1
|
Liao X, Deng R, Yang L, Ni BJ, Chen X. Revisit the role of hydroxylamine in sulfur-driven autotrophic denitrification. WATER RESEARCH 2024; 268:122596. [PMID: 39418805 DOI: 10.1016/j.watres.2024.122596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Through dedicated batch tests using the enriched sludge dominated by sulfur-oxidizing bacteria (SOB), the potential transformation of hydroxylamine (NH2OH) by SOB and the effects of NH2OH on the rate-limiting sequential reduction processes of sulfur-driven autotrophic denitrification (SDAD) were systematically explored in this study. The results indicated that NH2OH might be first converted to NO by SOB and then participate in the SDAD process, thus accelerating the utilization of S2- and contributing to the formation of N2O. Up to 3.5 mg-N/L NH2OH didn't affect the NO3- or NO2- reduction of SDAD, during which no significant changes were observed for the NH2OH concentration. Comparatively, even though NH2OH had no direct impact on the N2O reduction of SDAD, it could be consumed and therefore affect the depletion of N2O indirectly by regulating the toxic effect and electron supply of S2-. These findings provide novel implications for applying NH2OH to SDAD-based integrated processes for biological nitrogen removal.
Collapse
Affiliation(s)
- Xiaxue Liao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Ronghua Deng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
2
|
Bastami KD, Manbohi A, Mehdinia A, Hamzehpour A, Haghparast S, Taheri M. Distribution of hydrogen sulfide, nitrogen and phosphorous species in inshore and offshore sediments of the south Caspian Sea. MARINE POLLUTION BULLETIN 2024; 202:116330. [PMID: 38636340 DOI: 10.1016/j.marpolbul.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to geochemically investigate the sediments of the south Caspian Sea at different depths in summer and winter 2020. Sampling was conducted in 5 transects along the south coastline of the Caspian Sea and sediment grain size, hydrogen sulfide, Oxidation-reduction potential (Eh), total nitrogen, nitrite, nitrate, ammonium, total phosphorus, organic and inorganic phosphorous were measured. Eh values showed significant differences between seasons and between different transects (p < 0.05). Hydrogen sulfide ranged from 1.87 to 307.00 ppm. No significant difference was observed in hydrogen sulfide between seasons and among depths (p > 0.05). Total, inorganic and organic phosphorus contents were 782.96-1335.79 ppm, 639.66-1183.60 ppm, and 42.58-205.46 ppm, respectively. Total nitrogen revealed significant differences among transects (p < 0.05). Based on sediment quality guidelines, most sampling sites had alerting conditions for organic matter, and phosphorous contamination was detected at all stations. Anoxic condition was seen at most sites according to sedimentary Eh.
Collapse
Affiliation(s)
- Kazem Darvish Bastami
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| | - Ahmad Manbohi
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran.
| | - Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| | - Ali Hamzehpour
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| | - Sarah Haghparast
- Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Km 9 Darya Boulevard, P.O. Box, 578 Sari, Iran
| | - Mehrshad Taheri
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| |
Collapse
|
3
|
Yamasawa R, Saito H, Yashima Y, Ito H, Hamada S. Identification, characterization, and application of a d-cysteine desulfhydrase from rice seed (Oryza sativa L.). Protein Expr Purif 2023; 211:106341. [PMID: 37499960 DOI: 10.1016/j.pep.2023.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Cysteine desulfhydrases decompose cysteine to produce pyruvate, ammonium, and hydrogen sulfide. Using d-cysteine (D-cys) as a substrate, an enzyme with this activity was purified from rice seeds and identified at the native protein level. MALDI-TOF-MS analysis of its tryptic peptides revealed a 426 amino acid protein encoded by the OsDCD1 gene (Os02g0773300). Recombinant OsDCD1 (rOsDCD1) was expressed in Escherichia coli cells and purified as a single protein by column chromatography. Gel filtration column chromatography indicated that the native enzyme was a homodimer. The enzyme exhibited maximum catalytic activity at approximately pH 7.5 and 40 °C and was stable at pH 5.5-7.5 and < 37 °C. Kinetics analysis indicated Km and Vmax values for D-cys of 136 μM and 45.5 μmol/min/mg protein, respectively. In contrast, l-cysteine (L-cys) acted as an inhibitor with mixed non-competitive inhibition. Based on the substrate specificity of rOsDCD1, the amount of D-cys in rice flour was quantified. Even in the presence of up to 1 mM L-cys, the quantification of low concentrations of D-cys was unaffected. We demonstrate for the first time that the amount of D-cys in rice flour varies in the range of 0.76-0.93 μmol/g depending on the variety.
Collapse
Affiliation(s)
- Ryosuke Yamasawa
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Haruka Saito
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Yoshiki Yashima
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hiroyuki Ito
- Department of Chemical and Biological Engineering, National Institute of Technology, Akita College, 1-1 Iijima-Bunkyo-cho, Akita, 011-8511, Japan
| | - Shigeki Hamada
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
4
|
Sun J, Feng Y, Zheng R, Kong L, Wu X, Zhang K, Zhou J, Liu S. Chameleon-like Anammox Bacteria for Surface Color Change after Suffering Starvation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15087-15098. [PMID: 37754765 DOI: 10.1021/acs.est.3c04000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bacteria are often exposed to long-term starvation during transportation and storage, during which a series of enzymes and metabolic pathways are activated to ensure survival. However, why the surface color of the bacteria changes during starvation is still not well-known. In this study, we found black anammox consortia suffering from long-term starvation contained 0.86 mmol gVSS-1 cytochrome c, which had no significant discrepancy compared with the red anammox consortia (P > 0.05), indicating cytochrome c was not the key issue for chromaticity change. Conversely, we found that under starvation conditions cysteine degradation is an important metabolic pathway for the blackening of the anammox consortia for H2S production. In particular, anammox bacteria contain large amounts of iron-rich nanoparticles, cytochrome c, and other iron-sulfur clusters that are converted to produce free iron. H2S combines with free iron in bacteria to form Fe-S compounds, which eventually exist stably as FeS2, mainly in the extracellular space. Interestingly, FeS2 could be oxidized by air aeration, which makes the consortia turn red again. The unique self-protection mechanism makes the whole consortia appear black, avoiding inhibition by high concentrations of H2S and achieving Fe storage. This study expands the understanding of the metabolites of anammox bacteria as well as the bacterial survival mechanism during starvation.
Collapse
Affiliation(s)
- Jingqi Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| |
Collapse
|
5
|
Kieu TQH, Nguyen TY, Do CL. Treatment of Organic and Sulfate/Sulfide Contaminated Wastewater and Bioelectricity Generation by Sulfate-Reducing Bioreactor Coupling with Sulfide-Oxidizing Fuel Cell. Molecules 2023; 28:6197. [PMID: 37687026 PMCID: PMC10488401 DOI: 10.3390/molecules28176197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
A wastewater treatment system has been established based on sulfate-reducing and sulfide-oxidizing processes for treating organic wastewater containing high sulfate/sulfide. The influence of COD/SO42- ratio and hydraulic retention time (HRT) on removal efficiencies of sulfate, COD, sulfide and electricity generation was investigated. The continuous operation of the treatment system was carried out for 63 days with the optimum COD/SO42- ratio and HRT. The result showed that the COD and sulfate removal efficiencies were stable, reaching 94.8 ± 0.6 and 93.0 ± 1.3% during the operation. A power density level of 18.0 ± 1.6 mW/m2 was obtained with a sulfide removal efficiency of 93.0 ± 1.2%. However, the sulfide removal efficiency and power density decreased gradually after 45 days. The results from scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX) show that sulfur accumulated on the anode, which could explain the decline in sulfide oxidation and electricity generation. This study provides a promising treatment system to scale up for its actual applications in this type of wastewater.
Collapse
Affiliation(s)
- Thi Quynh Hoa Kieu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam
| | - Thi Yen Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Chi Linh Do
- Institute of Material Sciences, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
6
|
High dietary methionine intake may contribute to the risk of nonalcoholic fatty liver disease by inhibiting hepatic H2S production. Food Res Int 2022; 158:111507. [DOI: 10.1016/j.foodres.2022.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/06/2022]
|
7
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
8
|
Xuan G, Lv C, Xu H, Li K, Liu H, Xia Y, Xun L. Sulfane Sulfur Regulates LasR-Mediated Quorum Sensing and Virulence in Pseudomonas aeruginosa PAO1. Antioxidants (Basel) 2021; 10:antiox10091498. [PMID: 34573130 PMCID: PMC8469610 DOI: 10.3390/antiox10091498] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfane sulfur, such as inorganic and organic polysulfide (HSn- and RSn-, n > 2), is a common cellular component, produced either from hydrogen sulfide oxidation or cysteine metabolism. In Pseudomonas aeruginosa PAO1, LasR is a quorum sensing master regulator. After binding its autoinducer, LasR binds to its target DNA to activate the transcription of a suite of genes, including virulence factors. Herein, we report that the production of hydrogen sulfide and sulfane sulfur were positively correlated in P. aeruginosa PAO1, and sulfane sulfur was able to modify LasR, which generated Cys188 persulfide and trisulfide and produced a pentasulfur link between Cys201 and Cys203. The modifications did not affect LasR binding to its target DNA site, but made it several-fold more effective than unmodified LasR in activating transcription in both in vitro and in vivo assays. On the contrary, H2O2 inactivates LasR via producing a disulfide bond between Cys201 and Cys203. P. aeruginosa PAO1 had a high cellular sulfane sulfur and high LasR activity in the mid log phase and early stationary phase, but a low sulfane sulfur and low LasR activity in the declination phase. Thus, sulfane sulfur is a new signaling factor in the bacterium, adding another level of control over LasR-mediated quorum sensing and turning down the activity in old cells.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Chuanjuan Lv
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Huangwei Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
- Correspondence: (Y.X.); (L.X.); Tel.: +86-532-5863-1572 (Y.X.); +1-509-335-2787 (L.X.)
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Correspondence: (Y.X.); (L.X.); Tel.: +86-532-5863-1572 (Y.X.); +1-509-335-2787 (L.X.)
| |
Collapse
|
9
|
Gu Z, Sun Y, Wu F. Mechanism of Growth Regulation of Yeast Involving Hydrogen Sulfide From S-Propargyl-Cysteine Catalyzed by Cystathionine-γ-Lyase. Front Microbiol 2021; 12:679563. [PMID: 34276612 PMCID: PMC8285084 DOI: 10.3389/fmicb.2021.679563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic fungi are recognized as a progressive threat to humans, particularly those with the immunocompromised condition. The growth of fungi is controlled by several factors, one of which is signaling molecules, such as hydrogen sulfide (H2S), which was traditionally regarded as a toxic gas without physiological function. However, recent studies have revealed that H2S is produced enzymatically and endogenously in several species, where it serves as a gaseous signaling molecule performing a variety of critical biological functions. However, the influence of this endogenous H2S on the biological activities occurring within the pathogenic fungi, such as transcriptomic and phenotypic alternations, has not been elucidated so far. Therefore, the present study was aimed to decipher this concern by utilizing S-propargyl-cysteine (SPRC) as a novel and stable donor of H2S and Saccharomyces cerevisiae as a fungal model. The results revealed that the yeast could produce H2S by catabolizing SPRC, which facilitated the growth of the yeast cells. This implies that the additional intracellularly generated H2S is generated primarily from the enhanced sulfur-amino-acid-biosynthesis pathways and serves to increase the growth rate of the yeast, and presumably the growth of the other fungi as well. In addition, by deciphering the implicated pathways and analyzing the in vitro enzymatic activities, cystathionine-γ-lyase (CYS3) was identified as the enzyme responsible for catabolizing SPRC into H2S in the yeast, which suggested that cystathionine-γ-lyase might play a significant role in the regulation of H2S-related transcriptomic and phenotypic alterations occurring in yeast. These findings provide important information regarding the mechanism underlying the influence of the gaseous signaling molecules such as H2S on fungal growth. In addition, the findings provide a better insight to the in vivo metabolism of H2S-related drugs, which would be useful for the future development of anti-fungal drugs.
Collapse
Affiliation(s)
- Zhongkai Gu
- The Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufan Sun
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feizhen Wu
- The Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Jin X, Chen D, Wu F, Zhang L, Huang Y, Lin Z, Wang X, Wang R, Xu L, Chen Y. Hydrogen Sulfide Protects Against Ammonia-Induced Neurotoxicity Through Activation of Nrf2/ARE Signaling in Astrocytic Model of Hepatic Encephalopathy. Front Cell Neurosci 2020; 14:573422. [PMID: 33192318 PMCID: PMC7642620 DOI: 10.3389/fncel.2020.573422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Hepatic encephalopathy (HE) characterized by neuropsychiatric abnormalities is a major complication of cirrhosis with high mortality. However, the pathogenesis of HE has not been fully elucidated. This study aimed to determine endogenous hydrogen sulfide (H2S) in the blood of HE patients and investigate the role of H2S in an astrocytic model of HE. Methods: Patients with and without HE were recruited to determine plasma H2S levels and blood microbial 16S rRNA gene. Rat astrocytes were employed as a model of HE by treatment of NH4Cl. Exogenous H2S was preadded. Cell viability was measured by Cell Counting Kit-8 (CCK-8) assay, and cell death was evaluated by lactate dehydrogenase (LDH) release. Apoptosis was determined by Hoechst 33342/Propidium Iodide (PI) Double Staining and Western blot analysis of apoptosis-related protein expression. Intracellular reactive oxygen species (ROS) levels were assessed by flow cytometer. Expressions of Nrf2 and its downstream regulated genes were examined by immunofluorescence staining and Western blot, respectively. Nrf2 gene knockdown was performed by antisense shRNA of Nrf2 gene. Results: There was a significant decrease in H2S levels in cirrhotic patients with HE compared with without HE. Blood microbiota analyses revealed that certain strains associated with H2S production were negatively correlated with HE. In vitro, H2S markedly attenuated NH4Cl-induced cytotoxicity, oxidative stress, and apoptosis. This effect was mediated by Nrf2/ARE signaling, and knockdown of Nrf2 expression abolished the antagonistic effect of H2S on NH4Cl-induced neurotoxicity in astrocytes. Conclusion: Levels of H2S and bacteria associated with H2S production are decreased in HE, and H2S functions as the neuroprotector against NH4Cl-induced HE by activating Nrf2/ARE signaling of astrocytes.
Collapse
Affiliation(s)
- Xiaozhi Jin
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Dazhi Chen
- Department of Gastroenterology, The First Hospital of Peking University, Beijing, China
| | - Faling Wu
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Lei Zhang
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Yu Huang
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Zhuo Lin
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Xiaodong Wang
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Rui Wang
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Lanman Xu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Department of Infectious Diseases and Liver Diseases, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yongping Chen
- Department of Infectious Diseases, Wenzhou Key Laboratory of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| |
Collapse
|
11
|
Xuan G, Lü C, Xu H, Chen Z, Li K, Liu H, Liu H, Xia Y, Xun L. Sulfane Sulfur is an intrinsic signal activating MexR-regulated antibiotic resistance in Pseudomonas aeruginosa. Mol Microbiol 2020; 114:1038-1048. [PMID: 32875640 DOI: 10.1111/mmi.14593] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa PAO1, an opportunistic human pathogen, deploys several strategies to resist antibiotics. It uses multidrug efflux pumps, including the MexAB-OprM pump, for antibiotic resistance, and it also produces hydrogen sulfide (H2 S) that provides some defense against antibiotics. MexR functions as a transcriptional repressor of the mexAB-oprM operon. MexR responds to oxidative stresses caused by antibiotic exposure, and it also displays a growth phase-dependent derepression of the mexAB-oprM operon. However, the intrinsic inducer has not been identified. Here, we report that P. aeruginosa PAO1 produced sulfane sulfur, including glutathione persulfide and inorganic polysulfide, produced from either H2 S oxidation or from L-cysteine metabolism. Sulfane sulfur directly reacted with MexR, forming di- and trisulfide cross-links between two Cys residues, to derepress the mexAB-oprM operon. Levels of cellular sulfane sulfur and mexAB-oprM expression varied during growth, and both reached the maximum during the stationary phase of growth. Thus, self-produced H2 S and sulfane sulfur may facilitate antibiotic resistance via inducing the expression of antibiotic resistance genes.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huangwei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Zhigang Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
12
|
Liu D, Zhang J, Lü C, Xia Y, Liu H, Jiao N, Xun L, Liu J. Synechococcus sp. Strain PCC7002 Uses Sulfide:Quinone Oxidoreductase To Detoxify Exogenous Sulfide and To Convert Endogenous Sulfide to Cellular Sulfane Sulfur. mBio 2020; 11:e03420-19. [PMID: 32098824 PMCID: PMC7042703 DOI: 10.1128/mbio.03420-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Eutrophication and deoxygenation possibly occur in coastal waters due to excessive nutrients from agricultural and aquacultural activities, leading to sulfide accumulation. Cyanobacteria, as photosynthetic prokaryotes, play significant roles in carbon fixation in the ocean. Although some cyanobacteria can use sulfide as the electron donor for photosynthesis under anaerobic conditions, little is known on how they interact with sulfide under aerobic conditions. In this study, we report that Synechococcus sp. strain PCC7002 (PCC7002), harboring an sqr gene encoding sulfide:quinone oxidoreductase (SQR), oxidized self-produced sulfide to S0, present as persulfide and polysulfide in the cell. The Δsqr mutant contained less cellular S0 and had increased expression of key genes involved in photosynthesis, but it was less competitive than the wild type in cocultures. Further, PCC7002 with SQR and persulfide dioxygenase (PDO) oxidized exogenous sulfide to tolerate high sulfide levels. Thus, SQR offers some benefits to cyanobacteria even under aerobic conditions, explaining the common presence of SQR in cyanobacteria.IMPORTANCE Cyanobacteria are a major force for primary production via oxygenic photosynthesis in the ocean. A marine cyanobacterium, PCC7002, is actively involved in sulfide metabolism. It uses SQR to detoxify exogenous sulfide, enabling it to survive better than its Δsqr mutant in sulfide-rich environments. PCC7002 also uses SQR to oxidize endogenously generated sulfide to S0, which is required for the proper expression of key genes involved in photosynthesis. Thus, SQR has at least two physiological functions in PCC7002. The observation provides a new perspective for the interplays of C and S cycles.
Collapse
Affiliation(s)
- Daixi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Jiajie Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Nianzhi Jiao
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Liu H, Fan K, Li H, Wang Q, Yang Y, Li K, Xia Y, Xun L. Synthetic Gene Circuits Enable Escherichia coli To Use Endogenous H 2S as a Signaling Molecule for Quorum Sensing. ACS Synth Biol 2019; 8:2113-2120. [PMID: 31386360 DOI: 10.1021/acssynbio.9b00210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microorganisms often use specific autoinducers other than common metabolites for quorum sensing (QS). Herein, we demonstrated that Escherichia coli produced sulfide (H2S, HS-, and S2-) with the concentrations proportionally correlated to its cell density. We then designed synthetic gene circuits that used H2S as an autoinducer for quorum sensing. A sulfide/quinone oxidoreductase converted diffusible H2S to indiffusible hydrogen polysulfide (HSnH, n ≥ 2), and a gene regulator CstR sensed the latter to turn on the gene expression. We constructed three element libraries, with which 24 different circuits could be assembled for adjustable sensitivity to cell density. The H2S-mediated gene circuits endowed E. coli cells within the same batch or microcolony with highly synchronous behaviors. Using them we successfully constructed cell factories capable of an autonomous switch from growth phase to production phase. Thus, these circuits provide a new tool-kit for metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People’s Republic of China
| | - Kaili Fan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People’s Republic of China
| | - Huanjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People’s Republic of China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People’s Republic of China
| | - Yunyun Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People’s Republic of China
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People’s Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People’s Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People’s Republic of China
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, United States
| |
Collapse
|
14
|
Do AV, Smith R, Tobias P, Carlsen D, Pham E, Bowden NB, Salem AK. Sustained Release of Hydrogen Sulfide (H 2S) from Poly(Lactic Acid) Functionalized 4-Hydroxythiobenzamide Microparticles to Protect Against Oxidative Damage. Ann Biomed Eng 2019; 47:1691-1700. [PMID: 31139973 PMCID: PMC6650332 DOI: 10.1007/s10439-019-02270-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/11/2019] [Indexed: 10/26/2022]
Abstract
Hydrogen sulfide (H2S) has emerged as a gaseous mediator capable of exhibiting many beneficial properties including cytoprotection, anti-inflammation, and vasodilation. The study presented here provides characterization of a poly(lactic acid) polymer with a functionalized 4-hydroxythiobenzamide (PLA-4HTB) capable of extended H2S release. The polymer was used to fabricate microparticles that can be potentially loaded with a drug allowing for co-release of the drug and H2S. Microparticles with the average diameter of 500 ± 207 nm were fabricated and shown to release 77.0 ± 1.76 µM of H2S over 4 weeks (release of H2S from 1 mg of particles). To test for the antioxidant properties of the PLA-4HTB microparticles, human embryonic kidney 293 cells were first incubated with PLA-4HTB microparticles and then oxidative stress was induced using CoCl2. Particle suspensions of 1 mg/mL were shown to protect cells resulting in reactive oxygen species (ROS) levels of superoxide that were similar to that of the control group. The microparticles fabricated from the PLA-4HTB released H2S over a sustained period of weeks to months, while providing protection from ROS. The microparticles described in this article represent a new platform technology that could be used to prevent and treat diseases caused by oxidative damage.
Collapse
Affiliation(s)
- Anh-Vu Do
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Rasheid Smith
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Phillip Tobias
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Daniel Carlsen
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Erica Pham
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Ned B Bowden
- Department of Chemistry, College of Liberal Arts and Sciences, University of Iowa, Iowa, IA, USA
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA.
| |
Collapse
|
15
|
Nzungize L, Ali MK, Wang X, Huang X, Yang W, Duan X, Yan S, Li C, Abdalla AE, Jeyakkumar P, Xie J. Mycobacterium tuberculosis metC (Rv3340) derived hydrogen sulphide conferring bacteria stress survival. J Drug Target 2019; 27:1004-1016. [DOI: 10.1080/1061186x.2019.1579820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lambert Nzungize
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoyu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenmin Yang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuangquan Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Abualgasim Elgaili Abdalla
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
- Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman, Islamic University, Omdurman, Sudan
| | - Ponmani Jeyakkumar
- Institute of Bioorganic and Medical Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Yang Y, Wang Y, Sun J, Zhang J, Guo H, Shi Y, Cheng X, Tang X, Le G. Dietary methionine restriction reduces hepatic steatosis and oxidative stress in high-fat-fed mice by promoting H2S production. Food Funct 2019; 10:61-77. [DOI: 10.1039/c8fo01629a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dietary methionine restriction reduces hepatic steatosis and oxidative stress in high-fat-fed mice by promoting H2S production.
Collapse
Affiliation(s)
- Yuhui Yang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| | - Yanan Wang
- Center for Food Nutrition and Functional Food Engineering
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| | - Jiahong Zhang
- Center for Food Nutrition and Functional Food Engineering
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Haitao Guo
- Center for Food Nutrition and Functional Food Engineering
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| | - Xiangrong Cheng
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| | - Xue Tang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| | - Guowei Le
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Center for Food Nutrition and Functional Food Engineering
| |
Collapse
|
17
|
Abstract
Reductive sulfurous off-odors are still one of the main reasons for rejecting wines by consumers. In 2008 at the International Wine Challenge in London, approximately 6% of the more than 10,000 wines presented were described as faulty. Twenty-eight percent were described as faulty because they presented “reduced characters” similar to those presented by “cork taint” and in nearly the same portion. Reductive off-odors are caused by low volatile sulfurous compounds. Their origin may be traced back to the metabolism of the microorganisms (yeasts and lactic acid bacteria) involved in the fermentation steps during wine making, often followed by chemical conversions. The main source of volatile sulfur compounds (VSCs) are precursors from the sulfate assimilation pathway (SAP, sometimes named as the “sulfate reduction pathway” SRP), used by yeast to assimilate sulfur from the environment and incorporate it into the essential sulfur-containing amino acids methionine and cysteine. Reductive off-odors became of increasing interest within the last few years, and the method to remove them by treatment with copper (II) salts (sulfate or citrate) is more and more questioned: The effectiveness is doubted, and after prolonged bottle storage, they reappear quite often. Numerous reports within the last few years and an ongoing flood of publications dealing with this matter reflect the importance of this problem. In a recent detailed review, almost all relevant aspects were discussed on a scientific data basis, and a “decision tree” was formulated to support winemakers handling this problem. Since we are dealing with a very complicated matter with a multitude of black spots still remaining, these advices can only be realized using specific equipment and special chemicals, not necessarily found in small wineries. The main problem in dealing with sulfurous compounds arises from the high variability of their reactivities. Sulfur is a metalloid with a large valence span across eight electron transformations from S (−II) up to S (+VI). This allows it to participate in an array of oxidation, reduction and disproportionation reactions, both abiotic and linked to microbial metabolism. In addition, sulfur is the element with the most allotropes and a high tendency to form chains and rings, with different stabilities of defined species and a high interconvertibility among each other. We suppose, there is simply a lack of knowledge of what is transferred during filling into bottles after fermentation and fining procedures. The treatment with copper (II) salts to remove sulfurous off-odors before filling rather increases instead of solving the problem. This paper picks up the abundant knowledge from recent literature and tries to add some aspects and observations, based on the assumption that the formation of polythionates, hitherto not taken into consideration, may explain some of the mystery of the re-appearance of reductive off-odors.
Collapse
|
18
|
Asaoka S, Umehara A, Otani S, Fujii N, Okuda T, Nakai S, Nishijima W, Takeuchi K, Shibata H, Jadoon WA, Hayakawa S. Spatial distribution of hydrogen sulfide and sulfur species in coastal marine sediments Hiroshima Bay, Japan. MARINE POLLUTION BULLETIN 2018; 133:891-899. [PMID: 30041392 DOI: 10.1016/j.marpolbul.2018.06.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
This study aims to reveal spatial distribution of hydrogen sulfide and sulfur species in marine sediments in Hiroshima Bay, Japan, by direct analyses using a combination of detection tubes and X-ray absorption fine structure spectroscopy. In summer and autumn, the hydrogen sulfide concentration ranged from <0.1 to 4 mg-S L-1. In this study, only hydrogen sulfide was observed in autumn and at two stations in summer. In contrast, some earlier studies reported in all seasons in Hiroshima Bay the presence of acid volatile sulfide, which is used as a proxy of sulfide content. The sulfur species in sediments were mainly identified as sulfate, thiosulfate, elemental sulfur, and pyrite. Thiosulfate was a minor component compared to the other sulfur species. The formation of pyrite and sulfur derived from hydrogen sulfide oxidation played an important role in the scavenging of hydrogen sulfide.
Collapse
Affiliation(s)
- Satoshi Asaoka
- Research Center for Inland Seas, Kobe University, 5-1-1 Fukaeminami, Higashinada, Kobe 658-0022, Japan.
| | - Akira Umehara
- Environmental Research and Management Center, Hiroshima University, 1-5-3, Kagamiyama, Higashihiroshima, Hiroshima 739-8513, Japan
| | - Sosuke Otani
- Department of Technological Systems, Osaka Prefecture University College of Technology, 26-12, Saiwaicho, Neyagawa, Osaka 572-8572, Japan
| | - Naoki Fujii
- Institute of Lowland and Marine Research, Saga University, 1, Honjyo, Saga 840-8502, Japan
| | - Tetsuji Okuda
- Faculty of Science & Technology, Ryukoku University, 1-5 Yokotani, Setaooe, Ootsu, Shiga 520-2194, Japan
| | - Satoshi Nakai
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Wataru Nishijima
- Environmental Research and Management Center, Hiroshima University, 1-5-3, Kagamiyama, Higashihiroshima, Hiroshima 739-8513, Japan
| | - Koji Takeuchi
- National Institute of Technology, Hiroshima College, 4272-1, Higashino, Oosakikamishima, Toyota, Hiroshima 725-0231, Japan
| | - Hiroshi Shibata
- National Institute of Technology, Hiroshima College, 4272-1, Higashino, Oosakikamishima, Toyota, Hiroshima 725-0231, Japan
| | - Waqar Azeem Jadoon
- Research Center for Inland Seas, Kobe University, 5-1-1 Fukaeminami, Higashinada, Kobe 658-0022, Japan
| | - Shinjiro Hayakawa
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
19
|
Duzs Á, Tóth A, Németh B, Balogh T, Kós PB, Rákhely G. A novel enzyme of type VI sulfide:quinone oxidoreductases in purple sulfur photosynthetic bacteria. Appl Microbiol Biotechnol 2018; 102:5133-5147. [PMID: 29680900 DOI: 10.1007/s00253-018-8973-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022]
Abstract
Sulfide detoxification can be catalyzed by ancient membrane-bound flavoproteins, sulfide:quinone oxidoreductases (Sqr), which have important roles in sulfide homeostasis and sulfide-dependent energy conservation processes by transferring electrons from sulfide to respiratory or photosynthetic membrane electron flow. Sqr enzymes have been categorized into six groups. Several members of the groups I, II, III, and V are well-known, but type IV and VI Sqrs are, as yet, uncharacterized or hardly characterized at all. Here, we report detailed characterization of a type VI sulfide:quinone oxidoreductase (TrSqrF) from a purple sulfur bacterium, Thiocapsa roseopersicina. Phylogenetic analysis classified this enzyme in a special group composed of SqrFs of endosymbionts, while a weaker relationship could be observed with SqrF of Chlorobaculum tepidum which is the only type VI enzyme characterized so far. Directed mutagenesis experiments showed that TrSqrF contributed substantially to the sulfide:quinone oxidoreductase activity of the membranes. Expression of the sqrF gene could be induced by sulfide. Homologous recombinant TrSqrF protein was expressed and purified from the membranes of a SqrF-deleted T. roseopersicina strain. The purified protein contains redox-active covalently bound FAD cofactor. The recombinant TrSqrF enzyme catalyzes sulfur-dependent quinone reduction and prefers ubiquinone-type quinone compounds. Kinetic parameters of TrSqrF show that the affinity of the enzyme is similar to duroquinone and decylubiquinone, but the reaction has substantially lower activation energy with decylubiquinone, indicating that the quinone structure has an effect on the catalytic process. TrSqrF enzyme affinity for sulfide is low, therefore, in agreement with the gene expressional analyis, SqrF could play a role in energy-conserving sulfide oxidation at high sulfide concentrations. TrSqrF is a good model enzyme for the subgroup of type VI Sqrs of endosymbionts and its characterization might provide deeper insight into the molecular details of the ancient, anoxic, energy-gaining processes using sulfide as an electron donor.
Collapse
Affiliation(s)
- Ágnes Duzs
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - András Tóth
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Brigitta Németh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Tímea Balogh
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Péter B Kós
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary. .,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary.
| |
Collapse
|
20
|
Lu H, Huang H, Yang W, Mackey HR, Khanal SK, Wu D, Chen GH. Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification. WATER RESEARCH 2018; 133:165-172. [PMID: 29407698 DOI: 10.1016/j.watres.2018.01.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Autotrophic denitrification has been widely studied for odor mitigation, corrosion control and nitrogen removal in recent years. This paper examines the response of sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification under short-term stress of dissolved sulfide. A series of batch tests were conducted to investigate the effect of different sulfide concentrations (0-1600 mg-total dissolved sulfide (TDS)/L) on autotrophic denitrification and sulfide oxidation by SOB-enriched sludge. Our results show that autotrophic denitrification (NO3- to N2) was stimulated up to 200 mg-TDS/L with a maximum denitrification rate of 9.4 mg-N/g-volatile suspended solids (VSS)/h, and the nitrite reduction was a rate limiting step. When sulfide concentration was higher than 200 mg-TDS/L, it inhibited nitrate reductase, and nitrate reduction became the rate limiting step according to Edwards and Aiba inhibition models. Sulfide oxidation, however, was not inhibited and the maximum rate of 100.3 mg-TDS/g-VSS/h was obtained at sulfide concentration of 1000 mg-TDS/L. It is important to point out that the transient inhibition on autotrophic denitrification caused by high sulfide stress was resilient and non-lethal with no significant changes in cell viability even under sulfide concentration of 1000 mg-TDS/L. This study reveals the stimulatory and inhibitory effects of dissolved sulfide on SOB driven autotrophic denitrification and its possible underlying mechanism with discussion on engineering implications.
Collapse
Affiliation(s)
- Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, PR China
| | - Haiqin Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, PR China
| | - Weiming Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, PR China
| | - Hamish Robert Mackey
- College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal (Hong Kong Branch), And Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal (Hong Kong Branch), And Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
21
|
Nakamura S, Shioya K, Hiraoka BY, Suzuki N, Hoshino T, Fujiwara T, Yoshinari N, Ansai T, Yoshida A. Porphyromonas gingivalis hydrogen sulfide enhances methyl mercaptan-induced pathogenicity in mouse abscess formation. Microbiology (Reading) 2018; 164:529-539. [DOI: 10.1099/mic.0.000640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Suguru Nakamura
- Department of Periodontology, Matsumoto Dental University, Shiojiri, Japan
- Division of Community Oral Health Science, Department of Oral Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Koki Shioya
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Japan
| | | | - Nao Suzuki
- Department of Preventive and Public Health Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Tomonori Hoshino
- Department of Pediatric Dentistry, School of Dentistry, Meikai University, Saitama, Japan
| | - Taku Fujiwara
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nobuo Yoshinari
- Department of Periodontology, Matsumoto Dental University, Shiojiri, Japan
| | - Toshihiro Ansai
- Division of Community Oral Health Science, Department of Oral Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Akihiro Yoshida
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
22
|
de Lira NPV, Pauletti BA, Marques AC, Perez CA, Caserta R, de Souza AA, Vercesi AE, Paes Leme AF, Benedetti CE. BigR is a sulfide sensor that regulates a sulfur transferase/dioxygenase required for aerobic respiration of plant bacteria under sulfide stress. Sci Rep 2018; 8:3508. [PMID: 29472641 PMCID: PMC5823870 DOI: 10.1038/s41598-018-21974-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
To cope with toxic levels of H2S, the plant pathogens Xylella fastidiosa and Agrobacterium tumefaciens employ the bigR operon to oxidize H2S into sulfite. The bigR operon is regulated by the transcriptional repressor BigR and it encodes a bifunctional sulfur transferase (ST) and sulfur dioxygenase (SDO) enzyme, Blh, required for H2S oxidation and bacterial growth under hypoxia. However, how Blh operates to enhance bacterial survival under hypoxia and how BigR is deactivated to derepress operon transcription is unknown. Here, we show that the ST and SDO activities of Blh are in vitro coupled and necessary to oxidize sulfide into sulfite, and that Blh is critical to maintain the oxygen flux during A. tumefaciens respiration when oxygen becomes limited to cells. We also show that H2S and polysulfides inactivate BigR leading to operon transcription. Moreover, we show that sulfite, which is produced by Blh in the ST and SDO reactions, is toxic to Citrus sinensis and that X. fastidiosa-infected plants accumulate sulfite and higher transcript levels of sulfite detoxification enzymes, suggesting that they are under sulfite stress. These results indicate that BigR acts as a sulfide sensor in the H2S oxidation mechanism that allows pathogens to colonize plant tissues where oxygen is a limiting factor.
Collapse
Affiliation(s)
- Nayara Patricia Vieira de Lira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-100, Campinas, SP, Brazil
| | - Bianca Alves Pauletti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-100, Campinas, SP, Brazil
| | - Ana Carolina Marques
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, 13083-887, Campinas, SP, Brazil
| | - Carlos Alberto Perez
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-100, Campinas, SP, Brazil
| | - Raquel Caserta
- Agronomic Institute of Campinas, Citriculture Research Center 'Sylvio Moreira', CEP 13490-970, Cordeirópolis, SP, Brazil
| | - Alessandra Alves de Souza
- Agronomic Institute of Campinas, Citriculture Research Center 'Sylvio Moreira', CEP 13490-970, Cordeirópolis, SP, Brazil
| | - Aníbal Eugênio Vercesi
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, 13083-887, Campinas, SP, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-100, Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-100, Campinas, SP, Brazil.
| |
Collapse
|
23
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
24
|
Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME JOURNAL 2017; 11:2754-2766. [PMID: 28777380 PMCID: PMC5702731 DOI: 10.1038/ismej.2017.125] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/30/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022]
Abstract
Sulfide (H2S, HS- and S2-) oxidation to sulfite and thiosulfate by heterotrophic bacteria, using sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO), has recently been reported as a possible detoxification mechanism for sulfide at high levels. Bioinformatic analysis revealed that the sqr and pdo genes were common in sequenced bacterial genomes, implying the sulfide oxidation may have other physiological functions. SQRs have previously been classified into six types. Here we grouped PDOs into three types and showed that some heterotrophic bacteria produced and released H2S from organic sulfur into the headspace during aerobic growth, and others, for example, Pseudomonas aeruginosa PAO1, with sqr and pdo did not release H2S. When the sqr and pdo genes were deleted, the mutants also released H2S. Both sulfide-oxidizing and non-oxidizing heterotrophic bacteria were readily isolated from various environmental samples. The sqr and pdo genes were also common in the published marine metagenomic and metatranscriptomic data, indicating that the genes are present and expressed. Thus, heterotrophic bacteria actively produce and consume sulfide when growing on organic compounds under aerobic conditions. Given their abundance on Earth, their contribution to the sulfur cycle should not be overlooked.
Collapse
|
25
|
Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli. J Bacteriol 2017; 199:JB.00117-17. [PMID: 28607157 DOI: 10.1128/jb.00117-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/02/2017] [Indexed: 01/12/2023] Open
Abstract
Salmonella enterica has two CyuR-activated enzymes that degrade cysteine, i.e., the aerobic CdsH and an unidentified anaerobic enzyme; Escherichia coli has only the latter. To identify the anaerobic enzyme, transcript profiling was performed for E. coli without cyuR and with overexpressed cyuR Thirty-seven genes showed at least 5-fold changes in expression, and the cyuPA (formerly yhaOM) operon showed the greatest difference. Homology suggested that CyuP and CyuA represent a cysteine transporter and an iron-sulfur-containing cysteine desulfidase, respectively. E. coli and S. enterica ΔcyuA mutants grown with cysteine generated substantially less sulfide and had lower growth yields. Oxygen affected the CyuR-dependent genes reciprocally; cyuP-lacZ expression was greater anaerobically, whereas cdsH-lacZ expression was greater aerobically. In E. coli and S. enterica, anaerobic cyuP expression required cyuR and cysteine and was induced by l-cysteine, d-cysteine, and a few sulfur-containing compounds. Loss of either CyuA or RidA, both of which contribute to cysteine degradation to pyruvate, increased cyuP-lacZ expression, which suggests that CyuA modulates intracellular cysteine concentrations. Phylogenetic analysis showed that CyuA homologs are present in obligate and facultative anaerobes, confirming an anaerobic function, and in archaeal methanogens and bacterial acetogens, suggesting an ancient origin. Our results show that CyuA is the major anaerobic cysteine-catabolizing enzyme in both E. coli and S. enterica, and it is proposed that anaerobic cysteine catabolism can contribute to coordination of sulfur assimilation and amino acid synthesis.IMPORTANCE Sulfur-containing compounds such as cysteine and sulfide are essential and reactive metabolites. Exogenous sulfur-containing compounds can alter the thiol landscape and intracellular redox reactions and are known to affect several cellular processes, including swarming motility, antibiotic sensitivity, and biofilm formation. Cysteine inhibits several enzymes of amino acid synthesis; therefore, increasing cysteine concentrations could increase the levels of the inhibited enzymes. This inhibition implies that control of intracellular cysteine levels, which is the immediate product of sulfide assimilation, can affect several pathways and coordinate metabolism. For these and other reasons, cysteine and sulfide concentrations must be controlled, and this work shows that cysteine catabolism contributes to this control.
Collapse
|
26
|
Li H, Li J, Lü C, Xia Y, Xin Y, Liu H, Xun L, Liu H. FisR activates σ 54 -dependent transcription of sulfide-oxidizing genes in Cupriavidus pinatubonensis JMP134. Mol Microbiol 2017; 105:373-384. [PMID: 28612361 DOI: 10.1111/mmi.13725] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2017] [Indexed: 01/12/2023]
Abstract
Some heterotrophic bacteria are able to oxidize sulfide (H2 S, HS- and S2- ) to sulfite and thiosulfate via polysulfide. The genes coding for the oxidation enzymes in Cupriavidus pinatubonensis JMP134 have recently been identified; however, their regulation is unknown. A regulator gene is adjacent to the operon of the sulfide-oxidizing genes, encoding a σ54 -dependent transcription factor (FisR) with three domains: an R domain, an AAA+ domain and a DNA-binding domain. Here it is reported that the regulator responds to the presence of sulfide and activates the sulfide-oxidizing genes. FisR binds to its cognate operator at -114 to -135 bp of the transcription start of the operon. When polysulfide reacts with the R domain of FisR through the three conserved cysteine residues (C53, C64 and C71), FisR activates the expression of the operon. FisR is highly sensitive to polysulfide, activating σ54 -dependent transcription of sulfide-oxidizing genes for sulfide removal. Further, sequence analysis indicates that FisR-type regulators are relatively common for controlling sulfide-oxidizing genes under sulfide stress in the Proteobacteria.
Collapse
Affiliation(s)
- Huanjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Juan Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Yufeng Xin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China.,School of Molecular Biosciences, Washington State University, Pullman, WA, 991647520, USA
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
27
|
Kinzurik MI, Ly K, David KM, Gardner RC, Fedrizzi B. The GLO1 Gene Is Required for Full Activity of O-Acetyl Homoserine Sulfhydrylase Encoded by MET17. ACS Chem Biol 2017; 12:414-421. [PMID: 27935278 DOI: 10.1021/acschembio.6b00815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During glycolysis, yeast generates methylglyoxal (MG), a toxic metabolite that affects growth. Detoxification can occur when glyoxylase I (GLO1) and glyoxylase II (GLO2) convert MG to lactic acid. We have identified an additional, previously unrecognized role for GLO1 in sulfur assimilation in the yeast Saccharomyces cerevisiae. During a screening for putative carbon-sulfur lyases, the glo1 deletion strain showed significant production of H2S during fermentation. The glo1 strain also assimilated sulfate inefficiently but grew normally on cysteine. These phenotypes are consistent with reduced activity of the O-acetyl homoserine sulfhydrylase, Met17p. Overexpression of Glo1p gave a dominant negative phenotype that mimicked the glo1 and met17 deletion strain phenotypes. Western analysis revealed reduced expression of Met17p in the glo1 deletion, but there was no indication of an altered conformation of Met17p or any direct interaction between the two proteins. Unravelling a novel function in sulfur assimilation and H2S generation in yeast for a gene never connected with this pathway provides new opportunities for the study of this molecule in cell signaling, as well as the potential regulation of its accumulation in the wine and beer industry.
Collapse
Affiliation(s)
- Matias I. Kinzurik
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Kien Ly
- School
of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Karine M. David
- School
of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Richard C. Gardner
- School
of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Bruno Fedrizzi
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
28
|
Asaoka S, Okamura H, Kim K, Hatanaka Y, Nakamoto K, Hino K, Oikawa T, Hayakawa S, Okuda T. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide. CHEMOSPHERE 2017; 168:384-389. [PMID: 27810538 DOI: 10.1016/j.chemosphere.2016.10.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/07/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Reducing hydrogen sulfide concentration in eutrophic marine sediments is crucial to maintaining healthy aquatic ecosystems. Managing fly ash, 750 million tons of which is generated annually throughout the world, is another serious environmental problem. In this study, we develop an approach that addresses both these issues by mixing coal fly ash from coal-fired power plants with blast furnace cement to remediate eutrophic sediments. The purpose of this study is to optimize the mixing ratio of coal fly ash and blast furnace cement to improve the rate of hydrogen sulfide removal based on scientific evidence obtained by removal experiments and XAFS, XRD, BET, and SEM images. In the case of 10 mg-S L-1 of hydrogen sulfide, the highest removal rate of hydrogen sulfide was observed for 87 wt% of coal fly ash due to decreased competition of adsorption between sulfide and hydroxyl ions. Whereas regarding 100 mg-S L-1, the hydrogen sulfide removal rate was the highest for 95 wt% of coal fly ash. However, for both concentrations, the removal rate obtained by 87 wt% and 95 wt% were statistically insignificant. The crushing strength of the mixture was over 1.2 N mm-2 when the coal fly ash mixing ratio was less than 95 wt%. Consequently, the mixing ratio of coal fly ash was optimized at 87 wt% in terms of achieving both high hydrogen sulfide removal rate and sufficient crushing strength.
Collapse
Affiliation(s)
- Satoshi Asaoka
- Research Center for Inland Seas, Kobe University, 5-1-1 Fukaeminami, Higashinada, Kobe, 658-0022, Japan.
| | - Hideo Okamura
- Research Center for Inland Seas, Kobe University, 5-1-1 Fukaeminami, Higashinada, Kobe, 658-0022, Japan
| | - Kyunghoi Kim
- College of Environmental and Marine Sciences and Technology, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, South Korea
| | - Yuzuru Hatanaka
- Faculty of Maritime Sciences, Kobe University, 5-1-1 Fukaeminami, Higashinada, Kobe, 658-0022, Japan
| | - Kenji Nakamoto
- The Chugoku Electric Power Co., Inc., 4-33, Komachi,Naka-ku, Hiroshima, 730-8701, Japan
| | - Kazutoshi Hino
- The Chugoku Electric Power Co., Inc., 4-33, Komachi,Naka-ku, Hiroshima, 730-8701, Japan
| | - Takahito Oikawa
- The Chugoku Electric Power Co., Inc., 4-33, Komachi,Naka-ku, Hiroshima, 730-8701, Japan
| | - Shinjiro Hayakawa
- Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Tetsuji Okuda
- Faculty of Science & Technology, Ryukoku University, 1-5 Yokotani, Setaooe, Ootsu, Shiga, 520-2194, Japan
| |
Collapse
|
29
|
Khan MN, Mobin M, Abbas ZK, Siddiqui MH. Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 2017; 68:91-102. [PMID: 28062279 DOI: 10.1016/j.niox.2017.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) have been shown to act as signaling molecules in various physiological processes, play significant roles in plant cellular processes, and also mediate responses to both biotic and abiotic stresses in plants. The present investigation was carried out to test the effect of exogenous NO on endogenous synthesis of H2S in osmotic-stressed wheat (Triticum aestivum L.) seedlings. The results show that application of NO to wheat seedlings, suffered from PEG8000-induced osmotic stress, considerably enhanced the activities of H2S-synthesizing enzymes l-cysteine desulfhydrase (LCD) and d-cysteine desulfhydrase (DCD) leading to enhanced level of endogenous H2S content. At the same time exogenous NO also enhanced the activity of cysteine (Cys)-synthesizing enzyme O-acetylserine(thiol)lyase (OAS-TL) and maintained Cys homeostasis under osmotic stress. NO and H2S together markedly improved the activities of antioxidant enzymes viz. ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT). Furthermore, NO and H2S caused additional accumulation of osmolytes proline (Pro) and glycine betaine (GB), all these collectively resulted in the protection of plants against osmotic stress-induced oxidative stress. On the other hand, NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] and H2S scavenger HT (hypotaurine) invalidated the effect of NO on endogenous H2S levels and Cys homeostasis which resulted in weak protection against osmotic stress. Application of N-ethylmaleimide (NEM) suppressed GR activity and caused an increase in oxidative stress. We concluded that NO in association with endogenous H2S activates the defense system to the level required to counter osmotic stress and maintains normal functioning of cellular machinery.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia.
| | - M Mobin
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, P.O. Box 2455, Saudi Arabia
| |
Collapse
|
30
|
Xin Y, Liu H, Cui F, Liu H, Xun L. Recombinant Escherichia coli
with sulfide:quinone oxidoreductase and persulfide dioxygenase rapidly oxidises sulfide to sulfite and thiosulfate via a new pathway. Environ Microbiol 2016; 18:5123-5136. [DOI: 10.1111/1462-2920.13511] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Yufeng Xin
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Feifei Cui
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
- School of Molecular Biosciences; Washington State University; Pullman WA 991647520 USA
| |
Collapse
|
31
|
Weber GJ, Pushpakumar S, Tyagi SC, Sen U. Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacol Res 2016; 113:300-312. [PMID: 27602985 DOI: 10.1016/j.phrs.2016.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
Over the past several years, hydrogen sulfide (H2S) has been shown to be an important player in a variety of physiological functions, including neuromodulation, vasodilation, oxidant regulation, inflammation, and angiogenesis. H2S is synthesized primarily through metabolic processes from the amino acid cysteine and homocysteine in various organ systems including neuronal, cardiovascular, gastrointestinal, and kidney. Derangement of cysteine and homocysteine metabolism and clearance, particularly in the renal vasculature, leads to H2S biosynthesis deregulation causing or contributing to existing high blood pressure. While a variety of environmental influences, such as diet can have an effect on H2S regulation and function, genetic factors, and more recently epigenetics, also have a vital role in H2S regulation and function, and therefore disease initiation and progression. In addition, new research into the role of gut microbiota in the development of hypertension has highlighted the need to further explore these microorganisms and how they influence the levels of H2S throughout the body and possibly exploiting microbiota for use of hypertension treatment. In this review, we summarize recent advances in the field of hypertension research emphasizing renal contribution and how H2S physiology can be exploited as a possible therapeutic strategy to ameliorate kidney dysfunction as well as to control blood pressure.
Collapse
Affiliation(s)
- Gregory J Weber
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States.
| |
Collapse
|
32
|
Chinta KC, Saini V, Glasgow JN, Mazorodze JH, Rahman MA, Reddy D, Lancaster JR, Steyn AJC. The emerging role of gasotransmitters in the pathogenesis of tuberculosis. Nitric Oxide 2016; 59:28-41. [PMID: 27387335 DOI: 10.1016/j.niox.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a facultative intracellular pathogen and the second largest contributor to global mortality caused by an infectious agent after HIV. In infected host cells, Mtb is faced with a harsh intracellular environment including hypoxia and the release of nitric oxide (NO) and carbon monoxide (CO) by immune cells. Hypoxia, NO and CO induce a state of in vitro dormancy where Mtb senses these gases via the DosS and DosT heme sensor kinase proteins, which in turn induce a set of ∼47 genes, known as the Mtb Dos dormancy regulon. On the contrary, both iNOS and HO-1, which produce NO and CO, respectively, have been shown to be important against mycobacterial disease progression. In this review, we discuss the impact of O2, NO and CO on Mtb physiology and in host responses to Mtb infection as well as the potential role of another major endogenous gas, hydrogen sulfide (H2S), in Mtb pathogenesis.
Collapse
Affiliation(s)
- Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James H Mazorodze
- KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa
| | - Md Aejazur Rahman
- KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa
| | - Darshan Reddy
- Department of Cardiothoracic Surgery, Nelson R Mandela School of Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; KwaZulu-Natal Research Institute for TB and HIV (KRITH), Durban, South Africa; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
33
|
Chen J, Wang WH, Wu FH, He EM, Liu X, Shangguan ZP, Zheng HL. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots. Sci Rep 2015; 5:12516. [PMID: 26213372 PMCID: PMC4515593 DOI: 10.1038/srep12516] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are emerging as messenger molecules involved in the modulation of plant physiological processes. Here, we investigated a signalling network involving H2S and NO in salt tolerance pathway of barley. NaHS, a donor of H2S, at a low concentration of either 50 or 100 μM, had significant rescue effects on the 150 mM NaCl-induced inhibition of plant growth and modulated the K(+)/Na(+) balance by decreasing the net K(+) efflux and increasing the gene expression of an inward-rectifying potassium channel (HvAKT1) and a high-affinity K(+) uptake system (HvHAK4). H2S and NO maintained the lower Na(+) content in the cytoplast by increasing the amount of PM H(+)-ATPase, the transcriptional levels of PM H(+)-ATPase (HvHA1) and Na(+)/H(+) antiporter (HvSOS1). H2S and NO modulated Na(+) compartmentation into the vacuoles with up-regulation of the transcriptional levels of vacuolar Na(+)/H(+) antiporter (HvVNHX2) and H(+)-ATPase subunit β (HvVHA-β) and increased in the protein expression of vacuolar Na(+)/H(+) antiporter (NHE1). H2S mimicked the effect of sodium nitroprusside (SNP) by increasing NO production, whereas the function was quenched with the addition of NO scavenger. These results indicated that H2S increased salt tolerance by maintaining ion homeostasis, which were mediated by the NO signal.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Wen-Hua Wang
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany; Xiamen, Fujian 361006, P.R. China
| | - Fei-Hua Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P.R. China
| | - En-Ming He
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany; Xiamen, Fujian 361006, P.R. China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Zhou-Ping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
34
|
Módis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, Hellmich MR, Radermacher P, Bouillaud F, Szabo C. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 2014; 171:2123-46. [PMID: 23991749 DOI: 10.1111/bph.12368] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 12/15/2022] Open
Abstract
Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2 S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2 S on complex IV is enhanced, which may shift the balance of H2 S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2 S (e.g. sepsis), while in other disease states H2 S levels and H2 S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2 S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2 S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2 S-induced therapeutic 'suspended animation', a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Veeranki S, Tyagi SC. Role of hydrogen sulfide in skeletal muscle biology and metabolism. Nitric Oxide 2014; 46:66-71. [PMID: 25461301 DOI: 10.1016/j.niox.2014.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/12/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S) is a novel endogenous gaseous signal transducer (gasotransmitter). Its emerging role in multiple facets of inter- and intra-cellular signaling as a metabolic, inflammatory, neuro and vascular modulator has been increasingly realized. Although H2S is known for its effects as an anti-hypertensive, anti-inflammatory and anti-oxidant molecule, the relevance of these effects in skeletal muscle biology during health and during metabolic syndromes is unclear. H2S has been implicated in vascular relaxation and vessel tone enhancement, which might lead to mitigation of vascular complications caused by the metabolic syndromes. Metabolic complications may also lead to mitochondrial remodeling by interfering with fusion and fission, therefore, leading to mitochondrial mitophagy and skeletal muscle myopathy. Mitochondrial protection by H2S enhancing treatments may mitigate deterioration of muscle function during metabolic syndromes. In addition, H2S might upregulate uncoupling proteins and might also cause browning of white fat, resulting in suppression of imbalanced cytokine signaling caused by abnormal fat accumulation. Likewise, as a source for H(+) ions, it has the potential to augment anaerobic ATP synthesis. However, there is a need for studies to test these putative H2S benefits in different patho-physiological scenarios before its full-fledged usage as a therapeutic molecule. The present review highlights current knowledge with regard to exogenous and endogenous H2S roles in skeletal muscle biology, metabolism, exercise physiology and related metabolic disorders, such as diabetes and obesity, and also provides future directions.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
36
|
Meyer T, Edwards EA. Anaerobic digestion of pulp and paper mill wastewater and sludge. WATER RESEARCH 2014; 65:321-49. [PMID: 25150519 DOI: 10.1016/j.watres.2014.07.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/20/2014] [Accepted: 07/12/2014] [Indexed: 05/28/2023]
Abstract
Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated sludge) and primary sludge is still in its infancy. Current research is mainly focused on developing efficient pretreatment methods that enable fast hydrolysis of complex organic matter, shorter sludge residence times and as a consequence, smaller sludge digesters. Previous experimental studies indicate that the anaerobic digestibility of non-pretreated biosludge from pulp and paper mills varies widely, with volatile solids (VS) removal rates of 21-55% and specific methane yields ranging between 40 and 200 mL g(-1) VS fed. Pretreatment can increase the digestibility to some extent, however in almost all reported cases, the specific methane yield of pretreated biosludge did not exceed 200 mL g(-1) VS fed. Increases in specific methane yield mostly range between 0 and 90% compared to non-pretreated biosludge, whereas larger improvements were usually achieved with more difficult-to-digest biosludge. Thermal treatment and microwave treatment are two of the more effective methods. The heat required for the elevated temperatures applied in both methods may be provided from surplus heat that is often available at pulp and paper mills. Given the large variability in specific methane yield of non-pretreated biosludge, future research should focus on the links between anaerobic digestibility and sludge properties. Research should also involve mill-derived primary sludge. Although biosludge has been the main target in previous studies, primary sludge often constitutes the bulk of mill-generated sludge, and co-digestion of a mixture between both types of sludge may become practical. The few laboratory studies that have included mill primary sludge indicate that, similar to biosludge, the digestibility can range widely. Long-term studies should be conducted to explore the potential of microbial adaptation to lignocellulosic material which can constitute more than half of the organic matter in pulp and paper mill sludge.
Collapse
Affiliation(s)
- Torsten Meyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., ON, Canada M5S3E5.
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., ON, Canada M5S3E5
| |
Collapse
|
37
|
Majtan T, Pey AL, Fernández R, Fernández JA, Martínez-Cruz LA, Kraus JP. Domain organization, catalysis and regulation of eukaryotic cystathionine beta-synthases. PLoS One 2014; 9:e105290. [PMID: 25122507 PMCID: PMC4133348 DOI: 10.1371/journal.pone.0105290] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023] Open
Abstract
Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme’s catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme’s catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Angel L. Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
38
|
Christie AE, Fontanilla TM, Roncalli V, Cieslak MC, Lenz PH. Diffusible gas transmitter signaling in the copepod crustacean Calanus finmarchicus: identification of the biosynthetic enzymes of nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) using a de novo assembled transcriptome. Gen Comp Endocrinol 2014; 202:76-86. [PMID: 24747481 PMCID: PMC4041660 DOI: 10.1016/j.ygcen.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 11/18/2022]
Abstract
Neurochemical signaling is a major component of physiological/behavioral control throughout the animal kingdom. Gas transmitters are perhaps the most ancient class of molecules used by nervous systems for chemical communication. Three gases are generally recognized as being produced by neurons: nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S). As part of an ongoing effort to identify and characterize the neurochemical signaling systems of the copepod Calanus finmarchicus, the biomass dominant zooplankton in much of the North Atlantic Ocean, we have mined a de novo assembled transcriptome for sequences encoding the neuronal biosynthetic enzymes of these gases, i.e. nitric oxide synthase (NOS), heme oxygenase (HO) and cystathionine β-synthase (CBS), respectively. Using Drosophila proteins as queries, two NOS-, one HO-, and one CBS-encoding transcripts were identified. Reverse BLAST and structural analyses of the deduced proteins suggest that each is a true member of its respective enzyme family. RNA-Seq data collected from embryos, early nauplii, late nauplii, early copepodites, late copepodites and adults revealed the expression of each transcript to be stage specific: one NOS restricted primarily to the embryo and the other was absent in the embryo but expressed in all other stages, no CBS expression in the embryo, but present in all other stages, and HO expressed across all developmental stages. Given the importance of gas transmitters in the regulatory control of a number of physiological processes, these data open opportunities for investigating the roles these proteins play under different life-stage and environmental conditions in this ecologically important species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Tiana M Fontanilla
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Matthew C Cieslak
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Petra H Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
39
|
Chan M, Capek A, Brill DA, Garrett SJ. Characterization of the patina formed on a low tin bronze exposed to aqueous hydrogen sulfide. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michelle Chan
- Department of Chemistry and Biochemistry; California State University; Northridge CA 91330 USA
| | - Alexandra Capek
- Department of Chemistry and Biochemistry; California State University; Northridge CA 91330 USA
| | - Daniel A. Brill
- Department of Chemistry and Biochemistry; California State University; Northridge CA 91330 USA
| | - Simon J. Garrett
- Department of Chemistry and Biochemistry; California State University; Northridge CA 91330 USA
| |
Collapse
|
40
|
Sánchez-Andrea I, Sanz JL, Bijmans MFM, Stams AJM. Sulfate reduction at low pH to remediate acid mine drainage. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:98-109. [PMID: 24444599 DOI: 10.1016/j.jhazmat.2013.12.032] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 05/25/2023]
Abstract
Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.
Collapse
Affiliation(s)
- Irene Sánchez-Andrea
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | - Jose Luis Sanz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Martijn F M Bijmans
- Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands; IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
41
|
Effect of sulfide on growth of marine bacteria. Arch Microbiol 2014; 196:279-87. [DOI: 10.1007/s00203-014-0968-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/06/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
|
42
|
Distribution, diversity, and activities of sulfur dioxygenases in heterotrophic bacteria. Appl Environ Microbiol 2014; 80:1799-806. [PMID: 24389926 DOI: 10.1128/aem.03281-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfur oxidation by chemolithotrophic bacteria is well known; however, sulfur oxidation by heterotrophic bacteria is often ignored. Sulfur dioxygenases (SDOs) (EC 1.13.11.18) were originally found in the cell extracts of some chemolithotrophic bacteria as glutathione (GSH)-dependent sulfur dioxygenases. GSH spontaneously reacts with elemental sulfur to generate glutathione persulfide (GSSH), and SDOs oxidize GSSH to sulfite and GSH. However, SDOs have not been characterized for bacteria, including chemolithotrophs. The gene coding for human SDO (human ETHE1 [hETHE1]) in mitochondria was discovered because its mutations lead to a hereditary human disease, ethylmalonic encephalopathy. Using sequence analysis and activity assays, we discovered three subgroups of bacterial SDOs in the proteobacteria and cyanobacteria. Ten selected SDO genes were cloned and expressed in Escherichia coli, and the recombinant proteins were purified. The SDOs used Fe(2+) for catalysis and displayed considerable variations in specific activities. The wide distribution of SDO genes reveals the likely source of the hETHE1 gene and highlights the potential of sulfur oxidation by heterotrophic bacteria.
Collapse
|
43
|
Tinajero-Trejo M, Jesse HE, Poole RK. Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas! F1000PRIME REPORTS 2013; 5:28. [PMID: 23967379 PMCID: PMC3732073 DOI: 10.12703/p5-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We review recent examples of the burgeoning literature on three gases that have major impacts in biology and microbiology. NO, CO and H2S are now co-classified as endogenous gasotransmitters with profound effects on mammalian physiology and, potentially, major implications in therapeutic applications. All are well known to be toxic yet, at tiny concentrations in human and cell biology, play key signalling and regulatory functions. All may also be endogenously generated in microbes. NO and H2S share the property of being biochemically detoxified, yet are beneficial in resisting the bactericidal properties of antibiotics. The mechanism underlying this protection is currently under debate. CO, in contrast, is not readily removed; mounting evidence shows that CO, and especially organic donor compounds that release the gas in biological environments, are themselves effective, novel antimicrobial agents.
Collapse
|
44
|
Bauzá A, Quiñonero D, Deyà PM, Frontera A. On the importance of anion-π interactions in the mechanism of sulfide:quinone oxidoreductase. Chem Asian J 2013; 8:2708-13. [PMID: 23907989 DOI: 10.1002/asia.201300786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 12/26/2022]
Abstract
Sulfide:quinone oxidoreductase (SQR) is a flavin-dependent enzyme that plays a physiological role in two important processes. First, it is responsible for sulfide detoxification by oxidizing sulfide ions (S(2-) and HS(-)) to elementary sulfur and the electrons are first transferred to flavin adenine dinucleotide (FAD), which in turn passes them to the quinone pool in the membrane. Second, in sulfidotrophic bacteria, SQRs play a key role in the sulfide-dependent respiration and anaerobic photosynthesis, deriving energy for their growth from reduced sulfur. Two mechanisms of action for SQR have been proposed: first, nucleophilic attack of a Cys residue on the C4 of FAD, and second, an alternate anionic radical mechanism by direct electron transfer from Cys to the isoalloxazine ring of FAD. Both mechanisms involve a common anionic intermediate that it is stabilized by a relevant anion-π interaction and its previous formation (from HS(-) and Cys-S-S-Cys) is also facilitated by reducing the transition-state barrier, owing to an interaction that involves the π system of FAD. By analyzing the X-ray structures of SQRs available in the Protein Data Bank (PDB) and using DFT calculations, we demonstrate the relevance of the anion-π interaction in the enzymatic mechanism.
Collapse
Affiliation(s)
- Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain), Fax: (+34) 971-173498
| | | | | | | |
Collapse
|
45
|
Shen X, Carlström M, Borniquel S, Jädert C, Kevil CG, Lundberg J. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med 2013; 60:195-200. [PMID: 23466556 PMCID: PMC4077044 DOI: 10.1016/j.freeradbiomed.2013.02.024] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
Hydrogen sulfide (H2S), generated through various endogenous enzymatic and nonenzymatic pathways, is emerging as a regulator of physiological and pathological events throughout the body. Bacteria in the gastrointestinal tract also produce significant amounts of H2S that regulates microflora growth and virulence responses. However, the impact of the microbiota on host global H2S bioavailability and metabolism remains unknown. To address this question, we examined H2S bioavailability in its various forms (free, acid labile, or bound sulfane sulfur), cystathionine γ-lyase (CSE) activity, and cysteine levels in tissues from germ-free versus conventionally housed mice. Free H2S levels were significantly reduced in plasma and gastrointestinal tissues of germ-free mice. Bound sulfane sulfur levels were decreased by 50-80% in germ-free mouse plasma and adipose and lung tissues. Tissue CSE activity was significantly reduced in many organs from germ-free mice, whereas tissue cysteine levels were significantly elevated compared to conventional mice. These data reveal that the microbiota profoundly regulates systemic bioavailability and metabolism of H2S.
Collapse
Affiliation(s)
- Xinggui Shen
- Department of Pathology, Molecular and Cellular Physiology and Cell Biology and Anatomy, LSU Health-Shreveport
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Borniquel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Jädert
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Christopher G Kevil
- Department of Pathology, Molecular and Cellular Physiology and Cell Biology and Anatomy, LSU Health-Shreveport
- Correspondence to: Christopher Kevil, PhD, LSU Health-Shreveport, or Jon Lundberg, MD, PhD, Karolinska Institutet,
| | - Jon Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Correspondence to: Christopher Kevil, PhD, LSU Health-Shreveport, or Jon Lundberg, MD, PhD, Karolinska Institutet,
| |
Collapse
|
46
|
Dooley FD, Nair SP, Ward PD. Increased growth and germination success in plants following hydrogen sulfide administration. PLoS One 2013; 8:e62048. [PMID: 23614010 PMCID: PMC3629089 DOI: 10.1371/journal.pone.0062048] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
This study presents a novel way of enhancing plant growth through the use of a non-petroleum based product. We report here that exposing either roots or seeds of multicellular plants to extremely low concentrations of dissolved hydrogen sulfide at any stage of life causes statistically significant increases in biomass including higher fruit yield. Individual cells in treated plants were smaller (~13%) than those of controls. Germination success and seedling size increased in, bean, corn, wheat, and pea seeds while time to germination decreases. These findings indicated an important role of H2S as a signaling molecule that can increase the growth rate of all species yet tested. The increased crop yields reported here has the potential to effect the world's agricultural output.
Collapse
Affiliation(s)
- Frederick D Dooley
- Department of Biology, University of Washington, Seattle, Washington, United States of America.
| | | | | |
Collapse
|
47
|
Control of malodorous hydrogen sulfide compounds using microbial fuel cell. Bioprocess Biosyst Eng 2013; 36:1417-25. [DOI: 10.1007/s00449-012-0881-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/20/2012] [Indexed: 11/25/2022]
|
48
|
Vandiver MS, Snyder SH. Hydrogen sulfide: a gasotransmitter of clinical relevance. J Mol Med (Berl) 2012; 90:255-63. [PMID: 22314625 PMCID: PMC3901014 DOI: 10.1007/s00109-012-0873-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/22/2012] [Accepted: 01/26/2012] [Indexed: 02/06/2023]
Abstract
Though the existence of hydrogen sulfide (H2S) in biological tissues has been known for over 300 years, it is the most recently appreciated of the gasotransmitters as a physiologic messenger molecule. The enzymes cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) had long been speculated to generate H2S, and inhibitors of these enzymes had been employed to characterize influences of H2S in various organs. Definitive evidence that H2S is a physiologic regulator came with the development of mice with targeted deletion of CSE and CBS. Best characterized is the role of H2S, formed by CSE, as an endothelial derived relaxing factor that normally regulates blood pressure by acting through ATP-sensitive potassium channels. H2S participates in various phases of the inflammatory process, predominantly exerting anti-inflammatory actions. Currently, the most advanced efforts to develop therapeutic agents involve the combination of H2S donors with non-steroidal anti-inflammatory drugs (NSAIDs). The H2S releasing moiety provides cytoprotection to gastric mucosa normally adversely affected by NSAIDs while the combination of H2S and inhibition of prostaglandin synthesis may afford synergistic anti-inflammatory influences.
Collapse
Affiliation(s)
- M. Scott Vandiver
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Sasidharan K, Tomita M, Aon M, Lloyd D, Murray DB. Time-structure of the yeast metabolism in vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:359-79. [PMID: 22161340 DOI: 10.1007/978-1-4419-7210-1_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All previous studies on the yeast metabolome have yielded a plethora of information on the components, function and organisation of low molecular mass and macromolecular components involved in the cellular metabolic network. Here we emphasise that an understanding of the global dynamics of the metabolome in vivo requires elucidation of the temporal dynamics of metabolic processes on many time-scales. We illustrate this using the 40 min oscillation in respiratory activity displayed in auto-synchronous continuously grown cultures of Saccharomyces cerevisiae, where respiration cycles between a phase of increased respiration (oxidative phase) and decreased respiration (reductive phase). Thereby an ultradian clock, i.e. a timekeeping device that runs through many cycles during one day, is involved in the co-ordination of the vast majority of events and processes in yeast. Through continuous online measurements, we first show that mitochondrial and redox physiology are intertwined to produce the temporal landscape on which cellular events occur. Next we look at the higher order processes of DNA duplication and mitochondrial structure to reveal that both events are choreographed during the respiratory cycles. Furthermore, spectral analysis using the discrete Fourier transformation of high-resolution (10 Hz) time-series of NAD(P)H confirms the existence of higher frequency components of biological origin and that these follow a scale-free architecture even in stable oscillating modes. A different signal-processing approach using discrete wavelet transformations (DWT) indicates that there is a significant contribution to the overall signal from ` ~5, ~ 10 and ~ 20-minutes cycles and the amplitudes of these cycles are phase-dependent. Further investigation (derivative of Gaussian continuous wavelet transformation) reveals that the observed 20-minutes cycles are actually confined to the reductive phase and consist of two ~15-minutes cycles. Moreover, the 5 and 10-minutes cycles are restricted to the oxidative phase of the cycle. The mitochondrial origin of these signals was confirmed by pulse-injection of the cytochrome c oxidase inhibitor H(2)S. We next discuss how these multi-oscillatory states can impinge on the apparently complex reactome (represented as a phase diagram of 1,650 chemical species that show oscillatory behaviour). We conclude that biological processes can be considerably more comprehensible when dynamic in vivo time-structure is taken into account.
Collapse
Affiliation(s)
- Kalesh Sasidharan
- Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka City, Yamagata 997-0017, Japan.
| | | | | | | | | |
Collapse
|
50
|
Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk MH. Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 2011; 301:E668-84. [PMID: 21693692 PMCID: PMC3191547 DOI: 10.1152/ajpendo.00151.2011] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cysteine homeostasis is dependent on the regulation of cysteine dioxygenase (CDO) in response to changes in sulfur amino acid intake. CDO oxidizes cysteine to cysteinesulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. To gain insight into the physiological function of CDO and the consequence of a loss of CDO activity, mice carrying a null CDO allele (CDO(+/-) mice) were crossed to generate CDO(-/-), CDO(+/-), and CDO(+/+) mice. CDO(-/-) mice exhibited postnatal mortality, growth deficit, and connective tissue pathology. CDO(-/-) mice had extremely low taurine levels and somewhat elevated cysteine levels, consistent with the lack of flux through CDO-dependent catabolic pathways. However, plasma sulfate levels were slightly higher in CDO(-/-) mice than in CDO(+/-) or CDO(+/+) mice, and tissue levels of acid-labile sulfide were elevated, indicating an increase in cysteine catabolism by cysteine desulfhydration pathways. Null mice had lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Supplementation of mice with taurine improved survival of male pups but otherwise had little effect on the phenotype of the CDO(-/-) mice. H(2)S has been identified as an important gaseous signaling molecule as well as a toxicant, and pathology may be due to dysregulation of H(2)S production. Control of cysteine levels by regulation of CDO may be necessary to maintain low H(2)S/sulfane sulfur levels and facilitate the use of H(2)S as a signaling molecule.
Collapse
Affiliation(s)
- Iori Ueki
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|