1
|
Wright M, Kaur M, Thompson LK, Cox G. A historical perspective on the multifunctional outer membrane channel protein TolC in Escherichia coli. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:6. [PMID: 39863731 PMCID: PMC11762307 DOI: 10.1038/s44259-025-00078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Since its discovery nearly 60 years ago, TolC has been associated with various cellular functions in Escherichia coli, including the efflux of environmental stressors and virulence factors. It also acts as a receptor for specific bacteriophages and the colicin E1 toxin. This review highlights key discoveries over the past six decades and emphasizes the remaining gaps in understanding how TolC contributes to physiological functions in E. coli.
Collapse
Affiliation(s)
- Mallory Wright
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Mandeep Kaur
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada.
| |
Collapse
|
2
|
Dorison L, Béchon N, Martin-Gallausiaux C, Chamorro-Rodriguez S, Vitrenko Y, Ouazahrou R, Villa R, Deschamps J, Briandet R, Gribaldo S, Ghigo JM, Beloin C. Identification of Veillonella parvula and Streptococcus gordonii adhesins mediating co-aggregation and its impact on physiology and mixed biofilm structure. mBio 2024; 15:e0217124. [PMID: 39526776 PMCID: PMC11633186 DOI: 10.1128/mbio.02171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
The dental plaque is a polymicrobial community where biofilm formation and co-aggregation, the ability to bind to other bacteria, play a major role in the construction of an organized consortium. One of its prominent members is the anaerobic diderm Veillonella parvula, considered a bridging species, which growth depends on lactate produced by oral streptococci. Understanding how V. parvula co-aggregates and the impact of aggregation has long been hampered due to the lack of appropriate genetic tools. Here we studied co-aggregation of the naturally competent strain V. parvula SKV38 with various oral bacteria and its effect on cell physiology. We show that V. parvula requires different trimeric autotransporters of the type V secretion system to adhere to oral streptococci and actinomyces. In addition, we describe a novel adhesin of Streptococcus gordonii, VisA (SGO_2004), as the protein responsible for co-aggregation with V. parvula. Finally, we show that co-aggregation does not impact cell-cell communication, which is mainly driven by environmental sensing, but plays an important role in the architecture and species distribution within the biofilm. IMPORTANCE Our research explores the mechanisms of bacterial adhesion within the dental plaque, focusing on Veillonella parvula, a key player in the oral microbiome. Dependent on lactate from streptococci, V. parvula plays a crucial bridging role in the formation of dental biofilms by co-aggregating with other bacteria. Despite its importance, the understanding of the underlying mechanisms of co-aggregation remains limited. Our study shows that V. parvula uses different trimeric autotransporters to adhere to oral Streptococci and Actinomyces. We additionally identify a novel adhesin from S. gordonii, VisA (SGO_2004) facilitating this interaction. We found that although co-aggregation does not affect cell-cell communication, it is critical for biofilm structure and species distribution. This research opens up new avenues for exploring microbial interactions in dental health and diseases.
Collapse
Affiliation(s)
- Louis Dorison
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Nathalie Béchon
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Camille Martin-Gallausiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Susan Chamorro-Rodriguez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Yakov Vitrenko
- Institut Pasteur, Université Paris Cité, C2RT, Biomics Technology Platform, Paris, France
| | - Rania Ouazahrou
- Institut Pasteur, Université Paris Cité, C2RT, Biomics Technology Platform, Paris, France
| | - Romain Villa
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Julien Deschamps
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Romain Briandet
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Laboratory, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Genetics of Biofilms Laboratory, Paris, France
| |
Collapse
|
3
|
Luo Y, Chen Z, Lian S, Ji X, Zhu C, Zhu G, Xia P. The Love and Hate Relationship between T5SS and Other Secretion Systems in Bacteria. Int J Mol Sci 2023; 25:281. [PMID: 38203452 PMCID: PMC10778856 DOI: 10.3390/ijms25010281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteria have existed on Earth for billions of years, exhibiting ubiquity and involvement in various biological activities. To ensure survival, bacteria usually release and secrete effector proteins to acquire nutrients and compete with other microorganisms for living space during long-term evolution. Consequently, bacteria have developed a range of secretion systems, which are complex macromolecular transport machines responsible for transporting proteins across the bacterial cell membranes. Among them, one particular secretion system that stands out from the rest is the type V secretion system (T5SS), known as the "autotransporter". Bacterial activities mediated by T5SS include adherence to host cells or the extracellular matrix, invasion of host cells, immune evasion and serum resistance, contact-dependent growth inhibition, cytotoxicity, intracellular flow, protease activity, autoaggregation, and biofilm formation. In a bacterial body, it is not enough to rely on T5SS alone; in most cases, T5SS cooperates with other secretion systems to carry out bacterial life activities, but regardless of how good the relationship is, there is friction between the secretion systems. T5SS and T1SS/T2SS/T3SS/T6SS all play a synergistic role in the pathogenic processes of bacteria, such as nutrient acquisition, pathogenicity enhancement, and immune modulation, but T5SS indirectly inhibits the function of T4SS. This could be considered a love-hate relationship between secretion systems. This paper uses the systematic literature review methodology to review 117 journal articles published within the period from 1995 to 2024, which are all available from the PubMed, Web of Science, and Scopus databases and aim to elucidate the link between T5SS and other secretion systems, providing clues for future prevention and control of bacterial diseases.
Collapse
Affiliation(s)
- Yi Luo
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Ziyue Chen
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Xingduo Ji
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou 225009, China;
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Li S, Wang Y, Yang R, Zhu X, Bai H, Deng X, Bai J, Zhang Y, Xiao Y, Li Z, Liu Z, Zhou Z. Outer membrane protein OMP76 of Riemerella anatipestifer contributes to complement evasion and virulence by binding to duck complement factor vitronectin. Virulence 2023; 14:2223060. [PMID: 37326479 PMCID: PMC10281475 DOI: 10.1080/21505594.2023.2223060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Riemerella anatipestifer is an important bacterial pathogen in poultry. Pathogenic bacteria recruit host complement factors to resist the bactericidal effect of serum complement. Vitronectin (Vn) is a complementary regulatory protein that inhibits the formation of the membrane attack complex (MAC). Microbes use outer membrane proteins (OMPs) to hijack Vn for complement evasion. However, the mechanism by which R. anatipestifer achieves evasion is unclear. This study aimed to characterise OMPs of R. anatipestifer which interact with duck Vn (dVn) during complement evasion. Far-western assays and comparison of wild-type and mutant strains that were treated with dVn and duck serum demonstrated particularly strong binding of OMP76 to dVn. These data were confirmed with Escherichia coli strains expressing and not expressing OMP76. Combining tertiary structure analysis and homology modelling, truncated and knocked-out fragments of OMP76 showed that a cluster of critical amino acids in an extracellular loop of OMP76 mediate the interaction with dVn. Moreover, binding of dVn to R. anatipestifer inhibited MAC deposition on the bacterial surface thereby enhancing survival in duck serum. Virulence of the mutant strain ΔOMP76 was attenuated significantly relative to the wild-type strain. Furthermore, adhesion and invasion abilities of ΔOMP76 decreased, and histopathological changes showed that ΔOMP76 was less virulent in ducklings. Thus, OMP76 is a key virulence factor of R. anatipestifer. The identification of OMP76-mediated evasion of complement by recruitment of dVn contributes significantly to the understanding of the molecular mechanism by which R. anatipestifer escapes host innate immunity and provides a new target for the development of subunit vaccines.
Collapse
Affiliation(s)
- Sen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanhua Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Rongkun Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaotong Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hongying Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiao Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhengfei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Lee CY, Ong HX, Tan CY, Low SE, Phang LY, Lai J, Ooi PT, Fong MWC. Molecular Characterization and Phylogenetic Analysis of Outer membrane protein P2 ( OmpP2) of Glaesserella ( Haemophilus) parasuis Isolates in Central State of Peninsular Malaysia. Pathogens 2023; 12:pathogens12020308. [PMID: 36839580 PMCID: PMC9966854 DOI: 10.3390/pathogens12020308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Glaesserella (Haemophilus) parasuis, the etiological agent of Glässer's disease, is an economically significant pathogen commonly associated with serofibrinous polyserositis, arthritis, fibrinous bronchopneumonia and/or meningitis. This study is the first attempt to molecularly characterize and provide a detailed overview of the genetic variants of G. parasuis present in Malaysia, in reference to its serotype, virulence-associated trimeric autotransporters (vtaA) gene and outer membrane protein P2 (OmpP2) gene. The G. parasuis isolates (n = 11) from clinically sick field samples collected from two major pig producing states (Selangor and Perak) were selected for analysis. Upon multiplex PCR, the majority of the isolates (eight out of 11) were identified to be serotype 5 or 12, and interestingly, serotypes 3, 8 and 15 were also detected, which had never been reported in Malaysia prior to this. Generally, virulent vtaA was detected for all isolates, except for one, which displayed a nonvirulent vtaA. A phylogenetic analysis of the OmpP2 gene revealed that the majority of Malaysian isolates were clustered into genotype 1, which could be further divided into Ia and Ib, while only one isolate was clustered into genotype 2.
Collapse
Affiliation(s)
- Chee Yien Lee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Hui Xin Ong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Chew Yee Tan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Suet Ee Low
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Jyhmirn Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi City 60004, Taiwan
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
- Correspondence: (P.T.O.); (M.W.C.F.)
| | - Michelle Wai Cheng Fong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
- Correspondence: (P.T.O.); (M.W.C.F.)
| |
Collapse
|
6
|
Alqassim SS. Functional Mimicry of Eukaryotic Actin Assembly by Pathogen Effector Proteins. Int J Mol Sci 2022; 23:ijms231911606. [PMID: 36232907 PMCID: PMC9569871 DOI: 10.3390/ijms231911606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The actin cytoskeleton lies at the heart of many essential cellular processes. There are hundreds of proteins that cells use to control the size and shape of actin cytoskeletal networks. As such, various pathogens utilize different strategies to hijack the infected eukaryotic host actin dynamics for their benefit. These include the control of upstream signaling pathways that lead to actin assembly, control of eukaryotic actin assembly factors, encoding toxins that distort regular actin dynamics, or by encoding effectors that directly interact with and assemble actin filaments. The latter class of effectors is unique in that, quite often, they assemble actin in a straightforward manner using novel sequences, folds, and molecular mechanisms. The study of these mechanisms promises to provide major insights into the fundamental determinants of actin assembly, as well as a deeper understanding of host-pathogen interactions in general, and contribute to therapeutic development efforts targeting their respective pathogens. This review discusses mechanisms and highlights shared and unique features of actin assembly by pathogen effectors that directly bind and assemble actin, focusing on eukaryotic actin nucleator functional mimics Rickettsia Sca2 (formin mimic), Burkholderia BimA (Ena/VASP mimic), and Vibrio VopL (tandem WH2-motif mimic).
Collapse
Affiliation(s)
- Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Health Care City, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
7
|
Chatterjee S, Basak AJ, Nair AV, Duraivelan K, Samanta D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol Lett 2021; 368:6045506. [PMID: 33355339 DOI: 10.1093/femsle/fnaa220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig) domains are one of the most widespread protein domains encoded by the human genome and are present in a large array of proteins with diverse biological functions. These Ig domains possess a central structure, the immunoglobulin-fold, which is a sandwich of two β sheets, each made up of anti-parallel β strands, surrounding a central hydrophobic core. Apart from humans, proteins containing Ig-like domains are also distributed in a vast selection of organisms including vertebrates, invertebrates, plants, viruses and bacteria where they execute a wide array of discrete cellular functions. In this review, we have described the key structural deviations of bacterial Ig-folds when compared to the classical eukaryotic Ig-fold. Further, we have comprehensively grouped all the Ig-domain containing adhesins present in both Gram-negative and Gram-positive bacteria. Additionally, we describe the role of these particular adhesins in host tissue attachment, colonization and subsequent infection by both pathogenic and non-pathogenic Escherichia coli as well as other bacterial species. The structural properties of these Ig-domain containing adhesins, along with their interactions with specific Ig-like and non Ig-like binding partners present on the host cell surface have been discussed in detail.
Collapse
Affiliation(s)
- Shruti Chatterjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Asha V Nair
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
8
|
Pimenta AI, Kilcoyne M, Bernardes N, Mil-Homens D, Joshi L, Fialho AM. Burkholderia cenocepacia BCAM2418-induced antibody inhibits bacterial adhesion, confers protection to infection and enables identification of host glycans as adhesin targets. Cell Microbiol 2021; 23:e13340. [PMID: 33822465 DOI: 10.1111/cmi.13340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Trimeric Autotransporter Adhesins (TAA) found in Gram-negative bacteria play a key role in virulence. This is the case of Burkholderia cepacia complex (Bcc), a group of related bacteria able to cause infections in patients with cystic fibrosis. These bacteria use TAAs, among other virulence factors, to bind to host protein receptors and their carbohydrate ligands. Blocking such contacts is an attractive approach to inhibit Bcc infections. In this study, using an antibody produced against the TAA BCAM2418 from the epidemic strain Burkholderia cenocepacia K56-2, we were able to uncover its roles as an adhesin and the type of host glycan structures that serve as recognition targets. The neutralisation of BCAM2418 was found to cause a reduction in the adhesion of the bacteria to bronchial cells and mucins. Moreover, in vivo studies have shown that the anti-BCAM2418 antibody exerted an inhibitory effect during infection in Galleria mellonella. Finally, inferred by glycan arrays, we were able to predict for the first time, host glycan epitopes for a TAA. We show that BCAM2418 favoured binding to 3'sialyl-3-fucosyllactose, histo-blood group A, α-(1,2)-linked Fuc-containing structures, Lewis structures and GM1 gangliosides. In addition, the glycan microarrays demonstrated similar specificities of Burkholderia species for their most intensely binding carbohydrates.
Collapse
Affiliation(s)
- Andreia I Pimenta
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Michelle Kilcoyne
- Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Lokesh Joshi
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Arsenio M Fialho
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
9
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
10
|
Rooke JL, Icke C, Wells TJ, Rossiter AE, Browning DF, Morris FC, Leo JC, Schütz MS, Autenrieth IB, Cunningham AF, Linke D, Henderson IR. BamA and BamD Are Essential for the Secretion of Trimeric Autotransporter Adhesins. Front Microbiol 2021; 12:628879. [PMID: 33708185 PMCID: PMC7940764 DOI: 10.3389/fmicb.2021.628879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The BAM complex in Escherichia coli is composed of five proteins, BamA-E. BamA and BamD are essential for cell viability and are required for the assembly of β-barrel outer membrane proteins. Consequently, BamA and BamD are indispensable for secretion via the classical autotransporter pathway (Type 5a secretion). In contrast, BamB, BamC, and BamE are not required for the biogenesis of classical autotransporters. Recently, we demonstrated that TamA, a homologue of BamA, and its partner protein TamB, were required for efficient secretion of proteins via the classical autotransporter pathway. The trimeric autotransporters are a subset of the Type 5-secreted proteins. Unlike the classical autotransporters, they are composed of three identical polypeptide chains which must be assembled together to allow secretion of their cognate passenger domains. In contrast to the classical autotransporters, the role of the Bam and Tam complex components in the biogenesis of the trimeric autotransporters has not been investigated fully. Here, using the Salmonella enterica trimeric autotransporter SadA and the structurally similar YadA protein of Yersinia spp., we identify the importance of BamA and BamD in the biogenesis of the trimeric autotransporters and reveal that BamB, BamC, BamE, TamA and TamB are not required for secretion of functional passenger domain on the cell surface. Importance The secretion of trimeric autotransporters (TAA's) has yet to be fully understood. Here we show that efficient secretion of TAAs requires the BamA and D proteins, but does not require BamB, C or E. In contrast to classical autotransporter secretion, neither trimeric autotransporter tested required TamA or B proteins to be functionally secreted.
Collapse
Affiliation(s)
- Jessica L Rooke
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Christopher Icke
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Timothy J Wells
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda E Rossiter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Douglas F Browning
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Faye C Morris
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jack C Leo
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Monika S Schütz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ingo B Autenrieth
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Rahbar MR, Zarei M, Jahangiri A, Khalili S, Nezafat N, Negahdaripour M, Fattahian Y, Savardashtaki A, Ghasemi Y. Non-adaptive Evolution of Trimeric Autotransporters in Brucellaceae. Front Microbiol 2020; 11:560667. [PMID: 33281759 PMCID: PMC7688925 DOI: 10.3389/fmicb.2020.560667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Brucella species are Gram-negative, facultative intracellular pathogens. They are the main cause of brucellosis, which has led to a global health burden. Adherence of the pathogen to the host cells is the first step in the infection process. The bacteria can adhere to various biotic and abiotic surfaces using their outer membrane proteins. Trimeric autotransporter adhesins (TAAs) are modular homotrimers of various length and domain complexity. They are a diverse, and widespread gene family constituting the type Vc secretion pathway. These adhesins have been established as virulence factors in Brucellaceae. To date, no comprehensive and exhaustive study has been performed on the trimeric autotransporter family in the genus. In the present study, various bioinformatics tools were used to provide a novel evolutionary insight into the sequence and structure of this protein family in Brucellaceae. To this end, a dataset of all trimeric autotransporters from the Brucella genomes was built. Analyses included but were not limited to sequence alignment, phylogenetic tree constructions, codon-based test for selection, clustering of the sequences, and structure (primary to quaternary) predictions. Batch analyzes of the dataset suggested the existence of a few structural domains within the whole population. BatA from the B. abortus 2308 genome was selected as a reference to describe the features of these structural domains. Furthermore, we examined the structural basis for the observed rigidity and resiliency of the protein structure through a molecular dynamics evaluation, which led us to deduce that the random drift results in the non-adaptive evolution of the trimeric autotransporter genes in the Brucella genus. Notably, the modifications have occurred across the genus without interference of gene transmission.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaser Fattahian
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Phenotypic characterization of trimeric autotransporter adhesin-defective bcaC mutant of Burkholderia cenocepacia: cross-talk towards the histidine kinase BCAM0218. Microbes Infect 2020; 22:457-466. [DOI: 10.1016/j.micinf.2020.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
|
13
|
Holland-Tummillo KM, Shoudy LE, Steiner D, Kumar S, Rosa SJ, Namjoshi P, Singh A, Sellati TJ, Gosselin EJ, Hazlett KRO. Autotransporter-Mediated Display of Complement Receptor Ligands by Gram-Negative Bacteria Increases Antibody Responses and Limits Disease Severity. Pathogens 2020; 9:E375. [PMID: 32422907 PMCID: PMC7281241 DOI: 10.3390/pathogens9050375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The targeting of immunogens/vaccines to specific immune cells is a promising approach for amplifying immune responses in the absence of exogenous adjuvants. However, the targeting approaches reported thus far require novel, labor-intensive reagents for each vaccine and have primarily been shown as proof-of-concept with isolated proteins and/or inactivated bacteria. We have engineered a plasmid-based, complement receptor-targeting platform that is readily applicable to live forms of multiple gram-negative bacteria, including, but not limited to, Escherichia coli, Klebsiella pneumoniae, and Francisella tularensis. Using F. tularensis as a model, we find that targeted bacteria show increased binding and uptake by macrophages, which coincides with increased p38 and p65 phosphorylation. Mice vaccinated with targeted bacteria produce higher titers of specific antibody that recognizes a greater diversity of bacterial antigens. Following challenge with homologous or heterologous isolates, these mice exhibited less weight loss and/or accelerated weight recovery as compared to counterparts vaccinated with non-targeted immunogens. Collectively, these findings provide proof-of-concept for plasmid-based, complement receptor-targeting of live gram-negative bacteria.
Collapse
Affiliation(s)
- Kristen M Holland-Tummillo
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (K.M.H.-T.); (D.S.); (S.K.); (S.J.R.); (P.N.); (E.J.G.)
| | - Lauren E Shoudy
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA;
| | - Donald Steiner
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (K.M.H.-T.); (D.S.); (S.K.); (S.J.R.); (P.N.); (E.J.G.)
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (K.M.H.-T.); (D.S.); (S.K.); (S.J.R.); (P.N.); (E.J.G.)
| | - Sarah J Rosa
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (K.M.H.-T.); (D.S.); (S.K.); (S.J.R.); (P.N.); (E.J.G.)
| | - Prachi Namjoshi
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (K.M.H.-T.); (D.S.); (S.K.); (S.J.R.); (P.N.); (E.J.G.)
| | - Anju Singh
- Department of Infectious Disease, Southern Research Institute, Birmingham, AL 35211, USA; (A.S.); (T.J.S.)
| | - Timothy J Sellati
- Department of Infectious Disease, Southern Research Institute, Birmingham, AL 35211, USA; (A.S.); (T.J.S.)
| | - Edmund J Gosselin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (K.M.H.-T.); (D.S.); (S.K.); (S.J.R.); (P.N.); (E.J.G.)
| | - Karsten RO Hazlett
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (K.M.H.-T.); (D.S.); (S.K.); (S.J.R.); (P.N.); (E.J.G.)
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA;
| |
Collapse
|
14
|
Pimenta AI, Mil‐Homens D, Fialho AM. Burkholderia cenocepacia-host cell contact controls the transcription activity of the trimeric autotransporter adhesin BCAM2418 gene. Microbiologyopen 2020; 9:e998. [PMID: 32097539 PMCID: PMC7142374 DOI: 10.1002/mbo3.998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/11/2022] Open
Abstract
Cell-to-cell early contact between pathogens and their host cells is required for the establishment of many infections. Among various surface factors produced by bacteria that allow an organism to become established in a host, the class of adhesins is a primary determinant. Burkholderia cenocepacia adheres to the respiratory epithelium of cystic fibrosis patients and causes chronic inflammation and disease. Cell-to-cell contacts are promoted by various kinds of adhesins, including trimeric autotransporter adhesins (TAAs). We observed that among the 7 TAA genes found in the B. cenocepacia K56-2 genome, two of them (BCAM2418 and BCAS0236) express higher levels of mRNA following physical contact with host cells. Further analysis revealed that the B. cenocepacia K56-2 BCAM2418 gene shows an on-off switch after an initial colonization period, exhibits a strong expression dependent on the host cell type, and enhances its function on cell adhesion. Furthermore, our analysis revealed that adhesion to mucin-coated surfaces dramatically increases the expression levels of BCAM2418. Abrogation of mucin O-glycans turns BCAM2418 gene expression off and impairs bacterial adherence. Overall, our findings suggest that glycosylated extracellular components of host membrane might be a binding site for B. cenocepacia and a signal for the differential expression of the TAA gene BCAM2418.
Collapse
Affiliation(s)
- Andreia I. Pimenta
- iBB‐Institute for Bioengineering and BiosciencesInstituto Superior Técnico, University of LisbonLisbonPortugal
| | - Dalila Mil‐Homens
- iBB‐Institute for Bioengineering and BiosciencesInstituto Superior Técnico, University of LisbonLisbonPortugal
| | - Arsenio M. Fialho
- iBB‐Institute for Bioengineering and BiosciencesInstituto Superior Técnico, University of LisbonLisbonPortugal
- Department of BioengineeringInstituto Superior TécnicoUniversity of LisbonLisbonPortugal
| |
Collapse
|
15
|
Pierce into the Native Structure of Ata, a Trimeric Autotransporter of Acinetobacter baumannii ATCC 17978. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09920-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Interactions between the Trimeric Autotransporter Adhesin EmaA and Collagen Revealed by Three-Dimensional Electron Tomography. J Bacteriol 2019; 201:JB.00297-19. [PMID: 31160398 DOI: 10.1128/jb.00297-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial adhesion to host tissues is considered the first and critical step of microbial infection. The extracellular matrix protein adhesin A (EmaA) is a collagen-binding adhesin of the periodontal pathogen Aggregatibacter actinomycetemcomitans Three 202-kDa EmaA monomers form antenna-like structures on the bacterial surface with the functional domain located at the apical end. The structure of the 30-nm functional domain has been determined by three-dimensional (3D) electron tomography and subvolume averaging. The region exhibits a complex architecture composed of three subdomains (SI to SIII) and a linker between subdomains SII and SIII. However, the molecular interaction between the adhesin receptor complexes has yet to be revealed. This study provides the first detailed 3D structure of reconstituted EmaA/collagen complexes obtained using 3D electron tomography and image processing techniques. The observed interactions of EmaA with collagen were not to whole, intact fibrils, but rather to individual collagen triple helices dissociated from the fibrils. The majority of the contacts with the EmaA functional domain encompassed subdomains SII and SIII and in some cases the tip of the apical domain, involving SI. These data suggest a multipronged mechanism for the interaction of Gram-negative bacteria with collagen.IMPORTANCE Bacterial adhesion is a crucial step for bacterial colonization and infection. In recent years, the number of antibiotic-resistant strains has dramatically increased; therefore, there is a need to search for novel antimicrobial agents. Thus, great efforts are being devoted to develop a clear understanding of the bacterial adhesion mechanism for preventing infections. In host/pathogen interactions, once repulsive forces are overcome, adhesins recognize and tightly bind to specific receptors on the host cell or tissue components. Here, we present the first 3D structure of the interaction between the collagen-binding adhesin EmaA and collagen, which is critical for the development of endocarditis in humans.
Collapse
|
17
|
Leibiger K, Schweers JM, Schütz M. Biogenesis and function of the autotransporter adhesins YadA, intimin and invasin. Int J Med Microbiol 2019; 309:331-337. [PMID: 31176600 DOI: 10.1016/j.ijmm.2019.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
Bacteria often express numerous virulence factors. These virulence factors make them successful pathogens, by e.g. mediating attachment to host cells and thereby facilitating persistence or invasion, or by contributing to the evasion of the host immune system to allow proliferation and spread within the host and in the environment. The site of first contact of Gram negative bacteria with the host is the bacterial outer membrane (OM). Consisting of an asymmetrical lipid bilayer with phospholipids forming the inner, and lipopolysaccharides forming the outer leaflet, the OM harbors numerous integral membrane proteins that are almost exclusively β-barrel proteins. One distinct family of OM β-barrel proteins strongly linked to bacterial virulence are the autotransporter (AT) proteins. During the last years huge progress has been made to better understand the mechanisms underlying the insertion of AT proteins into the OM and also AT function for interaction with the host. This review shortly summarizes our current knowledge about outer membrane protein (OMP) and more specifically AT biogenesis and function. We focused on the AT proteins that we haved studied in most detail: i.e. the Yersinia adhesin A (YadA) and invasin of Yersinia enterocolitica (Ye) as well as its homolog intimin (Int) expressed by enteropathogenic Escherichia coli. In addition, this review provides a short outlook about how we could possibly use this knowledge to fight infection.
Collapse
Affiliation(s)
- Karolin Leibiger
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Jonas Malte Schweers
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Monika Schütz
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
18
|
Paxman JJ, Lo AW, Sullivan MJ, Panjikar S, Kuiper M, Whitten AE, Wang G, Luan CH, Moriel DG, Tan L, Peters KM, Phan MD, Gee CL, Ulett GC, Schembri MA, Heras B. Unique structural features of a bacterial autotransporter adhesin suggest mechanisms for interaction with host macromolecules. Nat Commun 2019; 10:1967. [PMID: 31036849 PMCID: PMC6488583 DOI: 10.1038/s41467-019-09814-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
Autotransporters are the largest family of outer membrane and secreted proteins in Gram-negative bacteria. Most autotransporters are localised to the bacterial surface where they promote colonisation of host epithelial surfaces. Here we present the crystal structure of UpaB, an autotransporter that is known to contribute to uropathogenic E. coli (UPEC) colonisation of the urinary tract. We provide evidence that UpaB can interact with glycosaminoglycans and host fibronectin. Unique modifications to its core β-helical structure create a groove on one side of the protein for interaction with glycosaminoglycans, while the opposite face can bind fibronectin. Our findings reveal far greater diversity in the autotransporter β-helix than previously thought, and suggest that this domain can interact with host macromolecules. The relevance of these interactions during infection remains unclear.
Collapse
Affiliation(s)
- Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, VIC, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Matthew J Sullivan
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, QLD, Australia
| | - Santosh Panjikar
- Macromolecular Crystallography, Australian Synchrotron, Clayton, 3168, VIC, Australia
- Department of Molecular Biology and Biochemistry, Monash University, Melbourne, 3800, VIC, Australia
| | - Michael Kuiper
- Molecular & Materials Modelling group Data61, CSIRO, Docklands, Melbourne, 8012, VIC, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, 2234, NSW, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, VIC, Australia
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Chicago, 60208, IL, USA
| | - Danilo G Moriel
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Christine L Gee
- Macromolecular Crystallography, Australian Synchrotron, Clayton, 3168, VIC, Australia
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia.
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, VIC, Australia.
| |
Collapse
|
19
|
Brewer ML, Dymock D, Brady RL, Singer BB, Virji M, Hill DJ. Fusobacterium spp. target human CEACAM1 via the trimeric autotransporter adhesin CbpF. J Oral Microbiol 2019; 11:1565043. [PMID: 30719234 PMCID: PMC6346709 DOI: 10.1080/20002297.2018.1565043] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
Neisseria meningitidis, Haemophilus influenzae, and Moraxella catarrhalis are pathogenic bacteria adapted to reside on human respiratory mucosal epithelia. One common feature of these species is their ability to target members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, especially CEACAM1, which is achieved via structurally distinct ligands expressed by each species. Beside respiratory epithelial cells, cells at the dentogingival junction express high levels of CEACAM1. It is possible that bacterial species resident within the oral cavity also utilise CEACAM1 for colonisation and invasion of gingival tissues. From a screen of 59 isolates from the human oral cavity representing 49 bacterial species, we identified strains from Fusobacterium bound to CEACAM1. Of the Fusobacterium species tested, the CEACAM1-binding property was exhibited by F. nucleatum (Fn) and F. vincentii (Fv) but not F. polymorphum (Fp) or F. animalis (Fa) strains tested. These studies identified that CEACAM adhesion was mediated using a trimeric autotransporter adhesin (TAA) for which no function has thus far been defined. We therefore propose the name CEACAM binding protein of Fusobacterium (CbpF). CbpF was identified to be present in the majority of unspeciated Fusobacterium isolates confirming a subset of Fusobacterium spp. are able to target human CEACAM1.
Collapse
Affiliation(s)
| | - David Dymock
- School of Oral and Dental Sciences, University of Bristol, UK
| | - R Leo Brady
- School of Biochemistry, University of Bristol, UK
| | | | - Mumtaz Virji
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Darryl J Hill
- School of Cellular & Molecular Medicine, University of Bristol, UK
| |
Collapse
|
20
|
Utilization of Variant and Fusion Proteins To Functionally Map the Aggregatibacter actinomycetemcomitans Trimeric Autotransporter Protein ApiA. Infect Immun 2018; 86:IAI.00697-17. [PMID: 29229732 DOI: 10.1128/iai.00697-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is a causative agent of localized aggressive periodontitis. Critical to its infection process is the first and essential step of attachment, which is related to the coordinated functions of surface components comprised of proteins and extracellular polysaccharides. One such protein is the outer membrane trimeric autotransporter protein ApiA, a versatile virulence factor with numerous functions, including cell binding, invasion, serum resistance, autoaggregation, and induction of cytokine release. Here we report on the use of Escherichia coli strains expressing protein variants to define the separate functions ascribed to the N terminus and those related to the C terminus. Importantly, a hybrid protein that comprised the N terminus of trimeric ApiA and the β-barrel domain of monomeric autotransporter Aae was constructed, which allowed the expression of a monomer surface-exposed domain of ApiA. Functional and phenotypic analyses demonstrated that the C terminus of ApiA forms an independent domain that is crucial for general stability and trimer formation, which appears to be associated with autoaggregation, biofilm formation, and surface expression. Importantly, the results show that the monomeric form of the N-terminal passenger domain of ApiA, while surface exposed, is sufficient for binding to buccal epithelial cells; however, it is not sufficient to allow aggregation and biofilm formation, strengthening the importance of the role of trimerization in these phenotypes.
Collapse
|
21
|
Shahsavani N, Sheikhha MH, Yousefi H, Sefid F. In silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:53-68. [PMID: 30234073 PMCID: PMC6134420 DOI: 10.22088/ijmcm.bums.7.1.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/24/2018] [Indexed: 12/30/2022]
Abstract
Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from severe meningococcal disease and septicemia. Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell adhesion, invasion, and antibody induction. It is identified in approximately 50% of N. meningitidis isolates, and is established as a vaccine candidate due to its antigenic effects. In the present study, we exploited bioinformatics tools to better understand and determine the 3D structure of NadA and its functional residues to select B cell epitopes, and provide information for elucidating the biological function and vaccine efficacy of NadA. Therefore, this study provided essential data to close gaps existing in biological areas. The most appropriate model of NadA was designed by SWISS MODEL software and important residues were determined using the subsequent epitope mapping procedures. Locations of important linear and conformational epitopes were determined and conserved residues were identified to broaden our knowledge of efficient vaccine design to reduce meningococcal infectioun in population. These data now provide a theme to design more broadly cross-protective antigens.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | | | - Hassan Yousefi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sefid
- Department of Biology, Science and Arts University, Yazd, Iran
| |
Collapse
|
22
|
Vo JL, Martínez Ortiz GC, Subedi P, Keerthikumar S, Mathivanan S, Paxman JJ, Heras B. Autotransporter Adhesins in Escherichia coli Pathogenesis. Proteomics 2017; 17. [PMID: 28665015 DOI: 10.1002/pmic.201600431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/21/2017] [Indexed: 12/14/2022]
Abstract
Most bacteria produce adhesion molecules to facilitate the interaction with host cells and establish successful infections. An important group of bacterial adhesins belong to the autotransporter (AT) superfamily, the largest group of secreted and outer membrane proteins in Gram-negative bacteria. AT adhesins possess diverse functions that facilitate bacterial colonisation, survival and persistence, and as such are often associated with increased bacterial fitness and pathogenic potential. In this review, we will describe AIDA-I type AT adhesins, which comprise the biggest and most diverse group in the AT family. We will focus on Escherichia coli proteins and define general aspects of their biogenesis, distribution, structural properties and key roles in infection.
Collapse
Affiliation(s)
- Julieanne L Vo
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Gabriela Constanza Martínez Ortiz
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Shivakumar Keerthikumar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Antibodies against In Vivo-Expressed Antigens Are Sufficient To Protect against Lethal Aerosol Infection with Burkholderia mallei and Burkholderia pseudomallei. Infect Immun 2017; 85:IAI.00102-17. [PMID: 28507073 DOI: 10.1128/iai.00102-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery.
Collapse
|
24
|
Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions. Front Cell Infect Microbiol 2017; 7:148. [PMID: 28536673 PMCID: PMC5422565 DOI: 10.3389/fcimb.2017.00148] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effectors. Structural studies have indicated that TpsA proteins mainly form elongated β helices that may be followed by specific functional domains. TpsB proteins belong to the Omp85 superfamily. Open questions remain on the mechanism of protein secretion in the absence of ATP or an electrochemical gradient across the outer membrane. The remarkable dynamics of the TpsB transporters and the progressive folding of their TpsA partners at the bacterial surface in the course of translocation are thought to be key elements driving the secretion process.
Collapse
Affiliation(s)
- Jeremy Guérin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Sarah Bigot
- Molecular Microbiology and Structural Biochemistry, Centre National de La Recherche Scientifique UMR 5086-Université Lyon 1, Institute of Biology and Chemistry of ProteinsLyon, France
| | - Robert Schneider
- NMR and Molecular Interactions, Université de Lille, Centre National de La Recherche Scientifique, UMR 8576-Unité de Glycobiologie Structurale et FonctionnelleLille, France
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Françoise Jacob-Dubuisson
- Université de Lille, Centre National de La Recherche Scientifique, Institut National de La Santé et de La Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Centre d'Infection et d'Immunité de LilleLille, France
| |
Collapse
|
25
|
|
26
|
Pina-Pedrero S, Olvera À, Bensaid A. The extended leader peptide of Haemophilus parasuis trimeric autotransporters conditions their protein expression in Escherichia coli. Protein Expr Purif 2017; 133:15-24. [PMID: 28254554 DOI: 10.1016/j.pep.2017.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/09/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
Trimeric autotransporters are surface-exposed proteins of Gram-negative bacteria belonging to the type V secretion system. They are involved in virulence and are targets for vaccine and diagnostic tool development, so optimal systems for their expression and purification are required. In the present study, the impact of the extended leader peptide of the Haemophilus parasuis virulence-associated trimeric autotransporters (VtaA) in its production as recombinant proteins in Escherichia coli was evaluated. The 13 genes encoding the VtaA1 to VtaA13 passenger domains of the strain Nagasaki were cloned in the pASK-IBA33plus plasmid and expressed in E. coli. Recombinant protein production was higher for truncated forms in which the entire leader peptide was deleted, and the recombinant protein accumulated in the cytoplasm of the cells. The yield of protein production of the different VtaAs was size dependent, and reached maximal amount at 2-4 h post -induction. The optimization of these conditions allowed to scale-up the production to obtain enough recombinant protein to immunize large animals.
Collapse
Affiliation(s)
- Sonia Pina-Pedrero
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Àlex Olvera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
27
|
Abstract
Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate.
Collapse
|
28
|
Sieira R, Bialer MG, Roset MS, Ruiz-Ranwez V, Langer T, Arocena GM, Mancini E, Zorreguieta A. Combinatorial control of adhesion of Brucella abortus 2308 to host cells by transcriptional rewiring of the trimeric autotransporter btaE gene. Mol Microbiol 2016; 103:553-565. [PMID: 27862467 DOI: 10.1111/mmi.13576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 11/28/2022]
Abstract
Regulatory network plasticity is a key attribute underlying changes in bacterial gene expression and a source of phenotypic diversity to interact with the surrounding environment. Here, we sought to study the transcriptional circuit of HutC, a regulator of both metabolic and virulence genes of the facultative intracellular pathogen Brucella. Using in silico and biochemical approaches, we identified a novel functional HutC-binding site upstream of btaE, a trimeric-autotransporter adhesin involved in the attachment of Brucella to host extracellular matrix components. Moreover, we identified two additional regulators, one of which, MdrA, acts in concert with HutC to exert a combinatorial control of both btaE promoter activity and attachment of Brucella to HeLa cells. Analysis of btaE promoter sequences of different species indicated that this HutC-binding site was generated de novo by a single point mutation in a virulent Brucella strain, indicative of a transcriptional rewiring event. In addition to major domain organization differences existing between BtaE proteins within the genus Brucella, our analyses revealed that sequences upstream of btaE display high variability probably associated to intrinsic promoter structural features, which may serve as a substrate for reciprocal selection during co-evolution between this pathogen and its mammalian host.
Collapse
Affiliation(s)
- Rodrigo Sieira
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Magalí G Bialer
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Mara S Roset
- IIB-INTECH, CONICET-UNSAM, San Martín, 1650, Argentina
| | - Verónica Ruiz-Ranwez
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Tomás Langer
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Gastón M Arocena
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Estefanía Mancini
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| |
Collapse
|
29
|
Abstract
Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Collapse
|
30
|
Ragunath C, DiFranco K, Shanmugam M, Gopal P, Vyas V, Fine DH, Cugini C, Ramasubbu N. Surface display of Aggregatibacter actinomycetemcomitans autotransporter Aae and dispersin B hybrid act as antibiofilm agents. Mol Oral Microbiol 2016; 31:329-39. [PMID: 26280561 PMCID: PMC6118125 DOI: 10.1111/omi.12126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 11/30/2022]
Abstract
Among the various proteins expressed by the periodontopathogen Aggregatibacter actinomycetemcomitans, two proteins play important roles for survival in the oral cavity. The autotransporter Aae facilitates the attachment of the pathogen to oral epithelial cells, which act as a reservoir, while the biofilm-degrading glycoside hydrolase dispersin B facilitates the movement of daughter cells from the mature biofilm to a new site. The objective of this study was to use the potential of these two proteins to control biofilms. To this end, we generated a hybrid construct between the Aae C-terminal translocating domain and dispersin B, and mobilized it into Escherichia coli Rosetta (DE3) pLysS cells. Immunofluorescence analysis of the modified E. coli cells confirmed the presence of dispersin B on the surface. Further, the membrane localization of the displayed dispersin B was confirmed with Western blot analysis. The integrity of the E. coli cells displaying the dispersin B was confirmed through FACS analysis. The hydrolytic activity of the surface-displayed dispersin B was confirmed by using 4-methylumbelliferyl-β-d-glucopyranoside as the substrate. The detachment ability of the dispersin B surface-displaying E. coli cells was shown using Staphylococcus epidermidis and Actinobacillus pleuropneumoniae biofilms in a microtiter assay. We concluded that the Aae β-domain is sufficient to translocate foreign enzymes in the native folded form and that the method of Aae-mediated translocation of surface displayed enzymes might be useful for control of biofilms.
Collapse
Affiliation(s)
| | | | - Mayilvahanan Shanmugam
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| | - Prerna Gopal
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| | - Vishal Vyas
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| | - Narayanan Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| |
Collapse
|
31
|
Ishikawa M, Yoshimoto S, Hayashi A, Kanie J, Hori K. Discovery of a novel periplasmic protein that forms a complex with a trimeric autotransporter adhesin and peptidoglycan. Mol Microbiol 2016; 101:394-410. [PMID: 27074146 DOI: 10.1111/mmi.13398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/06/2016] [Indexed: 12/01/2022]
Abstract
Trimeric autotransporter adhesins (TAAs), fibrous proteins on the cell surface of Gram-negative bacteria, have attracted attention as virulence factors. However, little is known about the mechanism of their biogenesis. AtaA, a TAA of Acinetobacter sp. Tol 5, confers nonspecific, high adhesiveness to bacterial cells. We identified a new gene, tpgA, which forms a single operon with ataA and encodes a protein comprising two conserved protein domains identified by Pfam: an N-terminal SmpA/OmlA domain and a C-terminal OmpA_C-like domain with a peptidoglycan (PGN)-binding motif. Cell fractionation and a pull-down assay showed that TpgA forms a complex with AtaA, anchoring it to the outer membrane (OM). Isolation of total PGN-associated proteins showed TpgA binding to PGN. Disruption of tpgA significantly decreased the adhesiveness of Tol 5 because of a decrease in surface-displayed AtaA, suggesting TpgA involvement in AtaA secretion. This is reminiscent of SadB, which functions as a specific chaperone for SadA, a TAA in Salmonella species; however, SadB anchors to the inner membrane, whereas TpgA anchors to the OM through AtaA. The genetic organization encoding the TAA-TpgA-like protein cassette can be found in diverse Gram-negative bacteria, suggesting a common contribution of TpgA homologues to TAA biogenesis.
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Shogo Yoshimoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Ayumi Hayashi
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Junichi Kanie
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Katsutoshi Hori
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
32
|
Pathogenesis of Kingella kingae Disease. ADVANCES IN UNDERSTANDING KINGELLA KINGAE 2016. [PMCID: PMC7123807 DOI: 10.1007/978-3-319-43729-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The pathogenesis of Kingella kingae disease begins with colonization of the oropharynx, a process facilitated by type IV pili and a non-pilus trimeric autotransporter adhesin called Knh, factors that mediate adherence to respiratory epithelial cells. A potent RTX cytotoxin with broad cellular specificity may play a role in disrupting the epithelial barrier and facilitating invasion of the bloodstream, possibly in concert with a viral coinfection. Once in the bloodstream, the organism can disseminate to sites of invasive disease, primarily the joints, bones, and endocardium. Survival in the bloodstream and dissemination are likely aided by expression of a capsular polysaccharide and an exopolysaccharide galactan. The evidence for antigenic diversity of K. kingae surface exposed protein epitopes and the observation that type IV pili are selected against during invasive disease suggest that immune system pressure plays an important role in K. kingae pathogenicity.
Collapse
|
33
|
Bujold AR, MacInnes JI. Identification of putative adhesins of Actinobacillus suis and their homologues in other members of the family Pasteurellaceae. BMC Res Notes 2015; 8:675. [PMID: 26567540 PMCID: PMC4644294 DOI: 10.1186/s13104-015-1659-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/02/2015] [Indexed: 12/03/2022] Open
Abstract
Background Actinobacillus suis disease has been reported in a wide range of vertebrate species, but is most commonly found in swine. A. suis is a commensal of the tonsils of the soft palate of swine, but in the presence of unknown stimuli it can invade the bloodstream, causing septicaemia and sequelae such as meningitis, arthritis, and death. It is genotypically and phenotypically similar to A. pleuropneumoniae, the causative agent of pleuropneumonia, and to other members of the family Pasteurellaceae that colonise tonsils. At present, very little is known about the genes involved in attachment, colonisation, and invasion by A. suis (or related members of the tonsil microbiota). Results Bioinformatic analyses of the A. suis H91-0380 genome were done using BASys and blastx in GenBank. Forty-seven putative adhesin-associated genes predicted to encode 24 putative adhesins were discovered. Among these are 6 autotransporters, 25 fimbriae-associated genes (encoding 3 adhesins), 12 outer membrane proteins, and 4 additional genes (encoding 3 adhesins). With the exception of 2 autotransporter-encoding genes (aidA and ycgV), both with described roles in virulence in other species, all of the putative adhesin-associated genes had homologues in A. pleuropneumoniae. However, the majority of the closest homologues of the A. suis adhesins are found in A. ureae and A. capsulatus—species not known to infect swine, but both of which can cause systemic infections. Conclusions A. suis and A. pleuropneumoniae share many of the same putative adhesins, suggesting that the different diseases, tissue tropism, and host range of these pathogens are due to subtle genetic differences, or perhaps differential expression of virulence factors during infection. However, many of the putative adhesins of A. suis share even greater homology with those of other pathogens within the family Pasteurellaceae. Similar to A. suis, these pathogens (A. capsulatus and A. ureae) cause systemic infections and it is tempting to speculate that they employ similar strategies to invade the host, but more work is needed before that assertion can be made. This work begins to examine adhesin-associated factors that allow some members of the family Pasteurellaceae to invade the bloodstream while others cause a more localised infection. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1659-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adina R Bujold
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Ontario, N1G 2W1, Canada.
| | - Janet I MacInnes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
34
|
Qin W, Wang L, Zhai R, Ma Q, Liu J, Bao C, Zhang H, Sun C, Feng X, Gu J, Du C, Han W, Langford PR, Lei L. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages. Antonie van Leeuwenhoek 2015; 109:51-70. [PMID: 26494209 DOI: 10.1007/s10482-015-0609-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022]
Abstract
Actinobacillus pleuropneumoniae is an important pathogen that causes respiratory disease in pigs. Trimeric autotransporter adhesin (TAA) is a recently discovered bacterial virulence factor that mediates bacterial adhesion and colonization. Two TAA coding genes have been found in the genome of A. pleuropneumoniae strain 5b L20, but whether they contribute to bacterial pathogenicity is unclear. In this study, we used homologous recombination to construct a double-gene deletion mutant, ΔTAA, in which both TAA coding genes were deleted and used it in in vivo and in vitro studies to confirm that TAAs participate in bacterial auto-aggregation, biofilm formation, cell adhesion and virulence in mice. A microarray analysis was used to determine whether TAAs can regulate other A. pleuropneumoniae genes during interactions with porcine primary alveolar macrophages. The results showed that deletion of both TAA coding genes up-regulated 36 genes, including ene1514, hofB and tbpB2, and simultaneously down-regulated 36 genes, including lgt, murF and ftsY. These data illustrate that TAAs help to maintain full bacterial virulence both directly, through their bioactivity, and indirectly by regulating the bacterial type II and IV secretion systems and regulating the synthesis or secretion of virulence factors. This study not only enhances our understanding of the role of TAAs but also has significance for those studying A. pleuropneumoniae pathogenesis.
Collapse
Affiliation(s)
- Wanhai Qin
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Lei Wang
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.,College of Animal Science, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Ruidong Zhai
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Qiuyue Ma
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jianfang Liu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hu Zhang
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chongtao Du
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - P R Langford
- Section of Paediatrics, Imperial College London, London, UK
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
35
|
Abstract
The autotransporter and two-partner secretion (TPS) pathways are used by E. coli and many other Gram-negative bacteria to delivervirulence factors into the extracellular milieu.Autotransporters arecomprised of an N-terminal extracellular ("passenger") domain and a C-terminal β barrel domain ("β domain") that anchors the protein to the outer membrane and facilitates passenger domain secretion. In the TPS pathway, a secreted polypeptide ("exoprotein") is coordinately expressed with an outer membrane protein that serves as a dedicated transporter. Bothpathways are often grouped together under the heading "type V secretion" because they have many features in common and are used for the secretion of structurally related polypeptides, but it is likely that theyhave distinct evolutionary origins. Although it was proposed many years ago that autotransporterpassenger domains are transported across the outer membrane through a channel formed by the covalently linked β domain, there is increasing evidence that additional factors are involved in the translocation reaction. Furthermore, details of the mechanism of protein secretion through the TPS pathway are only beginning to emerge. In this chapter I discussour current understanding ofboth early and late steps in the biogenesis of polypeptides secreted through type V pathways and current modelsofthe mechanism of secretion.
Collapse
|
36
|
Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 2015; 161:348-60. [PMID: 25860613 DOI: 10.1016/j.cell.2015.02.044] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 11/23/2022]
Abstract
Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection.
Collapse
|
37
|
Qin W, Wang L, Lei L. New findings on the function and potential applications of the trimeric autotransporter adhesin. Antonie van Leeuwenhoek 2015; 108:1-14. [PMID: 26014492 DOI: 10.1007/s10482-015-0477-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
Abstract
Trimeric autotransporter adhesins (TAAs) are located on the surface of many pathogenic Gram-negative bacteria. TAAs belong to the autotransporter protein family and consist of three identical monomers. These obligate homotrimeric proteins are secreted through the bacterial type Vc secretion system and share a common molecular organization that each monomer consists of a N-terminal "passenger" domain and a C-terminal translocation domain. TAAs are important virulence factors that are involved in bacterial life cycle and participate in mediating infection, invasion, dissemination and evasion of host immune responses. TAAs have also proved to be useful for many applications, such as vaccines and disease biomarkers. We here mainly focused on new findings on bio-function and application of TAAs in addition to their common structure and secretion mechanisms.
Collapse
Affiliation(s)
- Wanhai Qin
- College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China,
| | | | | |
Collapse
|
38
|
Zimmerman SM, Michel F, Hogan RJ, Lafontaine ER. The Autotransporter BpaB Contributes to the Virulence of Burkholderia mallei in an Aerosol Model of Infection. PLoS One 2015; 10:e0126437. [PMID: 25993100 PMCID: PMC4438868 DOI: 10.1371/journal.pone.0126437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
Burkholderia mallei is a highly pathogenic bacterium that causes the zoonosis glanders. Previous studies indicated that the genome of the organism contains eight genes specifying autotransporter proteins, which are important virulence factors of Gram-negative bacteria. In the present study, we report the characterization of one of these autotransporters, BpaB. Database searches identified the bpaB gene in ten B. mallei isolates and the predicted proteins were 99-100% identical. Comparative sequence analyses indicate that the gene product is a trimeric autotransporter of 1,090 amino acids with a predicted molecular weight of 105-kDa. Consistent with this finding, we discovered that recombinant bacteria expressing bpaB produce a protein of ≥300-kDa on their surface that is reactive with a BpaB-specific monoclonal antibody. Analysis of sera from mice infected with B. mallei indicated that animals produce antibodies against BpaB during the course of disease, thus establishing production of the autotransporter in vivo. To gain insight on its role in virulence, we inactivated the bpaB gene of B. mallei strain ATCC 23344 and determined the median lethal dose of the mutant in a mouse model of aerosol infection. These experiments revealed that the bpaB mutation attenuates virulence 8-14 fold. Using a crystal violet-based assay, we also discovered that constitutive production of BpaB on the surface of B. mallei promotes biofilm formation. To our knowledge, this is the first report of a biofilm factor for this organism.
Collapse
Affiliation(s)
- Shawn M. Zimmerman
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, United States of America
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, United States of America
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
39
|
Fusco WG, Choudhary NR, Stewart SM, Alam SM, Sempowski GD, Elkins C, Leduc I. Defining Potential Vaccine Targets of Haemophilus ducreyi Trimeric Autotransporter Adhesin DsrA. Monoclon Antib Immunodiagn Immunother 2015; 34:73-82. [PMID: 25897604 PMCID: PMC4410285 DOI: 10.1089/mab.2014.0054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/08/2014] [Indexed: 01/06/2023] Open
Abstract
Haemophilus ducreyi is the causative agent of the sexually transmitted genital ulcer disease chancroid. Strains of H. ducreyi are grouped in two classes (I and II) based on genotypic and phenotypic differences, including those found in DsrA, an outer membrane protein belonging to the family of multifunctional trimeric autotransporter adhesins. DsrA is a key serum resistance factor of H. ducreyi that prevents binding of natural IgM at the bacterial surface and functions as an adhesin to fibronectin, fibrinogen, vitronectin, and human keratinocytes. Monoclonal antibodies (MAbs) were developed to recombinant DsrA (DsrA(I)) from prototypical class I strain 35000HP to define targets for vaccine and/or therapeutics. Two anti-DsrAI MAbs bound monomers and multimers of DsrA from genital and non-genital/cutaneous H. ducreyi strains in a Western blot and reacted to the surface of the genital strains; however, these MAbs did not recognize denatured or native DsrA from class II strains. In a modified extracellular matrix protein binding assay using viable H. ducreyi, one of the MAbs partially inhibited binding of fibronectin, fibrinogen, and vitronectin to class I H. ducreyi strain 35000HP, suggesting a role for anti-DsrA antibodies in preventing binding of H. ducreyi to extracellular matrix proteins. Standard ELISA and surface plasmon resonance using a peptide library representing full-length, mature DsrAI revealed the smallest nominal epitope bound by one of the MAbs to be MEQNTHNINKLS. Taken together, our findings suggest that this epitope is a potential target for an H. ducreyi vaccine.
Collapse
Affiliation(s)
- William G. Fusco
- Department of Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Neelima R. Choudhary
- Department of Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Shelley M. Stewart
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Christopher Elkins
- Department of Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Isabelle Leduc
- Department of Medicine, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|
40
|
Adler NRL, Stevens MP, Dean RE, Saint RJ, Pankhania D, Prior JL, Atkins TP, Kessler B, Nithichanon A, Lertmemongkolchai G, Galyov EE. Systematic mutagenesis of genes encoding predicted autotransported proteins of Burkholderia pseudomallei identifies factors mediating virulence in mice, net intracellular replication and a novel protein conferring serum resistance. PLoS One 2015; 10:e0121271. [PMID: 25830295 PMCID: PMC4382181 DOI: 10.1371/journal.pone.0121271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/29/2015] [Indexed: 01/12/2023] Open
Abstract
Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were recognised by seropositive human sera from the endemic area. To conclude, several predicted autotransporters contribute to B. pseudomallei virulence and BpaC may do so by conferring resistance against complement-mediated killing.
Collapse
Affiliation(s)
- Natalie R. Lazar Adler
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - Rachel E. Dean
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
| | - Richard J. Saint
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
| | - Depesh Pankhania
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Joann L. Prior
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
| | - Timothy P. Atkins
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, United Kingdom
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Bianca Kessler
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Arnone Nithichanon
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ganjana Lertmemongkolchai
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Edouard E. Galyov
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Zhou P, Liu J, Merritt J, Qi F. A YadA-like autotransporter, Hag1 in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral streptococci, Porphyromonas gingivalis, and human oral buccal cells. Mol Oral Microbiol 2015; 30:269-279. [PMID: 25440509 DOI: 10.1111/omi.12091] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/31/2022]
Abstract
Dental biofilm development is a sequential process, and adherence between microbes and the salivary pellicle (adhesion) as well as among different microbes (co-adhesion or coaggregation) plays a critical role in building a biofilm community. The Veillonella species are among the most predominant species in the oral cavity and coaggregate with many initial, early, middle, and late colonizers. Similar to oral fusobacteria, they are also considered bridging species in biofilm development. However, the mechanism of this ability has yet to be reported, due to the previous lack of a genetic transformation system in the entire genus. In this study, we used our recently discovered transformable Veillonella strain, Veillonella atypica OK5, to probe the mechanism of coaggregation between Veillonella species and other oral bacteria. By insertional inactivation of all eight putative hemagglutinin genes, we identified one gene, hag1, which is involved in V. atypica coaggregation with the initial colonizers Streptococcus gordonii, Streptococcus oralis and Streptococcus cristatus, and the periodontal pathogen Porphyromonas gingivalis. The hag1 mutant also abolished adherence to human buccal cells. Inhibition assays using various chemical or physiological treatments suggest different mechanisms being involved in coaggregation with different partners. The entire hag1 gene was sequenced and shown to be the largest known bacterial hemagglutinin gene.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jinman Liu
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Justin Merritt
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.,Division of Oral Biology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Fengxia Qi
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.,Division of Oral Biology, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
42
|
Structure of the meningococcal vaccine antigen NadA and epitope mapping of a bactericidal antibody. Proc Natl Acad Sci U S A 2014; 111:17128-33. [PMID: 25404323 DOI: 10.1073/pnas.1419686111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Serogroup B Neisseria meningitidis (MenB) is a major cause of severe sepsis and invasive meningococcal disease, which is associated with 5-15% mortality and devastating long-term sequelae. Neisserial adhesin A (NadA), a trimeric autotransporter adhesin (TAA) that acts in adhesion to and invasion of host epithelial cells, is one of the three antigens discovered by genome mining that are part of the MenB vaccine that recently was approved by the European Medicines Agency. Here we present the crystal structure of NadA variant 5 at 2 Å resolution and transmission electron microscopy data for NadA variant 3 that is present in the vaccine. The two variants show similar overall topology with a novel TAA fold predominantly composed of trimeric coiled-coils with three protruding wing-like structures that create an unusual N-terminal head domain. Detailed mapping of the binding site of a bactericidal antibody by hydrogen/deuterium exchange MS shows that a protective conformational epitope is located in the head of NadA. These results provide information that is important for elucidating the biological function and vaccine efficacy of NadA.
Collapse
|
43
|
Haemophilus influenzae surface fibril (Hsf) is a unique twisted hairpin-like trimeric autotransporter. Int J Med Microbiol 2014; 305:27-37. [PMID: 25465160 DOI: 10.1016/j.ijmm.2014.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 11/21/2022] Open
Abstract
The Haemophilus surface fibril (Hsf) is an extraordinary large (2413 amino acids) trimeric autotransporter, present in all encapsulated Haemophilus influenzae. It contributes to virulence by directly functioning as an adhesin. Furthermore, Hsf recruits the host factor vitronectin thereby inhibiting the host innate immune response resulting in enhanced survival in serum. Here we observed by electron microscopy that Hsf appears as an 100 nm long fibril at the bacterial surface albeit the length is approximately 200 nm according to a bioinformatics based model. To unveil this discrepancy, we denaturated Hsf at the surface of Hib by using guanidine hydrochloride (GuHCl). Partial denaturation induced in the presence of GuHCl unfolded the Hsf molecules, and resulted in an increased length of fibres in comparison to the native trimeric form. Importantly, our findings were also verified by E. coli expressing Hsf at its surface. In addition, a set of Hsf-specific peptide antibodies also indicated that the N-terminal of Hsf is located near the C-terminal at the base of the fibril. Taken together, our results demonstrated that Hsf is not a straight molecule but is folded and doubled over. This is the first report that provides the unique structural features of the trimeric autotransporter Hsf.
Collapse
|
44
|
Bozza G, Capitani M, Montanari P, Benucci B, Biancucci M, Nardi-Dei V, Caproni E, Barrile R, Picciani B, Savino S, Aricò B, Rappuoli R, Pizza M, Luini A, Sallese M, Merola M. Role of ARF6, Rab11 and external Hsp90 in the trafficking and recycling of recombinant-soluble Neisseria meningitidis adhesin A (rNadA) in human epithelial cells. PLoS One 2014; 9:e110047. [PMID: 25347845 PMCID: PMC4210143 DOI: 10.1371/journal.pone.0110047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/16/2014] [Indexed: 01/02/2023] Open
Abstract
Neisseria meningitidisadhesin A (NadA) is a meningococcus surface protein thought to assist in the adhesion of the bacterium to host cells. We have previously shown that NadA also promotes bacterial internalization in a heterologous expression system. Here we have used the soluble recombinant NadA (rNadA) lacking the membrane anchor region to characterize its internalization route in Chang epithelial cells. Added to the culture medium, rNadA internalizes through a PI3K-dependent endocytosis process not mediated by the canonical clathrin or caveolin scaffolds, but instead follows an ARF6-regulated recycling pathway previously described for MHC-I. The intracellular pool of rNadA reaches a steady state level within one hour of incubation and colocalizes in endocytic vesicles with MHC-I and with the extracellularly labeled chaperone Hsp90. Treatment with membrane permeated and impermeable Hsp90 inhibitors 17-AAG and FITC-GA respectively, lead to intracellular accumulation of rNadA, strongly suggesting that the extracellular secreted pool of the chaperone is involved in rNadA intracellular trafficking. A significant number of intracellular vesicles containing rNadA recruit Rab11, a small GTPase associated to recycling endosomes, but do not contain transferrin receptor (TfR). Interestingly, cell treatment with Hsp90 inhibitors, including the membrane-impermeable FITC-GA, abolished Rab11-rNadA colocalization but do not interfere with Rab11-TfR colocalization. Collectively, these results are consistent with a model whereby rNadA internalizes into human epithelial cells hijacking the recycling endosome pathway and recycle back to the surface of the cell via an ARF6-dependent, Rab11 associated and Hsp90-regulated mechanism. The present study addresses for the first time a meningoccoccal adhesin mechanism of endocytosis and suggests a possible entry pathway engaged by N. meningitidis in primary infection of human epithelial cells.
Collapse
Affiliation(s)
| | - Mirco Capitani
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | | | | | | | | | | | | | - Benedetta Picciani
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
| | | | | | | | | | - Alberto Luini
- Institute of Protein Biochemistry, CNR, Naples, Italy
| | - Michele Sallese
- Unit of Genomic Approaches to Membrane Traffic, Fondazione Mario Negri Sud, S. Maria Imbaro (CH), Italy
- * E-mail: (MS); (MM)
| | - Marcello Merola
- Novartis Vaccines, Siena, Italy
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail: (MS); (MM)
| |
Collapse
|
45
|
Fusco WG, Choudhary NR, Routh PA, Ventevogel MS, Smith VA, Koch GG, Almond GW, Orndorff PE, Sempowski GD, Leduc I. The Haemophilus ducreyi trimeric autotransporter adhesin DsrA protects against an experimental infection in the swine model of chancroid. Vaccine 2014; 32:3752-8. [PMID: 24844153 DOI: 10.1016/j.vaccine.2014.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 01/09/2023]
Abstract
Adherence of pathogens to cellular targets is required to initiate most infections. Defining strategies that interfere with adhesion is therefore important for the development of preventative measures against infectious diseases. As an adhesin to host extracellular matrix proteins and human keratinocytes, the trimeric autotransporter adhesin DsrA, a proven virulence factor of the Gram-negative bacterium Haemophilus ducreyi, is a potential target for vaccine development. A recombinant form of the N-terminal passenger domain of DsrA from H. ducreyi class I strain 35000HP, termed rNT-DsrAI, was tested as a vaccine immunogen in the experimental swine model of H. ducreyi infection. Viable homologous H. ducreyi was not recovered from any animal receiving four doses of rNT-DsrAI administered with Freund's adjuvant at two-week intervals. Control pigs receiving adjuvant only were all infected. All animals receiving the rNT-DsrAI vaccine developed antibody endpoint titers between 3.5 and 5 logs. All rNT-DsrAI antisera bound the surface of the two H. ducreyi strains used to challenge immunized pigs. Purified anti-rNT-DsrAI IgG partially blocked binding of fibrinogen at the surface of viable H. ducreyi. Overall, immunization with the passenger domain of the trimeric autotransporter adhesin DsrA accelerated clearance of H. ducreyi in experimental lesions, possibly by interfering with fibrinogen binding.
Collapse
Affiliation(s)
- William G Fusco
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Neelima R Choudhary
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patty A Routh
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Melissa S Ventevogel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie A Smith
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gary G Koch
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Glen W Almond
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Paul E Orndorff
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Isabelle Leduc
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
46
|
|
47
|
Lafontaine ER, Balder R, Michel F, Hogan RJ. Characterization of an autotransporter adhesin protein shared by Burkholderia mallei and Burkholderia pseudomallei. BMC Microbiol 2014; 14:92. [PMID: 24731253 PMCID: PMC4021183 DOI: 10.1186/1471-2180-14-92] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/08/2014] [Indexed: 12/21/2022] Open
Abstract
Background Autotransporters form a large family of outer membrane proteins specifying diverse biological traits of Gram-negative bacteria. In this study, we report the identification and characterization of a novel autotransporter gene product of Burkholderia mallei (locus tag BMA1027 in strain ATCC 23344). Results Database searches identified the gene in at least seven B. mallei isolates and the encoded proteins were found to be 84% identical. Inactivation of the gene encoding the autotransporter in the genome of strain ATCC 23344 substantially reduces adherence to monolayers of HEp-2 laryngeal cells and A549 type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, expression of the autotransporter on the surface of recombinant E. coli bacteria increases adherence to these cell types by 5–7 fold. The gene specifying the autotransporter was identified in the genome of 29 B. pseudomallei isolates and disruption of the gene in strain DD503 reduced adherence to NHBE cultures by 61%. Unlike B. mallei, the mutation did not impair binding of B. pseudomallei to A549 or HEp-2 cells. Analysis of sera from mice infected via the aerosol route with B. mallei and B. pseudomallei revealed that animals inoculated with as few as 10 organisms produce antibodies against the autotransporter, therefore indicating expression in vivo. Conclusions Our data demonstrate that we have identified an autotransporter protein common to the pathogenic species B. mallei and B. pseudomallei which mediates adherence to respiratory epithelial cells and is expressed in vivo during the course of aerosol infection.
Collapse
Affiliation(s)
- Eric R Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, 30602 Athens, GA, USA.
| | | | | | | |
Collapse
|
48
|
Comparative proteome analysis of the extracellular proteins of two Haemophilus parasuis strains Nagasaki and SW114. Biochem Biophys Res Commun 2014; 446:997-1001. [DOI: 10.1016/j.bbrc.2014.03.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022]
|
49
|
Characterization of BCAM0224, a multifunctional trimeric autotransporter from the human pathogen Burkholderia cenocepacia. J Bacteriol 2014; 196:1968-79. [PMID: 24659767 DOI: 10.1128/jb.00061-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the trimeric autotransporter adhesin (TAA) family play a crucial role in adhesion of Gram-negative pathogens to host cells. Moreover, these proteins are multifunctional virulence factors involved in several other biological traits, including invasion into host cells and evasion of the host immune system. In cystic fibrosis epidemic Burkholderia cenocepacia strain J2315, we identified a unique TAA (BCAM0224)-encoding gene, previously described as being implicated in virulence. Here, we characterized this multifunctional protein, trying to establish its role in B. cenocepacia pathogenicity. We show that BCAM0224 occurs on the bacterial surface and adopts a trimeric conformation. Furthermore, we demonstrated that BCAM0224 is needed for earlier stages of biofilm formation and is required for swarming motility. In addition, BCAM0224 plays an important role in evasion of the human innate immune system, providing resistance against the bactericidal activity of serum via the complement classical pathway. Finally, BCAM0224 mediates bacterial adhesion to and invasion of cultured human bronchial epithelial cells. Together, these data reveal the high versatility of the BCAM0224 protein as a virulence factor in the pathogenic bacterium B. cenocepacia.
Collapse
|
50
|
The Haemophilus cryptic genospecies Cha adhesin has at least two variants that differ in host cell binding, bacterial aggregation, and biofilm formation properties. J Bacteriol 2014; 196:1780-8. [PMID: 24584499 DOI: 10.1128/jb.01409-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Haemophilus cryptic genospecies (HCG) causes genital tract infections in pregnant and postpartum women and respiratory infections in neonates. The major surface adhesin in HCG is called Cha, which mediates bacterial adherence to cultured human epithelial cells. In this study, we report that there are two antigenically distinct variants of Cha, dubbed Cha1 and Cha2. These variants are encoded by the same genetic locus in diverse strains and have nearly identical N-terminal export and C-terminal surface anchoring domains but significantly different internal adhesive domains. Based on the comparison of derivatives of a laboratory strain of Haemophilus influenzae expressing either surface-associated Cha1 or surface-associated Cha2, Cha1 mediates a higher level of adherence to cultured human epithelial cells and Cha2 mediates a higher level of adherence to abiotic surfaces. We hypothesize that variation in the Cha1 and Cha2 internal region results in changes in binding specificity or binding affinity and may be associated with adaptation to different host environments during colonization and disease.
Collapse
|