PMID: 38460646 DOI: 10.1016/j.ijbiomac.2024.130692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
In this study, a multi-functional packaging film was fabricated, utilizing the natural polysaccharide chitosan (CS) as the base material, integrating natural blueberry anthocyanin (AN) as pH-responsive indicator, and reinforced with cellulose nanocrystals (CNCs). The implications of addition levels of CNCs on the characteristics of the films were systematically investigated, resulting in that CS-AN-CNCs 9 % film exhibited optimal performance. Specifically, the film showed a substantial enhancement in maximum tensile strength from 15 MPa to 35 MPa; On the other hand, the swelling degree properties, the oxygen permeability and water vapor permeability decreased from 159.2 % to 92.0 %, from 51.7 g/(m2d) to 12.2 g/(m2d), from 31.6 × 10-12 g/(m·s·Pa) to 1.6 × 10-12 g/(m·s·Pa), respectively. Moreover, the CS-AN-CNCs 9 % film exhibited antioxidant, antibacterial, coupled with a color metrically responsive to pH variations, displaying great potential in indicating the shrimp freshness and delaying spoilage. Another notable advantage of the-prepared packaging material lies in its completely biodegradability, therefore meeting the requirement of environmental protection. Therefore, the prepared CS-AN-CNCs film as an intelligent packaging solution with potential applications in food preservation and freshness monitoring applications.
Collapse
Affiliation(s)
- Dan Zheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Shumin Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Dengming Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yihan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Peijun Duan
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Shanshan Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Xing Li
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xiaoyu Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China.
| |
Collapse
|
31
|
Wang S, Zhuang D, Li R, Liu Z, Zhu J. Study on preservation and monitoring effect of sodium alginate-konjac glucomannan films loaded with tea polyphenols and Lycium ruthenicum anthocyanins. Int J Biol Macromol 2024; 264:130483. [PMID: 38430999 DOI: 10.1016/j.ijbiomac.2024.130483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
To investigate the efficacy of sodium alginate-konjac glucomannan (SA-KGM) films with anthocyanins (LRA) and tea polyphenols (TP) in meat, beef and grass carp were selected as representative meat products for preservation and freshness monitoring experiments at 4 °C. Concurrently, storage experiments of the films were conducted in this controlled environment. The results of the storage experiment showed that the films delayed meat spoilage by 2-4 days, nearly doubling the preservation time compared to the blank control. Additionally, the film exhibited significant capability to monitor the spoilage process of beef and grass carp. It was revealed by curve fitting analysis that there was a significant correlation between the color change of the film and the spoilage index of the meat. Throughout the storage experiment with the film, it was observed that moisture significantly influenced the microstructure and bonding situation of the films, thereby impacting their mechanical and barrier properties. However, the films were still able to maintain satisfactory physicochemical properties in general. The above findings were crucial in guiding the promotion of the film within the food preservation industry.
Collapse
Affiliation(s)
- Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, Fujian 361100, China.
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, Fujian 361100, China.
| |
Collapse
|
32
|
Lu M, Cai Y, Chen X, Wang Y, Yuan G. A novel anthocyanin indicator film with rosmarinic acid copigmentation having enhanced stability and pH indicator ability for monitoring pork freshness. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2641-2650. [PMID: 37985421 DOI: 10.1002/jsfa.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Anthocyanin-based pH-sensing films have been widely fabricated for potential application in monitoring food freshness. However, the color fading of anthocyanins limits their application for the food industry due to their low stability. In addition, the color sensitivity and pH indicator ability of anthocyanin-based films currently available are not satisfied and need to be improved. RESULTS Chitosan/xanthan gum (CX)-based colorimetric films with addition of purple cabbage anthocyanin (PAN) and different amounts of rosmarinic acid (RA) were fabricated. RA copigmentation in chitosan/xanthan gum-purple cabbage anthocyanin-rosmarinic acid (CX-P-RA) films significantly improved the stability and pH response sensitivity of PAN, and the combined copigmentation of RA and xanthan gum exhibited an additive effect. The addition of RA significantly improved the tensile strength and elongation at break, thermal stability, antioxidant and antibacterial activities of CX-P-RA films. Moreover, addition of RA enhanced the pH sensitivity and colorimetry of CX-P-RA films, which exhibited a good response to different pH values. CX-P-RA2 film was tested to monitor the freshness of pork. It showed visible color changes during the storage of pork. In addition, the ∆E of CX-P-RA2 film was highly correlated with changes in total volatile basic nitrogen in pork (R2 = 0.951). CONCLUSION These results indicated that CX-P-RA2 film can be used as a pH-sensing indicator with good stability and high sensitivity for real-time monitoring of pork freshness. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Lu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan, China
- Department of Food Science, College of Food and Medicine, Zhejiang Ocean University, Zhoushan, China
| | - Ying Cai
- Department of Food Science, College of Food and Medicine, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoe Chen
- Department of Food Science, College of Food and Medicine, Zhejiang Ocean University, Zhoushan, China
| | - Yangguang Wang
- Department of Food Science, College of Food and Medicine, Zhejiang Ocean University, Zhoushan, China
| | - Gaofeng Yuan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan, China
- Department of Food Science, College of Food and Medicine, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
33
|
Khan J, Alam S, Begeno TA, Du Z. Anti-bacterial films developed by incorporating shikonin extracted from radix lithospermi and nano-ZnO into chitosan/polyvinyl alcohol for visual monitoring of shrimp freshness. Int J Biol Macromol 2024; 260:129542. [PMID: 38244741 DOI: 10.1016/j.ijbiomac.2024.129542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
In recent years, the utilization of smart colorimetric packaging films for monitoring food freshness has garnered significant concentration. However, their limited tensile strength, hydrophobicity, antioxidant, and antibacterial properties have been substantial barriers to widespread adoption. In this study, we harnessed the potential of biodegradable materials, specifically chitosan/polyvinyl alcohol, alongside shikonin extracted from Radix Lithospermi and ZnO nanoparticles, to create a novel colorimetric sensing film. This film boasts an impressive tensile strength of 82.36 ± 2.13 MPa, enhanced hydrophobic characteristics (exemplified by a final contact angle of 99.81°), and outstanding antioxidant and antibacterial properties. It is designed for real-time monitoring of shrimp freshness. Additionally, we verified the effectiveness of this sensing film in detecting shrimp freshness across varying temperature conditions, namely 25 °C and 4 °C was validated through the measurement of total volatile basic nitrogen (TVB-N). Visual inspection unequivocally revealed a transition in color from dark red to purple-light blue and finally to dark bluish providing a clear indication of shrimp spoilage, which demonstrated a strong correlation with the TVB-N content in shrimp measured through standard laboratory procedures. The colorimetric sensing film developed in this study holds great promise for creating smart labels with exceptional antioxidant and antibacterial properties, tailored for visual freshness monitoring of shrimp.
Collapse
Affiliation(s)
- Jehangir Khan
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shah Alam
- Department of Entomology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Teshale Ayano Begeno
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
34
|
Li J, Bao Y, Li Z, Cui H, Jiang Q, Hou C, Wang Y, Wu Y, Shang J, Xiao Y, Shu C, Wang Y, Wen B, Si X, Li B. Dual-function β-cyclodextrin/starch-based intelligent film with reversible responsiveness and sustained bacteriostat-releasing for food preservation and monitoring. Int J Biol Macromol 2023; 253:127168. [PMID: 37783251 DOI: 10.1016/j.ijbiomac.2023.127168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
The full combination of high sensitivity indication and long-lasting bacteriostatic function is an innovative need to meet the practicality of intelligent film packaging systems for food products. Hence, Blueberry anthocyanins (BA) copigmentated by ferulic acid (FA) was used as an indicator, and cinnamon essential oil (CO) encapsulated by β-cyclodextrin (β-CD) as a bacteriostat, potato starch (PS) as a film-forming substrate to prepared a dual-function starch-based intelligent active packaging film with pH indicator and antibacterial function. FA had the best copigmentation effect with a threefold increase in a value compared to other phenolic acids. The ΔE value increased from 3.24 to 5.13 at pH 2-8, and the change was still prominent in acid-base alternating test, indicating a high response sensitivity. Notably, the yellow gamut of indicating terminus increased its visibility to the naked eye. The release behavior of CO from film was in line with Fick's diffusion. Meanwhile, the release of CO delayed to about 90 h through β-cyclodextrin encapsulation, showing a high growth-inhibition rate in E. coli and S. aureus of almost 100 %. In this study, a dual-function film with indication and bacteriostasis was prepared and enhanced with both, expanding its wide application in intelligent packaging of fresh food.
Collapse
Affiliation(s)
- Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yunan Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Junzhe Shang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yahua Xiao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bo Wen
- Yingkou Dongsheng Industry Co., Ltd., 88 Qinghua Street, Yingkou High-tech Industrial Development Zone, Yingkou, Liaoning 115000, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
35
|
Zhu B, Zhong Y, Wang D, Deng Y. Active and Intelligent Biodegradable Packaging Based on Anthocyanins for Preserving and Monitoring Protein-Rich Foods. Foods 2023; 12:4491. [PMID: 38137296 PMCID: PMC10742553 DOI: 10.3390/foods12244491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Currently, active and intelligent packaging has been developed to solve the spoilage problem for protein-rich foods during storage, especially by adding anthocyanin extracts. In such a film system, the antioxidant and antibacterial properties were dramatically increased by adding anthocyanins. The physicochemical properties were enhanced through interactions between the active groups in the anthocyanins and reactive groups in the polymer chains. Additionally, the active and intelligent film could monitor the spoilage of protein-rich foods in response to pH changes. Therefore, this film could monitor the sensory acceptance and extend the shelf life of protein-rich foods simultaneously. In this paper, the structural and functional properties of anthocyanins, composite actions of anthocyanin extracts and biomass materials, and reinforced properties of the active and intelligent film were discussed. Additionally, the applications of this film in quality maintenance, shelf-life extension, and quality monitoring for fresh meat, aquatic products, and milk were summarized. This film, which achieves high stability and the continuous release of anthocyanins on demand, may become an underlying trend in packaging applications for protein-rich foods.
Collapse
Affiliation(s)
| | | | | | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (B.Z.); (Y.Z.); (D.W.)
| |
Collapse
|
36
|
Guo N, Song M, Liu W, Zhang F, Zhu G. Preparation of an elderberry anthocyanin film and fresh-keeping effect of its application on fresh shrimps. PLoS One 2023; 18:e0290650. [PMID: 38019852 PMCID: PMC10686496 DOI: 10.1371/journal.pone.0290650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/12/2023] [Indexed: 12/01/2023] Open
Abstract
A smart packaging film was developed employing the pH-indicating activity of elderberry anthocyanins to solve the problem of refrigerated food freshness monitoring. The effect of elderberry anthocyanins on the properties of gellan gum, gelatin composite films and preservation of fresh shrimp as an indicator of freshness was investigated. The results showed that the elderberry anthocyanin-gellan gum/gelatin film had improved on film thickness (7.8×10-2 mm), TS (tensile strength) (14.57×103 MPa), WVP (water vapor permeability) (36.96×10-8 g/m·s·Pa), and a reduced EAB (elongation at break) (17.92%), and water solubility (water-soluble time of 60.5 s). SEM (scanning electron microscopy) and FTIR (infrared spectrum analysis) showed excellent compatibility between its components. Moreover, the elderberry anthocyanin film exhibited good mechanical properties and pH indication effects. Therefore, the film can be considered suitable for maintaining the quality of fresh shrimp. The results could provide a reference for research and development into new active intelligent packaging films.
Collapse
Affiliation(s)
- Na Guo
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| | - Miaomiao Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wei Liu
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| | - Fangyan Zhang
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| | - Guilan Zhu
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui, China
| |
Collapse
|
37
|
Kim SW, Kim ES, Park BJ, Jung YW, Kim DH, Lee SJ. Polycaprolactone/Anthocyanin-Based Electrospun Volatile Amines Gas Indicator with Improved Visibility by Varying Bi-Solvent Ratio: A Case of Intelligent Packaging of Mackerel. Foods 2023; 12:3850. [PMID: 37893742 PMCID: PMC10605992 DOI: 10.3390/foods12203850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Electrospun nanofibers have been applied as a new technology for gas indicators in food intelligent packaging. A poly(ε-caprolactone) (PCL)/red cabbage anthocyanin (RCA)-based nanofiber volatile amines gas indicator was developed by applying a bi-solvent of acetic acid (AA) and formic acid (FA) in electrospinning. The visibility of color change was improved from pink to blue, compared to blue to yellow-green, when using a single solvent of AA. The solutes of PCL (12.5, 15, 17.5, and 20%) and RCA (10, 20, 30, and 40%) and the solvents of AA/FA (9:1, 7:3, 5:5, 3:7, and 1:9) were applied in electrospinning under the condition of 12.5 cm, 1.0 mL/h, and 20 kV. The optimal microstructure with the thinnest fiber diameter and constant arrangement without forming NF beads appeared under the 7:3 FA/AA, 15% PCL, and 20% RCA condition. The indicator changed from pink to blue with the values of total color change (ΔE) of 10, 14, and 18 when exposed to the saturated gas of ammonia solutions of 8, 80, and 800 mM, respectively. The indicator was stable and unchanged in color for 28 days when exposed to light at room temperature. In the application to mackerel packaging, the built-in indicator changed from pink to purple regardless of storage temperature when the spoilage point was reached.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Ju Lee
- Department of Food and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea; (S.W.K.); (E.S.K.); (B.J.P.); (Y.W.J.); (D.H.K.)
| |
Collapse
|
38
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
39
|
Nadi M, Razavi SMA, Shahrampour D. Fabrication of green colorimetric smart packaging based on basil seed gum/chitosan/red cabbage anthocyanin for real-time monitoring of fish freshness. Food Sci Nutr 2023; 11:6360-6375. [PMID: 37823104 PMCID: PMC10563753 DOI: 10.1002/fsn3.3574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023] Open
Abstract
Novel green intelligent films based on basil seed gum (BSG)/chitosan containing red cabbage extract (RCA) (0, 2.5, 5, and 10, % (v/v)) as a colorimetric indicator for food freshness detection were fabricated by casting method. The physicochemical, barrier, mechanical, and antioxidant characteristics, as well as sensitivity to pH and ammonia gas of smart edible packaging films, were investigated. The interaction of anthocyanin extract as a natural dye with biopolymers in films characterized by FTIR spectroscopy and SEM images revealed their suitable compatibility. The film with maximum anthocyanin content (10% (v/v)) appeared robust color changes against various pH and ammonia gas levels. The color of indicator films when exposed to alkaline, neutral and acidic buffers are indicated with green, blue, and red colors, respectively. The DPPH radical scavenging activity of smart BSG/chitosan films improved from 23% to 90.32% with increasing RCA content from 2.5 to 10% (v/v). Generally, the incorporation of RCA in film structure enhanced their solubility, WVP, ΔE, turbidity, and flexibility, and reduced tensile strength. The observations successfully confirmed the efficacy of pH-sensitive indicator smart film based on BSG/chitosan for evaluation of fish spoilage during storage.
Collapse
Affiliation(s)
- Maryam Nadi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Dina Shahrampour
- Department of Food Safety and Quality ControlResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
40
|
Zhang J, Liu S, Xie C, Wang C, Zhong Y, Fan K. Recent advances in pH-sensitive indicator films based on natural colorants for smart monitoring of food freshness: a review. Crit Rev Food Sci Nutr 2023; 64:12800-12819. [PMID: 37702748 DOI: 10.1080/10408398.2023.2257327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
As a new type of packaging method, natural pigment-based pH-sensitive indicator film packaging can be used to intelligently monitor food freshness, provide consumers with intuitive food freshness information, and own the advantages of small size, low cost and intuitive accuracy. Based on the introduction of the principle of natural pigment in pH-sensitive indicator film intelligent packaging, this paper reviews the types of natural pigment indicators (such as anthocyanins, curcumin) and film-forming matrix materials, and systematically discusses the research progress of their application in freshness monitoring in various foods, and points out the limitations of this intelligent packaging in practical applications. In order to provide natural pigment in the application and promotion of pH-sensitive indicator film packaging for monitoring food freshness, further research and development works are required to overcome the current limitations. The needs for further research and developments are outlined.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Shengmao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Chenxue Xie
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Chengyang Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yi Zhong
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
41
|
Mohammadalinejhad S, Kurek M, Jensen IJ, Lerfall J. The potential of anthocyanin-loaded alginate hydrogel beads for intelligent packaging applications: Stability and sensitivity to volatile amines. Curr Res Food Sci 2023; 7:100560. [PMID: 37589019 PMCID: PMC10425905 DOI: 10.1016/j.crfs.2023.100560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
pH indicators have emerged as promising tools for real-time monitoring of product freshness and quality in intelligent food packaging applications. However, ensuring the stability of these indicators is critical for practical use. This study aims to evaluate the stability of anthocyanins-loaded alginate hydrogel beads of varying sizes at different temperatures under accelerated light conditions and relative humidity (RH) levels of 53% and 97% during 21 days of storage. Moreover, their sensitivity to the principal spoilage volatiles of muscle food products such as ammonia (NH3), dimethylamine (DMA) and trimethylamine (TMA) was investigated. The half-life of cyanidin-3-glucoside in small hydrogel beads was roughly twice as long as that of the larger beads under accelerated light exposure at 4 °C and they were less likely to undergo noticeable color changes over time. Both sizes of hydrogel beads stored at 97% RH and 4 °C showed color stability over the 21-day period with minimal color variation (|ΔE| ≤ 3). The UV-vis spectra of the purple corn extract exhibited changes across pH 2 to 12, as evidenced by the visible color variations, ranging from pink to green. The limit of detection (LOD) for NH3 was 25 ppm for small beads and 15 ppm for large ones. Both types of beads exhibited similar LOD for DMA and TMA, around 48 ppm. This research showed that alginate hydrogel beads containing anthocyanins from purple corn are a viable option for developing intelligent packaging of muscle foods. Furthermore, the use of hydrogel beads of different sizes can be customized to specific muscle foods based on the primary spoilage compound generated during spoilage.
Collapse
Affiliation(s)
- Samira Mohammadalinejhad
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Marcin Kurek
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Ida-Johanne Jensen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
42
|
Mileti O, Baldino N, Filice F, Lupi FR, Sinicropi MS, Gabriele D. Formulation Study on Edible Film from Waste Grape and Red Cabbage. Foods 2023; 12:2804. [PMID: 37509896 PMCID: PMC10379064 DOI: 10.3390/foods12142804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Recent research on the valorization of agro-industrial waste has attempted to obtain new products. Grape residue is a waste product used in the grape wine industry that is rich in anthocyanins, as well as leaves and waste parts from red cabbage processing. Anthocyanins, thanks to their various functionalities, can be recovered and used as active and intelligent agents in food packaging. Anthocyanins have antioxidant properties that help to prevent cardiovascular disease. (2) Methods: In this study, the process of extracting waste was studied using solvent and supercritical CO2 extraction. The obtained anthocyanins were used in starch-based food film formulations. Several formulations were studied using rheometric techniques and the effect of adding anthocyanins on optimal film formulation was investigated. (3) Results: Solvent extractions resulted in a maximum extraction yield. The extracts obtained were used for the preparation of coating and edible films, optimized in the formulation. (4) Conclusions: The addition of anthocyanins to films resulted in increased sample structuring and mechanical properties that are valid for applications, like dipping using coverage methods. The packaging is also attractive and pH-sensitive.
Collapse
Affiliation(s)
- Olga Mileti
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Noemi Baldino
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Francesco Filice
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, I-87036 Rende, CS, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Arcavacata Rende, CS, Italy
| |
Collapse
|
43
|
Shen D, Zhang M, Mujumdar AS, Ma Y. Consumer-oriented smart dynamic detection of fresh food quality: recent advances and future prospects. Crit Rev Food Sci Nutr 2023; 64:11281-11301. [PMID: 37462236 DOI: 10.1080/10408398.2023.2235703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Since fresh foods include a significant amount of water, fat, and protein, it is more likely to become infected by microorganisms causing a major loss of quality. Traditional detection techniques are less able to meet customer expectations owing to the limitations of high cost, slow response time, and inability to permit dynamic monitoring. Intelligent non-destructive detection technologies have emerged in recent years, which offer the advantages of small size and fast response at low cost. However, dynamic monitoring of fresh food quality based on intelligent detection technologies on the consumer side has not been rigorously evaluated yet. This paper discussed the application of intelligent detection technologies based on the consumer side in the dynamic monitoring of fresh food freshness, microorganisms, food additives, and pesticide residues. Furthermore, the application of intelligent detection technologies combined with smartphones for quality monitoring and detection of fresh foods is evaluated. Moreover, the challenges and development trends of intelligent fresh food quality detection technologies are also discussed. Intelligent detection technologies based on the consumer side are designed to detect in real-time the quality of fresh food through visual color changes in combination with smartphones. This paper provides ideas and recommendations for the application of intelligent detection technologies based on the consumer side in food quality detection/monitoring and future research trends.
Collapse
Affiliation(s)
- Dongbei Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Canada
| | - Yamei Ma
- Jiangsu Gaode Food Co, Rugao, Jiangsu, China
| |
Collapse
|
44
|
Gao Q, Chen J, Zhou G, Xu X. Different protein-anthocyanin complexes engineered by ultrasound and alkali treatment: Structural characterization and color stability. Food Chem 2023; 427:136693. [PMID: 37390735 DOI: 10.1016/j.foodchem.2023.136693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
Through alkali treatment (AT) and ultrasound (UT)-assisted processing producing covalent protein-anthocyanin complexes, we investigated the impact of treatment methods and protein types on conjugation efficiency, protein structure, and color stability. Our findings revealed the effective grafting of anthocyanins (ACNs) onto proteins, with myofibrillar protein (MP) exhibiting the highest conjugation efficiency of 88.33% after UT (p <.05). UT accelerated the structure unfolding of distinct protein samples, leading to the exposure of sulfhydryl, and hydrophobic groups in proteins, and enhanced the oxidation stability of ACNs. Notably, the modified ACNs maintained a favorable pH-color relationship, while U-MP showed a significantly higher absorbance (0.4998) than the other groups (p <.05) at pH 9.0, demonstrating an outstanding color improvement. UT-assisted processing also accelerated the NH3 reaction. Thus, the combination of UT and MP holds the potential for pH-color-responsive intelligent packaging and increases the efficiency of UT processing.
Collapse
Affiliation(s)
- Qianni Gao
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Abedi-Firoozjah R, Parandi E, Heydari M, Kolahdouz-Nasiri A, Bahraminejad M, Mohammadi R, Rouhi M, Garavand F. Betalains as promising natural colorants in smart/active food packaging. Food Chem 2023; 424:136408. [PMID: 37245469 DOI: 10.1016/j.foodchem.2023.136408] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Betalains are water-soluble nitrogen pigments with beneficial effects, including antioxidant, antimicrobial, and pH-indicator properties. The development of packaging films incorporated with betalains has received increasing attention because of pH-responsive color-changing properties in the colorimetric indicators and smart packaging films. As such, intelligent and active packaging systems based on biodegradable polymers containing betalains have been recently developed as eco-friendly packaging to enhance the quality and safety of food products. Betalains could generally improve the functional properties of packaging films, such as higher water resistance, tensile strength, elongation at break, and antioxidant and antimicrobial activities. These effects are dependent on betalain composition (about its source and extraction), content, and the kind of biopolymer, film preparation method, food samples, and storage time. This review focused on betalains-rich films as pH- and ammonia-sensitive indicators and their applications as smart packaging to monitor the freshness of protein-rich foods such as shrimp, fish, chicken, and milk.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Parandi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran; Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Mahshid Heydari
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azin Kolahdouz-Nasiri
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahshid Bahraminejad
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
46
|
Jiang X, Cheng J, Yang F, Hu Z, Zheng Z, Deng Y, Cao B, Xie Y. Visual Colorimetric Detection of Edible Oil Freshness for Peroxides Based on Nanocellulose. Foods 2023; 12:foods12091896. [PMID: 37174435 PMCID: PMC10178133 DOI: 10.3390/foods12091896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Traditional methods for evaluating the edibility of lipids involve the use of organic reagents and complex operations, which limit their routine use. In this study, nanocellulose was prepared from bamboo, and a colorimetric reading strategy based on nanocellulose composite hydrogels was explored to monitor the freshness of edible oils. The hydrogels acted as carriers for peroxide dyes that changed color according to the freshness of the oil, and color information was digitized using UV-vis and RGB analysis. The sensitivity and accuracy of the hydrogel were verified using H2O2, which showed a linear relationship between absorbance and H2O2 content in the range of 0-0.5 and 0.5-11 mmol/kg with R2 of 0.9769 and 0.9899, respectively, while the chromatic parameter showed an exponential relationship with R2 of 0.9626. Surprisingly, the freshness of all seven edible oil samples was correctly identified by the hydrogel, with linear correlation coefficients greater than 0.95 in the UV-vis method and exponential correlation coefficients greater than 0.92 in the RGB method. Additionally, a peroxide value color card was established, with an accuracy rate of 91.67%. This functional hydrogel is expected to be used as a household-type oil freshness indicator to meet the needs of general consumers.
Collapse
Affiliation(s)
- Xiongli Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Jun Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhen Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Buyuan Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
47
|
Halloub A, Raji M, Essabir H, Nekhlaoui S, Bensalah MO, Bouhfid R, Qaiss AEK. Stable smart packaging betalain-based from red prickly pear covalently linked into cellulose/alginate blend films. Int J Biol Macromol 2023; 234:123764. [PMID: 36805509 DOI: 10.1016/j.ijbiomac.2023.123764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Smart materials based on biomaterials have been shown growing interest by researchers. This paper investigated pH-indicator film with less leaching containing betalain molecule extracted from red prickly pear fixed in the cellulose-alginate blend as a matrix. Herein, the film was manufactured from a blend containing covalently bounded cellulose with betalain via the creation of a Fischer esterification (FE) to solve the leaching problem of dyes in contact with food. The structural, thermal, morphological optical, and mechanical properties and the pH-sensitive properties of films were examined. The FTIR and color analysis confirmed the fisher esterification. The fisher esterification led to a pH-indicator film with less leaching with significant color stability against UV light. The smart film changes colors with the pH values, where it goes from purple at a pH below 10 to yellow color at a pH above 10. All those proprieties with contact angles helped this film to be used as an intelligent film for monitoring salmon spoilage.
Collapse
Affiliation(s)
- Abdellah Halloub
- University Mohammed V in Rabat, Faculty of Science, Nanotechnology and Environment Materials Laboratory, Rabat 10100, Morocco; Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Marya Raji
- Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| | - Hamid Essabir
- Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco; Mechanic, Materials, and Composites (MMC), Laboratory of Energy Engineering, Materials and Systems, National School of Applied Sciences of Agadir, Ibn Zohr University, Agadir 80000, Morocco
| | - Souad Nekhlaoui
- Group of Mechanics and Materials, Energy Research Center, Faculty of Science, Mohammed V University in Rabat, 10100 Rabat, Morocco
| | - Mohammed-Ouadi Bensalah
- Group of Mechanics and Materials, Energy Research Center, Faculty of Science, Mohammed V University in Rabat, 10100 Rabat, Morocco
| | - Rachid Bouhfid
- Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abou El Kacem Qaiss
- Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| |
Collapse
|
48
|
He X, Pu Y, Chen L, Jiang H, Xu Y, Cao J, Jiang W. A comprehensive review of intelligent packaging for fruits and vegetables: Target responders, classification, applications, and future challenges. Compr Rev Food Sci Food Saf 2023; 22:842-881. [PMID: 36588319 DOI: 10.1111/1541-4337.13093] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/18/2022] [Accepted: 11/25/2022] [Indexed: 01/03/2023]
Abstract
Post-harvest fruits and vegetables are extremely susceptible to dramatic and accelerated quality deterioration deriving from their metabolism and adverse environmental influences. Given their vigorous physiological metabolism, monitoring means are lacking due to the extent that unnecessary waste and damage are caused. Numerous intelligent packaging studies have been hitherto carried out to investigate their potential for fruit and vegetable quality monitoring. This state-of-the-art overview begins with recent advances in target metabolites for intelligent packaging of fruits and vegetables. Subsequently, the mechanisms of action between metabolites and packaging materials are presented. In particular, the exact categorization and function of intelligent packaging of fruits and vegetables, are all extensively and comprehensively described. In addition, for the sake of further research in this field, the obstacles that impede the scaling up and commercialization of intelligent packaging for fruits and vegetables are also explored, to present valuable references.
Collapse
Affiliation(s)
- Xu He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, P. R. China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
49
|
Dong S, Zhang Y, Lu D, Gao W, Zhao Q, Shi X. Multifunctional intelligent film integrated with purple sweet potato anthocyanin and quercetin-loaded chitosan nanoparticles for monitoring and maintaining freshness of shrimp. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 2023; 313:120851. [PMID: 37182951 DOI: 10.1016/j.carbpol.2023.120851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
|