1
|
Guo J, Wan Y, Liu Y, Jia X, Dong S, Xiao G, Wang W. Identification of residues in Lassa virus glycoprotein 1 involved in receptor switch. Virol Sin 2024; 39:600-608. [PMID: 38851430 PMCID: PMC11401471 DOI: 10.1016/j.virs.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
Lassa virus (LASV) is an enveloped, negative-sense RNA virus that causes Lassa hemorrhagic fever. Successful entry of LASV requires the viral glycoprotein 1 (GP1) to undergo a receptor switch from its primary receptor alpha-dystroglycan (α-DG) to its endosomal receptor lysosome-associated membrane protein 1 (LAMP1). A conserved histidine triad in LASV GP1 has been reported to be responsible for receptor switch. To test the hypothesis that other non-conserved residues also contribute to receptor switch, we constructed a series of mutant LASV GP1 proteins and tested them for binding to LAMP1. Four residues, L84, K88, L107, and H170, were identified as critical for receptor switch. Substituting any of the four residues with the corresponding lymphocytic choriomeningitis virus (LCMV) residue (L84 N, K88E, L10F, and H170S) reduced the binding affinity of LASV GP1 for LAMP1. Moreover, all mutations caused decreases in glycoprotein precursor (GPC)-mediated membrane fusion at both pH 4.5 and 5.2. The infectivity of pseudotyped viruses bearing either GPCL84N or GPCK88E decreased sharply in multiple cell types, while L107F and H170S had only mild effects on infectivity. Using biolayer light interferometry assay, we found that all four mutants had decreased binding affinity to LAMP1, in the order of binding affinity being L84 N > L107F > K88E > H170S. The four amino acid loci identified for the first time in this study have important reference significance for the in-depth investigation of the mechanism of receptor switching and immune escape of LASV occurrence and the development of reserve anti-LASV infection drugs.
Collapse
Affiliation(s)
- Jiao Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; The Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Yi Wan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Dong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Iyer K, Yan Z, Ross SR. Entry inhibitors as arenavirus antivirals. Front Microbiol 2024; 15:1382953. [PMID: 38650890 PMCID: PMC11033450 DOI: 10.3389/fmicb.2024.1382953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.
Collapse
Affiliation(s)
| | | | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, United States
| |
Collapse
|
3
|
Nishimura Y, Sato K, Koyanagi Y, Wakita T, Muramatsu M, Shimizu H, Bergelson JM, Arita M. Enterovirus A71 does not meet the uncoating receptor SCARB2 at the cell surface. PLoS Pathog 2024; 20:e1012022. [PMID: 38359079 PMCID: PMC10901359 DOI: 10.1371/journal.ppat.1012022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/28/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Enterovirus A71 (EV-A71) infection involves a variety of receptors. Among them, two transmembrane protein receptors have been investigated in detail and shown to be critical for infection: P-selectin glycoprotein ligand-1 (PSGL-1) in lymphocytes (Jurkat cells), and scavenger receptor class B member 2 (SCARB2) in rhabdomyosarcoma (RD) cells. PSGL-1 and SCARB2 have been reported to be expressed on the surface of Jurkat and RD cells, respectively. In the work reported here, we investigated the roles of PSGL-1 and SCARB2 in the process of EV-A71 entry. We first examined the expression of SCARB2 in Jurkat cells, and detected it within the cytoplasm, but not on the cell surface. Further, using PSGL-1 and SCARB2 knockout cells, we found that although both PSGL-1 and SCARB2 are essential for virus infection of Jurkat cells, virus attachment to these cells requires only PSGL-1. These results led us to evaluate the cell surface expression and the roles of SCARB2 in other EV-A71-susceptible cell lines. Surprisingly, in contrast to the results of previous studies, we found that SCARB2 is absent from the surface of RD cells and other susceptible cell lines we examined, and that although SCARB2 is essential for infection of these cells, it is dispensable for virus attachment. These results indicate that a receptor other than SCARB2 is responsible for virus attachment to the cell and probably for internalization of virions, not only in Jurkat cells but also in RD cells and other EV-A71-susceptible cells. SCARB2 is highly concentrated in lysosomes and late endosomes, where it is likely to trigger acid-dependent uncoating of virions, the critical final step of the entry process. Our results suggest that the essential interactions between EV-A71 and SCARB2 occur, not at the cell surface, but within the cell.
Collapse
Affiliation(s)
- Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe-shi, Hyogo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Jeffrey M Bergelson
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| |
Collapse
|
4
|
Stewart CM, Bo Y, Fu K, Chan M, Kozak R, Apperley KYP, Laroche G, Daniel R, Beauchemin AM, Kobinger G, Kobasa D, Côté M. Sphingosine Kinases Promote Ebola Virus Infection and Can Be Targeted to Inhibit Filoviruses, Coronaviruses, and Arenaviruses Using Late Endocytic Trafficking to Enter Cells. ACS Infect Dis 2023; 9:1064-1077. [PMID: 37053583 DOI: 10.1021/acsinfecdis.2c00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Entry of enveloped viruses in host cells requires the fusion of viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. These viral fusion proteins need to be triggered by host factors, and for some viruses, this event occurs inside endosomes and/or lysosomes. Consequently, these 'late-penetrating viruses' must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late-penetrating viruses also depend on specific host proteins for efficient delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1/2 inhibited entry of Ebola virus (EBOV) into host cells. Mechanistically, inhibition of SK1/2 prevented EBOV from reaching late-endosomes and lysosomes that contain the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests that the trafficking defect caused by SK1/2 inhibition occurs independently of sphingosine-1-phosphate (S1P) signaling through cell-surface S1P receptors. Lastly, we found that chemical inhibition of SK1/2 prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, and inhibits infection by replication-competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SK1/2 in endocytic trafficking, which can be targeted to inhibit entry of late-penetrating viruses and could serve as a starting point for the development of broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Corina M Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Kathy Fu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Infectious Diseases and Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Kim Yang-Ping Apperley
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - André M Beauchemin
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Gary Kobinger
- Galveston National Laboratory, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas 77550, United States
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Infectious Diseases and Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
5
|
Warren CJ, Yu S, Peters DK, Barbachano-Guerrero A, Yang Q, Burris BL, Worwa G, Huang IC, Wilkerson GK, Goldberg TL, Kuhn JH, Sawyer SL. Primate hemorrhagic fever-causing arteriviruses are poised for spillover to humans. Cell 2022; 185:3980-3991.e18. [PMID: 36182704 PMCID: PMC9588614 DOI: 10.1016/j.cell.2022.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023]
Abstract
Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Douglas K Peters
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Qing Yang
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Bridget L Burris
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - I-Chueh Huang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Gregory K Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA.
| | - Sara L Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
6
|
Zhang Y, Carlos de la Torre J, Melikyan GB. Human LAMP1 accelerates Lassa virus fusion and potently promotes fusion pore dilation upon forcing viral fusion with non-endosomal membrane. PLoS Pathog 2022; 18:e1010625. [PMID: 35969633 PMCID: PMC9410554 DOI: 10.1371/journal.ppat.1010625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Lassa virus (LASV) cell entry is mediated by the interaction of the virus glycoprotein complex (GPC) with alpha-dystroglycan at the cell surface followed by binding to LAMP1 in late endosomes. However, LAMP1 is not absolutely required for LASV fusion, as this virus can infect LAMP1-deficient cells. Here, we used LASV GPC pseudoviruses, LASV virus-like particles and recombinant lymphocytic choriomeningitis virus expressing LASV GPC to investigate the role of human LAMP1 (hLAMP1) in LASV fusion with human and avian cells expressing a LAMP1 ortholog that does not support LASV entry. We employed a combination of single virus imaging and virus population-based fusion and infectivity assays to dissect the hLAMP1 requirement for initiation and completion of LASV fusion that culminates in the release of viral ribonucleoprotein into the cytoplasm. Unexpectedly, ectopic expression of hLAMP1 accelerated the kinetics of small fusion pore formation, but only modestly increased productive LASV fusion and infection of human and avian cells. To assess the effects of hLAMP1 in the absence of requisite endosomal host factors, we forced LASV fusion with the plasma membrane by applying low pH. Unlike the conventional LASV entry pathway, ectopic hLAMP1 expression dramatically promoted the initial and full dilation of pores formed through forced fusion at the plasma membrane. We further show that, while the soluble hLAMP1 ectodomain accelerates the kinetics of nascent pore formation, it fails to promote efficient pore dilation, suggesting the hLAMP1 transmembrane domain is involved in this late stage of LASV fusion. These findings reveal a previously unappreciated role of hLAMP1 in promoting dilation of LASV fusion pores, which is difficult to ascertain for endosomal fusion where several co-factors, such as bis(monoacylglycero)phosphate, likely regulate LASV entry. Lassa virus (LASV) enters cells via fusion with acidic endosomes mediated by the viral glycoprotein complex (GPC) interaction with the intracellular receptor LAMP1. However, the requirement for LAMP1 is not absolute, as LASV can infect avian cells expressing a LAMP1 ortholog that does not interact with GPC. To delineate the role of LAMP1 in LASV entry, we developed assays to monitor the formation of nascent fusion pores, as well as their initial and complete dilation to sizes that allow productive infection of avian cells by LASV GPC pseudoviruses. This novel approach provided unprecedented details regarding the dynamics of LASV fusion pores and revealed that ectopic expression of human LAMP1 in avian cells leads to a marked acceleration of fusion but modestly increases the likelihood of complete pore dilation and infection. In contrast, human LAMP1 expression dramatically enhanced the propensity of nascent pores to fully enlarge when LASV fusion with the plasma membrane was forced by exposure to low pH. Thus, whereas the role of LAMP1 in LASV fusion is confounded by an interplay between multiple endosomal factors, the plasma membrane is a suitable target for mechanistic dissection of the roles of host factors in LASV entry.
Collapse
Affiliation(s)
- You Zhang
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
7
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
8
|
Molecular Mechanisms Underlying the Cellular Entry and Host Range Restriction of Lujo Virus. mBio 2021; 13:e0306021. [PMID: 35164564 PMCID: PMC8844913 DOI: 10.1128/mbio.03060-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Like other human-pathogenic arenaviruses, Lujo virus (LUJV) is a causative agent of viral hemorrhagic fever in humans. LUJV infects humans with high mortality rates, but the susceptibilities of other animal species and the molecular determinants of its host specificity remain unknown. We found that mouse- and hamster-derived cell lines (NIH 3T3 and BHK, respectively) were less susceptible to a replication-incompetent recombinant vesicular stomatitis virus (Indiana) pseudotyped with the LUJV glycoprotein (GP) (VSVΔG*-LUJV/GP) than were human-derived cell lines (HEK293T and Huh7). To determine the cellular factors involved in the differential susceptibilities between the human and mouse cell lines, we focused on the CD63 molecule, which is required for pH-activated GP-mediated membrane fusion during LUJV entry into host cells. The exogenous introduction of human CD63, but not mouse or hamster CD63, into BHK cells significantly increased susceptibility to VSVΔG*-LUJV/GP. Using chimeric human-mouse CD63 proteins, we found that the amino acid residues at positions 141 to 150 in the large extracellular loop (LEL) region of CD63 were important for the cellular entry of VSVΔG*-LUJV/GP. By site-directed mutagenesis, we further determined that a phenylalanine at position 143 in human CD63 was the key residue for efficient membrane fusion and VSVΔG*-LUJV/GP infection. Our data suggest that the interaction of LUJV GP with the LEL region of CD63 is essential for cell susceptibility to LUJV, thus providing new insights into the molecular mechanisms underlying the cellular entry of LUJV and the host range restriction of this virus. IMPORTANCE Lujo virus (LUJV) infects humans with high mortality rates, but the host range of LUJV remains unknown. We found that rodent-derived cell lines were less susceptible to LUJV infection than were human-derived cell lines, and the differential susceptibilities were determined by the difference of CD63, the intercellular receptor of LUJV. We further identified an amino acid residue on human CD63 important for efficient LUJV infection. These results suggest that the interaction between LUJV glycoprotein and CD63 is one of the important factors determining the host range of LUJV. Our findings on the CD63-regulated susceptibilities of the cell lines to LUJV infection provide important information for the development of anti-LUJV drugs as well as the identification of natural hosts of LUJV. Importantly, our data support a concept explaining the molecular mechanism underlying viral tropisms controlled by endosomal receptors.
Collapse
|
9
|
Bulow U, Govindan R, Munro JB. Acidic pH Triggers Lipid Mixing Mediated by Lassa Virus GP. Viruses 2020; 12:E716. [PMID: 32630688 PMCID: PMC7411951 DOI: 10.3390/v12070716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa hemorrhagic fever, a lethal disease endemic to Western Africa. LASV entry is mediated by the viral envelope glycoprotein (GP), a class I membrane fusogen and the sole viral surface antigen. Previous studies have identified components of the LASV entry pathway, including several cellular receptors and the requirement of endosomal acidification for infection. Here, we first demonstrate that incubation at a physiological temperature and pH consistent with the late endosome is sufficient to render pseudovirions, bearing LASV GP, non-infectious. Antibody binding indicates that this loss of infectivity is due to a conformational change in GP. Finally, we developed a single-particle fluorescence assay to directly visualize individual pseudovirions undergoing LASV GP-mediated lipid mixing with a supported planar bilayer. We report that exposure to endosomal pH at a physiologic temperature is sufficient to trigger GP-mediated lipid mixing. Furthermore, while a cellular receptor is not necessary to trigger lipid mixing, the presence of lysosomal-associated membrane protein 1 (LAMP1) increases the kinetics of lipid mixing at an endosomal pH. Furthermore, we find that LAMP1 permits robust lipid mixing under less acidic conditions than in its absence. These findings clarify our understanding of LASV GP-mediated fusion and the role of LAMP1 binding.
Collapse
Affiliation(s)
- Uriel Bulow
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; (U.B.); (R.G.)
| | - Ramesh Govindan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; (U.B.); (R.G.)
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - James B. Munro
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; (U.B.); (R.G.)
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
10
|
Santoni G, Morelli MB, Amantini C, Nabissi M, Santoni M, Santoni A. Involvement of the TRPML Mucolipin Channels in Viral Infections and Anti-viral Innate Immune Responses. Front Immunol 2020; 11:739. [PMID: 32425938 PMCID: PMC7212413 DOI: 10.3389/fimmu.2020.00739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022] Open
Abstract
The TRPML channels (TRPML1, TRPML2, and TRPML3), belonging to the mucolipin TRP subfamily, primary localize to a population of membrane-bonded vesicles along the endocytosis, and exocytosis pathways. Human viruses enter host cells by plasma membrane penetration or by receptor-mediated endocytosis. TRPML2 enhances the infectivity of a number of enveloped viruses by promoting virus vesicular trafficking and escape from endosomal compartment. TRPML2 expression is stimulated by interferon and by several toll like receptor (TLR) activators, suggesting a possible role in the activation of the innate immune response. Noteworthy, TRPML1 plays a major role in single strand RNA/DNA trafficking into lysosomes and the lack of TRPML1 impairs the TLR-7 and TLR-9 ligand transportation to lysosomes resulting in decreased dendritic cell maturation/activation and migration to the lymph nodes. TRPML channels are also expressed by natural killer (NK) cells, a subset of innate lymphocytes with an essential role during viral infections; recent findings have indicated a role of TRPML1-mediated modulation of secretory lysosomes in NK cells education. Moreover, as also NK cells express TLR recognizing viral pattern, an increased TLR-mediated activation of cytokine production can be envisaged, suggesting a dual role in the NK cell-mediated antiviral responses. Overall, TRPML channels might play a double-edged sword in resistance to viral infections: on one side they can promote virus cellular entry and infectivity; on the other side, by regulating TLR responses in the various immune cells, they contribute to enhance antiviral innate and possibly adaptive immune responses.
Collapse
Affiliation(s)
- Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Hospital of Macerata, Macerata, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
11
|
Pascal KE, Dudgeon D, Trefry JC, Anantpadma M, Sakurai Y, Murin CD, Turner HL, Fairhurst J, Torres M, Rafique A, Yan Y, Badithe A, Yu K, Potocky T, Bixler SL, Chance TB, Pratt WD, Rossi FD, Shamblin JD, Wollen SE, Zelko JM, Carrion R, Worwa G, Staples HM, Burakov D, Babb R, Chen G, Martin J, Huang TT, Erlandson K, Willis MS, Armstrong K, Dreier TM, Ward AB, Davey RA, Pitt MLM, Lipsich L, Mason P, Olson W, Stahl N, Kyratsous CA. Development of Clinical-Stage Human Monoclonal Antibodies That Treat Advanced Ebola Virus Disease in Nonhuman Primates. J Infect Dis 2019; 218:S612-S626. [PMID: 29860496 PMCID: PMC6249601 DOI: 10.1093/infdis/jiy285] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background For most classes of drugs, rapid development of therapeutics to treat emerging infections is challenged by the timelines needed to identify compounds with the desired efficacy, safety, and pharmacokinetic profiles. Fully human monoclonal antibodies (mAbs) provide an attractive method to overcome many of these hurdles to rapidly produce therapeutics for emerging diseases. Methods In this study, we deployed a platform to generate, test, and develop fully human antibodies to Zaire ebolavirus. We obtained specific anti-Ebola virus (EBOV) antibodies by immunizing VelocImmune mice that use human immunoglobulin variable regions in their humoral responses. Results Of the antibody clones isolated, 3 were selected as best at neutralizing EBOV and triggering FcγRIIIa. Binding studies and negative-stain electron microscopy revealed that the 3 selected antibodies bind to non-overlapping epitopes, including a potentially new protective epitope not targeted by other antibody-based treatments. When combined, a single dose of a cocktail of the 3 antibodies protected nonhuman primates (NHPs) from EBOV disease even after disease symptoms were apparent. Conclusions This antibody cocktail provides complementary mechanisms of actions, incorporates novel specificities, and demonstrates high-level postexposure protection from lethal EBOV disease in NHPs. It is now undergoing testing in normal healthy volunteers in preparation for potential use in future Ebola epidemics.
Collapse
Affiliation(s)
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - John C Trefry
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Yasuteru Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | | - Ying Yan
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ashok Badithe
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Kevin Yu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Terra Potocky
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Sandra L Bixler
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Taylor B Chance
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - William D Pratt
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Franco D Rossi
- Center for Aerobiological Sciences, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Joshua D Shamblin
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Suzanne E Wollen
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Justine M Zelko
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Gabriella Worwa
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Hilary M Staples
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Darya Burakov
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Robert Babb
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Gang Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Joel Martin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Tammy T Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Karl Erlandson
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Melissa S Willis
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Kimberly Armstrong
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Thomas M Dreier
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Margaret L M Pitt
- Office of the Commander, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Leah Lipsich
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Peter Mason
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - William Olson
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Neil Stahl
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | |
Collapse
|
12
|
Kim YJ, Cubitt B, Chen E, Hull MV, Chatterjee AK, Cai Y, Kuhn JH, de la Torre JC. The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antiviral Res 2019; 169:104558. [PMID: 31302150 DOI: 10.1016/j.antiviral.2019.104558] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Several mammarenaviruses, chiefly Lassa virus (LASV) in Western Africa and Junín virus (JUNV) in the Argentine Pampas, cause severe disease in humans and pose important public health problems in their endemic regions. Moreover, mounting evidence indicates that the worldwide-distributed mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. The lack of licensed mammarenavirus vaccines and partial efficacy of current anti-mammarenavirus therapy limited to an off-label use of the nucleoside analog ribavirin underscore an unmet need for novel therapeutics to combat human pathogenic mammarenavirus infections. This task can be facilitated by the implementation of "drug repurposing" strategies to reduce the time and resources required to advance identified antiviral drug candidates into the clinic. We screened a drug repurposing library of 11,968 compounds (Repurposing, Focused Rescue and Accelerated Medchem [ReFRAME]) and identified several potent inhibitors of LCMV multiplication that had also strong anti-viral activity against LASV and JUNV. Our findings indicate that enzymes of the rate-limiting steps of pyrimidine and purine biosynthesis, the pro-viral MCL1 apoptosis regulator, BCL2 family member protein and the mitochondrial electron transport complex III, play critical roles in the completion of the mammarenavirus life cycle, suggesting they represent potential druggable targets to counter human pathogenic mammarenavirus infections.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Emily Chen
- California Institute for Biomedical Research, La Jolla, CA, 92037, USA
| | - Mitchell V Hull
- California Institute for Biomedical Research, La Jolla, CA, 92037, USA
| | | | - Yingyun Cai
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Juan C de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Arbidol and Other Low-Molecular-Weight Drugs That Inhibit Lassa and Ebola Viruses. J Virol 2019; 93:JVI.02185-18. [PMID: 30700611 DOI: 10.1128/jvi.02185-18] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 02/08/2023] Open
Abstract
Antiviral therapies that impede virus entry are attractive because they act on the first phase of the infectious cycle. Drugs that target pathways common to multiple viruses are particularly desirable when laboratory-based viral identification may be challenging, e.g., in an outbreak setting. We are interested in identifying drugs that block both Ebola virus (EBOV) and Lassa virus (LASV), two unrelated but highly pathogenic hemorrhagic fever viruses that have caused outbreaks in similar regions in Africa and share features of virus entry: use of cell surface attachment factors, macropinocytosis, endosomal receptors, and low pH to trigger fusion in late endosomes. Toward this goal, we directly compared the potency of eight drugs known to block EBOV entry with their potency as inhibitors of LASV entry. Five drugs (amodiaquine, apilimod, arbidol, niclosamide, and zoniporide) showed roughly equivalent degrees of inhibition of LASV and EBOV glycoprotein (GP)-bearing pseudoviruses; three (clomiphene, sertraline, and toremifene) were more potent against EBOV. We then focused on arbidol, which is licensed abroad as an anti-influenza drug and exhibits activity against a diverse array of clinically relevant viruses. We found that arbidol inhibits infection by authentic LASV, inhibits LASV GP-mediated cell-cell fusion and virus-cell fusion, and, reminiscent of its activity on influenza virus hemagglutinin, stabilizes LASV GP to low-pH exposure. Our findings suggest that arbidol inhibits LASV fusion, which may partly involve blocking conformational changes in LASV GP. We discuss our findings in terms of the potential to develop a drug cocktail that could inhibit both LASV and EBOV.IMPORTANCE Lassa and Ebola viruses continue to cause severe outbreaks in humans, yet there are only limited therapeutic options to treat the deadly hemorrhagic fever diseases they cause. Because of overlapping geographic occurrences and similarities in mode of entry into cells, we seek a practical drug or drug cocktail that could be used to treat infections by both viruses. Toward this goal, we directly compared eight drugs, approved or in clinical testing, for the ability to block entry mediated by the glycoproteins of both viruses. We identified five drugs with approximately equal potencies against both. Among these, we investigated the modes of action of arbidol, a drug licensed abroad to treat influenza infections. We found, as shown for influenza virus, that arbidol blocks fusion mediated by the Lassa virus glycoprotein. Our findings encourage the development of a combination of approved drugs to treat both Lassa and Ebola virus diseases.
Collapse
|
14
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
15
|
Rey FA, Lok SM. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines. Cell 2019. [PMID: 29522750 PMCID: PMC7112304 DOI: 10.1016/j.cell.2018.02.054] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enveloped viruses enter cells by inducing fusion of viral and cellular membranes, a process catalyzed by a specialized membrane-fusion protein expressed on their surface. This review focuses on recent structural studies of viral fusion proteins with an emphasis on their metastable prefusion form and on interactions with neutralizing antibodies. The fusion glycoproteins have been difficult to study because they are present in a labile, metastable form at the surface of infectious virions. Such metastability is a functional requirement, allowing these proteins to refold into a lower energy conformation while transferring the difference in energy to catalyze the membrane fusion reaction. Structural studies have shown that stable immunogens presenting the same antigenic sites as the labile wild-type proteins efficiently elicit potently neutralizing antibodies, providing a framework with which to engineer the antigens for stability, as well as identifying key vulnerability sites that can be used in next-generation subunit vaccine design.
Collapse
Affiliation(s)
- Felix A Rey
- Institut Pasteur, Structural Virology Unit, CNRS UMR3569, 25-28 rue du Dr. Roux, 75015 Paris, France.
| | - Shee-Mei Lok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore AND Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
16
|
Flint M, Chatterjee P, Lin DL, McMullan LK, Shrivastava-Ranjan P, Bergeron É, Lo MK, Welch SR, Nichol ST, Tai AW, Spiropoulou CF. A genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate transferase as a potential antiviral target for Ebola virus. Nat Commun 2019; 10:285. [PMID: 30655525 PMCID: PMC6336797 DOI: 10.1038/s41467-018-08135-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
There are no approved therapies for Ebola virus infection. Here, to find potential therapeutic targets, we perform a screen for genes essential for Ebola virus (EBOV) infection. We identify GNPTAB, which encodes the α and β subunits of N-acetylglucosamine-1-phosphate transferase. We show that EBOV infection of a GNPTAB knockout cell line is impaired, and that this is reversed by reconstituting GNPTAB expression. Fibroblasts from patients with mucolipidosis II, a disorder associated with mutations in GNPTAB, are refractory to EBOV, whereas cells from their healthy parents support infection. Impaired infection correlates with loss of the expression of cathepsin B, known to be essential for EBOV entry. GNPTAB activity is dependent upon proteolytic cleavage by the SKI-1/S1P protease. Inhibiting this protease with the small-molecule PF-429242 blocks EBOV entry and infection. Disruption of GNPTAB function may represent a strategy for a host-targeted therapy for EBOV. Genetic screens are important tools to identify host factors associated with viral infections. Here, Flint et al. perform a genome-wide CRISPR screen using infectious Ebola virus (EBOV) and show that the host transferase GNPTAB is required for EBOV infection and a potential target for antiviral therapies
Collapse
Affiliation(s)
- Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA.
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - David L Lin
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Andrew W Tai
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA.
| |
Collapse
|
17
|
Raaben M, Jae LT, Herbert AS, Kuehne AI, Stubbs SH, Chou YY, Blomen VA, Kirchhausen T, Dye JM, Brummelkamp TR, Whelan SP. NRP2 and CD63 Are Host Factors for Lujo Virus Cell Entry. Cell Host Microbe 2018; 22:688-696.e5. [PMID: 29120745 DOI: 10.1016/j.chom.2017.10.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 10/06/2017] [Indexed: 01/13/2023]
Abstract
Arenaviruses cause fatal hemorrhagic disease in humans. Old World arenavirus glycoproteins (GPs) mainly engage α-dystroglycan as a cell-surface receptor, while New World arenaviruses hijack transferrin receptor. However, the Lujo virus (LUJV) GP does not cluster with New or Old World arenaviruses. Using a recombinant vesicular stomatitis virus containing LUJV GP as its sole attachment and fusion protein (VSV-LUJV), we demonstrate that infection is independent of known arenavirus receptor genes. A genome-wide haploid genetic screen identified the transmembrane protein neuropilin 2 (NRP2) and tetraspanin CD63 as factors for LUJV GP-mediated infection. LUJV GP binds the N-terminal domain of NRP2, while CD63 stimulates pH-activated LUJV GP-mediated membrane fusion. Overexpression of NRP2 or its N-terminal domain enhances VSV-LUJV infection, and cells lacking NRP2 are deficient in wild-type LUJV infection. These findings uncover this distinct set of host cell entry factors in LUJV infection and are attractive focus points for therapeutic intervention.
Collapse
Affiliation(s)
- Matthijs Raaben
- Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas T Jae
- Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA
| | - Ana I Kuehne
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA
| | - Sarah H Stubbs
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yi-Ying Chou
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vincent A Blomen
- Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Tomas Kirchhausen
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA
| | - Thijn R Brummelkamp
- Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; CGC.nl; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 14 Vienna, Austria.
| | - Sean P Whelan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Staring J, Raaben M, Brummelkamp TR. Viral escape from endosomes and host detection at a glance. J Cell Sci 2018; 131:131/15/jcs216259. [PMID: 30076240 DOI: 10.1242/jcs.216259] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In order to replicate, most pathogens need to enter their target cells. Many viruses enter the host cell through an endocytic pathway and hijack endosomes for their journey towards sites of replication. For delivery of their genome to the host cell cytoplasm and to avoid degradation, viruses have to escape this endosomal compartment without host detection. Viruses have developed complex mechanisms to penetrate the endosomal membrane and have evolved to co-opt several host factors to facilitate endosomal escape. Conversely, there is an extensive variety of cellular mechanisms to counteract or impede viral replication. At the level of cell entry, there are cellular defense mechanisms that recognize endosomal membrane damage caused by virus-induced membrane fusion and pore formation, as well as restriction factors that block these processes. In this Cell Science at a Glance article and accompanying poster, we describe the different mechanisms that viruses have evolved to escape the endosomal compartment, as well as the counteracting cellular protection mechanisms. We provide examples for enveloped and non-enveloped viruses, for which we discuss some unique and unexpected cellular responses to virus-entry-induced membrane damage.
Collapse
Affiliation(s)
- Jacqueline Staring
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Department of Biochemistry, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Matthijs Raaben
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Thijn R Brummelkamp
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands .,Department of Biochemistry, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.,CGC.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
19
|
Secretome Screening Reveals Fibroblast Growth Factors as Novel Inhibitors of Viral Replication. J Virol 2018; 92:JVI.00260-18. [PMID: 29899088 DOI: 10.1128/jvi.00260-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
Cellular antiviral programs can efficiently inhibit viral infection. These programs are often initiated through signaling cascades induced by secreted proteins, such as type I interferons, interleukin-6 (IL-6), or tumor necrosis factor alpha (TNF-α). In the present study, we generated an arrayed library of 756 human secreted proteins to perform a secretome screen focused on the discovery of novel modulators of viral entry and/or replication. The individual secreted proteins were tested for the capacity to inhibit infection by two replication-competent recombinant vesicular stomatitis viruses (VSVs) with distinct glycoproteins utilizing different entry pathways. Fibroblast growth factor 16 (FGF16) was identified and confirmed as the most prominent novel inhibitor of both VSVs and therefore of viral replication, not entry. Importantly, an antiviral interferon signature was completely absent in FGF16-treated cells. Nevertheless, the antiviral effect of FGF16 is broad, as it was evident on multiple cell types and also on infection by coxsackievirus. In addition, other members of the FGF family also inhibited viral infection. Thus, our unbiased secretome screen revealed a novel protein family capable of inducing a cellular antiviral state. This previously unappreciated role of the FGF family may have implications for the development of new antivirals and the efficacy of oncolytic virus therapy.IMPORTANCE Viruses infect human cells in order to replicate, while human cells aim to resist infection. Several cellular antiviral programs have therefore evolved to resist infection. Knowledge of these programs is essential for the design of antiviral therapeutics in the future. The induction of antiviral programs is often initiated by secreted proteins, such as interferons. We hypothesized that other secreted proteins may also promote resistance to viral infection. Thus, we tested 756 human secreted proteins for the capacity to inhibit two pseudotypes of vesicular stomatitis virus (VSV). In this secretome screen on viral infection, we identified fibroblast growth factor 16 (FGF16) as a novel antiviral against multiple VSV pseudotypes as well as coxsackievirus. Subsequent testing of other FGF family members revealed that FGF signaling generally inhibits viral infection. This finding may lead to the development of new antivirals and may also be applicable for enhancing oncolytic virus therapy.
Collapse
|
20
|
Miranda PO, Cubitt B, Jacob NT, Janda KD, de la Torre JC. Mining a Kröhnke Pyridine Library for Anti-Arenavirus Activity. ACS Infect Dis 2018; 4:815-824. [PMID: 29405696 DOI: 10.1021/acsinfecdis.7b00236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several arenaviruses cause hemorrhagic fever (HF) disease in humans and represent important public health problems in their endemic regions. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus is a neglected human pathogen of clinical significance. There are no licensed arenavirus vaccines, and current antiarenavirus therapy is limited to an off-label use of ribavirin that is only partially effective. Therefore, there is an unmet need for novel therapeutics to combat human pathogenic arenaviruses, a task that will be facilitated by the identification of compounds with antiarenaviral activity that could serve as probes to identify arenavirus-host interactions suitable for targeting, as well as lead compounds to develop future antiarenaviral drugs. Screening of a combinatorial library of Krönhke pyridines identified compound KP-146 [(5-(5-(2,3-dihydrobenzo[ b][1,4] dioxin-6-yl)-4'-methoxy-[1,1'-biphenyl]-3-yl)thiophene-2-carboxamide] as having strong anti-lymphocytic choriomeningitis virus (LCMV) activity in cultured cells. KP-146 did not inhibit LCMV cell entry but rather interfered with the activity of the LCMV ribonucleoprotein (vRNP) responsible for directing virus RNA replication and gene transcription, as well as with the budding process mediated by the LCMV matrix Z protein. LCMV variants with increased resistance to KP-146 did not emerge after serial passages in the presence of KP-146. Our findings support the consideration of Kröhnke pyridine scaffold as a valuable source to identify compounds that could serve as tools to dissect arenavirus-host interactions, as well as lead candidate structures to develop antiarenaviral drugs.
Collapse
|
21
|
Capuzzi SJ, Sun W, Muratov EN, Martínez-Romero C, He S, Zhu W, Li H, Tawa G, Fisher EG, Xu M, Shinn P, Qiu X, García-Sastre A, Zheng W, Tropsha A. Computer-Aided Discovery and Characterization of Novel Ebola Virus Inhibitors. J Med Chem 2018; 61:3582-3594. [PMID: 29624387 DOI: 10.1021/acs.jmedchem.8b00035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Ebola virus (EBOV) causes severe human infection that lacks effective treatment. A recent screen identified a series of compounds that block EBOV-like particle entry into human cells. Using data from this screen, quantitative structure-activity relationship models were built and employed for virtual screening of a ∼17 million compound library. Experimental testing of 102 hits yielded 14 compounds with IC50 values under 10 μM, including several sub-micromolar inhibitors, and more than 10-fold selectivity against host cytotoxicity. These confirmed hits include FDA-approved drugs and clinical candidates with non-antiviral indications, as well as compounds with novel scaffolds and no previously known bioactivity. Five selected hits inhibited BSL-4 live-EBOV infection in a dose-dependent manner, including vindesine (0.34 μM). Additional studies of these novel anti-EBOV compounds revealed their mechanisms of action, including the inhibition of NPC1 protein, cathepsin B/L, and lysosomal function. Compounds identified in this study are among the most potent and well-characterized anti-EBOV inhibitors reported to date.
Collapse
Affiliation(s)
- Stephen J Capuzzi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry , UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Wei Sun
- National Center for Advancing Translational Sciences , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry , UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States.,Department of Chemical Technology , Odessa National Polytechnic University , Odessa 65000 , Ukraine
| | - Carles Martínez-Romero
- Department of Microbiology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Global Health and Emerging Pathogens Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory , Public Health Agency of Canada , 1015 Arlington Street , Winnipeg , Manitoba R3E 3R2 , Canada
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory , Public Health Agency of Canada , 1015 Arlington Street , Winnipeg , Manitoba R3E 3R2 , Canada.,Department of Medical Microbiology , University of Manitoba , 745 Bannatyne Avenue , Winnipeg , Manitoba R3E 0J9 , Canada
| | - Hao Li
- National Center for Advancing Translational Sciences , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Gregory Tawa
- National Center for Advancing Translational Sciences , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Ethan G Fisher
- National Center for Advancing Translational Sciences , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Miao Xu
- National Center for Advancing Translational Sciences , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Paul Shinn
- National Center for Advancing Translational Sciences , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory , Public Health Agency of Canada , 1015 Arlington Street , Winnipeg , Manitoba R3E 3R2 , Canada.,Department of Medical Microbiology , University of Manitoba , 745 Bannatyne Avenue , Winnipeg , Manitoba R3E 0J9 , Canada
| | - Adolfo García-Sastre
- Department of Microbiology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Global Health and Emerging Pathogens Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Department of Medicine, Division of Infectious Diseases , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Wei Zheng
- National Center for Advancing Translational Sciences , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry , UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
22
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Cleavage of the Glycoprotein of Arenaviruses. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7121819 DOI: 10.1007/978-3-319-75474-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The arenaviruses are a large family of emerging negative-stranded RNA viruses that include several severe human pathogens causing hemorrhagic fevers with high mortality. During the arenavirus life cycle, processing of the viral envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is crucial for productive infection. The ability of newly emerging arenaviruses to hijack human SKI-1/S1P is a key factor for zoonotic transmission and human disease potential. Apart from being an essential host factor for arenavirus infection, SKI-1/S1P is involved in the regulation of important physiological processes and linked to major human diseases. This chapter provides an overview of the mechanisms of arenavirus GPC processing by SKI-1/S1P including recent findings. We will highlight to what extent the molecular mechanisms of SKI-1/S1P cleavage of viral GPC differ from processing of SKI-1/S1P’s cellular substrates and discuss the implications for virus-host interaction and coevolution. Moreover, we will show how the use of the viral GPC as a “molecular probe” uncovered novel and unusual aspects of SKI-1/S1P biosynthesis and maturation. The crucial role of SKI-1/S1P in arenavirus infection and other major human diseases combined with its nature as an enzyme makes SKI-1/S1P further an attractive target for therapeutic intervention. In the last part, we will therefore cover past and present efforts to identify specific SKI-1/S1P inhibitors.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
23
|
Epistastic Interactions within the Junín Virus Envelope Glycoprotein Complex Provide an Evolutionary Barrier to Reversion in the Live-Attenuated Candid#1 Vaccine. J Virol 2017; 92:JVI.01682-17. [PMID: 29070682 DOI: 10.1128/jvi.01682-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 01/24/2023] Open
Abstract
The Candid#1 strain of Junín virus was developed using a conventional attenuation strategy of serial passage in nonhost animals and cultured cells. The live-attenuated Candid#1 vaccine is used in Argentina to protect at-risk individuals against Argentine hemorrhagic fever, but it has not been licensed in the United States. Recent studies have revealed that Candid#1 attenuation is entirely dependent on a phenylalanine-to-isoleucine substitution at position 427 in the fusion subunit (GP2) of the viral envelope glycoprotein complex (GPC), thereby raising concerns regarding the potential for reversion to virulence. In this study, we report the identification and characterization of an intragenic epistatic interaction between the attenuating F427I mutation in GP2 and a lysine-to-serine mutation at position 33 in the stable signal peptide (SSP) subunit of GPC, and we demonstrate the utility of this interaction in creating an evolutionary barrier against reversion to the pathogenic genotype. In the presence of the wild-type F427 residue, the K33S mutation abrogates the ability of ectopically expressed GPC to mediate membrane fusion at endosomal pH. This defect is rescued by the attenuating F427I mutation. We show that the recombinant Candid#1 (rCan) virus bearing K33S GPC is viable and retains its attenuated genotype under cell culture conditions that readily select for reversion in the parental rCan virus. If back-mutation to F427 offers an accessible pathway to increase fitness in rCan, reversion in K33S-GPC rCan is likely to be lethal. The epistatic interaction between K33S and F427I thus may minimize the likelihood of reversion and enhance safety in a second-generation Candid#1 vaccine.IMPORTANCE The live-attenuated Candid#1 vaccine strain of Junín virus is used to protect against Argentine hemorrhagic fever. Recent findings that a single missense mutation in the viral envelope glycoprotein complex (GPC) is responsible for attenuation raise the prospect of facile reversion to pathogenicity. Here, we characterize a genetic interaction between GPC subunits that evolutionarily forces retention of the attenuating mutation. By incorporating this secondary mutation into Candid#1 GPC, we hope to minimize the likelihood of reversion and enhance safety in a second-generation Candid#1 vaccine. A similar approach may guide the design of live-attenuated vaccines against Lassa and other arenaviral hemorrhagic fevers.
Collapse
|
24
|
Zou Z, Misasi J, Sullivan N, Sun PD. Overexpression of Ebola virus envelope GP1 protein. Protein Expr Purif 2017; 135:45-53. [PMID: 28458053 DOI: 10.1016/j.pep.2017.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
Ebola virus uses its envelope GP1 and GP2 for viral attachment and entry into host cells. Due to technical difficulty expressing full-length envelope, many structural and functional studies of Ebola envelope protein have been carried out primarily using GP1 lacking its mucin-like domain. As a result, the viral invasion mechanisms involving the mucin-like domain are not fully understood. To elucidate the role of the mucin-like domain of GP1 in Ebola-host attachment and infection and to facilitate vaccine development, we constructed a GP1 expression vector containing the entire attachment region (1-496). Cysteine 53 of GP1, which forms a disulfide bond with GP2, was mutated to serine to avoid potential disulfide bond mispairing. Stable expression clones using codon optimized open reading frame were developed in human 293-H cells with yields reaching ∼25 mg of GP1 protein per liter of spent medium. Purified GP1 was functional and bound to Ebola attachment receptors, DC-SIGN and DC-SIGNR. The over-expression and easy purification characteristic of this system has implications in Ebola research and vaccine development. To further understand the differential expression yields between the codon optimized and native GP1, we analyzed the presence of RNA structural motifs in the first 100 nucleotides of translational initiation AUG site. RNA structural prediction showed the codon optimization removed two potential RNA pseudoknot structures. This methodology is also applicable to the expression of other difficult virus envelope proteins.
Collapse
Affiliation(s)
- Zhongcheng Zou
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John Misasi
- Biodefense Research Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy Sullivan
- Biodefense Research Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
25
|
Liang J, Jangra RK, Bollinger L, Wada J, Radoshitzky SR, Chandran K, Jahrling PB, Kuhn JH, Jensen KS. Candidate medical countermeasures targeting Ebola virus cell entry. Future Virol 2017. [DOI: 10.2217/fvl-2016-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Medical countermeasures (MCMs) against virus infections ideally prevent the adsorption or entry of virions into target cells, thereby circumventing infection. Recent significant advances in elucidating the mechanism of Ebola virus (EBOV) host-cell penetration include the involvement of two-pore channels at the early stage of entry, and identification of cellular proteases for EBOV spike glycoprotein maturation and the intracellular EBOV receptor, Niemann–Pick type C1. This improved understanding of the initial steps of EBOV infection is now increasingly applied to rapid development of candidate MCMs, some of which have already entered the clinic. Candidate MCMs discussed include antibodies, small molecules and peptides that target various stages of the described EBOV cell-entry pathway. In this review, we summarize the currently known spectrum of EBOV cell-entry inhibitors, describe their mechanism of action and evaluate their potential for future development.
Collapse
Affiliation(s)
- Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Rohit K Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura Bollinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Kenneth S Jensen
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
26
|
Abstract
Viral entry represents the first step of every viral infection and is a determinant for the host range and disease potential of a virus. Here, we review the latest developments on cell entry of the highly pathogenic Old World arenavirus Lassa virus, providing novel insights into the complex virus-host cell interaction of this important human pathogen. We will cover new discoveries on the molecular mechanisms of receptor recognition, endocytosis, and the use of late endosomal entry factors.
Collapse
|
27
|
Davey RA, Shtanko O, Anantpadma M, Sakurai Y, Chandran K, Maury W. Mechanisms of Filovirus Entry. Curr Top Microbiol Immunol 2017; 411:323-352. [PMID: 28601947 DOI: 10.1007/82_2017_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Filovirus entry into cells is complex, perhaps as complex as any viral entry mechanism identified to date. However, over the past 10 years, the important events required for filoviruses to enter into the endosomal compartment and fuse with vesicular membranes have been elucidated (Fig. 1). Here, we highlight the important steps that are required for productive entry of filoviruses into mammalian cells.
Collapse
Affiliation(s)
- R A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - O Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - M Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Y Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - K Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Maury
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
28
|
Sun W, He S, Martínez-Romero C, Kouznetsova J, Tawa G, Xu M, Shinn P, Fisher E, Long Y, Motabar O, Yang S, Sanderson PE, Williamson PR, García-Sastre A, Qiu X, Zheng W. Synergistic drug combination effectively blocks Ebola virus infection. Antiviral Res 2017; 137:165-172. [PMID: 27890675 PMCID: PMC5182099 DOI: 10.1016/j.antiviral.2016.11.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 11/24/2022]
Abstract
Although a group of FDA-approved drugs were previously identified with activity against Ebola virus (EBOV), most of them are not clinically useful because their human blood concentrations are not high enough to inhibit EBOV infection. We screened 795 unique three-drug combinations in an EBOV entry assay. Two sets of three-drug combinations, toremifene-mefloquine-posaconazole and toremifene-clarithromycin-posaconazole, were identified that effectively blocked EBOV entry and were further validated for inhibition of live EBOV infection. The individual drug concentrations in the combinations were reduced to clinically relevant levels. We identified mechanisms of action of these drugs: functional inhibitions of Niemann-Pick C1, acid sphingomyelinase, and lysosomal calcium release. Our findings identify the drug combinations with potential to treat EBOV infection.
Collapse
Affiliation(s)
- Wei Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| | - Gregory Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| | - Ethan Fisher
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| | - Yan Long
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| | - Omid Motabar
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| | - Shu Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| | - Philip E. Sanderson
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| | - Peter R. Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda MD 20892, USA
| |
Collapse
|
29
|
Terasawa K, Tomabechi Y, Ikeda M, Ehara H, Kukimoto-Niino M, Wakiyama M, Podyma-Inoue KA, Rajapakshe AR, Watabe T, Shirouzu M, Hara-Yokoyama M. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) assemble via distinct modes. Biochem Biophys Res Commun 2016; 479:489-495. [PMID: 27663661 DOI: 10.1016/j.bbrc.2016.09.093] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
Abstract
Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) have a large, heavily glycosylated luminal domain composed of two subdomains, and are the most abundant protein components in lysosome membranes. LAMP-1 and LAMP-2 have distinct functions, and the presence of both proteins together is required for the essential regulation of autophagy to avoid embryonic lethality. However, the structural aspects of LAMP-1 and LAMP-2 have not been elucidated. In the present study, we demonstrated that the subdomains of LAMP-1 and LAMP-2 adopt the unique β-prism fold, similar to the domain structure of the dendritic cell-specific-LAMP (DC-LAMP, LAMP-3), confirming the conserved aspect of this family of lysosome-associated membrane proteins. Furthermore, we evaluated the effects of the N-domain truncation of LAMP-1 or LAMP-2 on the assembly of LAMPs, based on immunoprecipitation experiments. We found that the N-domain of LAMP-1 is necessary, whereas that of LAMP-2 is repressive, for the organization of a multimeric assembly of LAMPs. Accordingly, the present study suggests for the first time that the assembly modes of LAMP-1 and LAMP-2 are different, which may underlie their distinct functions.
Collapse
Affiliation(s)
- Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Yuri Tomabechi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mariko Ikeda
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mutsuko Kukimoto-Niino
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Motoaki Wakiyama
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Anupama R Rajapakshe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Miki Hara-Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan.
| |
Collapse
|
30
|
Henß L, Beck S, Weidner T, Biedenkopf N, Sliva K, Weber C, Becker S, Schnierle BS. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry. Virol J 2016; 13:149. [PMID: 27581733 PMCID: PMC5007819 DOI: 10.1186/s12985-016-0607-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. METHODS We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. RESULTS Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. CONCLUSION Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.
Collapse
Affiliation(s)
- Lisa Henß
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany
| | - Simon Beck
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany
| | - Tatjana Weidner
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany.,German Center for Infection Research (DZIF) at the Philipps University Marburg, partner site, Gießen-Marburg-Langen, Germany
| | - Katja Sliva
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany
| | - Christopher Weber
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Str. 2, 35043, Marburg, Germany.,German Center for Infection Research (DZIF) at the Philipps University Marburg, partner site, Gießen-Marburg-Langen, Germany
| | - Barbara S Schnierle
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich Strasse 51-59, 63225, Langen, Germany.
| |
Collapse
|
31
|
Pontremoli C, Forni D, Cagliani R, Filippi G, De Gioia L, Pozzoli U, Clerici M, Sironi M. Positive Selection Drives Evolution at the Host-Filovirus Interaction Surface. Mol Biol Evol 2016; 33:2836-2847. [PMID: 27512112 DOI: 10.1093/molbev/msw158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Filovirus infection is mediated by engagement of the surface-exposed glycoprotein (GP) by its cellular receptor, NPC1 (Niemann-Pick C1). Two loops in the C domain of NPC1 (NPC1-C) bind filovirus GP. Herein, we show that filovirus GP and NPC1-C evolve under mutual selective pressure. Analysis of a large mammalian phylogeny indicated that strong functional/structural constraints limit the NPC1 sequence space available for adaptive change and most sites at the contact interface with GP are under negative selection. These constraints notwithstanding, we detected positive selection at NPC1-C in all mammalian orders, from Primates to Xenarthra. Different codons evolved adaptively in distinct mammals, and most selected sites are located within the two NPC1-C loops that engage GP, or at their anchor points. In Homininae, NPC1-C was a preferential selection target, and the T419I variant possibly represents a human-specific adaptation to filovirus infection. On the other side of the arms-race, GP evolved adaptively during filovirus speciation. One of the selected sites (S142Q) establishes several atom-to-atom contacts with NPC1-C. Additional selected sites are located within epitopes recognized by neutralizing antibodies, including the 14G7 epitope, where sites selected during the recent EBOV epidemic also map. Finally, pairs of co-evolving sites in Marburgviruses and Ebolaviruses were found to involve antigenic determinants. These findings suggest that the host humoral immune response was a major selective pressure during filovirus speciation. The S142Q variant may contribute to determine Ebolavirus host range in the wild. If this were the case, EBOV/BDBV (S142) and SUDV (Q142) may not share the same reservoir(s).
Collapse
Affiliation(s)
- Chiara Pontremoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
32
|
Olsen ME, Filone CM, Rozelle D, Mire CE, Agans KN, Hensley L, Connor JH. Polyamines and Hypusination Are Required for Ebolavirus Gene Expression and Replication. mBio 2016; 7:e00882-16. [PMID: 27460797 PMCID: PMC4981715 DOI: 10.1128/mbio.00882-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/29/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Ebolavirus (EBOV) is an RNA virus that is known to cause severe hemorrhagic fever in humans and other primates : EBOV successfully enters and replicates in many cell types. This replication is dependent on the virus successfully coopting a number of cellular factors. Many of these factors are currently unidentified but represent potential targets for antiviral therapeutics. Here we show that cellular polyamines are critical for EBOV replication. We found that small-molecule inhibitors of polyamine synthesis block gene expression driven by the viral RNA-dependent RNA polymerase. Short hairpin RNA (shRNA) knockdown of the polyamine pathway enzyme spermidine synthase also resulted in reduced EBOV replication. These findings led us to further investigate spermidine, a polyamine that is essential for the hypusination of eukaryotic initiation factor 5A (eIF5A). Blocking the hypusination of eIF5A (and thereby inhibiting its function) inhibited both EBOV gene expression and viral replication. The mechanism appears to be due to the importance of hypusinated eIF5A for the accumulation of VP30, an essential component of the viral polymerase. The same reduction in hypusinated eIF5A did not alter the accumulation of other viral polymerase components. This action makes eIF5A function an important gate for proper EBOV polymerase assembly and function through the control of a single virus protein. IMPORTANCE Ebolavirus (EBOV) is one of the most lethal human pathogens known. EBOV requires host factors for replication due to its small RNA genome. Here we show that the host protein eIF5A in its activated form is necessary for EBOV replication. We further show that the mechanism is through the accumulation of a single EBOV protein, VP30. To date, no other host proteins have been shown to interfere with the translation or stability of an EBOV protein. Activated eIF5A is the only protein in the cell known to contain the specific modification of hypusine; therefore, this pathway is a target for drug development. Further investigation into the mechanism of eIF5A interaction with VP30 could provide insight into therapeutics to combat EBOV.
Collapse
Affiliation(s)
- Michelle E Olsen
- Department of Microbiology and National Emerging Infectious Disease Laboratory, Boston University, Boston, Massachusetts, USA
| | - Claire Marie Filone
- Department of Microbiology and National Emerging Infectious Disease Laboratory, Boston University, Boston, Massachusetts, USA
| | - Dan Rozelle
- Department of Microbiology and National Emerging Infectious Disease Laboratory, Boston University, Boston, Massachusetts, USA
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lisa Hensley
- U.S. Army Medical Research Institute of Infectious Diseases, and Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - John H Connor
- Department of Microbiology and National Emerging Infectious Disease Laboratory, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Lassa Virus Cell Entry via Dystroglycan Involves an Unusual Pathway of Macropinocytosis. J Virol 2016; 90:6412-6429. [PMID: 27147735 DOI: 10.1128/jvi.00257-16] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/25/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The pathogenic Old World arenavirus Lassa virus (LASV) causes a severe hemorrhagic fever with a high rate of mortality in humans. Several LASV receptors, including dystroglycan (DG), TAM receptor tyrosine kinases, and C-type lectins, have been identified, suggesting complex receptor use. Upon receptor binding, LASV enters the host cell via an unknown clathrin- and dynamin-independent pathway that delivers the virus to late endosomes, where fusion occurs. Here we investigated the mechanisms underlying LASV endocytosis in human cells in the context of productive arenavirus infection, using recombinant lymphocytic choriomeningitis virus (rLCMV) expressing the LASV glycoprotein (rLCMV-LASVGP). We found that rLCMV-LASVGP entered human epithelial cells via DG using a macropinocytosis-related pathway independently of alternative receptors. Dystroglycan-mediated entry of rLCMV-LASVGP required sodium hydrogen exchangers, actin, and the GTPase Cdc42 and its downstream targets, p21-activating kinase-1 (PAK1) and Wiskott-Aldrich syndrome protein (N-Wasp). Unlike other viruses that enter cells via macropinocytosis, rLCMV-LASVGP entry did not induce overt changes in cellular morphology and hardly affected actin dynamics or fluid uptake. Screening of kinase inhibitors identified protein kinase C, phosphoinositide 3-kinase, and the receptor tyrosine kinase human hepatocyte growth factor receptor (HGFR) to be regulators of rLCMV-LASVGP entry. The HGFR inhibitor EMD 1214063, a candidate anticancer drug, showed antiviral activity against rLCMV-LASVGP at the level of entry. When combined with ribavirin, which is currently used to treat human arenavirus infection, EMD 1214063 showed additive antiviral effects. In sum, our study reveals that DG can link LASV to an unusual pathway of macropinocytosis that causes only minimal perturbation of the host cell and identifies cellular kinases to be possible novel targets for therapeutic intervention. IMPORTANCE Lassa virus (LASV) causes several hundred thousand infections per year in Western Africa, with the mortality rate among hospitalized patients being high. The current lack of a vaccine and the limited therapeutic options at hand make the development of new drugs against LASV a high priority. In the present study, we uncover that LASV entry into human cells via its major receptor, dystroglycan, involves an unusual pathway of macropinocytosis and define a set of cellular factors implicated in the regulation of LASV entry. A screen of kinase inhibitors revealed HGFR to be a possible candidate target for antiviral drugs against LASV. An HGFR candidate inhibitor currently being evaluated for cancer treatment showed potent antiviral activity and additive drug effects with ribavirin, which is used in the clinic to treat human LASV infection. In sum, our study reveals novel fundamental aspects of the LASV-host cell interaction and highlights a possible candidate drug target for therapeutic intervention.
Collapse
|
34
|
White JM, Whittaker GR. Fusion of Enveloped Viruses in Endosomes. Traffic 2016; 17:593-614. [PMID: 26935856 PMCID: PMC4866878 DOI: 10.1111/tra.12389] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion‐triggering mechanisms. A key take‐home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
35
|
Yamauchi Y, Greber UF. Principles of Virus Uncoating: Cues and the Snooker Ball. Traffic 2016; 17:569-92. [PMID: 26875443 PMCID: PMC7169695 DOI: 10.1111/tra.12387] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/17/2022]
Abstract
Viruses are spherical or complex shaped carriers of proteins, nucleic acids and sometimes lipids and sugars. They are metastable and poised for structural changes. These features allow viruses to communicate with host cells during entry, and to release the viral genome, a process known as uncoating. Studies have shown that hundreds of host factors directly or indirectly support this process. The cell provides molecules that promote stepwise virus uncoating, and direct the virus to the site of replication. It acts akin to a snooker player who delivers accurate and timely shots (cues) to the ball (virus) to score. The viruses, on the other hand, trick (snooker) the host, hijack its homeostasis systems, and dampen innate immune responses directed against danger signals. In this review, we discuss how cellular cues, facilitators, and built‐in viral mechanisms promote uncoating. Cues come from receptors, enzymes and chemicals that act directly on the virus particle to alter its structure, trafficking and infectivity. Facilitators are defined as host factors that are involved in processes which indirectly enhance entry or uncoating. Unraveling the mechanisms of virus uncoating will continue to enhance understanding of cell functions, and help counteracting infections with chemicals and vaccines.
Collapse
Affiliation(s)
- Yohei Yamauchi
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
36
|
Pécheur EI, Borisevich V, Halfmann P, Morrey JD, Smee DF, Prichard M, Mire CE, Kawaoka Y, Geisbert TW, Polyak SJ. The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses. J Virol 2016; 90:3086-92. [PMID: 26739045 PMCID: PMC4810626 DOI: 10.1128/jvi.02077-15] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/25/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Arbidol (ARB) is a synthetic antiviral originally developed to combat influenza viruses. ARB is currently used clinically in several countries but not in North America. We have previously shown that ARB inhibits in vitro hepatitis C virus (HCV) by blocking HCV entry and replication. In this report, we expand the list of viruses that are inhibited by ARB and demonstrate that ARB suppresses in vitro infection of mammalian cells with Ebola virus (EBOV), Tacaribe arenavirus, and human herpesvirus 8 (HHV-8). We also confirm suppression of hepatitis B virus and poliovirus by ARB. ARB inhibited EBOV Zaire Kikwit infection when added before or at the same time as virus infection and was less effective when added 24 h after EBOV infection. Experiments with recombinant vesicular stomatitis virus (VSV) expressing the EBOV Zaire glycoprotein showed that infection was inhibited by ARB at early stages, most likely at the level of viral entry into host cells. ARB inhibited HHV-8 replication to a similar degree as cidofovir. Our data broaden the spectrum of antiviral efficacy of ARB to include globally prevalent viruses that cause significant morbidity and mortality. IMPORTANCE There are many globally prevalent viruses for which there are no licensed vaccines or antiviral medicines. Some of these viruses, such as Ebola virus or members of the arenavirus family, rapidly cause severe hemorrhagic diseases that can be fatal. Other viruses, such as hepatitis B virus or human herpesvirus 8 (HHV-8), establish persistent infections that cause chronic illnesses, including cancer. Thus, finding an affordable, effective, and safe drug that blocks many viruses remains an unmet medical need. The antiviral drug arbidol (ARB), already in clinical use in several countries as an anti-influenza treatment, has been previously shown to suppress the growth of many viruses. In this report, we expand the list of viruses that are blocked by ARB in a laboratory setting to include Ebola virus, Tacaribe arenavirus, and HHV-8, and we propose ARB as a broad-spectrum antiviral drug that may be useful against hemorrhagic viruses.
Collapse
Affiliation(s)
| | - Viktoriya Borisevich
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Peter Halfmann
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - John D Morrey
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Donald F Smee
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Mark Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Chad E Mire
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA International Research Center for Infectious Diseases and Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Thomas W Geisbert
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|