1
|
Ma L, Weissenbacher-Lang C, Latinne A, Babb-Biernacki S, Blasi B, Cissé OH, Kovacs JA. Evolving spectrum of Pneumocystis host specificity, genetic diversity, and evolution. FEMS Microbiol Rev 2025; 49:fuaf006. [PMID: 39971735 PMCID: PMC11916894 DOI: 10.1093/femsre/fuaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/21/2025] Open
Abstract
Following over a century's worth of research, our understanding of Pneumocystis has significantly expanded in various facets, spanning from its fundamental biology to its impacts on animal and human health. Its significance in public health has been underscored by its inclusion in the 2022 WHO fungal priority pathogens list. We present this review to summarize pivotal advancements in Pneumocystis epidemiology, host specificity, genetic diversity and evolution. Following a concise discussion of Pneumocystis species classification and divergence at the species and strain levels, we devoted the main focus to the following aspects: the epidemiological characteristics of Pneumocystis across nearly 260 mammal species, the increasing recognition of coinfection involving multiple Pneumocystis species in the same host species, the diminishing host specificity of Pneumocystis among closely related host species, and the intriguingly discordant evolution of certain Pneumocystis species with their host species. A comprehensive understanding of host specificity, genetic diversity, and evolution of Pneumocystis can provide important insights into pathogenic mechanisms and transmission modes. This, in turn, holds the potential to facilitate the development of innovative strategies for the prevention and control of Pneumocystis infection.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christiane Weissenbacher-Lang
- Department of Biological Sciences and Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Alice Latinne
- Wildlife Conservation Society, Melanesia Program, Suva, Fiji
| | | | - Barbara Blasi
- Department of Biological Sciences and Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Ousmane H Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Joseph A Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
2
|
Wooldridge TB, Ford SM, Conwell HC, Hyde J, Harris K, Shapiro B. Direct Measurement of the Mutation Rate and Its Evolutionary Consequences in a Critically Endangered Mollusk. Mol Biol Evol 2025; 42:msae266. [PMID: 39775835 PMCID: PMC11704959 DOI: 10.1093/molbev/msae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The rate at which mutations arise is a fundamental parameter of biology. Despite progress in measuring germline mutation rates across diverse taxa, such estimates are missing for much of Earth's biodiversity. Here, we present the first estimate of a germline mutation rate from the phylum Mollusca. We sequenced three pedigreed families of the white abalone Haliotis sorenseni, a long-lived, large-bodied, and critically endangered mollusk, and estimated a de novo mutation rate of 8.60 × 10-9 single nucleotide mutations per site per generation. This mutation rate is similar to rates measured in vertebrates with comparable generation times and longevity to abalone, and higher than mutation rates measured in faster-reproducing invertebrates. The spectrum of de novo mutations is also similar to that seen in vertebrate species, although an excess of rare C > A polymorphisms in wild individuals suggests that a modifier allele or environmental exposure may have once increased C > A mutation rates. We use our rate to infer baseline effective population sizes (Ne) across multiple Pacific abalone and find that abalone persisted over most of their evolutionary history as large and stable populations, in contrast to extreme fluctuations over recent history and small census sizes in the present day. We then use our mutation rate to infer the timing and pattern of evolution of the abalone genus Haliotis, which was previously unknown due to few fossil calibrations. Our findings are an important step toward understanding mutation rate evolution and they establish a key parameter for conservation and evolutionary genomics research in mollusks.
Collapse
Affiliation(s)
- T Brock Wooldridge
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Sarah M Ford
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Holland C Conwell
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - John Hyde
- Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- Colossal Biosciences, Austin, TX 95060, USA
| |
Collapse
|
3
|
van Elst T, Sgarlata GM, Schüßler D, Tiley GP, Poelstra JW, Scheumann M, Blanco MB, Aleixo-Pais IG, Rina Evasoa M, Ganzhorn JU, Goodman SM, Hasiniaina AF, Hending D, Hohenlohe PA, Ibouroi MT, Iribar A, Jan F, Kappeler PM, Le Pors B, Manzi S, Olivieri G, Rakotonanahary AN, Rakotondranary SJ, Rakotondravony R, Ralison JM, Ranaivoarisoa JF, Randrianambinina B, Rasoloarison RM, Rasoloharijaona S, Rasolondraibe E, Teixeira H, Zaonarivelo JR, Louis EE, Yoder AD, Chikhi L, Radespiel U, Salmona J. Integrative taxonomy clarifies the evolution of a cryptic primate clade. Nat Ecol Evol 2025; 9:57-72. [PMID: 39333396 PMCID: PMC11726463 DOI: 10.1038/s41559-024-02547-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Global biodiversity is under accelerating threats, and species are succumbing to extinction before being described. Madagascar's biota represents an extreme example of this scenario, with the added complication that much of its endemic biodiversity is cryptic. Here we illustrate best practices for clarifying cryptic diversification processes by presenting an integrative framework that leverages multiple lines of evidence and taxon-informed cut-offs for species delimitation, while placing special emphasis on identifying patterns of isolation by distance. We systematically apply this framework to an entire taxonomically controversial primate clade, the mouse lemurs (genus Microcebus, family Cheirogaleidae). We demonstrate that species diversity has been overestimated primarily due to the interpretation of geographic variation as speciation, potentially biasing inference of the underlying processes of evolutionary diversification. Following a revised classification, we find that crypsis within the genus is best explained by a model of morphological stasis imposed by stabilizing selection and a neutral process of niche diversification. Finally, by clarifying species limits and defining evolutionarily significant units, we provide new conservation priorities, bridging fundamental and applied objectives in a generalizable framework.
Collapse
Affiliation(s)
- Tobias van Elst
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Gabriele M Sgarlata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- Department of Evolution and Ecology, University of California, Davis, CA, USA.
| | - Dominik Schüßler
- Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany.
| | - George P Tiley
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology, Duke University, Durham, NC, USA
| | - Jelmer W Poelstra
- Department of Biology, Duke University, Durham, NC, USA
- Molecular and Cellular Imaging Center, The Ohio State University, Columbus, OH, USA
| | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Isa G Aleixo-Pais
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Mamy Rina Evasoa
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
| | - Jörg U Ganzhorn
- Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Steven M Goodman
- Field Museum of Natural History, Chicago, IL, USA
- Association Vahatra, Antananarivo, Madagascar
| | - Alida F Hasiniaina
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- School for International Training, Antananarivo, Madagascar
| | - Daniel Hending
- John Krebs Field Station, Department of Biology, University of Oxford, Wytham, UK
| | - Paul A Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Mohamed T Ibouroi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Université de La Réunion, Saint-Denis de La Réunion, France
| | - Amaia Iribar
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Fabien Jan
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Peter M Kappeler
- Department Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University Göttingen, Göttingen, Germany
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - Sophie Manzi
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Gillian Olivieri
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- University of Warwick, Coventry, UK
| | - Ando N Rakotonanahary
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
| | - S Jacques Rakotondranary
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | - Romule Rakotondravony
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
- Ecole Doctorale Ecosystèmes Naturels (EDEN), Université de Mahajanga, Mahajanga, Madagascar
| | - José M Ralison
- Département de Biologie Animale, Université d'Antananarivo, Antananarivo, Madagascar
| | - J Freddy Ranaivoarisoa
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar
| | - Blanchard Randrianambinina
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga, Madagascar
- Ecole Doctorale Ecosystèmes Naturels (EDEN), Université de Mahajanga, Mahajanga, Madagascar
| | - Rodin M Rasoloarison
- Department Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University Göttingen, Göttingen, Germany
| | | | | | - Helena Teixeira
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), Saint-Denis de La Réunion, France
| | - John R Zaonarivelo
- Département des Sciences de la Nature et de l'Environnement, Université d'Antsiranana, Antsiranana, Madagascar
| | - Edward E Louis
- Madagascar Biodiversity Partnership, Antananarivo, Madagascar
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jordi Salmona
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
4
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Heuer MM, Fischer K, Tensen L. Color polymorphic carnivores have faster speciation rates. Sci Rep 2024; 14:23721. [PMID: 39390235 PMCID: PMC11467396 DOI: 10.1038/s41598-024-74747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Variation in coat color is a prominent feature in carnivores, thought to be shaped by environmental factors. As new traits could allow populations to occupy novel niches and habitats, color polymorphism may be maintained by balancing selection. Consequently, color polymorphic species may speciate more rapidly and can give rise to monomorphic daughter species. We thus predicted that, within the Carnivora, (i) speciation rate is higher in polymorphic lineages, (ii) divergence between color polymorphic lineages is more recent, and (iii) within closely related groups, polymorphic lineages are ancestral and monomorphic lineages derived. We also tested whether accelerated speciation rates relate to niche breadth, measured by the number of occupied habitats and range size. We collected data of 48 polymorphic and 192 monomorphic carnivore species, and assessed speciation rates using phylogenetic comparative methods. We found that polymorphic carnivores had higher speciation rates (λ1 = 0.29, SD = 0.13) than monomorphic species (λ0 = 0.053, SD = 0.044). Hidden and quantitative state speciation and extinction models inferred that color polymorphism was the main contributing factor, and that niche breadth was not of influence. Therefore, other selective forces than spatial niche segregation, such as predator-prey coevolution, may contribute to color polymorphism in wild carnivores.
Collapse
Affiliation(s)
- Moritz M Heuer
- Department of Physical Geography, Trier University, Trier, Germany
- Department of Biology, Institute for Integrated Natural Sciences, Koblenz University, Koblenz, Germany
| | - Klaus Fischer
- Department of Biology, Institute for Integrated Natural Sciences, Koblenz University, Koblenz, Germany
| | - Laura Tensen
- Department of Biology, Institute for Integrated Natural Sciences, Koblenz University, Koblenz, Germany.
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa.
- Department of Biology, Section Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Bryłka K, Ashworth MP, Alverson AJ, Conley DJ. The Cretaceous Diatom Database: A tool for investigating early diatom evolution. JOURNAL OF PHYCOLOGY 2024; 60:1090-1104. [PMID: 39215544 DOI: 10.1111/jpy.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The Cretaceous period is the time of the first appearance of the diatoms in the fossil record. These fossils give us direct evidence of the age and early evolution of the diatom lineage. The fossil record, however, is incomplete and therefore often extrapolated through time-calibrated phylogenies. These two approaches offer different perspectives on the early evolution of diatoms, which is still poorly understood. We compiled the first comprehensive Cretaceous Diatom Database, a tool to investigate the taxonomy, diversity, and occurrence of the earliest known diatom lineages. To further aid the integration and use of the oldest diatom fossils in molecular clock analyses, we present a set of well-documented Cretaceous fossils that can be placed onto molecular phylogenetic trees of extant and extinct species, making them ideal candidates for the calibration of molecular clocks. The analysis of the fossil record and the Cretaceous Diatom Database revealed Cretaceous diversity is substantially greater than previously thought, yet considerable taxonomic work is still needed. The Cretaceous Diatom Database and the list of Cretaceous fossils for calibrating molecular clocks represent valuable resources for future evolutionary and taxonomic studies of modern and fossil diatoms.
Collapse
Affiliation(s)
| | - Matt P Ashworth
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, The University of Texas at Austin, Austin, Texas, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas Fayetteville, Fayetteville, Arkansas, USA
| | | |
Collapse
|
7
|
Mello B, Schrago CG. Modeling Substitution Rate Evolution across Lineages and Relaxing the Molecular Clock. Genome Biol Evol 2024; 16:evae199. [PMID: 39332907 PMCID: PMC11430275 DOI: 10.1093/gbe/evae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 09/29/2024] Open
Abstract
Relaxing the molecular clock using models of how substitution rates change across lineages has become essential for addressing evolutionary problems. The diversity of rate evolution models and their implementations are substantial, and studies have demonstrated their impact on divergence time estimates can be as significant as that of calibration information. In this review, we trace the development of rate evolution models from the proposal of the molecular clock concept to the development of sophisticated Bayesian and non-Bayesian methods that handle rate variation in phylogenies. We discuss the various approaches to modeling rate evolution, provide a comprehensive list of available software, and examine the challenges and advancements of the prevalent Bayesian framework, contrasting them to faster non-Bayesian methods. Lastly, we offer insights into potential advancements in the field in the era of big data.
Collapse
Affiliation(s)
- Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| |
Collapse
|
8
|
López-Cortegano E, Chebib J, Jonas A, Vock A, Künzel S, Tautz D, Keightley PD. Variation in the Spectrum of New Mutations among Inbred Strains of Mice. Mol Biol Evol 2024; 41:msae163. [PMID: 39101589 PMCID: PMC11327921 DOI: 10.1093/molbev/msae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The mouse serves as a mammalian model for understanding the nature of variation from new mutations, a question that has both evolutionary and medical significance. Previous studies suggest that the rate of single-nucleotide mutations (SNMs) in mice is ∼50% of that in humans. However, information largely comes from studies involving the C57BL/6 strain, and there is little information from other mouse strains. Here, we study the mutations that accumulated in 59 mouse lines derived from four inbred strains that are commonly used in genetics and clinical research (BALB/cAnNRj, C57BL/6JRj, C3H/HeNRj, and FVB/NRj), maintained for eight to nine generations by brother-sister mating. By analyzing Illumina whole-genome sequencing data, we estimate that the average rate of new SNMs in mice is ∼μ = 6.7 × 10-9. However, there is substantial variation in the spectrum of SNMs among strains, so the burden from new mutations also varies among strains. For example, the FVB strain has a spectrum that is markedly skewed toward C→A transversions and is likely to experience a higher deleterious load than other strains, due to an increased frequency of nonsense mutations in glutamic acid codons. Finally, we observe substantial variation in the rate of new SNMs among DNA sequence contexts, CpG sites, and their adjacent nucleotides playing an important role.
Collapse
Affiliation(s)
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Anika Jonas
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Anastasia Vock
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Sven Künzel
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Diethard Tautz
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
9
|
Willink B, Ware JL, Svensson EI. Tropical Origin, Global Diversification, and Dispersal in the Pond Damselflies (Coenagrionoidea) Revealed by a New Molecular Phylogeny. Syst Biol 2024; 73:290-307. [PMID: 38262741 PMCID: PMC11282367 DOI: 10.1093/sysbio/syae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024] Open
Abstract
The processes responsible for the formation of Earth's most conspicuous diversity pattern, the latitudinal diversity gradient (LDG), remain unexplored for many clades in the Tree of Life. Here, we present a densely sampled and dated molecular phylogeny for the most speciose clade of damselflies worldwide (Odonata: Coenagrionoidea) and investigate the role of time, macroevolutionary processes, and biome-shift dynamics in shaping the LDG in this ancient insect superfamily. We used process-based biogeographic models to jointly infer ancestral ranges and speciation times and to characterize within-biome dispersal and biome-shift dynamics across the cosmopolitan distribution of Coenagrionoidea. We also investigated temporal and biome-dependent variation in diversification rates. Our results uncover a tropical origin of pond damselflies and featherlegs ~105 Ma, while highlighting the uncertainty of ancestral ranges within the tropics in deep time. Even though diversification rates have declined since the origin of this clade, global climate change and biome-shifts have slowly increased diversity in warm- and cold-temperate areas, where lineage turnover rates have been relatively higher. This study underscores the importance of biogeographic origin and time to diversify as important drivers of the LDG in pond damselflies and their relatives, while diversification dynamics have instead resulted in the formation of ephemeral species in temperate regions. Biome-shifts, although limited by tropical niche conservatism, have been the main factor reducing the steepness of the LDG in the last 30 Myr. With ongoing climate change and increasing northward range expansions of many damselfly taxa, the LDG may become less pronounced. Our results support recent calls to unify biogeographic and macroevolutionary approaches to improve our understanding of how latitudinal diversity gradients are formed and why they vary across time and among taxa.
Collapse
Affiliation(s)
- Beatriz Willink
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm 106-91, Sweden
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117558, Singapore
| | - Jessica L Ware
- Division of Invertebrate Zoology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Erik I Svensson
- Department of Biology, Evolutionary Ecology Unit, Lund University, Sölvegatan 37, Lund 223-62, Sweden
| |
Collapse
|
10
|
Feng H, Banerjee AK, Guo W, Yuan Y, Duan F, Ng WL, Zhao X, Liu Y, Li C, Liu Y, Li L, Huang Y. Origin and evolution of a new tetraploid mangrove species in an intertidal zone. PLANT DIVERSITY 2024; 46:476-490. [PMID: 39280974 PMCID: PMC11390703 DOI: 10.1016/j.pld.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 09/18/2024]
Abstract
Polyploidy is a major factor in the evolution of plants, yet we know little about the origin and evolution of polyploidy in intertidal species. This study aimed to identify the evolutionary transitions in three true-mangrove species of the genus Acanthus distributed in the Indo-West Pacific region. For this purpose, we took an integrative approach that combined data on morphology, cytology, climatic niche, phylogeny, and biogeography of 493 samples from 42 geographic sites. Our results show that the Acanthus ilicifolius lineage distributed east of the Thai-Malay Peninsula possesses a tetraploid karyotype, which is morphologically distinct from that of the lineage on the west side. The haplotype networks and phylogenetic trees for the chloroplast genome and eight nuclear genes reveal that the tetraploid species has two sub-genomes, one each from A. ilicifolius and A . ebracteatus, the paternal and maternal parents, respectively. Population structure analysis also supports the hybrid speciation history of the new tetraploid species. The two sub-genomes of the tetraploid species diverged from their diploid progenitors during the Pleistocene. Environmental niche models revealed that the tetraploid species not only occupied the near-entire niche space of the diploids, but also expanded into novel environments. Our findings suggest that A. ilicifolius species distributed on the east side of the Thai-Malay Peninsula should be regarded as a new species, A. tetraploideus, which originated from hybridization between A. ilicifolius and A. ebracteatus, followed by chromosome doubling. This is the first report of a true-mangrove allopolyploid species that can reproduce sexually and clonally reproduction, which explains the long-term adaptive potential of the species.
Collapse
Affiliation(s)
- Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wuxia Guo
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Fuyuan Duan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia
| | - Xuming Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuting Liu
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Chunmei Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Ying Liu
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Linfeng Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
11
|
Imwattana K, Aguero B, Nieto-Lugilde M, Duffy A, Jaramillo-Chico J, Hassel K, Afonina O, Lamkowski P, Jonathan Shaw A. Parallel patterns of genetic diversity and structure in circumboreal species of the Sphagnum capillifolium complex. AMERICAN JOURNAL OF BOTANY 2024; 111:e16348. [PMID: 38764292 DOI: 10.1002/ajb2.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 05/21/2024]
Abstract
PREMISE Shared geographical patterns of population genetic variation among related species is a powerful means to identify the historical events that drive diversification. The Sphagnum capillifolium complex is a group of closely related peat mosses within the Sphagnum subgenus Acutifolia and contains several circumboreal species whose ranges encompass both glaciated and unglaciated regions across the northern hemisphere. In this paper, we (1) inferred the phylogeny of subg. Acutifolia and (2) investigated patterns of population structure and genetic diversity among five circumboreal species within the S. capillifolium complex. METHODS We generated RAD sequencing data from most species of the subg. Acutifolia and samples from across the distribution ranges of circumboreal species within the S. capillifolium complex. RESULTS We resolved at least 14 phylogenetic clusters within the S. capillifolium complex. Five circumboreal species show some common patterns: One population system comprises plants in eastern North America and Europe, and another comprises plants in the Pacific Northwest or around the Beringian and Arctic regions. Alaska appears to be a hotspot for genetic admixture, genetic diversity, and sometimes endemic subclades. CONCLUSIONS Our results support the hypothesis that populations of five circumboreal species within the S. capillifolium complex survived in multiple refugia during the last glacial maximum. Long-distance dispersal out of refugia, population bottlenecks, and possible adaptations to conditions unique to each refugium could have contributed to current geographic patterns. These results indicate the important role of historical events in shaping the complex population structure of plants with broad distribution ranges.
Collapse
Affiliation(s)
- Karn Imwattana
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, USA
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Blanka Aguero
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, USA
| | - Marta Nieto-Lugilde
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, USA
| | - Aaron Duffy
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, USA
| | - Juan Jaramillo-Chico
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, USA
| | - Kristian Hassel
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Olga Afonina
- Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Paul Lamkowski
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
- University of Applied Science Neubrandenburg
| | - A Jonathan Shaw
- Department of Biology & L. E. Anderson Bryophyte Herbarium, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Zhang C, Reid K, Sands AF, Fraimout A, Schierup MH, Merilä J. De Novo Mutation Rates in Sticklebacks. Mol Biol Evol 2023; 40:msad192. [PMID: 37648662 PMCID: PMC10503787 DOI: 10.1093/molbev/msad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Mutation rate is a fundamental parameter in population genetics. Apart from being an important scaling parameter for demographic and phylogenetic inference, it allows one to understand at what rate new genetic diversity is generated and what the expected level of genetic diversity is in a population at equilibrium. However, except for well-established model organisms, accurate estimates of de novo mutation rates are available for a very limited number of organisms from the wild. We estimated mutation rates (µ) in two marine populations of the nine-spined stickleback (Pungitius pungitius) with the aid of several 2- and 3-generational family pedigrees, deep (>50×) whole-genome resequences and a high-quality reference genome. After stringent filtering, we discovered 308 germline mutations in 106 offspring translating to µ = 4.83 × 10-9 and µ = 4.29 × 10-9 per base per generation in the two populations, respectively. Up to 20% of the mutations were shared by full-sibs showing that the level of parental mosaicism was relatively high. Since the estimated µ was 3.1 times smaller than the commonly used substitution rate, recalibration with µ led to substantial increase in estimated divergence times between different stickleback species. Our estimates of the de novo mutation rate should provide a useful resource for research focused on fish population genetics and that of sticklebacks in particular.
Collapse
Affiliation(s)
- Chaowei Zhang
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Arthur F Sands
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Antoine Fraimout
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Juha Merilä
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Suárez-Menéndez M, Bérubé M, Furni F, Rivera-León VE, Heide-Jørgensen MP, Larsen F, Sears R, Ramp C, Eriksson BK, Etienne RS, Robbins J, Palsbøll PJ. Wild pedigrees inform mutation rates and historic abundance in baleen whales. Science 2023; 381:990-995. [PMID: 37651509 DOI: 10.1126/science.adf2160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Phylogeny-based estimates suggesting a low germline mutation rate (μ) in baleen whales have influenced research ranging from assessments of whaling impacts to evolutionary cancer biology. We estimated μ directly from pedigrees in four baleen whale species for both the mitochondrial control region and nuclear genome. The results suggest values higher than those obtained through phylogeny-based estimates and similar to pedigree-based values for primates and toothed whales. Applying our estimate of μ reduces previous genetic-based estimates of preexploitation whale abundance by 86% and suggests that μ cannot explain low cancer rates in gigantic mammals. Our study shows that it is feasible to estimate μ directly from pedigrees in natural populations, with wide-ranging implications for ecological and evolutionary research.
Collapse
Affiliation(s)
- Marcos Suárez-Menéndez
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martine Bérubé
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Center for Coastal Studies, Provincetown, MA, USA
| | - Fabrício Furni
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Vania E Rivera-León
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Finn Larsen
- National Institute of Aquatic Resources, Kongens Lyngby, Denmark
| | - Richard Sears
- Mingan Island Cetacean Study Inc., St. Lambert, Quebec, Canada
| | - Christian Ramp
- Mingan Island Cetacean Study Inc., St. Lambert, Quebec, Canada
- Scottish Oceans Institute, University of St. Andrews, St. Andrews, UK
| | - Britas Klemens Eriksson
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Per J Palsbøll
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Center for Coastal Studies, Provincetown, MA, USA
| |
Collapse
|
14
|
Liang X, Heath LS. Towards understanding paleoclimate impacts on primate de novo genes. G3 (BETHESDA, MD.) 2023; 13:jkad135. [PMID: 37313728 PMCID: PMC10468307 DOI: 10.1093/g3journal/jkad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
De novo genes are genes that emerge as new genes in some species, such as primate de novo genes that emerge in certain primate species. Over the past decade, a great deal of research has been conducted regarding their emergence, origins, functions, and various attributes in different species, some of which have involved estimating the ages of de novo genes. However, limited by the number of species available for whole-genome sequencing, relatively few studies have focused specifically on the emergence time of primate de novo genes. Among those, even fewer investigate the association between primate gene emergence with environmental factors, such as paleoclimate (ancient climate) conditions. This study investigates the relationship between paleoclimate and human gene emergence at primate species divergence. Based on 32 available primate genome sequences, this study has revealed possible associations between temperature changes and the emergence of de novo primate genes. Overall, findings in this study are that de novo genes tended to emerge in the recent 13 MY when the temperature continues cooling, which is consistent with past findings. Furthermore, in the context of an overall trend of cooling temperature, new primate genes were more likely to emerge during local warming periods, where the warm temperature more closely resembled the environmental condition that preceded the cooling trend. Results also indicate that both primate de novo genes and human cancer-associated genes have later origins in comparison to random human genes. Future studies can be in-depth on understanding human de novo gene emergence from an environmental perspective as well as understanding species divergence from a gene emergence perspective.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
15
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. PAReTT: A Python Package for the Automated Retrieval and Management of Divergence Time Data from the TimeTree Resource for Downstream Analyses. J Mol Evol 2023:10.1007/s00239-023-10106-3. [PMID: 37079046 DOI: 10.1007/s00239-023-10106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
Evolutionary processes happen gradually over time and are, thus, considered time dependent. In addition, several evolutionary processes are either adaptations to local habitats or changing habitats, otherwise restricted thereby. Since evolutionary processes driving speciation take place within the landscape of environmental and temporal bounds, several published studies have aimed at providing accurate, fossil-calibrated, estimates of the divergence times of both extant and extinct species. Correct calibration is critical towards attributing evolutionary adaptations and speciation both to the time and paleogeography that contributed to it. Data from more than 4000 studies and nearly 1,50,000 species are available from a central TimeTree resource and provide opportunities of retrieving divergence times, evolutionary timelines, and time trees in various formats for most vertebrates. These data greatly enhance the ability of researchers to investigate evolution. However, there is limited functionality when studying lists of species that require batch retrieval. To overcome this, a PYTHON package termed Python-Automated Retrieval of TimeTree data (PAReTT) was created to facilitate a biologist-friendly interaction with the TimeTree resource. Here, we illustrate the use of the package through three examples that includes the use of timeline data, time tree data, and divergence time data. Furthermore, PAReTT was previously used in a meta-analysis of candidate genes to illustrate the relationship between divergence times and candidate genes of migration. The PAReTT package is available for download from GitHub or as a pre-compiled Windows executable, with extensive documentation on the package available on GitHub wiki pages regarding dependencies, installation, and implementation of the various functions.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, Pretoria, 0001, South Africa.
- Department of Genetics, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Antoinette Kotzé
- South African National Biodiversity Institute, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, Bloemfontein, 9300, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
16
|
Beltrán OG, Torres Higuera LD, Rodríguez Bautista JL, Patiño Burbano RE. Evaluation of the genetic stability of Leptospira reference strains maintained under two conservation methods. NOVA 2022. [DOI: 10.22490/24629448.6585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective. The genetic stability of Strains of Leptospira spp., maintained under two conservation systems, was evaluated. Methodology. The degree of conservation of the 16S rRNA and ompL1 genes of 10 reference serovars from the Leptospira spp. collection, belonging to the Sistema de Bancos de Germoplasma de la Nación para la Alimentación y la Agricultura (SBGNAA), was determined. Results. It was corroborated that the genes evaluated these have not undergone considerable changes, since similarities greater than 99.69 % were evidenced for 16S rRNA and 99.02% for ompL1, in the paired alignments. Conclusion. The genetic stability and purity of the reference strains of Leptospira spp. were verified. spp., kept in cryopreservation in liquid nitrogen at -196 °C and at room temperature for approximately eight years.
Collapse
|
17
|
Raval PK, Garg SG, Gould SB. Endosymbiotic selective pressure at the origin of eukaryotic cell biology. eLife 2022; 11:e81033. [PMID: 36355038 PMCID: PMC9648965 DOI: 10.7554/elife.81033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The dichotomy that separates prokaryotic from eukaryotic cells runs deep. The transition from pro- to eukaryote evolution is poorly understood due to a lack of reliable intermediate forms and definitions regarding the nature of the first host that could no longer be considered a prokaryote, the first eukaryotic common ancestor, FECA. The last eukaryotic common ancestor, LECA, was a complex cell that united all traits characterising eukaryotic biology including a mitochondrion. The role of the endosymbiotic organelle in this radical transition towards complex life forms is, however, sometimes questioned. In particular the discovery of the asgard archaea has stimulated discussions regarding the pre-endosymbiotic complexity of FECA. Here we review differences and similarities among models that view eukaryotic traits as isolated coincidental events in asgard archaeal evolution or, on the contrary, as a result of and in response to endosymbiosis. Inspecting eukaryotic traits from the perspective of the endosymbiont uncovers that eukaryotic cell biology can be explained as having evolved as a solution to housing a semi-autonomous organelle and why the addition of another endosymbiont, the plastid, added no extra compartments. Mitochondria provided the selective pressures for the origin (and continued maintenance) of eukaryotic cell complexity. Moreover, they also provided the energetic benefit throughout eukaryogenesis for evolving thousands of gene families unique to eukaryotes. Hence, a synthesis of the current data lets us conclude that traits such as the Golgi apparatus, the nucleus, autophagosomes, and meiosis and sex evolved as a response to the selective pressures an endosymbiont imposes.
Collapse
Affiliation(s)
- Parth K Raval
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| | - Sriram G Garg
- Evolutionary Biochemistry Group, Max-Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| |
Collapse
|
18
|
Yi X, Latch EK. Systematics of the New World bats Eptesicus and Histiotus suggest trans-marine dispersal followed by Neotropical cryptic diversification. Mol Phylogenet Evol 2022; 175:107582. [PMID: 35810969 DOI: 10.1016/j.ympev.2022.107582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 01/13/2023]
Abstract
Biodiversity can be boosted by colonization of new habitats such as remote islands and separated continents. Molecular studies have suggested that recently evolved organisms probably colonized already separated continents by dispersal, either via land bridge connections or crossing the ocean. Here we test the on-land and trans-marine dispersal hypotheses by evaluating possibilities of colonization routes over the Bering land bridge and across the Atlantic Ocean in the cosmopolitan bat genus Eptesicus (Chiroptera, Vespertilionidae). Previous molecular studies have found New World Eptesicus more closely related to Histiotus, a Neotropical endemic lineage with enlarged ears, than to Old World Eptesicus. However, phylogenetic relationships within the New World group remained unresolved and their evolutionary history was unclear. Here we studied the systematics of New World Eptesicus and Histiotus using extensive taxonomic and geographic sampling, and genomic data from thousands of ultra-conserved elements (UCEs). We estimated phylogenetic trees using concatenation and multispecies coalescent. All analyses supported four major New World clades and a novel topology where E. fuscus and Histiotus are sister clades that together diverged from two sister clades of Neotropical Eptesicus. Intra-clade divergence suggested cryptic diversity that has been concealed by morphological features, especially in the Neotropics where taxonomic re-evaluations are warranted. Molecular dating estimated that Old World and New World clades diverged around 17 million years ago followed by radiation of major New World clades in the mid-Miocene, when climatic changes might have facilitated global dispersal and radiation events. Biogeographic ancestral reconstruction supported the Neotropical origin of the New World clades, suggesting a trans-Atlantic colonization route from North Africa to the northern Neotropics. We highlight that trans-marine dispersal may be more prevalent than currently acknowledged and may be an important first step to global biodiversification.
Collapse
Affiliation(s)
- Xueling Yi
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Emily K Latch
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
19
|
Pang XX, Zhang DY. Impact of Ghost Introgression on Coalescent-based Species Tree Inference and Estimation of Divergence Time. Syst Biol 2022; 72:35-49. [PMID: 35799362 DOI: 10.1093/sysbio/syac047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022] Open
Abstract
The species studied in any evolutionary investigation generally constitute a small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," i.e., unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has rarely been studied and is poorly understood. Here, we use mathematical analysis and simulations to examine the robustness of species tree methods based on the multispecies coalescent model to introgression from a ghost or extant lineage. We found that many results originally obtained for introgression between extant species can easily be extended to ghost introgression, such as the strongly interactive effects of incomplete lineage sorting (ILS) and introgression on the occurrence of anomalous gene trees (AGTs). The relative performance of the summary species tree method (ASTRAL) and the full-likelihood method (*BEAST) varies under different introgression scenarios, with the former being more robust to gene flow between non-sister species whereas the latter performing better under certain conditions of ghost introgression. When an outgroup ghost (defined as a lineage that diverged before the most basal species under investigation) acts as the donor of the introgressed genes, the time of root divergence among the investigated species generally was overestimated, whereas ingroup introgression, as commonly perceived, can only lead to underestimation. In many cases of ingroup introgression that may or may not involve ghost lineages, the stronger the ILS, the higher the accuracy achieved in estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression.
Collapse
Affiliation(s)
- Xiao-Xu Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
20
|
Pozzi L, Penna A. Rocks and clocks revised: New promises and challenges in dating the primate tree of life. Evol Anthropol 2022; 31:138-153. [PMID: 35102633 DOI: 10.1002/evan.21940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 01/14/2023]
Abstract
In recent years, multiple technological and methodological advances have increased our ability to estimate phylogenies, leading to more accurate dating of the primate tree of life. Here we provide an overview of the limitations and potentials of some of these advancements and discuss how dated phylogenies provide the crucial temporal scale required to understand primate evolution. First, we review new methods, such as the total-evidence dating approach, that promise a better integration between the fossil record and molecular data. We then explore how the ever-increasing availability of genomic-level data for more primate species can impact our ability to accurately estimate timetrees. Finally, we discuss more recent applications of mutation rates to date divergence times. We highlight example studies that have applied these approaches to estimate divergence dates within primates. Our goal is to provide a critical overview of these new developments and explore the promises and challenges of their application in evolutionary anthropology.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Anna Penna
- Department of Anthropology, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
21
|
Kirschner P, Perez MF, Záveská E, Sanmartín I, Marquer L, Schlick-Steiner BC, Alvarez N, Steiner FM, Schönswetter P. Congruent evolutionary responses of European steppe biota to late Quaternary climate change. Nat Commun 2022; 13:1921. [PMID: 35396388 PMCID: PMC8993823 DOI: 10.1038/s41467-022-29267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Quaternary climatic oscillations had a large impact on European biogeography. Alternation of cold and warm stages caused recurrent glaciations, massive vegetation shifts, and large-scale range alterations in many species. The Eurasian steppe biome and its grasslands are a noteworthy example; they underwent climate-driven, large-scale contractions during warm stages and expansions during cold stages. Here, we evaluate the impact of these range alterations on the late Quaternary demography of several phylogenetically distant plant and insect species, typical of the Eurasian steppes. We compare three explicit demographic hypotheses by applying an approach combining convolutional neural networks with approximate Bayesian computation. We identified congruent demographic responses of cold stage expansion and warm stage contraction across all species, but also species-specific effects. The demographic history of the Eurasian steppe biota reflects major paleoecological turning points in the late Quaternary and emphasizes the role of climate as a driving force underlying patterns of genetic variance on the biome level.
Collapse
Affiliation(s)
- Philipp Kirschner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
- Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| | - Manolo F Perez
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
- Departamento de Genetica e Evolucao, Universidade Federal de Sao Carlos, Rodovia Washington Luis, km 235, 13565905, Sao Carlos, Brazil
| | - Eliška Záveská
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
| | - Isabel Sanmartín
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| | - Laurent Marquer
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | | | - Nadir Alvarez
- Geneva Natural History Museum of Geneva, Route de Malagnou 1, 1208, Genève, Switzerland
- Department of Genetics and Evolution, University of Geneva, Boulevard D'Yvoy 4, 1205, Genève, Switzerland
| | - Florian M Steiner
- Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
| |
Collapse
|
22
|
Amador L, Leaché AD, Victoriano PF, Hickerson MJ, D'Elía G. Genomic scale data shows that Parastacus nicoleti encompasses more than one species of burrowing continental crayfishes and that lineage divergence occurred with and without gene flow. Mol Phylogenet Evol 2022; 169:107443. [DOI: 10.1016/j.ympev.2022.107443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
23
|
Bergeron LA, Besenbacher S, Turner T, Versoza CJ, Wang RJ, Price AL, Armstrong E, Riera M, Carlson J, Chen HY, Hahn MW, Harris K, Kleppe AS, López-Nandam EH, Moorjani P, Pfeifer SP, Tiley GP, Yoder AD, Zhang G, Schierup MH. The mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates. eLife 2022; 11:73577. [PMID: 35018888 PMCID: PMC8830884 DOI: 10.7554/elife.73577] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, several studies have estimated the human per-generation germline mutation rate using large pedigrees. More recently, estimates for various nonhuman species have been published. However, methodological differences among studies in detecting germline mutations and estimating mutation rates make direct comparisons difficult. Here, we describe the many different steps involved in estimating pedigree-based mutation rates, including sampling, sequencing, mapping, variant calling, filtering, and appropriately accounting for false-positive and false-negative rates. For each step, we review the different methods and parameter choices that have been used in the recent literature. Additionally, we present the results from a ‘Mutationathon,’ a competition organized among five research labs to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We report almost a twofold variation in the final estimated rate among groups using different post-alignment processing, calling, and filtering criteria, and provide details into the sources of variation across studies. Though the difference among estimates is not statistically significant, this discrepancy emphasizes the need for standardized methods in mutation rate estimations and the difficulty in comparing rates from different studies. Finally, this work aims to provide guidelines for computational and statistical benchmarks for future studies interested in identifying germline mutations from pedigrees.
Collapse
Affiliation(s)
- Lucie A Bergeron
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Besenbacher
- Department of Molecular Medicine (MOMA), Aarhus University, Aarhus N, Denmark
| | - Tychele Turner
- Department of Genetics, Washington University in St. Louis, Saint Louis, United States
| | - Cyril J Versoza
- Center for Evolution and Medicine, Arizona State University, Tempe, United States
| | - Richard J Wang
- Department of Biology, Indiana University, Bloomington, United States
| | - Alivia Lee Price
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ellie Armstrong
- Department of Biology, Stanford University, Stanford, United States
| | - Meritxell Riera
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Jedidiah Carlson
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Hwei-Yen Chen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, United States
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, United States
| | | | | | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, United States
| | - George P Tiley
- Department of Biology, Duke University, Durham, United States
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, United States
| | - Guojie Zhang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
24
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
25
|
Abstract
This protocol explains how to use the program MCMCtree to estimate divergence times in microbial phylogenies. The main advantage of MCMCtree is the implementation of an approximation to the molecular data likelihood that dramatically speeds up computation during Bayesian MCMC sampling of divergence times and evolutionary rates. The approximation allows the analysis of large phylogenies with hundreds of taxa and molecular alignments with thousands or millions of sites. Two examples are used to illustrate Bayesian clock dating with MCMCtree. The first is a phylogeny of (mostly) microbial eukaryotes and prokaryotes encompassing the major groups of life on Earth, and for which fossil information, to calibrate the nodes of the phylogeny, is available. The second is a phylogeny of influenza viruses with known sampling times. An overview of Bayesian MCMC sampling is given as well as practical advice on issues such as construction of the time and rate prior and assessment of convergence of MCMC chains. Strategies for estimating times in microbial phylogenies for which neither fossil information nor sampling times are known are discussed.
Collapse
Affiliation(s)
- Mario Dos Reis
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
26
|
Cohen PA, Kodner RB. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol Evol 2021; 37:246-256. [PMID: 34949483 DOI: 10.1016/j.tree.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
While there is significant data on eukaryogenesis and the early development of the eukaryotic lineage, major uncertainties regarding their origins and evolution remain, including questions of taxonomy, timing, and paleoecology. Here we examine the origin and diversification of the eukaryotes in the Proterozoic Eon as viewed through fossils, organic biomarkers, molecular clocks, phylogenies, and redox proxies. Our interpretation of the integration of these data suggest that eukaryotes were likely aerobic and established in Proterozoic ecosystems. We argue that we must closely examine and integrate both biological and geological evidence and examine points of agreement and contention to gain new insights into the true origin and early evolutionary history of this vastly important group.
Collapse
Affiliation(s)
- Phoebe A Cohen
- Williams College Department of Geosciences, Williamstown, MA, USA.
| | - Robin B Kodner
- Western Washington University Department of Environmental Sciences, Bellingham, WA, USA.
| |
Collapse
|
27
|
Mulder KP, Alarcón-Ríos L, Nicieza AG, Fleischer RC, Bell RC, Velo-Antón G. Independent evolutionary transitions to pueriparity across multiple timescales in the viviparous genus Salamandra. Mol Phylogenet Evol 2021; 167:107347. [PMID: 34763070 DOI: 10.1016/j.ympev.2021.107347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
The ability to bear live offspring, viviparity, has evolved multiple times across the tree of life and is a remarkable adaptation with profound life-history and ecological implications. Within amphibians the ancestral reproductive mode is oviparity followed by a larval life stage, but viviparity has evolved independently in all three amphibian orders. Two types of viviparous reproduction can be distinguished in amphibians; larviparity and pueriparity. Larviparous amphibians deliver larvae into nearby ponds and streams, while pueriparous amphibians deliver fully developed juveniles and thus do not require waterbodies for reproduction. Among amphibians, the salamander genus Salamandra is remarkable as it exhibits both inter- and intraspecific variation in the occurrence of larviparity and pueriparity. While the evolutionary relationships among Salamandra lineages have been the focus of several recent studies, our understanding of how often and when transitions between modes occurred is still incomplete. Furthermore, in species with intraspecific variation, the reproductive mode of a given population can only be confirmed by direct observation of births and thus the prevalence of pueriparous populations is also incompletely documented. We used sequence capture to obtain 1,326 loci from 94 individuals from across the geographic range of the genus, focusing on potential reproductive mode transition zones. We also report additional direct observations of pueriparous births for 20 new locations and multiple lineages. We identify at least five independent transitions from the ancestral mode of larviparity to pueriparity among and within species, occurring at different evolutionary timescales ranging from the Pliocene to the Holocene. Four of these transitions occurred within species. Based on a distinct set of markers and analyses, we also confirm previous findings of introgression between species and the need for taxonomic revisions in the genus. We discuss the implications of our findings with respect to the evolution of this complex trait, and the potential of using five independent convergent transitions for further studies on the ecological context in which pueriparity evolves and the genetic architecture of this specialized reproductive mode.
Collapse
Affiliation(s)
- Kevin P Mulder
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 1000 Constitution Avenue NW, Washington, DC 20560, USA; Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA.
| | - Lucía Alarcón-Ríos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo UO, Oviedo, Spain
| | - Alfredo G Nicieza
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo UO, Oviedo, Spain; Biodiversity Research Institute (IMIB), University of Oviedo-Principality of Asturias-CSIC, 33600 Mieres, Spain
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 1000 Constitution Avenue NW, Washington, DC 20560, USA; Herpetology Department, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Guillermo Velo-Antón
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Universidade de Vigo, Grupo GEA, Departamento de Ecoloxía e Bioloxía Animal, Vigo, Spain.
| |
Collapse
|
28
|
Campbell CR, Tiley GP, Poelstra JW, Hunnicutt KE, Larsen PA, Lee HJ, Thorne JL, Dos Reis M, Yoder AD. Pedigree-based and phylogenetic methods support surprising patterns of mutation rate and spectrum in the gray mouse lemur. Heredity (Edinb) 2021; 127:233-244. [PMID: 34272504 PMCID: PMC8322134 DOI: 10.1038/s41437-021-00446-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations are the raw material on which evolution acts, and knowledge of their frequency and genomic distribution is crucial for understanding how evolution operates at both long and short timescales. At present, the rate and spectrum of de novo mutations have been directly characterized in relatively few lineages. Our study provides the first direct mutation-rate estimate for a strepsirrhine (i.e., the lemurs and lorises), which comprises nearly half of the primate clade. Using high-coverage linked-read sequencing for a focal quartet of gray mouse lemurs (Microcebus murinus), we estimated the mutation rate to be among the highest calculated for a mammal at 1.52 × 10-8 (95% credible interval: 1.28 × 10-8-1.78 × 10-8) mutations/site/generation. Further, we found an unexpectedly low count of paternal mutations, and only a modest overrepresentation of mutations at CpG sites. Despite the surprising nature of these results, we found both the rate and spectrum to be robust to the manipulation of a wide range of computational filtering criteria. We also sequenced a technical replicate to estimate a false-negative and false-positive rate for our data and show that any point estimate of a de novo mutation rate should be considered with a large degree of uncertainty. For validation, we conducted an independent analysis of context-dependent substitution types for gray mouse lemur and five additional primate species for which de novo mutation rates have also been estimated. These comparisons revealed general consistency of the mutation spectrum between the pedigree-based and the substitution-rate analyses for all species compared.
Collapse
Affiliation(s)
- C Ryan Campbell
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | | | - Kelsie E Hunnicutt
- Department of Biology, Duke University, Durham, NC, USA
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, NC, USA
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Hui-Jie Lee
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
29
|
Yao N, Schmitz RJ, Johannes F. Epimutations Define a Fast-Ticking Molecular Clock in Plants. Trends Genet 2021; 37:699-710. [PMID: 34016450 PMCID: PMC8282728 DOI: 10.1016/j.tig.2021.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Stochastic gains and losses of DNA methylation at CG dinucleotides are a frequent occurrence in plants. These spontaneous 'epimutations' occur at a rate that is 100 000 times higher than the genetic mutation rate, are effectively neutral at the genome-wide scale, and are stably inherited across mitotic and meiotic cell divisions. Mathematical models have been extraordinarily successful at describing how epimutations accumulate in plant genomes over time, making this process one of the most predictable epigenetic phenomena to date. Here, we propose that their high rate and effective neutrality make epimutations a powerful new molecular clock for timing evolutionary events of the recent past and for age dating of long-lived perennials such as trees.
Collapse
Affiliation(s)
- Nan Yao
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, USA; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Frank Johannes
- Institute for Advanced Study, Technical University of Munich, Garching, Germany; Population Epigenetics and Epigenomics, Technical University of Munich, Freising, Germany.
| |
Collapse
|
30
|
Yoder AD, Tiley GP. The challenge and promise of estimating the de novo mutation rate from whole-genome comparisons among closely related individuals. Mol Ecol 2021; 30:6087-6100. [PMID: 34062029 DOI: 10.1111/mec.16007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Germline mutations are the raw material for natural selection, driving species evolution and the generation of earth's biodiversity. Without this driver of genetic diversity, life on earth would stagnate. Yet, it is a double-edged sword. An excess of mutations can have devastating effects on fitness and population viability. It is therefore one of the great challenges of molecular ecology to determine the rate and mechanisms by which these mutations accrue across the tree of life. Advances in high-throughput sequencing technologies are providing new opportunities for characterizing the rates and mutational spectra within species and populations thus informing essential evolutionary parameters such as the timing of speciation events, the intricacies of historical demography, and the degree to which lineages are subject to the burdens of mutational load. Here, we will focus on both the challenge and promise of whole-genome comparisons among parents and their offspring from known pedigrees for the detection of germline mutations as they arise in a single generation. The potential of these studies is high, but the field is still in its infancy and much uncertainty remains. Namely, the technical challenges are daunting given that pedigree-based genome comparisons are essentially searching for needles in a haystack given the very low signal to noise ratio. Despite the challenges, we predict that rapidly developing methods for whole-genome comparisons hold great promise for integrating empirically derived estimates of de novo mutation rates and mutation spectra across many molecular ecological applications.
Collapse
Affiliation(s)
- Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
31
|
Zhu T, Yang Z. Complexity of the simplest species tree problem. Mol Biol Evol 2021; 38:3993-4009. [PMID: 33492385 PMCID: PMC8382899 DOI: 10.1093/molbev/msab009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
The multispecies coalescent model provides a natural framework for species tree estimation accounting for gene-tree conflicts. Although a number of species tree methods under the multispecies coalescent have been suggested and evaluated using simulation, their statistical properties remain poorly understood. Here, we use mathematical analysis aided by computer simulation to examine the identifiability, consistency, and efficiency of different species tree methods in the case of three species and three sequences under the molecular clock. We consider four major species-tree methods including concatenation, two-step, independent-sites maximum likelihood, and maximum likelihood. We develop approximations that predict that the probit transform of the species tree estimation error decreases linearly with the square root of the number of loci. Even in this simplest case, major differences exist among the methods. Full-likelihood methods are considerably more efficient than summary methods such as concatenation and two-step. They also provide estimates of important parameters such as species divergence times and ancestral population sizes,whereas these parameters are not identifiable by summary methods. Our results highlight the need to improve the statistical efficiency of summary methods and the computational efficiency of full likelihood methods of species tree estimation.
Collapse
Affiliation(s)
- Tianqi Zhu
- Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Ziheng Yang
- Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|