1
|
Cook M, Freniere C, Wu C, Lozano F, Xiong Y. Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single-particle cryo-EM. Cell Rep 2025; 44:115245. [PMID: 39864060 PMCID: PMC11912512 DOI: 10.1016/j.celrep.2025.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6. While the overall fold and mode of FG-peptide binding is conserved with HIV-1, this study reveals distinctive features of the HIV-2 CA lattice, including differing structural character at regions of host factor interactions and divergence in the mechanism of formation of CA hexamers and pentamers. This study extends our understanding of HIV capsids and highlights an approach facilitating the study of lentiviral capsid biology.
Collapse
Affiliation(s)
- Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Faith Lozano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Cook M, Freniere C, Wu C, Lozano F, Xiong Y. Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single particle cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617312. [PMID: 39416035 PMCID: PMC11482794 DOI: 10.1101/2024.10.09.617312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One of the most striking features of HIV is the capsid; a fullerene cone comprised of the pleomorphic capsid protein (CA) which shields the viral genome from cellular defense mechanisms and recruits cellular cofactors to the virus. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interaction, HIV-2 CA remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we were able to determine high resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and in complexes with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6. While the overall fold and mode of binding the FG-peptides are conserved with HIV-1, this study reveals distinctive structural features that define the HIV-2 CA lattice, potential differences in interactions with other host factors such as CypA, and divergence in the mechanism of formation of hexameric and pentameric CA assemblies. This study extends our understanding of HIV capsids and highlights an approach with significant potential to facilitate the study of lentiviral capsid biology.
Collapse
Affiliation(s)
- Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Faith Lozano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Lead Contact
| |
Collapse
|
3
|
Gao C, Ouyang W, Kutza J, Grimm TA, Fields K, Lankford CSR, Schwartzkopff F, Paciga M, Stantchev T, Tiffany L, Strebel K, Clouse KA. Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1. Viruses 2023; 15:2160. [PMID: 38005838 PMCID: PMC10674259 DOI: 10.3390/v15112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 11/26/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) is known to be less pathogenic than HIV-1. However, the mechanism(s) underlying the decreased HIV-2 pathogenicity is not fully understood. Herein, we report that β-chemokine CCL2 expression was increased in HIV-1-infected human monocyte-derived macrophages (MDM) but decreased in HIV-2-infected MDM when compared to uninfected MDM. Inhibition of CCL2 expression following HIV-2 infection occurred at both protein and mRNA levels. By microarray analysis, quantitative PCR, and Western blotting, we identified that Signal Transducer and Activator of Transcription 1 (STAT1), a critical transcription factor for inducing CCL2 gene expression, was also reduced in HIV-2-infected MDM. Blockade of STAT1 in HIV-infected MDM using a STAT1 inhibitor significantly reduced the production of CCL2. In contrast, transduction of STAT1-expressing pseudo-retrovirus restored CCL2 production in HIV-2-infected MDM. These findings support the concept that CCL2 inhibition in HIV-2-infected MDM is meditated by reduction of STAT1. Furthermore, we showed that STAT1 reduction in HIV-2-infected MDM was regulated by the CUL2/RBX1 ubiquitin E3 ligase complex-dependent proteasome pathway. Knockdown of CUL2 or RBX1 restored the expression of STAT1 and CCL2 in HIV-2-infected MDM. Taken together, our findings suggest that differential regulation of the STAT1-CCL2 axis may be one of the mechanisms underlying the different pathogenicity observed for HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Chunling Gao
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Weiming Ouyang
- Division of Biotechnology Review and Research 2, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Joseph Kutza
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Tobias A. Grimm
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Karen Fields
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Carla S. R. Lankford
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Franziska Schwartzkopff
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Mark Paciga
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Linda Tiffany
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA;
| | - Kathleen A. Clouse
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| |
Collapse
|
4
|
Varanda J, Santos JM. It Was Not the Perfect Storm: The Social History of the HIV-2 Virus in Guinea-Bissau. Trop Med Infect Dis 2023; 8:tropicalmed8050261. [PMID: 37235309 DOI: 10.3390/tropicalmed8050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The perfect storm model that was elaborated for the HIV-1M pandemic has also been used to explain the emergence of HIV-2, a second human immunodeficiency virus-acquired immunodeficiency syndrome (HIV-AIDS) that became an epidemic in Guinea-Bissau, West Africa. The use of this model creates epidemiological generalizations, ecological oversimplifications and historical misunderstandings as its assumptions-an urban center with explosive population growth, a high level of commercial sex and a surge in STDs, a network of mechanical transport and country-wide, en masse mobile campaigns-are absent from the historical record. This model fails to explain how the HIV-2 epidemic actually came about. This is the first study to conduct an exhaustive examination of sociohistorical contextual developments and align them with environmental, virological and epidemiological data. The interdisciplinary dialogue indicates that the emergence of the HIV-2 epidemic piggybacked on local sociopolitical transformations. The war's indirect effects on ecological relations, mobility and sociability were acute in rural areas and are a key to the HIV-2 epidemic. This setting had the natural host of the virus, the population numbers, the mobility trends and the use of technology on a scale needed to foster viral adaptation and amplification. The present analysis suggests new reflections on the processes of zoonotic spillovers and disease emergence.
Collapse
Affiliation(s)
- Jorge Varanda
- Centre for Research in Anthropology (CRIA-UC), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine-NOVA-Lisbon (GHTM-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - José Maurício Santos
- Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, 1600-276 Lisboa, Portugal
- Associated Laboratory TERRA, 1349-017 Lisboa, Portugal
| |
Collapse
|
5
|
Yang H, Talledge N, Arndt WG, Zhang W, Mansky LM. Human Immunodeficiency Virus Type 2 Capsid Protein Mutagenesis Reveals Amino Acid Residues Important for Virus Particle Assembly. J Mol Biol 2022; 434:167753. [PMID: 35868362 PMCID: PMC11057910 DOI: 10.1016/j.jmb.2022.167753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein-protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.
Collapse
Affiliation(s)
- Huixin Yang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - William G Arndt
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Immunological studies of spontaneous HIV and simian virus (SIV) controllers have identified virus-specific CD8 + T cells as a key immune mechanism of viral control. The purpose of this review is to consider how knowledge about the mechanisms that are associated with CD8 + T cell control of HIV/SIV in natural infection can be harnessed in HIV remission strategies. RECENT FINDINGS We discuss characteristics of CD8 + T-cell responses that may be critical for suppressing HIV replication in spontaneous controllers comprising HIV antigen recognition including specific human leukocyte antigen types, broadly cross-reactive T cell receptors and epitope targeting, enhanced expansion and antiviral functions, and localization of virus-specific T cells near sites of reservoir persistence. We also discuss the need to better understand the timing of CD8 + T-cell responses associated with viral control of HIV/SIV during acute infection and after treatment interruption as well as the mechanisms by which HIV/SIV-specific CD8 + T cells coordinate with other immune responses to achieve control. SUMMARY We propose implications as to how this knowledge from natural infection can be applied in the design and evaluation of CD8 + T-cell-based remission strategies and offer questions to consider as these strategies target distinct CD8 + T-cell-dependent mechanisms of viral control.
Collapse
|
7
|
Behl A, Nair A, Mohagaonkar S, Yadav P, Gambhir K, Tyagi N, Sharma RK, Butola BS, Sharma N. Threat, challenges, and preparedness for future pandemics: A descriptive review of phylogenetic analysis based predictions. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105217. [PMID: 35065303 DOI: 10.1016/j.meegid.2022.105217] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
For centuries the world has been confronted with many infectious diseases, with a potential to turn into a pandemic posing a constant threat to human lives. Some of these pandemics occurred due to the emergence of new disease or re-emergence of previously known diseases with a few mutations. In such scenarios their optimal prevention and control options were not adequately developed. Most of these diseases are highly contagious and for their timely control, knowledge about the pathogens and disease progression is the basic necessity. In this review, we have presented a documented chronology of the earlier pandemics, evolutionary analysis of the infectious disease with pandemic potential, the role of RNA, difficulties in controlling pandemics, and the likely pathogens that could trigger future pandemics. In this study, the evolutionary history of the pathogens was identified by carrying out phylogenetic analysis. The percentage similarity between different infectious diseases is critically analysed for the identification of their correlation using online sequence matcher tools. The Baltimore classification system was used for finding the genomic nature of the viruses. It was observed that most of the infectious pathogens rise from their animal hosts with some mutations in their genome composition. The phylogenetic tree shows that the single-stranded RNA diseases have a common origin and many of them are having high similarity percentage. The outcomes of this study will help in the identification of potential pathogens that can cause future pandemics. This information will be helpful in the development of early detection techniques, devising preventive mechanism to limit their spread, prophylactic measures, Infection control and therapeutic options, thereby, strengthening our approach towards global preparedness against future pandemics.
Collapse
Affiliation(s)
- Amanpreet Behl
- Department of Molecular Medicine, Jamia Hamdard Univeristy, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Ashrit Nair
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Sanika Mohagaonkar
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Pooja Yadav
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Kirtida Gambhir
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Nishant Tyagi
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Rakesh Kumar Sharma
- Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Chennai 600077, Tamil Nadu, India
| | - Bhupendra Singh Butola
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Navneet Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
8
|
Bandarra S, Miyagi E, Ribeiro AC, Gonçalves J, Strebel K, Barahona I. APOBEC3B Potently Restricts HIV-2 but Not HIV-1 in a Vif-Dependent Manner. J Virol 2021; 95:e0117021. [PMID: 34523960 PMCID: PMC8577350 DOI: 10.1128/jvi.01170-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Vif is a lentiviral accessory protein that counteracts the antiviral activity of cellular APOBEC3 (A3) cytidine deaminases in infected cells. The exact contribution of each member of the A3 family for the restriction of HIV-2 is still unclear. Thus, the aim of this work was to identify the A3s with anti-HIV-2 activity and compare their restriction potential for HIV-2 and HIV-1. We found that A3G is a strong restriction factor of both types of viruses and A3C restricts neither HIV-1 nor HIV-2. Importantly, A3B exhibited potent antiviral activity against HIV-2, but its effect was negligible against HIV-1. Whereas A3B is packaged with similar efficiency into both viruses in the absence of Vif, HIV-2 and HIV-1 differ in their sensitivity to A3B. HIV-2 Vif targets A3B by reducing its cellular levels and inhibiting its packaging into virions, whereas HIV-1 Vif did not evolve to antagonize A3B. Our observations support the hypothesis that during wild-type HIV-1 and HIV-2 infections, both viruses are able to replicate in host cells expressing A3B but using different mechanisms, probably resulting from a Vif functional adaptation over evolutionary time. Our findings provide new insights into the differences between Vif protein and their cellular partners in the two human viruses. Of note, A3B is highly expressed in some cancer cells and may cause deamination-induced mutations in these cancers. Thus, A3B may represent an important therapeutic target. As such, the ability of HIV-2 Vif to induce A3B degradation could be an effective tool for cancer therapy. IMPORTANCE Primate lentiviruses encode a series of accessory genes that facilitate virus adaptation to its host. Among those, the vif-encoded protein functions primarily by targeting the APOBEC3 (A3) family of cytidine deaminases. All lentiviral Vif proteins have the ability to antagonize A3G; however, antagonizing other members of the A3 family is variable. Here, we report that HIV-2 Vif, unlike HIV-1 Vif, can induce degradation of A3B. Consequently, HIV-2 Vif but not HIV-1 Vif can inhibit the packaging of A3B. Interestingly, while A3B is packaged efficiently into the core of both HIV-1 and HIV-2 virions in the absence of Vif, it only affects the infectivity of HIV-2 particles. Thus, HIV-1 and HIV-2 have evolved two distinct mechanisms to antagonize the antiviral activity of A3B. Aside from its antiviral activity, A3B has been associated with mutations in some cancers. Degradation of A3B by HIV-2 Vif may be useful for cancer therapies.
Collapse
Affiliation(s)
- Susana Bandarra
- Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Caparica, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Eri Miyagi
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Ana Clara Ribeiro
- Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Caparica, Portugal
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Isabel Barahona
- Centro de investigação interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Quinta da Granja, Caparica, Portugal
| |
Collapse
|
9
|
Ceccarelli G, Giovanetti M, Sagnelli C, Ciccozzi A, d’Ettorre G, Angeletti S, Borsetti A, Ciccozzi M. Human Immunodeficiency Virus Type 2: The Neglected Threat. Pathogens 2021; 10:1377. [PMID: 34832533 PMCID: PMC8621479 DOI: 10.3390/pathogens10111377] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
West Africa has the highest prevalence of human immunodeficiency virus (HIV)-2 infection in the world, but a high number of cases has been recognized in Europe, India, and the United States. The virus is less transmissible than HIV-1, with sexual contacts being the most frequent route of acquisition. In the absence of specific antiretroviral therapy, most HIV-2 carriers will develop AIDS. Although, it requires more time than HIV-1 infection, CD4+ T cell decline occurs more slowly in HIV-2 than in HIV-1 patients. HIV-2 is resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs) and some protease inhibitors. Misdiagnosis of HIV-2 in patients mistakenly considered HIV-1-positive or in those with dual infections can cause treatment failures with undetectable HIV-1 RNA. In this era of global integration, clinicians must be aware of when to consider the diagnosis of HIV-2 infection and how to test for this virus. Although there is debate regarding when therapy should be initiated and which regimen should be chosen, recent trials have provided important information on treatment options for HIV-2 infection. In this review, we focus mainly on data available and on the insight they offer about molecular epidemiology, clinical presentation, antiretroviral therapy, and diagnostic tests of HIV-2 infection.
Collapse
Affiliation(s)
- Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.C.); (G.d.)
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Caterina Sagnelli
- Section of Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Via L. Armanni 5, 80131 Naples, Italy;
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00100 Rome, Italy;
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Policlinico Umberto I, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.C.); (G.d.)
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, 00100 Rome, Italy;
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00100 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00100 Rome, Italy;
| |
Collapse
|
10
|
Meissner ME, Julik EJ, Badalamenti JP, Arndt WG, Mills LJ, Mansky LM. Development of a User-Friendly Pipeline for Mutational Analyses of HIV Using Ultra-Accurate Maximum-Depth Sequencing. Viruses 2021; 13:v13071338. [PMID: 34372543 PMCID: PMC8310143 DOI: 10.3390/v13071338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/23/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) accumulates fewer mutations during replication than HIV type 1 (HIV-1). Advanced studies of HIV-2 mutagenesis, however, have historically been confounded by high background error rates in traditional next-generation sequencing techniques. In this study, we describe the adaptation of the previously described maximum-depth sequencing (MDS) technique to studies of both HIV-1 and HIV-2 for the ultra-accurate characterization of viral mutagenesis. We also present the development of a user-friendly Galaxy workflow for the bioinformatic analyses of sequencing data generated using the MDS technique, designed to improve replicability and accessibility to molecular virologists. This adapted MDS technique and analysis pipeline were validated by comparisons with previously published analyses of the frequency and spectra of mutations in HIV-1 and HIV-2 and is readily expandable to studies of viral mutation across the genomes of both viruses. Using this novel sequencing pipeline, we observed that the background error rate was reduced 100-fold over standard Illumina error rates, and 10-fold over traditional unique molecular identifier (UMI)-based sequencing. This technical advancement will allow for the exploration of novel and previously unrecognized sources of viral mutagenesis in both HIV-1 and HIV-2, which will expand our understanding of retroviral diversity and evolution.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
| | - Emily J. Julik
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan P. Badalamenti
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - William G. Arndt
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lauren J. Mills
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.J.M.); (L.M.M.)
| | - Louis M. Mansky
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.J.M.); (L.M.M.)
| |
Collapse
|
11
|
Jenny-Avital ER. Human Immunodeficiency Virus Guidelines: Are We There Yet? Clin Infect Dis 2021; 72:510-512. [PMID: 33527118 DOI: 10.1093/cid/ciaa281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 11/14/2022] Open
|
12
|
Ponnan SM, Vidyavijayan KK, Thiruvengadam K, Hilda J N, Mathayan M, Murugavel KG, Hanna LE. Role of Circulating T Follicular Helper Cells and Stem-Like Memory CD4 + T Cells in the Pathogenesis of HIV-2 Infection and Disease Progression. Front Immunol 2021; 12:666388. [PMID: 33936106 PMCID: PMC8085399 DOI: 10.3389/fimmu.2021.666388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
CD4+ T cells are critical players in the host adaptive immune response. Emerging evidence suggests that certain CD4+ T cell subsets contribute significantly to the production of neutralizing antibodies and help in the control of virus replication. Circulating T follicular helper cells (Tfh) constitute a key T cell subset that triggers the adaptive immune response and stimulates the production of neutralizing antibodies (NAbs). T cells having stem cell-like property, called stem-like memory T cells (Tscm), constitute another important subset of T cells that play a critical role in slowing the rate of disease progression through the differentiation and expansion of different types of memory cell subsets. However, the role of these immune cell subsets in T cell homeostasis, CD4+ T cell proliferation, and progression of disease, particularly in HIV-2 infection, has not yet been elucidated. The present study involved a detailed evaluation of the different CD4+ T cell subsets in HIV-2 infected persons with a view to understanding the role of these immune cell subsets in the better control of virus replication and delayed disease progression that is characteristic of HIV-2 infection. We observed elevated levels of CD4+ Tfh and CD4+ Tscm cells along with memory and effector T cell abundance in HIV-2 infected individuals. We also found increased frequencies of CXCR5+ CD8+ T cells and CD8+ Tscm cells, as well as memory B cells that are responsible for NAb development in HIV-2 infected persons. Interestingly, we found that the frequency of memory CD4+ T cells as well as memory B cells correlated significantly with neutralizing antibody titers in HIV-2 infected persons. These observations point to a more robust CD4+ T cell response that supports B cell differentiation, antibody production, and CD8+ T cell development in HIV-2 infected persons and contributes to better control of the virus and slower rate of disease progression in these individuals.
Collapse
Affiliation(s)
- Sivasankaran Munusamy Ponnan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - K K Vidyavijayan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Kannan Thiruvengadam
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Nancy Hilda J
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Manikannan Mathayan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | | | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| |
Collapse
|
13
|
Chung CH, Allen AG, Atkins A, Link RW, Nonnemacher MR, Dampier W, Wigdahl B. Computational Design of gRNAs Targeting Genetic Variants Across HIV-1 Subtypes for CRISPR-Mediated Antiviral Therapy. Front Cell Infect Microbiol 2021; 11:593077. [PMID: 33768011 PMCID: PMC7985454 DOI: 10.3389/fcimb.2021.593077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based HIV-1 genome editing has shown promising outcomes in in vitro and in vivo viral infection models. However, existing HIV-1 sequence variants have been shown to reduce CRISPR-mediated efficiency and induce viral escape. Two metrics, global patient coverage and global subtype coverage, were used to identify guide RNA (gRNA) sequences that account for this viral diversity from the perspectives of cross-patient and cross-subtype gRNA design, respectively. Computational evaluation using these parameters and over 3.6 million possible 20-bp sequences resulted in nine lead gRNAs, two of which were previously published. This analysis revealed the benefit and necessity of considering all sequence variants for gRNA design. Of the other seven identified novel gRNAs, two were of note as they targeted interesting functional regions. One was a gRNA predicted to induce structural disruption in the nucleocapsid binding site (Ψ), which holds the potential to stop HIV-1 replication during the viral genome packaging process. The other was a reverse transcriptase (RT)-targeting gRNA that was predicted to cleave the subdomain responsible for dNTP incorporation. CRISPR-mediated sequence edits were predicted to occur on critical residues where HIV-1 has been shown to develop resistance against antiretroviral therapy (ART), which may provide additional evolutionary pressure at the DNA level. Given these observations, consideration of broad-spectrum gRNAs and cross-subtype diversity for gRNA design is not only required for the development of generalizable CRISPR-based HIV-1 therapy, but also helps identify optimal target sites.
Collapse
Affiliation(s)
- Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Alexander G. Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Robert W. Link
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Berg MG, Olivo A, Harris BJ, Rodgers MA, James L, Mampunza S, Niles J, Baer F, Yamaguchi J, Kaptue L, Laeyendecker O, Quinn TC, McArthur C, Cloherty GA. A high prevalence of potential HIV elite controllers identified over 30 years in Democratic Republic of Congo. EBioMedicine 2021; 65:103258. [PMID: 33674212 PMCID: PMC7992073 DOI: 10.1016/j.ebiom.2021.103258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022] Open
Abstract
Background In-depth analysis of the HIV pandemic at its epicenter in the Congo basin has been hampered by 40 years of political unrest and lack of functional public health infrastructure. In recent surveillance studies (2017-18), we found that the prevalence of HIV in Kinshasa, Democratic Republic of Congo (11%) far exceeded previous estimates. Methods 10,457 participants were screened in Kinshasa with rapid tests from 2017-2019. Individuals confirmed as reactive by the Abbott ARCHITECT HIV Ag/Ab Combo assay (n=1968) were measured by the Abbott RealTime HIV-1 viral load assay. Follow up characterization of samples was performed with alternate manufacturer viral load assays, qPCR for additional blood borne viruses, unbiased next generation sequencing, and HIV Western blotting. Findings Our data suggested the existence of a significant cohort (n=429) of HIV antibody positive/viral load negative individuals. We systematically eliminated collection site bias, sample integrity, and viral genetic diversity as alternative explanations for undetectable viral loads. Mass spectroscopy unexpectedly detected the presence of 3TC antiviral medication in approximately 60% of those tested (209/354), and negative Western blot results indicated false positive serology in 12% (49/404). From the remaining Western blot positives (n=53) and indeterminates (n=31) with reactive Combo and rapid test results, we estimate 2.7-4.3% of infections in DRC to be potential elite controllers. We also analyzed samples from the DRC collected in 1987 and 2001-03, when antiretroviral drugs were not available, and found similarly elevated trends. Interpretation Viral suppression to undetectable viral loads without therapy occurs infrequently in HIV-1 infected patients around the world. Mining of global data suggests a unique ability to control HIV infection arose early in central Africa and occurs in <1% of founder populations. Identification of this group of elite controllers presents a unique opportunity to study potentially novel genetic mechanisms of viral suppression. Funding Abbott Laboratories funded surveillance in DRC and subsequent research efforts. Additional funding was received from a MIZZOU Award from the University of Missouri. Research was supported in part by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.
Collapse
Affiliation(s)
- Michael G Berg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States.
| | - Ana Olivo
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | - Barbara J Harris
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | - Mary A Rodgers
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | - Linda James
- Université Protestante au Congo, Croisement de l'avenue de Libération et du Boulevard Triomphal, Kinshasa, Democratic Republic of Congo; IMA World Health, 1730 M St NW Suite 1100, Washington DC, United States
| | - Samuel Mampunza
- Université Protestante au Congo, Croisement de l'avenue de Libération et du Boulevard Triomphal, Kinshasa, Democratic Republic of Congo
| | - Jonathan Niles
- IMA World Health, 1730 M St NW Suite 1100, Washington DC, United States
| | - Franklin Baer
- SANRU NGO, 76 Ave. de la Justice, Kinshasa-Gombe, Democratic Republic of Congo
| | - Julie Yamaguchi
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| | | | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Thomas C Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Carole McArthur
- Pathology Department, Truman Medical Center, Kansas City, MO, United States; Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, United States; University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Gavin A Cloherty
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, IL, United States
| |
Collapse
|
15
|
Serra PA, Taveira N, Guedes RC. Computational Modulation of the V3 Region of Glycoprotein gp125 of HIV-2. Int J Mol Sci 2021; 22:1948. [PMID: 33669351 PMCID: PMC7920276 DOI: 10.3390/ijms22041948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/03/2022] Open
Abstract
HIV-2 infection is frequently neglected in HIV/AIDS campaigns. However, a special emphasis must be given to HIV-2 as an untreated infection that also leads to AIDS and death, and for which the efficacy of most available drugs is limited against HIV-2. HIV envelope glycoproteins mediate binding to the receptor CD4 and co-receptors at the surface of the target cell, enabling fusion with the cell membrane and viral entry. Here, we developed and optimized a computer-assisted drug design approach of an important HIV-2 glycoprotein that allows us to explore and gain further insights at the molecular level into protein structures and interactions crucial for the inhibition of HIV-2 cell entry. The 3D structure of a key HIV-2ROD gp125 region was generated by a homology modeling campaign. To disclose the importance of the main structural features and compare them with experimental results, 3D-models of six mutants were also generated. These mutations revealed the selective impact on the behavior of the protein. Furthermore, molecular dynamics simulations were performed to optimize the models, and the dynamic behavior was tackled to account for structure flexibility and interactions network formation. Structurally, the mutations studied lead to a loss of aromatic features, which is very important for the establishment of π-π interactions and could induce a structural preference by a specific coreceptor. These new insights into the structure-function relationship of HIV-2 gp125 V3 and surrounding regions will help in the design of better models and the design of new small molecules capable to inhibit the attachment and binding of HIV with host cells.
Collapse
Affiliation(s)
- Patrícia A. Serra
- Department of Pharmaceutical Sciences and Medicines and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Nuno Taveira
- Department of Pharmaceutical Sciences and Medicines and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Rita C. Guedes
- Department of Pharmaceutical Sciences and Medicines and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
16
|
Saad-Roy CM, Wingreen NS, Levin SA, Grenfell BT. Dynamics in a simple evolutionary-epidemiological model for the evolution of an initial asymptomatic infection stage. Proc Natl Acad Sci U S A 2020; 117:11541-11550. [PMID: 32385153 PMCID: PMC7261016 DOI: 10.1073/pnas.1920761117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogens exhibit a rich variety of life history strategies, shaped by natural selection. An important pathogen life history characteristic is the propensity to induce an asymptomatic yet productive (transmissive) stage at the beginning of an infection. This characteristic is subject to complex trade-offs, ranging from immunological considerations to population-level social processes. We aim to classify the evolutionary dynamics of such asymptomatic behavior of pathogens (hereafter "latency") in order to unify epidemiology and evolution for this life history strategy. We focus on a simple epidemiological model with two infectious stages, where hosts in the first stage can be partially or fully asymptomatic. Immunologically, there is a trade-off between transmission and progression in this first stage. For arbitrary trade-offs, we derive different conditions that guarantee either at least one evolutionarily stable strategy (ESS) at zero, some, or maximal latency of the first stage or, perhaps surprisingly, at least one unstable evolutionarily singular strategy. In this latter case, there is bistability between zero and nonzero (possibly maximal) latency. We then prove the uniqueness of interior evolutionarily singular strategies for power-law and exponential trade-offs: Thus, bistability is always between zero and maximal latency. Overall, previous multistage infection models can be summarized with a single model that includes evolutionary processes acting on latency. Since small changes in parameter values can lead to abrupt transitions in evolutionary dynamics, appropriate disease control strategies could have a substantial impact on the evolution of first-stage latency.
Collapse
Affiliation(s)
- Chadi M Saad-Roy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544;
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544;
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544;
- Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
17
|
Samri A, Charpentier C, Cheynier R, Matheron S, Brun-Vézinet F, Autran B. [Viral reservoir in HIV-2 infection: a model for attenuated retroviral infection]. Med Sci (Paris) 2020; 36:336-339. [PMID: 32356709 DOI: 10.1051/medsci/2020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Assia Samri
- Sorbonne Université, Inserm U1135, Centre d'immunologie et des maladies infectieuses, Cimi-Paris, F-75013 Paris, France
| | - Charlotte Charpentier
- Inserm, IAME, UMR 1137, Universités Paris Diderot et Paris Nord, Sorbonne Paris Cité ; Laboratoire de virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Rémi Cheynier
- Université de Paris, Institut Cochin, Inserm U1016, CNRS UMR8104, F-75014 Paris, France
| | - Sophie Matheron
- Inserm, IAME, UMR 1137, Universités Paris Diderot et Paris Nord, Sorbonne Paris Cité, Service des maladies infectieuses et tropicales, Hôpital Bichat, AP-HP, Paris, France
| | | | - Brigitte Autran
- Sorbonne Université, Inserm U1135, Centre d'immunologie et des maladies infectieuses, Cimi-Paris, AP-HP, Hôpital universitaire Pitié-Salpêtrière, F-75013 Paris, France
| | | |
Collapse
|
18
|
Hirao K, Andrews S, Kuroki K, Kusaka H, Tadokoro T, Kita S, Ose T, Rowland-Jones SL, Maenaka K. Structure of HIV-2 Nef Reveals Features Distinct from HIV-1 Involved in Immune Regulation. iScience 2019; 23:100758. [PMID: 31927483 PMCID: PMC6956826 DOI: 10.1016/j.isci.2019.100758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 01/07/2023] Open
Abstract
The human immunodeficiency virus (HIV) accessory protein Nef plays a major role in establishing and maintaining infection, particularly through immune evasion. Many HIV-2-infected people experience long-term viral control and survival, resembling HIV-1 elite control. HIV-2 Nef has overlapping but also distinct functions from HIV-1 Nef. Here we report the crystal structure of HIV-2 Nef core. The di-leucine sorting motif forms a helix bound to neighboring molecules, and moreover, isothermal titration calorimetry demonstrated that the CD3 endocytosis motif can directly bind to HIV-2 Nef, ensuring AP-2-mediated endocytosis for CD3. The highly conserved C-terminal region forms a α-helix, absent from HIV-1. We further determined the structure of simian immunodeficiency virus (SIV) Nef harboring this region, demonstrating similar C-terminal α-helix, which may contribute to AP-1 binding for MHC-I downregulation. These results provide insights into the distinct pathogenesis of HIV-2 infection. Structure of HIV-2 Nef revealed a conserved C-terminal α-helix not present in HIV-1 C-terminal structure is conserved in SIV Nef, likely involved in MHC-I downregulation Di-leucine AP-2-mediated sorting motif forms a helix bound to the α1 and α2 helices ITC demonstrated that the CD3 endocytosis motif can directly bind to HIV-2 Nef
Collapse
Affiliation(s)
- Kengo Hirao
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sophie Andrews
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK
| | - Kimiko Kuroki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroki Kusaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toyoyuki Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Sarah L Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK.
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
19
|
HIV-2 Depletes CD4 T Cells through Pyroptosis despite Vpx-Dependent Degradation of SAMHD1. J Virol 2019; 93:JVI.00666-19. [PMID: 31578293 DOI: 10.1128/jvi.00666-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infection results in a milder course of disease and slower progression to AIDS than does HIV-1. We hypothesized that this difference may be due to degradation of the sterile alpha motif and HD domain 1 (SAMHD1) host restriction factor by the HIV-2 Vpx gene product, thereby diminishing abortive infection and pyroptotic cell death within bystander CD4 T cells. We have compared CD4 T cell death in tonsil-derived human lymphoid aggregate cultures (HLACs) infected with wild-type HIV-2, HIV-2 ΔVpx, or HIV-1. In contrast to our hypothesis, HIV-2, HIV-2 ΔVpx, and HIV-1 induced similar levels of bystander CD4 T cell death. In all cases, cell death was blocked by AMD3100, a CXCR4 entry inhibitor, but not by raltegravir, an integrase, indicating that only early life cycle events were required. Cell death was also blocked by a caspase-1 inhibitor, a key enzyme promoting pyroptosis, but not by a caspase-3 inhibitor, an important enzyme in apoptosis. HIV-1-induced abortive infection and pyroptotic cell death were also not reduced by forced encapsidation of HIV-2 Vpx into HIV-1 virions. Together, these findings indicate that HIV-2 and HIV-1 support similar levels of CD4 T cell depletion in vitro despite HIV-2 Vpx-mediated degradation of the SAMHD1 transcription factor. The milder disease course observed with HIV-2 infection likely stems from factors other than abortive infection and caspase-1-dependent pyroptosis in bystander CD4 T cells.IMPORTANCE CD4 T cell depletion during HIV-1 infection involves the demise of bystander CD4 T cells due to abortive infection, viral DNA sensing, inflammasome assembly, and death by caspase-1-dependent pyroptosis. HIV-2 infection is associated with milder disease and lower rates of CD4 T cell loss. We hypothesized that HIV-2 infection produces lower levels of pyroptosis due to the action of its Vpx gene product. Vpx degrades the SAMHD1 restriction factor, potentially reducing abortive forms of infection. However, in tonsil cell cultures, HIV-2, HIV-2 ΔVpx, and HIV-1 induced indistinguishable levels of pyroptosis. Forced encapsidation of Vpx into HIV-1 virions also did not reduce pyroptosis. Thus, SAMHD1 does not appear to play a key role in the induction of bystander cell pyroptosis. Additionally, the milder clinical course of HIV-2-induced disease is apparently not explained by a decrease in this inflammatory form of programmed cell death.
Collapse
|
20
|
Esbjörnsson J, Jansson M, Jespersen S, Månsson F, Hønge BL, Lindman J, Medina C, da Silva ZJ, Norrgren H, Medstrand P, Rowland-Jones SL, Wejse C. HIV-2 as a model to identify a functional HIV cure. AIDS Res Ther 2019; 16:24. [PMID: 31484562 PMCID: PMC6727498 DOI: 10.1186/s12981-019-0239-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Two HIV virus types exist: HIV-1 is pandemic and aggressive, whereas HIV-2 is confined mainly to West Africa and less pathogenic. Despite the fact that it has been almost 40 years since the discovery of AIDS, there is still no cure or vaccine against HIV. Consequently, the concepts of functional vaccines and cures that aim to limit HIV disease progression and spread by persistent control of viral replication without life-long treatment have been suggested as more feasible options to control the HIV pandemic. To identify virus-host mechanisms that could be targeted for functional cure development, researchers have focused on a small fraction of HIV-1 infected individuals that control their infection spontaneously, so-called elite controllers. However, these efforts have not been able to unravel the key mechanisms of the infection control. This is partly due to lack in statistical power since only 0.15% of HIV-1 infected individuals are natural elite controllers. The proportion of long-term viral control is larger in HIV-2 infection compared with HIV-1 infection. We therefore present the idea of using HIV-2 as a model for finding a functional cure against HIV. Understanding the key differences between HIV-1 and HIV-2 infections, and the cross-reactive effects in HIV-1/HIV-2 dual-infection could provide novel insights in developing functional HIV cures and vaccines.
Collapse
|
21
|
Balasubramaniam M, Pandhare J, Dash C. Immune Control of HIV. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:4-37. [PMID: 31468033 PMCID: PMC6714987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus (HIV) infection of the immune cells expressing the cluster of differentiation 4 cell surface glycoprotein (CD4+ cells) causes progressive decline of the immune system and leads to the acquired immunodeficiency syndrome (AIDS). The ongoing global HIV/AIDS pandemic has already claimed over 35 million lives. Even after 37 years into the epidemic, neither a cure is available for the 37 million people living with HIV (PLHIV) nor is a vaccine discovered to avert the millions of new HIV infections that continue to occur each year. If left untreated, HIV infection typically progresses to AIDS and, ultimately, causes death in a majority of PLHIV. The recommended combination antiretroviral therapy (cART) suppresses virus replication and viremia, prevents or delays progression to AIDS, reduces transmission rates, and lowers HIV-associated mortality and morbidity. However, because cART does not eliminate HIV, and an enduring pool of infected resting memory CD4+ T cells (latent HIV reservoir) is established early on, any interruption to cART leads to a relapse of viremia and disease progression. Hence, strict adherence to a life-long cART regimen is mandatory for managing HIV infection in PLHIV. The HIV-1-specific cytotoxic T cells expressing the CD8 glycoprotein (CD8+ CTL) limit the virus replication in vivo by recognizing the viral antigens presented by human leukocyte antigen (HLA) class I molecules on the infected cell surface and killing those cells. Nevertheless, CTLs fail to durably control HIV-1 replication and disease progression in the absence of cART. Intriguingly, <1% of cART-naive HIV-infected individuals called elite controllers/HIV controllers (HCs) exhibit the core features that define a HIV-1 "functional cure" outcome in the absence of cART: durable viral suppression to below the limit of detection, long-term non-progression to AIDS, and absence of viral transmission. Robust HIV-1-specific CTL responses and prevalence of protective HLA alleles associated with enduring HIV-1 control have been linked to the HC phenotype. An understanding of the molecular mechanisms underlying the CTL-mediated suppression of HIV-1 replication and disease progression in HCs carrying specific protective HLA alleles may yield promising insights towards advancing the research on HIV cure and prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| |
Collapse
|
22
|
Samri A, Charpentier C, Diallo MS, Bertine M, Even S, Morin V, Oudin A, Parizot C, Collin G, Hosmalin A, Cheynier R, Thiébaut R, Matheron S, Collin F, Zoorob R, Brun-Vézinet F, Autran B, the ANRS CO5 IMMUNOVIR-2 Study Group. Limited HIV-2 reservoirs in central-memory CD4 T-cells associated to CXCR6 co-receptor expression in attenuated HIV-2 infection. PLoS Pathog 2019; 15:e1007758. [PMID: 31095640 PMCID: PMC6541300 DOI: 10.1371/journal.ppat.1007758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/29/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022] Open
Abstract
The low pathogenicity and replicative potential of HIV-2 are still poorly understood. We investigated whether HIV-2 reservoirs might follow the peculiar distribution reported in models of attenuated HIV-1/SIV infections, i.e. limited infection of central-memory CD4 T lymphocytes (TCM). Antiretroviral-naive HIV-2 infected individuals from the ANRS-CO5 (12 non-progressors, 2 progressors) were prospectively included. Peripheral blood mononuclear cells (PBMCs) were sorted into monocytes and resting CD4 T-cell subsets (naive [TN], central- [TCM], transitional- [TTM] and effector-memory [TEM]). Reactivation of HIV-2 was tested in 30-day cultures of CD8-depleted PBMCs. HIV-2 DNA was quantified by real-time PCR. Cell surface markers, co-receptors and restriction factors were analyzed by flow-cytometry and multiplex transcriptomic study. HIV-2 DNA was undetectable in monocytes from all individuals and was quantifiable in TTM from 4 individuals (median: 2.25 log10 copies/106 cells [IQR: 1.99–2.94]) but in TCM from only 1 individual (1.75 log10 copies/106 cells). HIV-2 DNA levels in PBMCs (median: 1.94 log10 copies/106 PBMC [IQR = 1.53–2.13]) positively correlated with those in TTM (r = 0.66, p = 0.01) but not TCM. HIV-2 reactivation was observed in the cells from only 3 individuals. The CCR5 co-receptor was distributed similarly in cell populations from individuals and donors. TCM had a lower expression of CXCR6 transcripts (p = 0.002) than TTM confirmed by FACS analysis, and a higher expression of TRIM5 transcripts (p = 0.004). Thus the low HIV-2 reservoirs differ from HIV-1 reservoirs by the lack of monocytic infection and a limited infection of TCM associated to a lower expression of a potential alternative HIV-2 co-receptor, CXCR6 and a higher expression of a restriction factor, TRIM5. These findings shed new light on the low pathogenicity of HIV-2 infection suggesting mechanisms close to those reported in other models of attenuated HIV/SIV infection models. HIV-2 induces a still poorly understood attenuated infection compared to HIV-1. We investigated whether this infection might follow peculiarities associated with other models of attenuated HIV-1/SIV infection, i.e. a limited infection of a key subset of memory CD4 T lymphocytes, the central-memory ones (TCM). Thus we studied the infection rates in peripheral blood cells from 14 untreated HIV-2 infected individuals from the ANRS-CO5 HIV-2 cohort, and found; 1) a lack of infection of monocytes, 2) extremely low infection in central-memory CD4+ T lymphocytes while HIV-2 predominated in the transitional-memory cells, 3) a poor replicative capacity of HIV-2 in individuals cells. We then investigated the cellular expression of a hundred-host genes potentially involved in HIV-2 control. We found in individuals’ TCM cells, compared to TTM ones, a lower expression of CXCR6, a potentially alternative co-receptor of HIV-2 but not of HIV-1, and a higher expression of TRIM5α, a restriction factor to which HIV-2 is more sensitive than HIV-1. Altogether our findings shed new light on the low pathogenicity of HIV-2 suggesting mechanisms close to those reported in other models of attenuated HIV/SIV infection models.
Collapse
Affiliation(s)
- Assia Samri
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Charlotte Charpentier
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mariama Sadjo Diallo
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Mélanie Bertine
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Even
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Véronique Morin
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Anne Oudin
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | - Christophe Parizot
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Gilles Collin
- IAME, UMR 1137, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Virologie, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Hosmalin
- Institut Cochin, Inserm, U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rémi Cheynier
- Institut Cochin, Inserm, U1016, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rodolphe Thiébaut
- Inserm U1219 Bordeaux Population Health, INRIA SISTM, Univ. Bordeaux, Bordeaux, France
| | - Sophie Matheron
- Inserm, IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité, Assistance Publique -Hôpitaux de Paris, Service des Maladies Infectieuses et Tropicales, Hôpital Bichat, HUPNVS, Paris, France
| | - Fideline Collin
- Inserm U1219 Bordeaux Population Health, INRIA SISTM, Univ. Bordeaux, Bordeaux, France
| | - Rima Zoorob
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, Paris, France
| | | | - Brigitte Autran
- Sorbonne Université, Inserm 1135, Centre d’immunologie et des maladies infectieuses, Cimi-Paris, AP-HP, Hôpital universitaire Pitié-Salpêtrière, Paris, France
- * E-mail: (FBV); (BA)
| | | |
Collapse
|
23
|
Smith RA, Raugi DN, Wu VH, Zavala CG, Song J, Diallo KM, Seydi M, Gottlieb GS. Comparison of the Antiviral Activity of Bictegravir against HIV-1 and HIV-2 Isolates and Integrase Inhibitor-Resistant HIV-2 Mutants. Antimicrob Agents Chemother 2019; 63:e00014-19. [PMID: 30803972 PMCID: PMC6496081 DOI: 10.1128/aac.00014-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
We compared the activity of the integrase inhibitor bictegravir against HIV-1 and HIV-2 using a culture-based, single-cycle assay. Values of 50% effective concentrations ranged from 1.2 to 2.5 nM for 9 HIV-1 isolates and 1.4 to 5.6 nM for 15 HIV-2 isolates. HIV-2 integrase mutants G140S/Q148R and G140S/Q148H were 34- and 110-fold resistant to bictegravir, respectively; other resistance-associated mutations conferred ≤5-fold changes in bictegravir susceptibility. Our findings indicate that bictegravir-based antiretroviral therapy should be evaluated in HIV-2-infected individuals.
Collapse
Affiliation(s)
- Robert A Smith
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Dana N Raugi
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Vincent H Wu
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Christopher G Zavala
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jennifer Song
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | | | - Moussa Seydi
- Service des Maladies Infectieuses et Tropicales, CHNU de Fann, Dakar, Senegal
| | - Geoffrey S Gottlieb
- Center for Emerging and Reemerging Infectious Diseases and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
24
|
Salwe S, Singh A, Padwal V, Velhal S, Nagar V, Patil P, Deshpande A, Patel V. Immune signatures for HIV-1 and HIV-2 induced CD4 +T cell dysregulation in an Indian cohort. BMC Infect Dis 2019; 19:135. [PMID: 30744575 PMCID: PMC6371624 DOI: 10.1186/s12879-019-3743-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
Background HIV-2 infection is characterised by a longer asymptomatic phase and slower AIDS progression than HIV-1 infection. Identifying unique immune signatures associated with HIV-2 pathogenesis may thus provide therapeutically useful insight into the management of HIV infection. This study examined the dynamics of the CD4+T cell compartment, critical in disease progression, focussing on chronic HIV-2 and HIV-1 infected individuals at various stages of disease progression. Methods A total of 111 participants including untreated and treated HIV infected individuals and seronegative individuals were enrolled in this study. The relative proportion of CD4+T cell subsets, expressing CD25 (IL-2Rα) and CD127 (IL-7R), in HIV infected individuals and seronegative controls were assessed by multiparametric flow cytometry. Additionally, levels of immune activation and cytotoxic T lymphocytes in both the CD4+T and CD8+T cell compartments was evaluated. Results Both treated and untreated, HIV-1 and HIV-2 infected individuals showed apparent dysregulation in CD4+ T cell subset frequency that was associated with disease progression. Furthermore, longitudinal sampling from a group of HIV-1 infected individuals on virologically effective ART showed no significant change in dysregulated CD4+T cell subset frequency. For both ART naïve and receiving groups associations with disease progression were strongest and significant with CD4+ T cell subset frequency compared to per cell expression of IL-2Rα and IL-7Rα. In untreated HIV-2 infected individuals, T cell activation was lower compared to ART naïve HIV-1 infected individuals and higher than seronegative individuals. Also, the level of Granzyme-B expressing circulating T cells was higher in both ART-naïve HIV-1 and HIV-2 infected individuals compared to seronegative controls. Conclusion Dysregulation of IL-2 and IL-7 homeostasis persists in CD4+T cell subsets irrespective of presence or absence of viremia or antiretroviral therapy in HIV infection. Furthermore, we report for the first time on levels of circulating Granzyme-B expressing CD4+T and CD8+T cells in chronic HIV-2 infection. Lower immune activation in these individuals indicates that persistent immune activation driven CD4+T cell depletion, as observed in untreated HIV-1 infected individuals, may not be as severe and provides evidence for a disparate pathogenesis mechanism. Our work also supports novel immunomodulatory therapeutic strategies for both HIV-1 and HIV-2 infection. Electronic supplementary material The online version of this article (10.1186/s12879-019-3743-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sukeshani Salwe
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai, 400012, India
| | - Amitkumar Singh
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai, 400012, India
| | - Varsha Padwal
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai, 400012, India
| | - Shilpa Velhal
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai, 400012, India
| | - Vidya Nagar
- Department of Medicine, Grant Medical College & Sir J. J. group of Hospitals, Mumbai, 400008, India
| | - Priya Patil
- Department of Medicine, Grant Medical College & Sir J. J. group of Hospitals, Mumbai, 400008, India
| | - Alaka Deshpande
- Department of Medicine, Grant Medical College & Sir J. J. group of Hospitals, Mumbai, 400008, India
| | - Vainav Patel
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J. M. Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
25
|
Dufrasne FE, Lucchetti M, Dessilly G, Ruelle J, Martin A, Kabamba-Mukadi B. Short Communication: An Insertion of Seven Amino Acids in the Envelope Cytoplasmic Tail of HIV-2 Selected During Disease Progression Enhances Viral Replication. AIDS Res Hum Retroviruses 2019; 35:185-190. [PMID: 30229676 DOI: 10.1089/aid.2018.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cytoplasmic tail (CT) of the HIV-2 envelope glycoprotein (Env) includes amino acid (aa) sequences that are similar to lentiviral lytic peptides (LLP) described in other lentiviruses. Within the putative LLP-2 region, we previously observed insertions of 3 or 7 aa in sequences deduced from plasma viral RNA of symptomatic HIV-2-infected individuals. Based on these observations, we reproduced the insertions in a molecular clone to assess their impact on replicative fitness and cell death in vitro. Using a molecular clone of the HIV-2ROD reference strain, site-directed mutagenesis experiments allowed the generation of plasmids with the insertion L791TAI or L791QRALTAI in the Env protein. The clone with 7 aa insertion enhanced viral release 8 to 11 times in infected T cells and cell viability was impaired by more than 20%, compared with the wild-type HIV-2ROD virus. The effect of the 3 aa insertion was milder, with a nonsignificant trend to enhance viral replication and cell death compared with the wild-type virus. Interestingly, the insertions in the Env proteins did not induce a significant increase of viral infectivity, as revealed by the infectivity assay using TZM-bl cells. The insertions in the Env CT observed in vivo from disease progressors may, therefore, be involved in the higher viral load observed in these individuals. This study may open the way to the development of a prognostic marker related to the HIV-2 infection progression.
Collapse
Affiliation(s)
- François E. Dufrasne
- Microbiology Unit (MBLG), AIDS Reference Laboratory (ARL), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Mara Lucchetti
- Microbiology Unit (MBLG), AIDS Reference Laboratory (ARL), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Géraldine Dessilly
- Microbiology Unit (MBLG), AIDS Reference Laboratory (ARL), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Jean Ruelle
- Clinical Laboratories Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Anandi Martin
- Microbiology Unit (MBLG), AIDS Reference Laboratory (ARL), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Benoit Kabamba-Mukadi
- Microbiology Unit (MBLG), AIDS Reference Laboratory (ARL), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Clinical Laboratories Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
26
|
Low-Bias RNA Sequencing of the HIV-2 Genome from Blood Plasma. J Virol 2018; 93:JVI.00677-18. [PMID: 30333167 PMCID: PMC6288329 DOI: 10.1128/jvi.00677-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/14/2018] [Indexed: 11/20/2022] Open
Abstract
Accurate determination of the genetic diversity present in the HIV quasispecies is critical for the development of a preventative vaccine: in particular, little is known about viral genetic diversity for the second type of HIV, HIV-2. A better understanding of HIV-2 biology is relevant to the HIV vaccine field because a substantial proportion of infected people experience long-term viral control, and prior HIV-2 infection has been associated with slower HIV-1 disease progression in coinfected subjects. The majority of traditional and next-generation sequencing methods have relied on target amplification prior to sequencing, introducing biases that may obscure the true signals of diversity in the viral population. Additionally, target enrichment through PCR requires a priori sequence knowledge, which is lacking for HIV-2. Therefore, a target enrichment free method of library preparation would be valuable for the field. We applied an RNA shotgun sequencing (RNA-Seq) method without PCR amplification to cultured viral stocks and patient plasma samples from HIV-2-infected individuals. Libraries generated from total plasma RNA were analyzed with a two-step pipeline: (i) de novo genome assembly, followed by (ii) read remapping. By this approach, whole-genome sequences were generated with a 28× to 67× mean depth of coverage. Assembled reads showed a low level of GC bias, and comparison of the genome diversities at the intrahost level showed low diversity in the accessory gene vpx in all patients. Our study demonstrates that RNA-Seq is a feasible full-genome de novo sequencing method for blood plasma samples collected from HIV-2-infected individuals.IMPORTANCE An accurate picture of viral genetic diversity is critical for the development of a globally effective HIV vaccine. However, sequencing strategies are often complicated by target enrichment prior to sequencing, introducing biases that can distort variant frequencies, which are not easily corrected for in downstream analyses. Additionally, detailed a priori sequence knowledge is needed to inform robust primer design when employing PCR amplification, a factor that is often lacking when working with tropical diseases localized in developing countries. Previous work has demonstrated that direct RNA shotgun sequencing (RNA-Seq) can be used to circumvent these issues for hepatitis C virus (HCV) and norovirus. We applied RNA-Seq to total RNA extracted from HIV-2 blood plasma samples, demonstrating the applicability of this technique to HIV-2 and allowing us to generate a dynamic picture of genetic diversity over the whole genome of HIV-2 in the context of low-bias sequencing.
Collapse
|
27
|
Bártolo I, Borrego P, Gomes P, Gonçalves F, Caixas U, Pinto IV, Taveira N. In vitro evaluation of novel reverse transcriptase inhibitors TAF (tenofovir alafenamide) and OBP-601 (2,3-didehydro-3-deoxy-4-ethynylthymidine) against multi-drug resistant primary isolates of HIV-2. Antiviral Res 2018; 161:85-89. [PMID: 30391482 DOI: 10.1016/j.antiviral.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
Abstract
New antiretroviral drugs are needed to treat HIV-2 infected patients failing therapy. Herein, we evaluate the activity of novel reverse transcriptase inhibitors tenofovir alafenamide (TAF) and OBP-601(2,3-didehydro-3-deoxy-4-ethynylthymidine) against primary isolates from HIV-2 infected patients experiencing virologic failure. TAF and OBP-601 were tested against twelve primary isolates obtained from nine drug-experienced patients failing therapy and three drug naïve patients using a single-round infectivity assay in TZM-bl cells. The RT-coding region of pol was sequenced and the GRADE algorithm was used to identify resistance profiles and mutations. TAF and OBP-601 inhibited the replication of almost all isolates at a median EC50 of 0.27 nM and 6.83 nM, respectively. Two isolates showed moderate-level resistance to OBP-601 or TAF and two other isolates showed high-level resistance to OBP-601 or to both drugs. With one exception, all resistant viruses had canonical nucleoside reverse transcriptase inhibitors (NRTIs)-associated resistance mutations (K65R, N69S, V111I, Y115F, Q151M and M184V). Our results show that TAF has potent activity against most multi-drug resistant HIV-2 isolates and should be considered for the treatment of HIV-2 infected patients failing therapy.
Collapse
Affiliation(s)
- Inês Bártolo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.
| | - Pedro Borrego
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal; Centro de Administração e Políticas Públicas (CAPP), Instituto Superior de Ciências Sociais e Políticas (ISCSP) da Universidade de Lisboa, Rua Almerindo Lessa, 1300-663, Lisboa, Portugal
| | - Perpétua Gomes
- Laboratório de Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental - Hospital de Egas Moniz, Rua da Junqueira, nº 126 1349-019, Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Campus Universitário, Quinta da Granja Monte de Caparica, 2829 - 511, Caparica, Portugal
| | - Fátima Gonçalves
- Laboratório de Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental - Hospital de Egas Moniz, Rua da Junqueira, nº 126 1349-019, Lisboa, Portugal
| | - Umbelina Caixas
- Serviço de Medicina 1.4, Hospital de S. José, Centro Hospitalar Lisboa Central,- EPE, and Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Centro de Estudos de Doenças Crónicas - CEDOC, Rua Câmara Pestana nº6, 6-A, 1150-082, Lisboa, Portugal
| | - Inês V Pinto
- Medicina Interna, Hospital de Cascais Dr. José de Almeida, Av. Brigadeiro Victor Novais Gonçalves, 2755-009, Alcabideche, Portugal
| | - Nuno Taveira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Campus Universitário, Quinta da Granja Monte de Caparica, 2829 - 511, Caparica, Portugal.
| |
Collapse
|
28
|
Esbjörnsson J, Månsson F, Kvist A, da Silva ZJ, Andersson S, Fenyö EM, Isberg PE, Biague AJ, Lindman J, Palm AA, Rowland-Jones SL, Jansson M, Medstrand P, Norrgren H. Long-term follow-up of HIV-2-related AIDS and mortality in Guinea-Bissau: a prospective open cohort study. Lancet HIV 2018; 6:S2352-3018(18)30254-6. [PMID: 30392769 DOI: 10.1016/s2352-3018(18)30254-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/24/2018] [Accepted: 09/06/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND HIV type 2 (HIV-2) is considered more benign and has fewer pathogenic consequences than HIV type 1 (HIV-1) for most infected individuals. However, reliable estimates of time to AIDS and mortality among those with HIV-2 infection are absent. We therefore aimed to compare the time to AIDS and mortality, and the CD4 T-cell dynamics between those infected with HIV-1 and HIV-2. METHODS We did a prospective open cohort study. We included all police officers with regular employment from police stations in both urban and rural areas of Guinea-Bissau since Feb 6, 1990. We continued to include participants until Sept 28, 2009, and follow-up of HIV-1-positive and HIV-2-positive individuals continued until Sept 28, 2013. We collected blood samples at enrolment and at scheduled annual follow-up visits at police stations. We analysed longitudinal data from individuals infected with HIV-1 and HIV-2 according to time to AIDS, time to death, and T-cell dynamics. Time of HIV infection was estimated as the mid-timepoint between last HIV-seronegative and first HIV-seropositive sample. Data from an additional 2984 HIV-uninfected individuals from the same population were analysed to assess the effect of natural mortality on HIV-related mortality. FINDINGS 872 participants tested HIV positive during the 23-year study period: 408 were infected with HIV-1 (183 infected before and 225 infected after enrolment) and 464 were infected with HIV-2 (377 before and 87 after enrolment). The median time from HIV infection to development of AIDS was 6·2 years (95% CI 5·4-7·1) for HIV-1 infection and 14·3 years (10·7-18·0) for HIV-2 infection (p<0·0001). The median survival time after HIV infection was 8·2 years (95% CI 7·5-8·9) for HIV-1 infection and 15·6 years (12·0-19·2) for HIV-2 infection (p<0·0001). Individuals who were infected with HIV-1 or HIV-2 before enrolment showed similar results. Comparison with uninfected individuals indicated limited confounding contribution from natural mortality. Mean CD4 percentages were higher in individuals with HIV-2 than in those with HIV-1 during early infection (28·0% [SE 1·3] vs 22·3% [1·7]; p=0·00094) and declined at a slower rate (0·4% [0·2] vs 0·9% [0·2] per year; p=0·028). HIV-2-infected individuals developed clinical AIDS at higher mean CD4 percentages (18·2%, IQR 7·2-25·4) than HIV-1-infected individuals (8·2%, 3·0-13·8; p<0·0001). INTERPRETATION Our results show that both HIV-1-infected and HIV-2-infected individuals have a high probability of developing and dying from AIDS without antiretroviral treatment. FUNDING Swedish International Development Agency, Swedish Research Council, Swedish Society of Medical Research, Medical Faculty at Lund University, and Region Skåne Research and Development.
Collapse
Affiliation(s)
- Joakim Esbjörnsson
- Department of Laboratory Medicine, Lund University, Malmö, Sweden; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Fredrik Månsson
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anders Kvist
- Department of Clinical Sciences Lund, Lund University, Malmö, Sweden
| | | | - Sören Andersson
- Department of Laboratory Medicine, Örebro University, Örebro, Sweden
| | - Eva Maria Fenyö
- Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | - Per-Erik Isberg
- Department of Statistics, Lund University School of Economics and Management, Lund, Sweden
| | | | - Jacob Lindman
- Department of Clinical Sciences Lund, Lund University, Malmö, Sweden
| | - Angelica A Palm
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | - Patrik Medstrand
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Hans Norrgren
- Department of Clinical Sciences Lund, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
Wang W, Tian Y, Wan Y, Gu S, Ju X, Luo X, Liu G. Insights into the key structural features of N1-ary-benzimidazols as HIV-1 NNRTIs using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore modeling. Struct Chem 2018. [DOI: 10.1007/s11224-018-1204-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
In Vitro Antiviral Activity of Cabotegravir against HIV-2. Antimicrob Agents Chemother 2018; 62:AAC.01299-18. [PMID: 30012774 DOI: 10.1128/aac.01299-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/12/2018] [Indexed: 02/08/2023] Open
Abstract
We examined the antiviral activity of the integrase inhibitor (INI) cabotegravir against HIV-2 isolates from INI-naive individuals. HIV-2 was sensitive to cabotegravir in single-cycle and spreading-infection assays, with 50% effective concentrations (EC50s) in the low to subnanomolar range; comparable results were obtained for HIV-1 in both assay formats. Our findings suggest that cabotegravir should be evaluated in clinical trials as a potential option for antiretroviral therapy and preexposure prophylaxis in HIV-2-prevalent settings.
Collapse
|
31
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
32
|
Grønborg HL, Jespersen S, Egedal JH, Correia FG, Medina C, Krarup H, Hønge BL, Wejse C. Prevalence and clinical characteristics of CMV coinfection among HIV infected individuals in Guinea-Bissau: a cross-sectional study. Trop Med Int Health 2018; 23:896-904. [PMID: 29851192 DOI: 10.1111/tmi.13082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To describe the prevalence of CMV in a cohort of HIV infected individuals in Guinea-Bissau, West Africa and to evaluate differences in patients' clinical characteristics associated with their CMV status. METHODS Newly diagnosed HIV infected adults were invited to participate in this cross-sectional study, from May until December 2015. Enrolled patients were interviewed and underwent a full physical examination focusing on CMV disease manifestations. Blood samples were analysed for CMV serology, QuantiFERON-CMV response and CMV DNA. Mortality follow-up were registered for one year after inclusion. RESULTS In total, 180 patients were enrolled. Anti-CMV IgG positivity was found in 100% (138/138) and 2.8% (4/138) were anti-CMV IgM positive. A positive QuantiFERON-CMV response was found in 85.7% (60/70) of the patients and 60.6% (83/137) had CMV viraemia. QuantiFERON-CMV response and detectable CMV DNA were associated with lower CD4 cell count, older age and upper gastrointestinal complaints. During one year of follow-up, the IRR for death among CMV DNA positive patients was 1.5 (P = 0.5). CONCLUSIONS CMV coinfection was detected among all enrolled patients and CMV viraemia was highly prevalent. Only age and upper gastrointestinal complaints were associated with the patients' CMV status.
Collapse
Affiliation(s)
- Helene L Grønborg
- GloHAU, Department of Public Health, Aarhus University, Aarhus, Denmark.,Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | - Sanne Jespersen
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Faustino G Correia
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau.,National HIV Programme, Ministry of Health, Bissau, Guinea-Bissau
| | - Candida Medina
- National HIV Programme, Ministry of Health, Bissau, Guinea-Bissau
| | - Henrik Krarup
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Bo L Hønge
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau.,National HIV Programme, Ministry of Health, Bissau, Guinea-Bissau.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Wejse
- GloHAU, Department of Public Health, Aarhus University, Aarhus, Denmark.,Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
33
|
Yuksel P, Saribas S, Kuskucu M, Mutcali SI, Kosan E, Habip Z, Demirci M, Kara ES, Birinci I, Caliskan R, Dinc HO, Midilli K, Ziver T, Kocazeybek B. Problems encountered in conventional HIV 1/2 Algorithms: lack of necessity for immunoblot assays to confirm repeated ELISA reactive results. Afr Health Sci 2018; 18:407-416. [PMID: 30602968 PMCID: PMC6306965 DOI: 10.4314/ahs.v18i2.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The use of conventional (serologically based) HIV 1/2 diagnostic algorithms has become controversial in recent years. OBJECTIVES Sera from patients who underwent verification tests were evaluated because repeated ELISA-reactive results demonstrated a HIV1+HIV2 positive band pattern. METHODS The line immunoassay (LIA) test was used for repeated HIV enzyme immunoassays (EIA)-reactive sera in patients at three centers. The Bio-Rad Geenius™ HIV 1/2 and the HIV-1 RNA tests were used. HIV-1 and RNA HIV-2 were investigated using PCR. RESULTS LIA was used to evaluate 3,224 out of 10,591 samples with repeated ELISA reactivity (30%). We found that 32 (1%) of the sera, along with HIV1 bands and HIV2 gp36 bands, were positive. Only 28 of the 32 verified serum samples with gp36 bands were repeated, and no gp36 band positivity was detected using the Bio-Rad Geenius™ HIV-1/2 confirmatory assay in these serum samples. The HIV-2 proviral DNAs were also negative. Therefore, we excluded the possibility of HIV1+2 co-infection. All samples from the 32 patients were positive for HIV-1 RNA. CONCLUSION Our findings highlight the need to exclude confirmatory tests like the LIA test from the current diagnostic HIV algorithm and replace it with rapid HIV-1 and HIV-2 confirmatory immunochromotographic tests.
Collapse
Affiliation(s)
- Pelin Yuksel
- Istanbul University, Cerrahpaşa Medical Faculty, Department of Medical Microbiology, Istanbul/Turkey
| | - Suat Saribas
- Istanbul University, Cerrahpaşa Medical Faculty, Department of Medical Microbiology, Istanbul/Turkey
| | - Mert Kuskucu
- Istanbul University, Cerrahpaşa Medical Faculty, Department of Medical Microbiology, Istanbul/Turkey
| | | | - Erdogan Kosan
- The Turkish Red Crescent Marmara Region Blood Center Laboratory, Istanbul/ Turkey
| | - Zafer Habip
- Istanbul University, Cerrahpaşa Medical Faculty, Department of Medical Microbiology, Istanbul/Turkey
| | - Mehmet Demirci
- Beykent University Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Eda Salihoglu Kara
- Bakırköy Mazhar Osman Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Ilhan Birinci
- The Turkish Red Crescent Marmara Region Blood Center Laboratory, Istanbul/ Turkey
| | - Reyhan Caliskan
- Istanbul University, Cerrahpaşa Medical Faculty, Department of Medical Microbiology, Istanbul/Turkey
| | - Harika Oyku Dinc
- Istanbul University, Cerrahpaşa Medical Faculty, Department of Medical Microbiology, Istanbul/Turkey
| | - Kenan Midilli
- Istanbul University, Cerrahpaşa Medical Faculty, Department of Medical Microbiology, Istanbul/Turkey
| | - Tevhide Ziver
- East Mediterranean University, Health Sciences Faculty, Gazimagusa, North Cyprus
| | - Bekir Kocazeybek
- Istanbul University, Cerrahpaşa Medical Faculty, Department of Medical Microbiology, Istanbul/Turkey
| |
Collapse
|
34
|
Lu X, Yang J, Kang D, Gao P, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. The discovery of novel diarylpyri(mi)dine derivatives with high level activity against a wide variety of HIV-1 strains as well as against HIV-2. Bioorg Med Chem 2018; 26:2051-2060. [DOI: 10.1016/j.bmc.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022]
|
35
|
Zhu Y, Zhang X, Ding X, Chong H, Cui S, He J, Wang X, He Y. Exceptional potency and structural basis of a T1249-derived lipopeptide fusion inhibitor against HIV-1, HIV-2, and simian immunodeficiency virus. J Biol Chem 2018; 293:5323-5334. [PMID: 29425101 DOI: 10.1074/jbc.ra118.001729] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/23/2018] [Indexed: 11/06/2022] Open
Abstract
Enfuvirtide (T20) is the only viral fusion inhibitor approved for clinical use, but it has relatively weak anti-HIV activity and easily induces drug resistance. In succession to T20, T1249 has been designed as a 39-mer peptide composed of amino acid sequences derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV); however, its development has been suspended due to formulation difficulties. We recently developed a T20-based lipopeptide (LP-40) showing greatly improved pharmaceutical properties. Here, we generated a T1249-based lipopeptide, termed LP-46, by replacing its C-terminal tryptophan-rich sequence with fatty acid. As compared with T20, T1249, and LP-40, the truncated LP-46 (31-mer) had dramatically increased activities in inhibiting a large panel of HIV-1 subtypes, with IC50 values approaching low picomolar concentrations. Also, LP-46 was an exceptionally potent inhibitor against HIV-2, SIV, and T20-resistant variants, and it displayed obvious synergistic effects with LP-40. Furthermore, we showed that LP-46 had increased helical stability and binding affinity with the target site. The crystal structure of LP-46 in complex with a target surrogate revealed its critical binding motifs underlying the mechanism of action. Interestingly, it was found that the introduced pocket-binding domain in LP-46 did not interact with the gp41 pocket as expected; instead, it adopted a mode similar to that of LP-40. Therefore, our studies have provided an exceptionally potent and broad fusion inhibitor for developing new anti-HIV drugs, which can also serve as a tool to exploit the mechanisms of viral fusion and inhibition.
Collapse
Affiliation(s)
- Yuanmei Zhu
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,the Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiujuan Zhang
- the College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, China, and
| | - Xiaohui Ding
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,the Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huihui Chong
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,the Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng Cui
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinsheng He
- the College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, China, and
| | - Xinquan Wang
- the Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxian He
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China, .,the Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
36
|
Prediction of HIV-1 and HIV-2 proteins by using Chou's pseudo amino acid compositions and different classifiers. Sci Rep 2018; 8:2359. [PMID: 29402983 PMCID: PMC5799304 DOI: 10.1038/s41598-018-20819-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/24/2018] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus (HIV) is the retroviral agent that causes acquired immune deficiency syndrome (AIDS). The number of HIV caused deaths was about 4 million in 2016 alone; it was estimated that about 33 million to 46 million people worldwide living with HIV. The HIV disease is especially harmful because the progressive destruction of the immune system prevents the ability of forming specific antibodies and to maintain an efficacious killer T cell activity. Successful prediction of HIV protein has important significance for the biological and pharmacological functions. In this study, based on the concept of Chou’s pseudo amino acid (PseAA) composition and increment of diversity (ID), support vector machine (SVM), logisitic regression (LR), and multilayer perceptron (MP) were presented to predict HIV-1 proteins and HIV-2 proteins. The results of the jackknife test indicated that the highest prediction accuracy and CC values were obtained by the SVM and MP were 0.9909 and 0.9763, respectively, indicating that the classifiers presented in this study were suitable for predicting two groups of HIV proteins.
Collapse
|
37
|
Abstract
Retroviruses are genome invaders that have shared a long history of coevolution with vertebrates and their immune system. Found endogenously in genomes as traces of past invasions, retroviruses are also considerable threats to human health when they exist as exogenous viruses such as HIV. The immune response to retroviruses is engaged by germline-encoded sensors of innate immunity that recognize viral components and damage induced by the infection. This response develops with the induction of antiviral effectors and launching of the clonal adaptive immune response, which can contribute to protective immunity. However, retroviruses efficiently evade the immune response, owing to their rapid evolution. The failure of specialized immune cells to respond, a form of neglect, may also contribute to inadequate antiretroviral immune responses. Here, we discuss the mechanisms by which immune responses to retroviruses are mounted at the molecular, cellular, and organismal levels. We also discuss how intrinsic, innate, and adaptive immunity may cooperate or conflict during the generation of immune responses.
Collapse
Affiliation(s)
- Asier Sáez-Cirión
- HIV Inflammation and Persistence, Institut Pasteur, 75015 Paris, France;
| | - Nicolas Manel
- Immunity and Cancer Department, INSERM U932, Institut Curie, PSL Research University, 75005 Paris, France;
| |
Collapse
|
38
|
Dufrasne FE, Lucchetti M, Martin A, André E, Dessilly G, Kabamba B, Goubau P, Ruelle J. Modulation of the NF-κB signaling pathway by the HIV-2 envelope glycoprotein and its incomplete BST-2 antagonism. Virology 2017; 513:11-16. [PMID: 29028477 DOI: 10.1016/j.virol.2017.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 12/19/2022]
Abstract
The HIVs have evolved by selecting means to hijack numerous host cellular factors. HIVs exploit the transcription factor NF-κB to ensure efficient LTR-driven gene transcription. However, NF-κB is primarily known to act as a key regulator of the proinflammatory and antiviral responses. Interestingly, retroviruses activate NF-κB during early stages of infection to initiate proviral genome expression while suppressing it at later stages to restrain expression of antiviral genes. During HIV-1 infection, diverse viral proteins such as Env, Nef and Vpr have been proposed to activate NF-κB activity, whereas Vpu has been shown to inhibit NF-κB activation. It is still unclear how HIV-2 regulates NF-κB signaling pathway during its replication cycle. Here we confirm that human BST-2 and HIV-1 Env proteins can trigger potent activation of NF-κB. Importantly, we demonstrate for the first time that the HIV-2 Env induces NF-κB activation in HEΚ293T cells. Furthermore, the anti-BST-2 activity of the HIV-2 Env is not sufficient to completely inhibit NF-κB activity.
Collapse
Affiliation(s)
- François E Dufrasne
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Mara Lucchetti
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium
| | - Anandi Martin
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Emmanuel André
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Clinical Biology Department, Microbiology Unit, B-1200 Brussels, Belgium.
| | - Géraldine Dessilly
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Benoit Kabamba
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Clinical Biology Department, Microbiology Unit, B-1200 Brussels, Belgium.
| | - Patrick Goubau
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Jean Ruelle
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
39
|
Mendoza CD, Requena S, Caballero E, Cabezas T, Peñaranda M, Amengual MJ, Sáez A, Lozano AB, Ramos JM, Soriano V. Antiretroviral treatment of HIV-2 infection. Future Virol 2017. [DOI: 10.2217/fvl-2017-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-2 is a neglected virus despite estimates of 1–2 million people being infected worldwide. AIDS develops more slowly in HIV-2 than HIV-1. Outside endemic regions, HIV-2 is mostly found in immigrants from west Africa or their sex partners. There are four major caveats when treating HIV-2. First, some antiretrovirals are not or only partially active against HIV-2. Second, CD4 declines in HIV-2 occur slowly, but CD4 recovery is smaller with antiretroviral treatment. Third, both virological failure and rapid emergence of drug resistance occur more frequently in HIV-2 than HIV-1. Finally, misdiagnosis of HIV-2 in patients wrongly considered as infected with HIV-1 or in those dually infected may result in treatment failures with undetectable HIV-1 RNA. Integrase inhibitors, and especially dolutegravir, should be part of any preferred HIV-2 antiretroviral combination nowadays.
Collapse
Affiliation(s)
- Carmen de Mendoza
- Laboratory of Internal Medicine, Puerta de Hierro Research Institute, Majadahonda, Spain
| | - Silvia Requena
- Laboratory of Internal Medicine, Puerta de Hierro Research Institute, Majadahonda, Spain
| | | | | | - María Peñaranda
- Microbiology Unit, Son Espases Hospital, Palma de Mallorca, Spain
| | | | - Ana Sáez
- Microbiology Unit, Hospital Marqués de Valdecilla, Santander, Spain
| | | | - José M Ramos
- Infectious Diseases Unit, General Hospital, Alicante, Spain
| | - Vincent Soriano
- Infectious Diseases Unit, La Paz University Hospital & Autonomous University, Madrid, Spain
| |
Collapse
|
40
|
MK-8591 (4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine) Exhibits Potent Activity against HIV-2 Isolates and Drug-Resistant HIV-2 Mutants in Culture. Antimicrob Agents Chemother 2017; 61:AAC.00744-17. [PMID: 28559249 DOI: 10.1128/aac.00744-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/19/2017] [Indexed: 11/20/2022] Open
Abstract
There is a pressing need to identify more effective antiretroviral drugs for HIV-2 treatment. Here, we show that the investigational compound MK-8591 (4'-ethynyl-2-fluoro-2'-deoxyadenosine [EFdA]) is highly active against group A and B isolates of HIV-2; 50% effective concentrations [EC50] for HIV-2 were, on average, 4.8-fold lower than those observed for HIV-1. MK-8591 also retains potent activity against multinucleoside-resistant HIV-2 mutants (EC50 ≤ 11 nM). These data suggest that MK-8591 may have antiviral activity in HIV-2-infected individuals.
Collapse
|
41
|
Madni M, Hameed S, Ahmed MN, Tahir MN, Al-Masoudi NA, Pannecouque C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1963-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
de Mendoza C, Cabezas T, Caballero E, Requena S, Amengual MJ, Peñaranda M, Sáez A, Tellez R, Lozano AB, Treviño A, Ramos JM, Pérez JL, Barreiro P, Soriano V. HIV type 2 epidemic in Spain: challenges and missing opportunities. AIDS 2017; 31:1353-1364. [PMID: 28358736 DOI: 10.1097/qad.0000000000001485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: HIV type 2 (HIV-2) is a neglected virus despite estimates of 1-2 million people infected worldwide. HIV-2 is less efficiently transmitted than HIV-1 by sex and from mother to child. Although AIDS may develop in HIV-2 carriers, it takes longer than in HIV-1-infected patients. In contrast with HIV-1 infection, there is no global pandemic caused by HIV-2, as the virus is largely confined to West Africa. In a less extent and due to socioeconomic ties and wars, HIV-2 is prevalent in Portugal and its former colonies in Brazil, India, Mozambique and Angola. Globally, HIV-2 infections are steadily declining over time. A total of 338 cases of HIV-2 infection had been reported at the Spanish HIV-2 registry until December 2016, of whom 63% were men. Overall 72% were sub-Saharan Africans, whereas 16% were native Spaniards. Dual HIV-1 and HIV-2 coinfection was found in 9% of patients. Heterosexual contact was the most likely route of HIV-2 acquisition in more than 90% of cases. Roughly one-third presented with CD4 cell counts less than 200 cells/μl and/or AIDS clinical events. Plasma HIV-2 RNA was undetectable at baseline in 40% of patients. To date, one-third of HIV-2 carriers have received antiretroviral therapy, using integrase inhibitors 32 individuals. New diagnoses of HIV-2 in Spain have remained stable since 2010 with an average of 15 cases yearly. Illegal immigration from Northwestern African borders accounts for over 75% of new HIV-2 diagnoses. Given the relatively large community of West Africans already living in Spain and the continuous flux of immigration from endemic regions, HIV-2 infection either alone or as coinfection with HIV-1 should be excluded once in all HIV-seroreactive persons, especially when showing atypical HIV serological profiles, immunovirological disconnect (CD4 cell count loss despite undetectable HIV-1 viremia) and/or high epidemiological risks (birth in or sex partners from endemic regions).
Collapse
|
43
|
Rawson JMO, Gohl DM, Landman SR, Roth ME, Meissner ME, Peterson TS, Hodges JS, Beckman KB, Mansky LM. Single-Strand Consensus Sequencing Reveals that HIV Type but not Subtype Significantly Impacts Viral Mutation Frequencies and Spectra. J Mol Biol 2017; 429:2290-2307. [PMID: 28502791 DOI: 10.1016/j.jmb.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
A long-standing question of human immunodeficiency virus (HIV) genetic variation and evolution has been whether differences exist in mutation rate and/or mutation spectra among HIV types (i.e., HIV-1 versus HIV-2) and among HIV groups (i.e., HIV-1 groups M-P and HIV-2 groups A-H) and HIV-1 Group M subtypes (i.e., subtypes A-D, F-H, and J-K). To address this, we developed a new single-strand consensus sequencing assay for the determination of HIV mutation frequencies and spectra using the Illumina sequencing platform. This assay enables parallel and standardized comparison of HIV mutagenesis among various viral vectors with lower background error than traditional methods of Illumina library preparation. We found significant differences in viral mutagenesis between HIV types but intriguingly no significant differences among HIV-1 Group M subtypes. More specifically, HIV-1 exhibited higher transition frequencies than HIV-2, due mostly to single G-to-A mutations and (to a lesser extent) G-to-A hypermutation. These data suggest that HIV-2 RT exhibits higher fidelity during viral replication, and taken together, these findings demonstrate that HIV type but not subtype significantly affects viral mutation frequencies and spectra. These differences may inform antiviral and vaccine strategies.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Morgan E Meissner
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Tara S Peterson
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - James S Hodges
- Division of Biostatistics, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Department of Microbiology & Immunology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
44
|
Cyclophilins and nucleoporins are required for infection mediated by capsids from circulating HIV-2 primary isolates. Sci Rep 2017; 7:45214. [PMID: 28345672 PMCID: PMC5366920 DOI: 10.1038/srep45214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
HIV-2 groups have emerged from sooty mangabey SIV and entered the human population in Africa on several separate occasions. Compared to world pandemic HIV-1 that arose from the chimpanzee SIVcpz virus, the SIVsm-derived HIV-2, largely confined to West Africa, is less replicative, less transmissible and less pathogenic. Here, we evaluated the interactions between host cellular factors, which control HIV-1 infection and target the capsid, and HIV-2 capsids obtained from primary isolates from patients with different disease progression status. We showed that, like HIV-1, all HIV-2 CA we tested exhibited a dependence on cyclophilin A. However, we observed no correlation between HIV-2 viremia and susceptibility to hu-TRIM5alpha or dependence to CypA. Finally, we found that all CA from HIV-2 primary isolates exploit Nup358 and Nup153 for nucleus transposition. Altogether, these findings indicate that the ability to use the two latter nucleoporins is essential to infection of human cells for both HIV-1 and HIV-2. This dependence provides another molecular target that could be used for antiviral strategies against both HIV-1 and 2, based on both nucleoporins.
Collapse
|
45
|
A Helical Short-Peptide Fusion Inhibitor with Highly Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. J Virol 2016; 91:JVI.01839-16. [PMID: 27795437 DOI: 10.1128/jvi.01839-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) has already spread to different regions worldwide, and currently about 1 to 2 million people have been infected, calling for new antiviral agents that are effective on both HIV-1 and HIV-2 isolates. T20 (enfuvirtide), a 36-mer peptide derived from the C-terminal heptad repeat region (CHR) of gp41, is the only clinically approved HIV-1 fusion inhibitor, but it easily induces drug resistance and is not active on HIV-2. In this study, we first demonstrated that the M-T hook structure was also vital to enhancing the binding stability and inhibitory activity of diverse CHR-based peptide inhibitors. We then designed a novel short peptide (23-mer), termed 2P23, by introducing the M-T hook structure, HIV-2 sequences, and salt bridge-forming residues. Promisingly, 2P23 was a highly stable helical peptide with high binding to the surrogate targets derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV). Consistent with this, 2P23 exhibited potent activity in inhibiting diverse subtypes of HIV-1 isolates, T20-resistant HIV-1 mutants, and a panel of primary HIV-2 isolates, HIV-2 mutants, and SIV isolates. Therefore, we conclude that 2P23 has high potential to be further developed for clinical use, and it is also an ideal tool for exploring the mechanisms of HIV-1/2- and SIV-mediated membrane fusion. IMPORTANCE The peptide drug T20 is the only approved HIV-1 fusion inhibitor, but it is not active on HIV-2 isolates, which have currently infected 1 to 2 million people and continue to spread worldwide. Recent studies have demonstrated that the M-T hook structure can greatly enhance the binding and antiviral activities of gp41 CHR-derived inhibitors, especially for short peptides that are otherwise inactive. By combining the hook structure, HIV-2 sequence, and salt bridge-based strategies, the short peptide 2P23 has been successfully designed. 2P23 exhibits prominent advantages over many other peptide fusion inhibitors, including its potent and broad activity on HIV-1, HIV-2, and even SIV isolates, its stability as a helical, oligomeric peptide, and its high binding to diverse targets. The small size of 2P23 would benefit its synthesis and significantly reduce production cost. Therefore, 2P23 is an ideal candidate for further development, and it also provides a novel tool for studying HIV-1/2- and SIV-mediated cell fusion.
Collapse
|
46
|
Poorghasem R, Saberi RS, Shayan M, Mehrgardi MA, Kiani A. Closed Bipolar Electrochemistry for the Detection of Human Immunodeficiency Virus Short Oligonucleotide. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
47
|
Hu S, Neff CP, Kumar DM, Habu Y, Akkina SR, Seki T, Akkina R. A humanized mouse model for HIV-2 infection and efficacy testing of a single-pill triple-drug combination anti-retroviral therapy. Virology 2016; 501:115-118. [PMID: 27912079 DOI: 10.1016/j.virol.2016.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023]
Abstract
While HIV-2 is a causative agent for AIDS in addition to the better studied HIV-1, there is currently no suitable animal model for experimental studies for HIV-2 infection and evaluating promising drugs in vivo. Here we evaluated humanized mice for their susceptibility to HIV-2 infection and tested a single-pill three drug formulation of anti-retrovirals (NRTIs abacavir and lamivudine, integrase inhibitor dolutegravir) (trade name, TriumeqR). Our results showed that hu-mice are susceptible to HIV-2 infection showing persistent viremia and CD4 T cell loss, key hallmarks of AIDS pathogenesis. Oral drug treatment led to full viral suppression and protection from CD4 T cell depletion. Cessation of therapy resulted in viral rebound and CD4 T cell loss. These proof-of-concept studies establish the utility of hu-mice for evaluating HIV-2 pathogenesis in more detail in the future, testing novel therapies and providing pre-clinical efficacy data of a three drug combination to treat HIV-2 infections.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Preston Neff
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dipu Mohan Kumar
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Yuichiro Habu
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sarah R Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Takahiro Seki
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
48
|
Richard M, Knauf S, Lawrence P, Mather AE, Munster VJ, Müller MA, Smith D, Kuiken T. Factors determining human-to-human transmissibility of zoonotic pathogens via contact. Curr Opin Virol 2016; 22:7-12. [PMID: 27907884 PMCID: PMC5346033 DOI: 10.1016/j.coviro.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/02/2016] [Accepted: 11/11/2016] [Indexed: 01/25/2023]
Abstract
There are several modes of contact transmission of pathogens amongst humans. Factors promoting contact transmission act at the pathogen, host or environmental levels. Common pathogen factors are immune evasion, high viral load and low infectious dose. Common host factors are crowding, promiscuity and the presence of co-infections.
The pandemic potential of zoonotic pathogens lies in their ability to become efficiently transmissible amongst humans. Here, we focus on contact-transmitted pathogens and discuss the factors, at the pathogen, host and environmental levels that promote or hinder their human-to-human transmissibility via the following modes of contact transmission: skin contact, sexual contact, respiratory contact and multiple route contact. Factors common to several modes of transmission were immune evasion, high viral load, low infectious dose, crowding, promiscuity, and co-infections; other factors were specific for a pathogen or mode of contact transmission. The identification of such factors will lead to a better understanding of the requirements for human-to-human spread of pathogens, as well as improving risk assessment of newly emerging pathogens.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Philip Lawrence
- Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon - EPHE, Lyon 69288, France; Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Alison E Mather
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Vincent J Munster
- Virus Ecology Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Marcel A Müller
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany
| | - Derek Smith
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Thijs Kuiken
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Antagonism of BST-2/Tetherin Is a Conserved Function of the Env Glycoprotein of Primary HIV-2 Isolates. J Virol 2016; 90:11062-11074. [PMID: 27681141 DOI: 10.1128/jvi.01451-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/22/2016] [Indexed: 11/20/2022] Open
Abstract
Although HIV-2 does not encode a vpu gene, the ability to antagonize bone marrow stromal antigen 2 (BST-2) is conserved in some HIV-2 isolates, where it is controlled by the Env glycoprotein. We previously reported that a single-amino-acid difference between the laboratory-adapted ROD10 and ROD14 Envs controlled the enhancement of virus release (referred to here as Vpu-like) activity. Here, we investigated how conserved the Vpu-like activity is in primary HIV-2 isolates. We found that half of the 34 tested primary HIV-2 Env isolates obtained from 7 different patients enhanced virus release. Interestingly, most HIV-2 patients harbored a mixed population of viruses containing or lacking Vpu-like activity. Vpu-like activity and Envelope functionality varied significantly among Env isolates; however, there was no direct correlation between these two functions, suggesting they evolved independently. In comparing the Env sequences from one HIV-2 patient, we found that similar to the ROD10/ROD14 Envs, a single-amino-acid change (T568I) in the ectodomain of the TM subunit was sufficient to confer Vpu-like activity to an inactive Env variant. Surprisingly, however, absence of Vpu-like activity was not correlated with absence of BST-2 interaction. Taken together, our data suggest that maintaining the ability to antagonize BST-2 is of functional relevance not only to HIV-1 but also to HIV-2 as well. Our data show that as with Vpu, binding of HIV-2 Env to BST-2 is important but not sufficient for antagonism. Finally, as observed previously, the Vpu-like activity in HIV-2 Env can be controlled by single-residue changes in the TM subunit. IMPORTANCE Lentiviruses such as HIV-1 and HIV-2 encode accessory proteins whose function is to overcome host restriction mechanisms. Vpu is a well-studied HIV-1 accessory protein that enhances virus release by antagonizing the host restriction factor BST-2. HIV-2 does not encode a vpu gene. Instead, the HIV-2 Env glycoprotein was found to antagonize BST-2 in some isolates. Here, we cloned multiple Env sequences from 7 HIV-2-infected patients and found that about half were able to antagonize BST-2. Importantly, most HIV-2 patients harbored a mixed population of viruses containing or lacking the ability to antagonize BST-2. In fact, in comparing Env sequences from one patient combined with site-directed mutagenesis, we were able to restore BST-2 antagonism to an inactive Env protein by a single-amino-acid change. Our data suggest that targeting BST-2 by HIV-2 Env is a dynamic process that can be regulated by simple changes in the Env sequence.
Collapse
|
50
|
Single Amino Acid Substitution N659D in HIV-2 Envelope Glycoprotein (Env) Impairs Viral Release and Hampers BST-2 Antagonism. Viruses 2016; 8:v8100285. [PMID: 27754450 PMCID: PMC5086617 DOI: 10.3390/v8100285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
BST-2 or tetherin is a host cell restriction factor that prevents the budding of enveloped viruses at the cell surface, thus impairing the viral spread. Several countermeasures to evade this antiviral factor have been positively selected in retroviruses: the human immunodeficiency virus type 2 (HIV-2) relies on the envelope glycoprotein (Env) to overcome BST-2 restriction. The Env gp36 ectodomain seems involved in this anti-tetherin activity, however residues and regions interacting with BST-2 are not clearly defined. Among 32 HIV-2 ROD Env mutants tested, we demonstrated that the asparagine residue at position 659 located in the gp36 ectodomain is mandatory to exert the anti-tetherin function. Viral release assays in cell lines expressing BST-2 showed a loss of viral release ability for the HIV-2 N659D mutant virus compared to the HIV-2 wild type virus. In bst-2 inactivated H9 cells, those differences were lost. Subtilisin treatment of infected cells demonstrated that the N659D mutant was more tethered at the cell surface. Förster resonance energy transfer (FRET) experiments confirmed a direct molecular link between Env and BST-2 and highlighted an inability of the mutant to bind BST-2. We also tested a virus presenting a truncation of 109 amino acids at the C-terminal part of Env, a cytoplasmic tail partial deletion that is spontaneously selected in vitro. Interestingly, viral release assays and FRET experiments indicated that a full Env cytoplasmic tail was essential in BST-2 antagonism. In HIV-2 infected cells, an efficient Env-mediated antagonism of BST-2 is operated through an intermolecular link involving the asparagine 659 residue as well as the C-terminal part of the cytoplasmic tail.
Collapse
|