1
|
Coffman KA. The roles of viruses in tephritid pest multitrophic interactions and an outlook for biological control. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101333. [PMID: 39855427 DOI: 10.1016/j.cois.2025.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Tephritid fruit fly pests remain a considerable problem for agricultural fruit production around the world. New control methods that do not rely on synthetic insecticides are increasingly desirable to diversify tephritid pest management programs. Biological control through the release of parasitoid wasps has historically provided effective suppression of fruit fly pests, although molecular factors that influence the success of fruit fly parasitoids are understudied. Microbes have been demonstrated to facilitate myriad interactions between insects and their environment and have been the subject of recent investigation within tephritids. Specifically, the diversity and function of viruses found within fruit flies and associated parasitoids is an emerging field of research that has the potential to deepen our understanding of previously hidden factors that facilitate sustainable pest control. Most work to date has focused on identifying resident viral communities within fruit flies using metagenomic and metatranscriptomic sequencing approaches. Additionally, a growing body of evidence has revealed a multitude of functional dynamics that viruses have with fruit fly hosts, including vertically transmitted commensal viruses and parasitoid-vectored pathogens. Heritable viruses transmitted by fruit fly parasitoids, in particular, have been shown to play prominent roles in fruit fly multitrophic interactions, in which viral infection can shape the survival rate and host range of infected parasitoids. Furthermore, at least one parasitoid virus represents a lethal pathogen to a wide range of fruit fly pest species. Parasitoid viruses could therefore present novel opportunities to leverage natural antagonistic interactions for fruit fly pest control innovations.
Collapse
Affiliation(s)
- Kelsey A Coffman
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, USA.
| |
Collapse
|
2
|
Teh LS, Shalom SR, James I, Dolgova A, Chiel E, Dale C. Sodalis praecaptivus subsp. spalangiae subsp. nov., a nascent bacterial endosymbiont isolated from the parasitoid wasp, Spalangia cameroni. Int J Syst Evol Microbiol 2024; 74. [PMID: 39466691 DOI: 10.1099/ijsem.0.006552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
An endosymbiotic bacterium of the genus Sodalis, designated as strain HZT, was cultured from the parasitoid wasp Spalangia cameroni, which develops on the pupae of various host flies. The bacterium was detected in S. cameroni developed on houseflies, Musca domestica, in a poultry facility in Hazon, northern Israel. After culturing, this bacterium displayed no surface motility on Luria-Bertani agar and was rod-shaped and irregular in size, ~10-30 nm in diameter and 5-20 µm in length. Phylogenetic analyses revealed that strain HZT is closely related to Sodalis praecaptivus strain HST, a free-living species of the genus Sodalis that includes many insect endosymbionts. Although these bacteria maintain >98% sequence identity in shared genes, genomic characterization revealed that strain HZT has undergone substantial reductive evolution, such that it lacks many gene functions that are maintained in S. praecaptivus strain HST. Based on the results of phylogenetic, genomic and chemotaxonomic analyses, we propose that this endosymbiont should be classified in a new subspecies as S. praecaptivus subsp. spalangiae subsp. nov. The type strain for this new subspecies is HZT (=ATCC TSD-398T=NCIMB 15482T). The subspecies Sodalis praecaptivus subsp. praecaptivus strain HST is created automatically with the type strain ATCC BAA-2554T (=DSMZ 27494T).
Collapse
Affiliation(s)
- Li Szhen Teh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarit Rohkin Shalom
- Department of Biology and Environment, University of Haifa-Oranim, Tivon 36006, Israel
| | - Ian James
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Dolgova
- Department of Biology and Environment, University of Haifa-Oranim, Tivon 36006, Israel
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, Tivon 36006, Israel
| | - Colin Dale
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Zhang Y, Ju F. Uninheritable but Widespread Bacterial Symbiont Enterococcus casseliflavus Mediates Detoxification of the Insecticide Chlorantraniliprole in the Agricultural Invasive Pest Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18365-18377. [PMID: 39105749 DOI: 10.1021/acs.jafc.4c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Host-symbiont interaction plays a crucial role in determining the host's fitness under toxic stress, as observed in numerous insect species. However, the mechanism of the symbionts involved in the detoxification of insecticides remains poorly known. In this study, through microbiome, proteomic, and genomic analysis, we identified a prevalent symbiont, Enterococcus casseliflavus EMBL-3, in a major invasive insect pest,Spodoptera frugiperda. This symbiont enhances the host's insecticide resistance to chlorantraniliprole by breaking amide bonds and dehalogenating insecticides. Complying with the increase in exposure risk of chlorantraniliprole, the E. casseliflavus isolates of insects' symbionts but not those from mammals or environmental strains showed a significant enrichment of potential chlorantraniliprole degradation genes. EMBL-3 is popular in field population insects with efficient horizontal transmission ability through cross-diet and cannibalism. This study provides a new therapeutic target for agricultural pests based on symbiont-targeted insect control for global crop protection.
Collapse
Affiliation(s)
- Yunhua Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou ,Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou ,Zhejiang Province 310024, China
| | - Feng Ju
- Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou ,Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou ,Zhejiang Province 310024, China
| |
Collapse
|
4
|
Díez-Vives C, Koutsouveli V, Conejero M, Riesgo A. Global patterns in symbiont selection and transmission strategies in sponges. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1015592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges host dense and diverse communities of microbes (known as the microbiome) beneficial for the host nutrition and defense. Symbionts in turn receive shelter and metabolites from the sponge host, making their relationship beneficial for both partners. Given that sponge-microbes associations are fundamental for the survival of both, especially the sponge, such relationship is maintained through their life and even passed on to the future generations. In many organisms, the microbiome has profound effects on the development of the host, but the influence of the microbiome on the reproductive and developmental pathways of the sponges are less understood. In sponges, microbes are passed on to oocytes, sperm, embryos, and larvae (known as vertical transmission), using a variety of methods that include direct uptake from the mesohyl through phagocytosis by oocytes to indirect transmission to the oocyte by nurse cells. Such microbes can remain in the reproductive elements untouched, for transfer to offspring, or can be digested to make the yolky nutrient reserves of oocytes and larvae. When and how those decisions are made are fundamentally unanswered questions in sponge reproduction. Here we review the diversity of vertical transmission modes existent in the entire phylum Porifera through detailed imaging using electron microscopy, available metabarcoding data from reproductive elements, and macroevolutionary patterns associated to phylogenetic constraints. Additionally, we examine the fidelity of this vertical transmission and possible reasons for the observed variability in some developmental stages. Our current understanding in marine sponges, however, is that the adult microbial community is established by a combination of both vertical and horizontal (acquisition from the surrounding environment in each new generation) transmission processes, although the extent in which each mode shapes the adult microbiome still remains to be determined. We also assessed the fundamental role of filtration, the cellular structures for acquiring external microbes, and the role of the host immune system, that ultimately shapes the stable communities of prokaryotes observed in adult sponges.
Collapse
|
5
|
Beneficial commensal bacteria promote Drosophila growth by down-regulating the expression of peptidoglycan recognition proteins. iScience 2022; 25:104357. [PMID: 35601912 PMCID: PMC9121327 DOI: 10.1016/j.isci.2022.104357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/24/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
|
6
|
Barman M, Samanta S, Thakur H, Chakraborty S, Samanta A, Ghosh A, Tarafdar J. Effect of Neonicotinoids on Bacterial Symbionts and Insecticide-Resistant Gene in Whitefly, Bemisia tabaci. INSECTS 2021; 12:742. [PMID: 34442312 PMCID: PMC8397095 DOI: 10.3390/insects12080742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/02/2023]
Abstract
The silverleaf whitefly, Bemisia tabaci (Gennadius, Hemiptera: Aleyrodidae), is a major threat to field and horticultural crops worldwide. Persistent use of insecticides for the management of this pest is a lingering problem. In the present study, the status of sensitivity of B. tabaci to two neonicotinoids, imidacloprid and thiamethoxam, was evaluated. The expression pattern of two cytochrome P450 (cyp) genes and changes in the relative amount of symbionts in insecticide-treated B. tabaci were also assessed. Quantitative PCR (qPCR) studies indicate that the CYP6CM1 and CYP6CX1 genes were always expressed higher in imidacloprid-treated whitefly, suggesting a correlation between gene expression and the insect's ability to detoxify toxic compounds such as insecticides. In addition, the thiamethoxam-treated population harbored higher Portiera and lower Rickettsia titers, whereas the imidacloprid-treated population harbored more Rickettsia at different time intervals. Interestingly, we also examined that an increase in exposure to both the insecticides resulted in a reduction in the mutualistic partners from their insect host. These differential responses of endosymbionts to insecticide exposure imply the complex interactions among the symbionts inside the host insect. The results also provide a deeper understanding of the molecular mechanism of resistance development that might be useful for formulating effective management strategies to control B. tabaci by manipulating symbionts and detoxifying genes.
Collapse
Affiliation(s)
- Mritunjoy Barman
- Department of Agricultural Entomology, BCKV, Mohanpur 721436, India; (M.B.); (S.S.); (A.S.)
| | - Snigdha Samanta
- Department of Agricultural Entomology, BCKV, Mohanpur 721436, India; (M.B.); (S.S.); (A.S.)
| | - Himanshu Thakur
- Department of Entomology, C.S.K. Himachal Pradesh Krishi Vishvavidyalaya, Palampur 176062, India;
| | | | - Arunava Samanta
- Department of Agricultural Entomology, BCKV, Mohanpur 721436, India; (M.B.); (S.S.); (A.S.)
| | - Amalendu Ghosh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Jayanta Tarafdar
- Department of Plant Pathology, BCKV, Nadia, Kalyani 741245, India;
- Directorate of Research, BCKV, Kalyani 741235, India
| |
Collapse
|
7
|
Abstract
Bacteriophages (phages) are ubiquitous in nature. These viruses play a number of central roles in microbial ecology and evolution by, for instance, promoting horizontal gene transfer (HGT) among bacterial species. The ability of phages to mediate HGT through transduction has been widely exploited as an experimental tool for the genetic study of bacteria. As such, bacteriophage P1 represents a prototypical generalized transducing phage with a broad host range that has been extensively employed in the genetic manipulation of Escherichia coli and a number of other model bacterial species. Here we demonstrate that P1 is capable of infecting, lysogenizing, and promoting transduction in members of the bacterial genus Sodalis, including the maternally inherited insect endosymbiont Sodalis glossinidius. While establishing new tools for the genetic study of these bacterial species, our results suggest that P1 may be used to deliver DNA to many Gram-negative endosymbionts in their insect host, thereby circumventing a culturing requirement to genetically manipulate these organisms. IMPORTANCE A large number of economically important insects maintain intimate associations with maternally inherited endosymbiotic bacteria. Due to the inherent nature of these associations, insect endosymbionts cannot be usually isolated in pure culture or genetically manipulated. Here we use a broad-host-range bacteriophage to deliver exogenous DNA to an insect endosymbiont and a closely related free-living species. Our results suggest that broad-host-range bacteriophages can be used to genetically alter insect endosymbionts in their insect host and, as a result, bypass a culturing requirement to genetically alter these bacteria.
Collapse
|
8
|
Abstract
Tsetse flies are the insect vectors of T. brucei, the causative agent of African sleeping sickness—a zoonotic disease that inflicts a substantial economic cost on a broad region of sub-Saharan Africa. Notably, tsetse flies can be infected with the bacterium S. glossinidius to establish an asymptomatic chronic infection. This infection can be inherited by future generations of tsetse flies, allowing S. glossinidius to spread and persist within populations. To this effect, S. glossinidius has been considered a potential expression platform to create flies which reduce T. brucei stasis and lower overall parasite transmission to humans and animals. However, the efficient genetic manipulation of S. glossinidius has remained a technical challenge due to its complex growth requirements and uncharacterized physiology. Here, we exploit a natural mechanism of DNA transfer among bacteria and develop an efficient technique to genetically manipulate S. glossinidius for future studies in reducing trypanosome transmission. Stable associations between insects and bacterial species are widespread in nature. This is the case for many economically important insects, such as tsetse flies. Tsetse flies are the vectors of Trypanosoma brucei, the etiological agent of African trypanosomiasis—a zoonotic disease that incurs a high socioeconomic cost in regions of endemicity. Populations of tsetse flies are often infected with the bacterium Sodalis glossinidius. Following infection, S. glossinidius establishes a chronic, stable association characterized by vertical (maternal) and horizontal (paternal) modes of transmission. Due to the stable nature of this association, S. glossinidius has been long sought as a means for the implementation of anti-Trypanosoma paratransgenesis in tsetse flies. However, the lack of tools for the genetic modification of S. glossinidius has hindered progress in this area. Here, we establish that S. glossinidius is amenable to DNA uptake by conjugation. We show that conjugation can be used as a DNA delivery method to conduct forward and reverse genetic experiments in this bacterium. This study serves as an important step in the development of genetic tools for S. glossinidius. The methods highlighted here should guide the implementation of genetics for the study of the tsetse-Sodalis association and the evaluation of S. glossinidius-based tsetse fly paratransgenesis strategies. IMPORTANCE Tsetse flies are the insect vectors of T. brucei, the causative agent of African sleeping sickness—a zoonotic disease that inflicts a substantial economic cost on a broad region of sub-Saharan Africa. Notably, tsetse flies can be infected with the bacterium S. glossinidius to establish an asymptomatic chronic infection. This infection can be inherited by future generations of tsetse flies, allowing S. glossinidius to spread and persist within populations. To this effect, S. glossinidius has been considered a potential expression platform to create flies which reduce T. brucei stasis and lower overall parasite transmission to humans and animals. However, the efficient genetic manipulation of S. glossinidius has remained a technical challenge due to its complex growth requirements and uncharacterized physiology. Here, we exploit a natural mechanism of DNA transfer among bacteria and develop an efficient technique to genetically manipulate S. glossinidius for future studies in reducing trypanosome transmission.
Collapse
|
9
|
Salgueiro J, Pimper LE, Segura DF, Milla FH, Russo RM, Asimakis E, Stathopoulou P, Bourtzis K, Cladera JL, Tsiamis G, Lanzavecchia SB. Gut Bacteriome Analysis of Anastrepha fraterculus sp. 1 During the Early Steps of Laboratory Colonization. Front Microbiol 2020; 11:570960. [PMID: 33193166 PMCID: PMC7606190 DOI: 10.3389/fmicb.2020.570960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial communities associated to insect species are involved in essential biological functions such as host nutrition, reproduction and survivability. Main factors have been described as modulators of gut bacterial community, such as diet, habit, developmental stage and taxonomy of the host. The present work focuses on the complex changes that gut microbial communities go through when wild insects are introduced to artificial rearing conditions. Specifically, we analyzed the effect of the laboratory colonization on the richness and diversity of the gut bacteriome hosted by the fruit fly pest Anastrepha fraterculus sp. 1. Bacterial profiles were studied by amplicon sequencing of the 16S rRNA V3-V4 hypervariable region in gut samples of males and females, in teneral (1-day-old, unfed) and post-teneral (15-day-old, fed) flies. A total of 3,147,665 sequence reads were obtained and 32 bacterial operational taxonomic units (OTUs) were identified. Proteobacteria was the most abundant phylum (93.3% of the total reads) and, Wolbachia and Enterobacter were the most represented taxa at the genus level (29.9% and 27.7%, respectively, of the total read counts). Wild and laboratory flies showed highly significant differences in the relative abundances of bacteria. The analysis of the core bacteriome showed the presence of five OTUs in all samples grouped by origin, while nine and five OTUs were exclusively detected in laboratory and wild flies, respectively. Irrespective of fly origin or sex, a dominant presence of Wolbachia was observed in teneral flies, whereas Enterobacter was highly abundant in post-teneral individuals. We evidenced significant differences in bacterial richness and diversity among generations under laboratory colonization (F0, F1, F3 and F6) and compared to laboratory and wild flies, displaying also differential patterns between teneral and post-teneral flies. Laboratory and wild A. fraterculus sp. 1 harbor different gut bacterial communities. Laboratory colonization has an important effect on the microbiota, most likely associated to the combined effects of insect physiology and environmental conditions (e.g., diet and colony management).
Collapse
Affiliation(s)
- Julieta Salgueiro
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lida E Pimper
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Diego F Segura
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fabián H Milla
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Romina M Russo
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Elias Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | | | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge L Cladera
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Silvia B Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
10
|
Phenotypic Response of Wolbachia pipientis in a Cell-Free Medium. Microorganisms 2020; 8:microorganisms8071060. [PMID: 32708688 PMCID: PMC7409048 DOI: 10.3390/microorganisms8071060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Wolbachia, an obligate intracellular bacterium estimated to infect millions of arthropod species worldwide, is currently being utilized in novel control strategies to limit the transmission of Dengue and Zika viruses. A limitation for Wolbachia-based control approaches is the difficulty of transferring Wolbachia to novel hosts and the lack of tools for the genetic transformation of Wolbachia due to the inability to culture Wolbachia outside the insect host cell in an axenic media. Here, we applied extracellular Wolbachia to phenotypic microarrays to measure the metabolic response of Wolbachia in media formulations with different pH levels and supplementation with Casamino acids. Results suggested a pH of 6.5–6.8 and showed that the supplementation of 1 mg/mL casamino acids increased the survival and longevity of Wolbachia in an axenic medium. In addition, phenotypic microarrays are a useful tool to measure the phenotypic response of Wolbachia under different media conditions, as well as determine specific components that may be required for an axenic medium. This study is an initial step toward the development of a potential Wolbachia axenic culture system.
Collapse
|
11
|
Urbanek AK, Rybak J, Wróbel M, Leluk K, Mirończuk AM. A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114281. [PMID: 32146369 DOI: 10.1016/j.envpol.2020.114281] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Recently it was demonstrated that mealworm (Tenebrio molitor) larvae consume and biodegrade polystyrene. Thus, in this study a breeding investigation with various types of polystyrene was performed to follow the changes in the gut microbiome diversity. Polystyrene used for packaging purposes (PSp) and expanded polystyrene (EPS) were perceived as more favorable and attacked more frequently by mealworms compared to raw polystyrene (PS) and material commercially available for parcels (PSp). Although our studies showed that larvae could bite and chew selected materials, they are not able to degrade and use them for consumption purposes. In a next-generation sequencing experiment, among all samples, seven classes, Gammaproteobacteria, Bacilli, Clostridia, Acidobacteria, Actinobacteria, Alphaproteobacteria and Flavobacteria, were indicated as the most abundant, whereas the predominant genera were Enterobacter, Lactococcus and Enterococcus. Additionally, we isolated three bacteria strains able to use diverse types of bioplastic as a sole carbon source. The strains with biodegradable activity against bioplastic were identified as species of the genera Klebsiella, Pseudomonas and Serratia. The presence of a bacterial strain able to degrade bioplastic may suggest a potential niche for further investigations.
Collapse
Affiliation(s)
- Aneta K Urbanek
- Wrocław University of Environmental and Life Sciences, Department of Biotechnology and Food Microbiology, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Justyna Rybak
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Magdalena Wróbel
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Karol Leluk
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Wrocław University of Environmental and Life Sciences, Department of Biotechnology and Food Microbiology, Chełmońskiego 37, 51-630, Wrocław, Poland.
| |
Collapse
|
12
|
Asimakis ED, Khan M, Stathopoulou P, Caceres C, Bourtzis K, Tsiamis G. The effect of diet and radiation on the bacterial symbiome of the melon fly, Zeugodacus cucurbitae (Coquillett). BMC Biotechnol 2019; 19:88. [PMID: 31847902 PMCID: PMC6918631 DOI: 10.1186/s12896-019-0578-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Symbiotic bacteria contribute to a multitude of important biological functions such as nutrition and reproduction and affect multiple physiological factors like fitness and longevity in their insect hosts. The melon fly, Zeugodacus cucurbitae (Coquillett), is an important agricultural pest that affects a variety of cultivated plants belonging mostly to the Cucurbitaceae family. It is considered invasive and widespread in many parts of the world. Several approaches are currently being considered for the management of its populations including the environmentally friendly and effective sterile insect technique (SIT), as a component of an integrated pest management (IPM) strategy. In the present study, we examined the effect of diet and radiation on the bacterial symbiome of Z. cucurbitae flies with the use of Next Generation Sequencing technologies. Results Melon flies were reared on two diets at the larval stage, an artificial bran-based diet and on sweet gourd, which affected significantly the development of the bacterial profiles. Significant differentiation was also observed based on gender. The effect of radiation was mostly diet dependent, with irradiated melon flies reared on the bran diet exhibiting a significant reduction in species diversity and richness compared to their non-irradiated controls. Changes in the bacterial symbiome of the irradiated melon flies included a drastic reduction in the number of sequences affiliated with members of Citrobacter, Raoultella, and Enterobacteriaceae. At the same time, an increase was observed for members of Enterobacter, Providencia and Morganella. Interestingly, the irradiated male melon flies reared on sweet gourd showed a clear differentiation compared to their non-irradiated controls, namely a significant reduction in species richness and minor differences in the relative abundance for members of Enterobacter and Providencia. Conclusions The two diets in conjunction with the irradiation affected significantly the formation of the bacterial symbiome. Melon flies reared on the bran-based artificial diet displayed significant changes in the bacterial symbiome upon irradiation, in all aspects, including species richness, diversity and composition. When reared on sweet gourd, significant changes occurred to male samples due to radiation, only in terms of species richness.
Collapse
Affiliation(s)
- Elias D Asimakis
- Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131, Agrinio, Greece
| | - Mahfuza Khan
- Insect Biotechnology Division, Institute of Food and Radiation Biology (IFRB), Atomic Energy Research Establishment (AERE), Ganak bari, Savar, Dhaka, 1349, Bangladesh
| | - Panagiota Stathopoulou
- Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131, Agrinio, Greece
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131, Agrinio, Greece.
| |
Collapse
|
13
|
Liu XD, Guo HF. Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. CURRENT OPINION IN INSECT SCIENCE 2019; 33:84-90. [PMID: 31358201 DOI: 10.1016/j.cois.2019.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 06/10/2023]
Abstract
Endosymbionts play important roles in protecting hosts from environmental stress, such as natural enemies, heat, and toxins. Many insects are infected with the facultative nonessential endosymbionts Wolbachia and Rickettsia, which are the crux in this review, although other relevant symbiont genera will also be treated. Insecticide resistance of hosts can be related to infections with Wolbachia and Rickettsia. These endosymbionts commonly increase host susceptibility to chemical insecticides, but cases of increased resistance also exist. The symbiont-mediated insecticide resistance/susceptibility varies with species of insect, species of symbiont, and chemical compound. Changes in insecticide resistance levels of insects can be associated with fluctuations in population density of endosymbionts. Effects of endosymbionts on host fitness, metabolism, immune system, and gene expression may determine how endosymbionts influence insecticide resistance. A clearer understanding of these interactions can improve our knowledge about drivers of decreasing insecticide resistance.
Collapse
Affiliation(s)
- Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hui-Fang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
14
|
Jones AG, Mason CJ, Felton GW, Hoover K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep 2019; 9:2792. [PMID: 30808905 PMCID: PMC6391413 DOI: 10.1038/s41598-019-39163-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Symbioses between insects and microbes are ubiquitous, but vary greatly in terms of function, transmission mechanism, and location in the insect. Lepidoptera (butterflies and moths) are one of the largest and most economically important insect orders; yet, in many cases, the ecology and functions of their gut microbiomes are unresolved. We used high-throughput sequencing to determine factors that influence gut microbiomes of field-collected fall armyworm (Spodoptera frugiperda) and corn earworm (Helicoverpa zea). Fall armyworm midgut bacterial communities differed from those of corn earworm collected from the same host plant species at the same site. However, corn earworm bacterial communities differed between collection sites. Subsequent experiments using fall armyworm evaluating the influence of egg source and diet indicated that that host plant had a greater impact on gut communities. We also observed differences between regurgitant (foregut) and midgut bacterial communities of the same insect host, suggesting differential colonization. Our findings indicate that host plant is a major driver shaping gut microbiota, but differences in insect physiology, gut region, and local factors can also contribute to variation in microbiomes. Additional studies are needed to assess the mechanisms that affect variation in insect microbiomes, as well as the ecological implications of this variability in caterpillars.
Collapse
Affiliation(s)
- Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
15
|
Mioduchowska M, Czyż MJ, Gołdyn B, Kilikowska A, Namiotko T, Pinceel T, Łaciak M, Sell J. Detection of bacterial endosymbionts in freshwater crustaceans: the applicability of non-degenerate primers to amplify the bacterial 16S rRNA gene. PeerJ 2018; 6:e6039. [PMID: 30581663 PMCID: PMC6296333 DOI: 10.7717/peerj.6039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022] Open
Abstract
Bacterial endosymbionts of aquatic invertebrates remain poorly studied. This is at least partly due to a lack of suitable techniques and primers for their identification. We designed a pair of non-degenerate primers which enabled us to amplify a fragment of ca. 500 bp of the 16S rRNA gene from various known bacterial endosymbiont species. By using this approach, we identified four bacterial endosymbionts, two endoparasites and one uncultured bacterium in seven, taxonomically diverse, freshwater crustacean hosts from temporary waters across a wide geographical area. The overall efficiency of our new WOLBSL and WOLBSR primers for amplification of the bacterial 16S rRNA gene was 100%. However, if different bacterial species from one sample were amplified simultaneously, sequences were illegible, despite a good quality of PCR products. Therefore, we suggest using our primers at the first stage of bacterial endosymbiont identification. Subsequently, genus specific primers are recommended. Overall, in the era of next-generation sequencing our method can be used as a first simple and low-cost approach to identify potential microbial symbionts associated with freshwater crustaceans using simple Sanger sequencing. The potential to detected bacterial symbionts in various invertebrate hosts in such a way will facilitate studies on host-symbiont interactions and coevolution.
Collapse
Affiliation(s)
- Monika Mioduchowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Michał Jan Czyż
- Research Centre of Quarantine, Invasive and Genetically Modified Organisms, Institute of Plant Protection-National Research Institute, Poznan, Poland
| | - Bartłomiej Gołdyn
- Department of General Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Adrianna Kilikowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Tadeusz Namiotko
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.,Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Małgorzata Łaciak
- Polish Academy of Sciences, Institute of Nature Conservation, Krakow, Poland
| | - Jerzy Sell
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
16
|
Brandt JW, Chevignon G, Oliver KM, Strand MR. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc Biol Sci 2018; 284:rspb.2017.1925. [PMID: 29093227 DOI: 10.1098/rspb.2017.1925] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/05/2017] [Indexed: 12/21/2022] Open
Abstract
Heritable symbionts are common in insects with many contributing to host defence. Hamiltonella defensa is a facultative, bacterial symbiont of the pea aphid, Acyrthosiphon pisum that provides protection against the endoparasitoid wasp Aphidius ervi Protection levels vary among strains of H. defensa that are differentially infected by bacteriophages named APSEs. By contrast, little is known about mechanism(s) of resistance owing to the intractability of host-restricted microbes for functional study. Here, we developed methods for culturing strains of H. defensa that varied in the presence and type of APSE. Most H. defensa strains proliferated at 27°C in co-cultures with the TN5 cell line or as pure cultures with no insect cells. The strain infected by APSE3, which provides high levels of protection in vivo, produced a soluble factor(s) that disabled development of A. ervi embryos independent of any aphid factors. Experimental transfer of APSE3 also conferred the ability to disable A. ervi development to a phage-free strain of H. defensa Altogether, these results provide a critical foundation for characterizing symbiont-derived factor(s) involved in host protection and other functions. Our results also demonstrate that phage-mediated transfer of traits provides a mechanism for innovation in host restricted symbionts.
Collapse
Affiliation(s)
- Jayce W Brandt
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Germain Chevignon
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
Instar- and host-associated differentiation of bacterial communities in the Mediterranean fruit fly Ceratitis capitata. PLoS One 2018. [PMID: 29518170 PMCID: PMC5843337 DOI: 10.1371/journal.pone.0194131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Microorganisms are acknowledged for their role in shaping insects’ evolution, life history and ecology. Previous studies have shown that microbial communities harbored within insects vary through ontogenetic development and among insects feeding on different host-plant species. In this study, we characterized the bacterial microbiota of the highly polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), at different instars and when feeding on different host-plant species. Our results show that the bacterial microbiota hosted within the Mediterranean fruit fly differs among instars and host-plant species. Most of the bacteria harbored by the Mediterranean fruit fly belong to the phylum Proteobacteria, including genera of Alphaproteobacteria such as Acetobacter and Gluconobacter; Betaprotobacteria such as Burkholderia and Gammaproteobacteria such as Pseudomonas.
Collapse
|
18
|
Park KE, Jang SH, Lee J, Lee SA, Kikuchi Y, Seo YS, Lee BL. The roles of antimicrobial peptide, rip-thanatin, in the midgut of Riptortus pedestris. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:83-90. [PMID: 28919360 DOI: 10.1016/j.dci.2017.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Recently, we have reported the structural determination of antimicrobial peptides (AMPs), such as riptocin, rip-defensin, and rip-thanatin, from Riptortus pedestris. However, the biological roles of AMPs in the host midgut remain elusive. Here, we compared the expression levels of AMP genes in apo-symbiotic insects with those of symbiotic insects. Interestingly, the expression level of rip-thanatin was only significantly increased in the posterior midgut region of symbiotic insects. To further determine the role of rip-thanatin, we checked antimicrobial activity in vitro. Rip-thanatin showed high antimicrobial activity and had the same structural characteristics as other reported thanatins. To find the novel function of rip-thanatin, rip-thanatin was silenced by RNA interference, and the population of gut symbionts was measured. When rip-thanatin was silenced, the symbionts' titer was increased upon bacterial infection. These results suggest that rip-thanatin functions not only as an antimicrobial peptide but also in controlling the symbionts' titer in the host midgut.
Collapse
Affiliation(s)
- Kyoung-Eun Park
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Seong Han Jang
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Junbeom Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Seung Ah Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241, South Korea
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
19
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
20
|
PhaR, a Negative Regulator of PhaP, Modulates the Colonization of a Burkholderia Gut Symbiont in the Midgut of the Host Insect, Riptortus pedestris. Appl Environ Microbiol 2017; 83:AEM.00459-17. [PMID: 28341680 DOI: 10.1128/aem.00459-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Five genes encoding PhaP family proteins and one phaR gene have been identified in the genome of Burkholderia symbiont strain RPE75. PhaP proteins function as the surface proteins of polyhydroxyalkanoate (PHA) granules, and the PhaR protein acts as a negative regulator of PhaP biosynthesis. Recently, we characterized one phaP gene to understand the molecular cross talk between Riptortus insects and Burkholderia gut symbionts. In this study, we constructed four other phaP gene-depleted mutants (ΔphaP1, ΔphaP2, ΔphaP3, and ΔphaP4 mutants), one phaR gene-depleted mutant, and a phaR-complemented mutant (ΔphaR/phaR mutant). To address the biological roles of four phaP family genes and the phaR gene during insect-gut symbiont interaction, these Burkholderia mutants were fed to the second-instar nymphs, and colonization ability and fitness parameters were examined. In vitro, the ΔphaP3 and ΔphaR mutants cannot make a PHA granule normally in a stressful environment. Furthermore, the ΔphaR mutation decreased the colonization ability in the host midgut and negatively affected the host insect's fitness compared with wild-type Burkholderia-infected insects. However, other phaP family gene-depleted mutants colonized well in the midgut of the fifth-instar nymph insects. However, in the case of females, the colonization rate of the ΔphaP3 mutant was decreased and the host's fitness parameters were decreased compared with the wild-type-infected host, suggesting that the environment of the female midgut may be more hostile than that of the male midgut. These results demonstrate that PhaR plays an important role in the biosynthesis of PHA granules and that it is significantly related to the colonization of the Burkholderia gut symbiont in the host insects' midgut.IMPORTANCE Bacterial polyhydroxyalkanoate (PHA) biosynthesis is a complex process requiring several enzymes. The biological roles of PHA granule synthesis enzymes and the surface proteins of PHA granules during host-gut symbiont interactions are not fully understood. Here, we report the effects on colonization ability in the host midguts and the fitness of host insects after feeding Burkholderia mutant cells (four phaP-depleted mutants and one phaR-depleted mutant) to the host insects. Analyses of both synthesized PHA granule amounts and CFU numbers suggest that the phaR gene is closely related to synthesis of the PHA granule and the colonization of the Burkholderia gut symbiont in the host insect's midgut. Like our previous report, this study also supports the idea that the environment of the host midgut may not be favorable to symbiotic Burkholderia cells and that PHA granules may be required to adapt in the host midgut.
Collapse
|
21
|
Diverse Bacteriophage Roles in an Aphid-Bacterial Defensive Mutualism. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Shao MW, Lu YH, Miao S, Zhang Y, Chen TT, Zhang YL. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China. PLoS One 2015; 10:e0134542. [PMID: 26221957 PMCID: PMC4519156 DOI: 10.1371/journal.pone.0134542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/11/2015] [Indexed: 11/24/2022] Open
Abstract
The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds.
Collapse
Affiliation(s)
- Ming-Wei Shao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yi-Hui Lu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Shuang Miao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yun Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ting-Ting Chen
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ying-Lao Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, People’s Republic of China
| |
Collapse
|
23
|
Kim JK, Son DW, Kim CH, Cho JH, Marchetti R, Silipo A, Sturiale L, Park HY, Huh YR, Nakayama H, Fukatsu T, Molinaro A, Lee BL. Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial Cell Envelope. J Biol Chem 2015; 290:21042-21053. [PMID: 26116716 DOI: 10.1074/jbc.m115.651158] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 01/05/2023] Open
Abstract
The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis.
Collapse
Affiliation(s)
- Jiyeun Kate Kim
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, South Korea
| | - Dae Woo Son
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, South Korea
| | - Chan-Hee Kim
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, South Korea
| | - Jae Hyun Cho
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, South Korea
| | - Roberta Marchetti
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy
| | - Luisa Sturiale
- CNR-Istituto per i Polimeri, Compositi e Biomateriali IPCB, Via P. Gaifami 18, Catania 95126, Italy
| | - Ha Young Park
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, South Korea
| | - Ye Rang Huh
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, South Korea
| | - Hiroshi Nakayama
- Biomolecular Characterization Team, RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan 609-735, South Korea.
| |
Collapse
|
24
|
Chari A, Oakeson KF, Enomoto S, Jackson DG, Fisher MA, Dale C. Phenotypic characterization of Sodalis praecaptivus sp. nov., a close non-insect-associated member of the Sodalis-allied lineage of insect endosymbionts. Int J Syst Evol Microbiol 2015; 65:1400-1405. [PMID: 25782768 DOI: 10.1099/ijs.0.000091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A Gram-stain-negative bacterium, isolated from a human wound was previously found to share an unprecedentedly close relationship with Sodalis glossinidius and other members of the Sodalis-allied clade of insect symbionts. This relationship was inferred from sequence analysis of the 16S rRNA gene and genomic comparisons and suggested the strain belonged to a novel species. Biochemical and genetic analyses supported this suggestion and demonstrated that the organism has a wide repertoire of metabolic properties, which is consistent with the presence of a relatively large gene inventory. Among members of the Sodalis-allied clade, this is the first representative that has sufficient metabolic capabilities to sustain growth in minimal media. On the basis of the results of this study, we propose that this organism be classified as a representative of a novel species, Sodalis praecaptivus sp. nov. (type strain HS(T) = DSM 27494(T) = ATCC BAA-2554(T)).
Collapse
Affiliation(s)
- Abhishek Chari
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Kelly F Oakeson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Shinichiro Enomoto
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - D Grant Jackson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Mark A Fisher
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84132, USA.,Associated Regional and University Pathologists (ARUP) Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT, USA
| | - Colin Dale
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
25
|
Kim JK, Lee BL. Symbiotic factors in Burkholderia essential for establishing an association with the bean bug, Riptortus pedestris. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:4-17. [PMID: 25521625 DOI: 10.1002/arch.21218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Symbiotic bacteria are common in insects and intimately affect the various aspects of insect host biology. In a number of insect symbiosis models, it has been possible to elucidate the effects of the symbiont on host biology, whereas there is a limited understanding of the impact of the association on the bacterial symbiont, mainly due to the difficulty of cultivating insect symbionts in vitro. Furthermore, the molecular features that determine the establishment and persistence of the symbionts in their host (i.e., symbiotic factors) have remained elusive. However, the recently established model, the bean bug Riptortus pedestris, provides a good opportunity to study bacterial symbiotic factors at a molecular level through their cultivable symbionts. Bean bugs acquire genus Burkholderia cells from the environment and harbor them as gut symbionts in the specialized posterior midgut. The genome of the Burkholderia symbiont was sequenced, and the genomic information was used to generate genetically manipulated Burkholderia symbiont strains. Using mutant symbionts, we identified several novel symbiotic factors necessary for establishing a successful association with the host gut. In this review, these symbiotic factors are classified into three categories based on the colonization dynamics of the mutant symbiont strains: initiation, accommodation, and persistence factors. In addition, the molecular characteristics of the symbiotic factors are described. These newly identified symbiotic factors and on-going studies of the Riptortus-Burkholderia symbiosis are expected to contribute to the understanding of the molecular cross-talk between insects and bacterial symbionts that are of ecological and evolutionary importance.
Collapse
Affiliation(s)
- Jiyeun Kate Kim
- Global Research Laboratory for Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | | |
Collapse
|
26
|
Gerardo NM, Parker BJ. Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework. CURRENT OPINION IN INSECT SCIENCE 2014; 4:8-14. [PMID: 28043411 DOI: 10.1016/j.cois.2014.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 05/08/2023]
Abstract
Many vertically-transmitted microbial symbionts protect their insect hosts from natural enemies, including host-targeted pathogens and parasites, and those vectored by insects to other hosts. Protection is often achieved through production of inhibiting toxins, which is not surprising given that toxin production mediates competition in many environments. Classical models of macroecological interactions, however, demonstrate that interspecific competition can be less direct, and recent research indicates that symbiont-protection can be mediated through exploitation of limiting resources, and through activation of host immune mechanisms that then suppress natural enemies. Available data, though limited, suggest that effects of symbionts on vectored pathogens and parasites, as compared to those that are host-targeted, are more likely to result from symbiont activation of the host immune system. We discuss these different mechanisms in light of their potential impact on the evolution of host physiological processes.
Collapse
Affiliation(s)
- Nicole M Gerardo
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 E. Clifton Road N.E., Atlanta, GA 30322, USA.
| | - Benjamin J Parker
- Department of Zoology, The University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX13PS, UK.
| |
Collapse
|
27
|
Lievens B, Hallsworth JE, Pozo MI, Belgacem ZB, Stevenson A, Willems KA, Jacquemyn H. Microbiology of sugar-rich environments: diversity, ecology and system constraints. Environ Microbiol 2014; 17:278-98. [PMID: 25041632 DOI: 10.1111/1462-2920.12570] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/04/2014] [Accepted: 07/12/2014] [Indexed: 12/18/2022]
Abstract
Microbial habitats that contain an excess of carbohydrate in the form of sugar are widespread in the microbial biosphere. Depending on the type of sugar, prevailing water activity and other substances present, sugar-rich environments can be highly dynamic or relatively stable, osmotically stressful, and/or destabilizing for macromolecular systems, and can thereby strongly impact the microbial ecology. Here, we review the microbiology of different high-sugar habitats, including their microbial diversity and physicochemical parameters, which act to impact microbial community assembly and constrain the ecosystem. Saturated sugar beet juice and floral nectar are used as case studies to explore the differences between the microbial ecologies of low and higher water-activity habitats respectively. Nectar is a paradigm of an open, dynamic and biodiverse habitat populated by many microbial taxa, often yeasts and bacteria such as, amongst many others, Metschnikowia spp. and Acinetobacter spp., respectively. By contrast, thick juice is a relatively stable, species-poor habitat and is typically dominated by a single, xerotolerant bacterium (Tetragenococcus halophilus). A number of high-sugar habitats contain chaotropic solutes (e.g. ethyl acetate, phenols, ethanol, fructose and glycerol) and hydrophobic stressors (e.g. ethyl octanoate, hexane, octanol and isoamyl acetate), all of which can induce chaotropicity-mediated stresses that inhibit or prevent multiplication of microbes. Additionally, temperature, pH, nutrition, microbial dispersion and habitat history can determine or constrain the microbiology of high-sugar milieux. Findings are discussed in relation to a number of unanswered scientific questions.
Collapse
Affiliation(s)
- Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, B-2860, Sint-Katelijne-Waver, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
Whole-Genome Sequence of Serratia symbiotica Strain CWBI-2.3T, a Free-Living Symbiont of the Black Bean Aphid Aphis fabae. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00767-14. [PMID: 25146134 PMCID: PMC4153493 DOI: 10.1128/genomea.00767-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gammaproteobacterium Serratia symbiotica is one of the major secondary symbionts found in aphids. Here, we report the draft genome sequence of S. symbiotica strain CWBI-2.3T, previously isolated from the black bean aphid Aphis fabae. The 3.58-Mb genome sequence might provide new insights to understand the evolution of insect-microbe symbiosis.
Collapse
|
29
|
Nechitaylo TY, Westermann M, Kaltenpoth M. Cultivation reveals physiological diversity among defensive 'Streptomyces philanthi' symbionts of beewolf digger wasps (Hymenoptera, Crabronidae). BMC Microbiol 2014; 14:202. [PMID: 25266732 PMCID: PMC4236554 DOI: 10.1186/s12866-014-0202-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 07/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 'Candidatus Streptomyces philanthi' is a monophyletic clade of formerly uncultured bacterial symbionts in solitary digger wasps of the genera Philanthus, Philanthinus and Trachypus (Hymenoptera, Crabronidae). These bacteria grow in female-specific antennal reservoirs and - after transmission to the cocoon - produce antibiotics protecting the host larvae from fungal infection. However, the symbionts' refractoriness to cultivation has thus far hampered detailed in vitro studies on their physiology and on the evolutionary changes in metabolic versatility in response to the host environment. RESULTS Here we isolated in axenic culture 22 'Streptomyces philanthi' biovars from different host species. Sequencing of gyrB revealed no heterogeneity among isolates within host individuals, suggesting low levels of (micro)diversity or even clonality of the symbionts in individual beewolf antennae. Surprisingly, however, isolates from different host species differed strongly in their physiology. All biovars from the Eurasian/African Philanthus and the South American Trachypus host species had high nutritional demands and were susceptible to most antibiotics tested, suggesting a tight association with the hosts. By contrast, biovars isolated from the genus Philanthinus and the monophyletic North American Philanthus clade were metabolically versatile and showed broad antibiotic resistance. Concordantly, recent horizontal symbiont transfer events - reflected in different symbiont strains infecting the same host species - have been described only among North American Philanthus species, altogether indicative of facultative symbionts potentially capable of a free-living lifestyle. Phylogenetic analyses reveal a strong correlation between symbiont metabolic versatility and host phylogeny, suggesting that the host environment differentially affects the symbionts' evolutionary fate. Although opportunistic bacteria were occasionally isolated from the antennae of different host species, only filamentous Actinobacteria (genera Streptomyces, Amycolatopsis and Nocardia) could replace 'S. philanthi' in the antennal gland reservoirs. CONCLUSION Our results indicate that closely related bacteria from a monophyletic clade of symbionts can experience very different evolutionary trajectories in response to the symbiotic lifestyle, which is reflected in different degrees of metabolic versatility and host-dependency. We propose that the host-provided environment could be an important factor in shaping the degenerative metabolic evolution in the symbionts and deciding whether they evolve into obligate symbionts or remain facultative and capable of a host-independent lifestyle.
Collapse
|
30
|
Purine biosynthesis, biofilm formation, and persistence of an insect-microbe gut symbiosis. Appl Environ Microbiol 2014; 80:4374-82. [PMID: 24814787 DOI: 10.1128/aem.00739-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Riptortus-Burkholderia symbiotic system is an experimental model system for studying the molecular mechanisms of an insect-microbe gut symbiosis. When the symbiotic midgut of Riptortus pedestris was investigated by light and transmission electron microscopy, the lumens of the midgut crypts that harbor colonizing Burkholderia symbionts were occupied by an extracellular matrix consisting of polysaccharides. This observation prompted us to search for symbiont genes involved in the induction of biofilm formation and to examine whether the biofilms are necessary for the symbiont to establish a successful symbiotic association with the host. To answer these questions, we focused on purN and purT, which independently catalyze the same step of bacterial purine biosynthesis. When we disrupted purN and purT in the Burkholderia symbiont, the ΔpurN and ΔpurT mutants grew normally, and only the ΔpurT mutant failed to form biofilms. Notably, the ΔpurT mutant exhibited a significantly lower level of cyclic-di-GMP (c-di-GMP) than the wild type and the ΔpurN mutant, suggesting involvement of the secondary messenger c-di-GMP in the defect of biofilm formation in the ΔpurT mutant, which might operate via impaired purine biosynthesis. The host insects infected with the ΔpurT mutant exhibited a lower infection density, slower growth, and lighter body weight than the host insects infected with the wild type and the ΔpurN mutant. These results show that the function of purT of the gut symbiont is important for the persistence of the insect gut symbiont, suggesting the intricate biological relevance of purine biosynthesis, biofilm formation, and symbiosis.
Collapse
|
31
|
Kim JK, Jang HA, Won YJ, Kikuchi Y, Heum Han S, Kim CH, Nikoh N, Fukatsu T, Lee BL. Purine biosynthesis-deficient Burkholderia mutants are incapable of symbiotic accommodation in the stinkbug. ISME JOURNAL 2013; 8:552-563. [PMID: 24088627 DOI: 10.1038/ismej.2013.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/08/2023]
Abstract
The Riptortus-Burkholderia symbiotic system represents a promising experimental model to study the molecular mechanisms involved in insect-bacterium symbiosis due to the availability of genetically manipulated Burkholderia symbiont. Using transposon mutagenesis screening, we found a symbiosis-deficient mutant that was able to colonize the host insect but failed to induce normal development of host's symbiotic organ. The disrupted gene was identified as purL involved in purine biosynthesis. In vitro growth impairment of the purL mutant and its growth dependency on adenine and adenosine confirmed the functional disruption of the purine synthesis gene. The purL mutant also showed defects in biofilm formation, and this defect was not rescued by supplementation of purine derivatives. When inoculated to host insects, the purL mutant was initially able to colonize the symbiotic organ but failed to attain a normal infection density. The low level of infection density of the purL mutant attenuated the development of the host's symbiotic organ at early instar stages and reduced the host's fitness throughout the nymphal stages. Another symbiont mutant-deficient in a purine biosynthesis gene, purM, showed phenotypes similar to those of the purL mutant both in vitro and in vivo, confirming that the purL phenotypes are due to disrupted purine biosynthesis. These results demonstrate that the purine biosynthesis genes of the Burkholderia symbiont are critical for the successful accommodation of symbiont within the host, thereby facilitating the development of the host's symbiotic organ and enhancing the host's fitness values.
Collapse
Affiliation(s)
- Jiyeun Kate Kim
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan, South Korea
| | - Ho Am Jang
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan, South Korea
| | - Yeo Jin Won
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan, South Korea
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan
| | - Sang Heum Han
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan, South Korea
| | - Chan-Hee Kim
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan, South Korea
| | - Naruo Nikoh
- Department of Liberal arts, The Open University of Japan, Chiba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Pusan, South Korea.
| |
Collapse
|
32
|
Polyester synthesis genes associated with stress resistance are involved in an insect-bacterium symbiosis. Proc Natl Acad Sci U S A 2013; 110:E2381-9. [PMID: 23757494 DOI: 10.1073/pnas.1303228110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many bacteria accumulate granules of polyhydroxyalkanoate (PHA) within their cells, which confer resistance to nutritional depletion and other environmental stresses. Here, we report an unexpected involvement of the bacterial endocellular storage polymer, PHA, in an insect-bacterium symbiotic association. The bean bug Riptortus pedestris harbors a beneficial and specific gut symbiont of the β-proteobacterial genus Burkholderia, which is orally acquired by host nymphs from the environment every generation and easily cultivable and genetically manipulatable. Biochemical and cytological comparisons between symbiotic and cultured Burkholderia detected more PHA granules consisting of poly-3-hydroxybutyrate and associated phasin (PhaP) protein in the symbiotic Burkholderia. Among major PHA synthesis genes, phaB and phaC were disrupted by homologous recombination together with the phaP gene, whereby ΔphaB, ΔphaC, and ΔphaP mutants were generated. Both in culture and in symbiosis, accumulation of PHA granules was strongly suppressed in ΔphaB and ΔphaC, but only moderately in ΔphaP. In symbiosis, the host insects infected with ΔphaB and ΔphaC exhibited significantly lower symbiont densities and smaller body sizes. These deficient phenotypes associated with ΔphaB and ΔphaC were restored by complementation of the mutants with plasmids encoding a functional phaB/phaC gene. Retention analysis of the plasmids revealed positive selection acting on the functional phaB/phaC in symbiosis. These results indicate that the PHA synthesis genes of the Burkholderia symbiont are required for normal symbiotic association with the Riptortus host. In vitro culturing analyses confirmed vulnerability of the PHA gene mutants to environmental stresses, suggesting that PHA may play a role in resisting stress under symbiotic conditions.
Collapse
|
33
|
Bacterial cell wall synthesis gene uppP is required for Burkholderia colonization of the Stinkbug Gut. Appl Environ Microbiol 2013; 79:4879-86. [PMID: 23747704 DOI: 10.1128/aem.01269-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ΔuppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ΔuppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ΔuppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ΔuppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont.
Collapse
|
34
|
Kikuchi Y. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ 2012; 24:195-204. [PMID: 21566374 DOI: 10.1264/jsme2.me09140s] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many animals and plants possess symbiotic microorganisms inside their body, wherein intimate interactions occur between the partners. The Insecta, often rated as the most diverse animal group, show various types of endosymbiotic associations, ranging from obligate mutualism to facultative parasitism. Although technological advancements in culture-independent molecular techniques, such as quantitative PCR, molecular phylogeny and in situ hybridization, as well as genomic and metagenomic analyses, have allowed us to directly observe endosymbiotic associations in vivo, the molecular mechanisms underlying insect-microbe interactions are not well understood, because most of these insect endosymbionts are neither culturable nor genetically manipulatable. However, recent studies have succeeded in the isolation of several facultative symbionts by using insect cell lines or axenic media, revolutionizing studies of insect endosymbiosis. This article reviews the amazing diversity of bacterial endosymbiosis in insects, focusing on several model systems with culturable endosymbionts, which provide a new perspective towards understanding how intimate symbiotic associations may have evolved and how they are maintained within insects.
Collapse
Affiliation(s)
- Yoshitomo Kikuchi
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
35
|
Pontes MH, Smith KL, De Vooght L, Van Den Abbeele J, Dale C. Attenuation of the sensing capabilities of PhoQ in transition to obligate insect-bacterial association. PLoS Genet 2011; 7:e1002349. [PMID: 22072980 PMCID: PMC3207850 DOI: 10.1371/journal.pgen.1002349] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/30/2011] [Indexed: 01/10/2023] Open
Abstract
Sodalis glossinidius, a maternally inherited endosymbiont of the tsetse fly, maintains genes encoding homologues of the PhoP-PhoQ two-component regulatory system. This two-component system has been extensively studied in facultative bacterial pathogens and is known to serve as an environmental magnesium sensor and a regulator of key virulence determinants. In the current study, we show that the inactivation of the response regulator, phoP, renders S. glossinidius sensitive to insect derived cationic antimicrobial peptides (AMPs). The resulting mutant strain displays reduced expression of genes involved in the structural modification of lipid A that facilitates resistance to AMPs. In addition, the inactivation of phoP alters the expression of type-III secretion system (TTSS) genes encoded within three distinct chromosomal regions, indicating that PhoP-PhoQ also serves as a master regulator of TTSS gene expression. In the absence of phoP, S. glossinidius is unable to superinfect either its natural tsetse fly host or a closely related hippoboscid louse fly. Furthermore, we show that the S. glossinidius PhoQ sensor kinase has undergone functional adaptations that result in a substantially diminished ability to sense ancestral signals. The loss of PhoQ's sensory capability is predicted to represent a novel adaptation to the static symbiotic lifestyle, allowing S. glossinidius to constitutively express genes that facilitate resistance to host derived AMPs.
Collapse
Affiliation(s)
| | - Kari Lyn Smith
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Linda De Vooght
- Department of Biological Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biological Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Colin Dale
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
36
|
Bi SF, Li F, Song YC, Tan RX, Ge HM. New Acrylamide and Oxazolidin Derivatives from a Termite-Associated Streptomyces sp. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two new compounds, named 2-formylpyrrole-4-acrylamide (1) and dihydrostreptazolin (2) were isolated from the fermentation broth of BY-4, an actinomycetes residing in the gut of Odontotermes formosanus. The structures of 1 and 2 were elucidated by extensive spectral analysis (1H, 13C, 2D NMR, and HRESIMS). The isolated compounds were assayed for cytotoxic and antimicrobial activities.
Collapse
Affiliation(s)
- Shu Feng Bi
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210093 Nanjing, P. R. China
| | - Fang Li
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210093 Nanjing, P. R. China
| | - Yong Chun Song
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210093 Nanjing, P. R. China
| | - Ren Xiang Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210093 Nanjing, P. R. China
| | - Hui Ming Ge
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210093 Nanjing, P. R. China
| |
Collapse
|
37
|
Degnan PH, Bittleston LS, Hansen AK, Sabree ZL, Moran NA, Almeida RPP. Origin and examination of a leafhopper facultative endosymbiont. Curr Microbiol 2011; 62:1565-72. [PMID: 21336565 PMCID: PMC3069327 DOI: 10.1007/s00284-011-9893-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
Eukaryotes engage in intimate interactions with microbes that range in age and type of association. Although many conspicuous examples of ancient insect associates are studied (e.g., Buchnera aphidicola), fewer examples of younger associations are known. Here, we further characterize a recently evolved bacterial endosymbiont of the leafhopper Euscelidius variegatus (Hemiptera, Cicadellidae), called BEV. We found that BEV, continuously maintained in E. variegatus hosts at UC Berkeley since 1984, is vertically transmitted with high fidelity. Unlike many vertically transmitted, ancient endosymbioses, the BEV-E. variegatus association is not obligate for either partner, and BEV can be cultivated axenically. Sufficient BEV colonies were grown and harvested to estimate its genome size and provide a partial survey of the genome sequence. The BEV chromosome is about 3.8 Mbp, and there is evidence for an extrachromosomal element roughly 53 kb in size (e.g., prophage or plasmid). We sequenced 438 kb of unique short-insert clones, representing about 12% of the BEV genome. Nearly half of the gene fragments were similar to mobile DNA, including 15 distinct types of insertion sequences (IS). Analyses revealed that BEV not only shares virulence genes with plant pathogens, but also is closely related to the plant pathogenic genera Dickeya, Pectobacterium, and Brenneria. However, the slightly reduced genome size, abundance of mobile DNA, fastidious growth in culture, and efficient vertical transmission suggest that symbiosis with E. variegatus has had a significant impact on genome evolution in BEV.
Collapse
Affiliation(s)
- Patrick H Degnan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Lambda red-mediated genetic modification of the insect endosymbiont Sodalis glossinidius. Appl Environ Microbiol 2011; 77:1918-20. [PMID: 21216910 DOI: 10.1128/aem.02166-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the current study, we adapted and optimized the lambda Red recombineering strategy to genetically manipulate the fastidious insect endosymbiont Sodalis glossinidius. This work greatly facilitates the application of genetics to the study of insect symbionts and should also prove useful in the context of long-awaited paratransgenic insect control strategies.
Collapse
|
39
|
Abstract
Weevils constitute the most species-rich animal group with over 60,000 described species, many of which possess specialized symbiotic organs and harbor bacterial endosymbionts. Among the diverse microbial associates of weevils, Nardonella spp. represent the most ancient and widespread endosymbiont lineage, having co-speciated with the host weevils for over 125 million years. Thus far, however, no empirical work on the role of Nardonella for weevil biology has been reported. Here we investigated the biological role of the Nardonella endosymbiont for the West Indian sweet potato weevil, Euscepes postfasciatus. This insect is an experimentally tractable pest insect that can easily be reared on a natural diet of sweet potato root as well as on an agar-based artificial diet. By larval feeding on an antibiotic-containing artificial diet, Nardonella infection was effectively eliminated from the treated insects. The antibiotic-treated insects exhibited significantly lighter body weight and lower growth rate than the control insects. Then, the antibiotic-treated insects and the control insects were respectively allowed to mate and oviposit on fresh sweet potatoes without the antibiotic. The offspring of the antibiotic-treated insects, which were all Nardonella-negative, exhibited significantly lighter body weight, smaller body size, lower growth rate and paler body color in comparison with the offspring of the control insects, which were all Nardonella-positive. In conclusion, the Nardonella endosymbiont is involved in normal growth and development of the host weevil. The biological role of the endosymbiont probably underlies the long-lasting host-symbiont co-speciation in the evolutionary course of weevils.
Collapse
|
40
|
Sabri A, Leroy P, Haubruge E, Hance T, Frère I, Destain J, Thonart P. Isolation, pure culture and characterization of Serratia symbiotica sp. nov., the R-type of secondary endosymbiont of the black bean aphid Aphis fabae. Int J Syst Evol Microbiol 2010; 61:2081-2088. [PMID: 20870890 DOI: 10.1099/ijs.0.024133-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An intracellular symbiotic bacterium was isolated from the flora of a natural clone of the black bean aphid Aphis fabae. The strain was able to grow freely in aerobic conditions on a rich medium containing 1 % of each of the following substrates: glucose, yeast extract and casein peptone. Pure culture was achieved through the use of solid-phase culture on the same medium and the strain was designated CWBI-2.3(T). 16S rRNA gene sequence analysis revealed that strain CWBI-2.3(T) was a member of the class Gammaproteobacteria, having high sequence similarity (>99 %) with 'Candidatus Serratia symbiotica', the R-type of secondary endosymbiont that is found in several aphid species. As strain CWBI-2.3(T) ( = LMG 25624(T) = DSM 23270(T)) was the first R-type symbiont to be isolated and characterized, it was designated as the type strain of Serratia symbiotica sp. nov.
Collapse
Affiliation(s)
- Ahmed Sabri
- CWBI, University of Liege B40, 4000 Liege, Belgium
| | - Pascal Leroy
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Eric Haubruge
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Thierry Hance
- Unité d'Ecologie et de Biogéographie, 1348 Louvain-la-Neuve, Belgium
| | - Isabelle Frère
- Unité d'Ecologie et de Biogéographie, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
41
|
Clark EL, Karley AJ, Hubbard SF. Insect endosymbionts: manipulators of insect herbivore trophic interactions? PROTOPLASMA 2010; 244:25-51. [PMID: 20495935 DOI: 10.1007/s00709-010-0156-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 04/22/2010] [Indexed: 05/29/2023]
Abstract
Throughout their evolutionary history, insects have formed multiple relationships with bacteria. Although many of these bacteria are pathogenic, with deleterious effects on the fitness of infected insects, there are also numerous examples of symbiotic bacteria that are harmless or even beneficial to their insect host. Symbiotic bacteria that form obligate or facultative associations with insects and that are located intracellularly in the host insect are known as endosymbionts. Endosymbiosis can be a strong driving force for evolution when the acquisition and maintenance of a microorganism by the insect host results in the formation of novel structures or changes in physiology and metabolism. The complex evolutionary dynamics of vertically transmitted symbiotic bacteria have led to distinctive symbiont genome characteristics that have profound effects on the phenotype of the host insect. Symbiotic bacteria are key players in insect-plant interactions influencing many aspects of insect ecology and playing a key role in shaping the diversification of many insect groups. In this review, we discuss the role of endosymbionts in manipulating insect herbivore trophic interactions focussing on their impact on plant utilisation patterns and parasitoid biology.
Collapse
Affiliation(s)
- Emily L Clark
- Environment Plant Interactions Programme, Scottish Crop Research Institute, Invergowrie, DD2 5DA, Scotland, UK.
| | | | | |
Collapse
|
42
|
Chaston J, Goodrich-Blair H. Common trends in mutualism revealed by model associations between invertebrates and bacteria. FEMS Microbiol Rev 2010; 34:41-58. [PMID: 19909347 PMCID: PMC2794943 DOI: 10.1111/j.1574-6976.2009.00193.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutually beneficial interactions between microorganisms and animals are a conserved and ubiquitous feature of biotic systems. In many instances animals, including humans, are dependent on their microbial associates for nutrition, defense, or development. To maintain these vital relationships, animals have evolved processes that ensure faithful transmission of specific microbial symbionts between generations. Elucidating mechanisms of transmission and symbiont specificity has been aided by the study of experimentally tractable invertebrate animals with diverse and highly evolved associations with microorganisms. Here, we review several invertebrate model systems that contribute to our current understanding of symbiont transmission, recognition, and specificity. Although the details of transmission and symbiont selection vary among associations, comparisons of diverse mutualistic associations are revealing a number of common themes, including restriction of symbiont diversity during transmission and glycan-lectin interactions during partner selection and recruitment.
Collapse
Affiliation(s)
- John Chaston
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
43
|
Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:247-66. [PMID: 19728837 DOI: 10.1146/annurev-ento-112408-085305] [Citation(s) in RCA: 605] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aphids engage in symbiotic associations with a diverse assemblage of heritable bacteria. In addition to their obligate nutrient-provisioning symbiont, Buchnera aphidicola, aphids may also carry one or more facultative symbionts. Unlike obligate symbionts, facultative symbionts are not generally required for survival or reproduction and can invade novel hosts, based on both phylogenetic analyses and transfection experiments. Facultative symbionts are mutualistic in the context of various ecological interactions. Experiments on pea aphids (Acyrthosiphon pisum) have demonstrated that facultative symbionts protect against entomopathogenic fungi and parasitoid wasps, ameliorate the detrimental effects of heat, and influence host plant suitability. The protective symbiont, Hamiltonella defensa, has a dynamic genome, exhibiting evidence of recombination, phage-mediated gene uptake, and horizontal gene transfer and containing virulence and toxin-encoding genes. Although transmitted maternally with high fidelity, facultative symbionts occasionally move horizontally within and between species, resulting in the instantaneous acquisition of ecologically important traits, such as parasitoid defense.
Collapse
Affiliation(s)
- Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
Insect heritable symbionts have proven to be ubiquitous, based on molecular screening of various insect lineages. Recently, molecular and experimental approaches have yielded an immensely richer understanding of their diverse biological roles, resulting in a burgeoning research literature. Increasingly, commonalities and intermediates are being discovered between categories of symbionts once considered distinct: obligate mutualists that provision nutrients, facultative mutualists that provide protection against enemies or stress, and symbionts such as Wolbachia that manipulate reproductive systems. Among the most far-reaching impacts of widespread heritable symbiosis is that it may promote speciation by increasing reproductive and ecological isolation of host populations, and it effectively provides a means for transfer of genetic information among host lineages. In addition, insect symbionts provide some of the extremes of cellular genomes, including the smallest and the fastest evolving, raising new questions about the limits of evolution of life.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
45
|
Zhang YL, Ge HM, Li F, Song YC, Tan RX. New phytotoxic metabolites from Pestalotiopsis sp. HC02, a Fungus Residing in Chondracris rosee gut. Chem Biodivers 2009; 5:2402-7. [PMID: 19035568 DOI: 10.1002/cbdv.200890204] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two new phytotoxic gamma-lactones, pestalotines A and B (1 and 2, resp.), along with 4-oxo-4H-pyran-3-acetic acid (3) and 6-hydroxyramulosin (=3,4,4a,5,6,7-hexahydro-6,8-dihydroxy-3-methyl-1H-2-benzopyran-1-one; 4), were isolateded from the culture of Pestalotiopsis sp. HC02, a fungus residing in the Chondracris rosee gut. Structures of the new metabolites were elucidated on the basis of their IR, NMR, and MS data. Pestalotines A and B (1 and 2, resp.) significantly inhibited the radical growth of Echinochloa crusgalli with IC(50) values of 1.85 x 10(-4) and 2.50 x 10(-4) M, respectively, comparable to that of 2-(2,4-dichlorophenoxy)acetic acid (0.94 x 10(-4) M) used as a positive control.
Collapse
Affiliation(s)
- Ying Lao Zhang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, P. R. China, (phone: +86-25-8359-5103; fax: +86-25-8368-6559)
| | | | | | | | | |
Collapse
|
46
|
Pontes MH, Babst M, Lochhead R, Oakeson K, Smith K, Dale C. Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius. PLoS One 2008; 3:e3541. [PMID: 18958153 PMCID: PMC2568817 DOI: 10.1371/journal.pone.0003541] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/06/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Sodalis glossinidius, a maternally transmitted bacterial endosymbiont of tsetse flies (Glossina spp.), uses an acylated homoserine lactone (AHL)-based quorum sensing system to modulate gene expression in accordance with bacterial cell density. The S. glossinidius quorum sensing system relies on the function of two regulatory proteins; SogI (a LuxI homolog) synthesizes a signaling molecule, characterized as N-(3-oxohexanoyl) homoserine lactone (OHHL), and SogR1 (a LuxR homolog) interacts with OHHL to modulate transcription of specific target genes. METHODOLOGY/PRINCIPAL FINDINGS We used a tiling microarray to analyze the S. glossinidius transcriptome in the presence and absence of exogenous OHHL. The major finding is that OHHL increases transcription of a large number of genes that are known to be involved in the oxidative stress response. We also show that the obligate symbiont of the rice weevil, Sitophilus oryzae (SOPE), maintains copies of the quorum sensing regulatory genes that are found in S. glossinidius. Molecular evolutionary analyses indicate that these sequences are evolving under stabilizing selection, consistent with the maintenance of their functions in the SOPE symbiosis. Finally, the expression studies in S. glossinidius also reveal that quorum sensing regulates the expression of a cryptic, degenerate gene (carA) that arose from an ancient deletion in the last common ancestor of S. glossinidius and SOPE. CONCLUSIONS/SIGNIFICANCE This oxidative stress response is likely mandated under conditions of dense intracellular symbiont infection, when intense metabolic activity is expected to generate a heavy oxidative burden. Such conditions are known to arise in the bacteriocytes of grain weevils, which harbor dense intracellular infections of symbiotic bacteria that are closely related to S. glossinidius. The presence of a degenerate carA sequence in S. glossinidius and SOPE indicates the potential for neofunctionalization to occur during the process of genome degeneration.
Collapse
Affiliation(s)
- Mauricio H Pontes
- Department of Biology, University of Utah, Salt Lake City, Utah, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Ge H, Zhao W, Dong H, Xu Q, Li S, Li J, Zhang J, Song Y, Tan R. Unprecedented Immunosuppressive Polyketides fromDaldinia eschscholzii, a Mantis‐Associated Fungus. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801284] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Zhang YL, Ge HM, Zhao W, Dong H, Xu Q, Li SH, Li J, Zhang J, Song YC, Tan RX. Unprecedented Immunosuppressive Polyketides fromDaldinia eschscholzii, a Mantis‐Associated Fungus. Angew Chem Int Ed Engl 2008; 47:5823-6. [PMID: 18576440 DOI: 10.1002/anie.200801284] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Lao Zhang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Female Mediterranean fruit flies (Ceratitis capitata) oviposit in fruits, within which the larvae develop. This development is associated with rapid deterioration of the fruit, and frequently with invasion by secondary pests. Most research on the associations between medflies and microorganisms has focused on the bacteria inhabiting the digestive system of the adult fly, while the role of the fruit in mediating, amplifying or regulating the fruit fly microflora has been largely neglected. In this study, we examine the hypothesis that the host fruit plays a role in perpetuating the fly-associated bacterial community. Using direct and cultured-based approaches, we show that this community is composed in its very large majority of diazotrophic and pectinolytic Enterobacteriaceae. Our data suggest that this fly-associated enterobacterial community is vertically transmitted from the female parent to its offspring. During oviposition, bacteria are transferred to the fruit, establish and proliferate within it, causing its decay. These results show that the host fruit is indeed a central partner in the fruit fly-bacterial interaction as these transmitted bacteria are amplified by the fruit, and subsequently maintained throughout the fly's life. This enterobacterial community may contribute to the fly's nitrogen and carbon metabolism, affecting its development and ultimately, fitness.
Collapse
Affiliation(s)
- A Behar
- Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| | | | | |
Collapse
|
50
|
Vallès Y, Halanych KM, Boore JL. Group II introns break new boundaries: presence in a bilaterian's genome. PLoS One 2008; 3:e1488. [PMID: 18213396 PMCID: PMC2198948 DOI: 10.1371/journal.pone.0001488] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 11/28/2007] [Indexed: 11/29/2022] Open
Abstract
Group II introns are ribozymes, removing themselves from their primary transcripts, as well as mobile genetic elements, transposing via an RNA intermediate, and are thought to be the ancestors of spliceosomal introns. Although common in bacteria and most eukaryotic organelles, they have never been reported in any bilaterian animal genome, organellar or nuclear. Here we report the first group II intron found in the mitochondrial genome of a bilaterian worm. This location is especially surprising, since animal mitochondrial genomes are generally distinct from those of plants, fungi, and protists by being small and compact, and so are viewed as being highly streamlined, perhaps as a result of strong selective pressures for fast replication while establishing germ plasm during early development. This intron is found in the mtDNA of an annelid worm, (an undescribed species of Nephtys), where the complete sequence revealed a 1819 bp group II intron inside the cox1 gene. We infer that this intron is the result of a recent horizontal gene transfer event from a viral or bacterial vector into the mitochondrial genome of Nephtys sp. Our findings hold implications for understanding mechanisms, constraints, and selective pressures that account for patterns of animal mitochondrial genome evolution
Collapse
Affiliation(s)
- Yvonne Vallès
- Department of Energy (DOE), Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California, USA
| | | | | |
Collapse
|