1
|
Liang Z, Wang S, Zhu X, Ma J, Yao H, Wu Z. A small RNA from Streptococcus suis epidemic ST7 strain promotes bacterial survival in host blood and brain by enhancing oxidative stress resistance. Virulence 2025; 16:2491635. [PMID: 40237541 PMCID: PMC12005413 DOI: 10.1080/21505594.2025.2491635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Streptococcus suis is a Gram-positive pathogen causing septicaemia and meningitis in pigs and humans. However, how S. suis maintains a high bacterial load in the blood and brain is poorly understood. In this study, we found that a small RNA rss03 is predominantly present in S. suis, Streptococcus parasuis, and Streptococcus ruminantium, implying a conserved biological function. rss03 with a size of 303 nt mainly exists in S. suis sequence type (ST) 1 and epidemic ST7 strains that are responsible for human infections in China. Using MS2-affinity purification coupled with RNA sequencing (MAPS), proteomics analysis, and CopraRNA prediction, 14 direct targets of rss03 from an ST7 strain were identified. These direct targets mainly involve substance transport, transcriptional regulation, rRNA modification, and stress response. A more detailed analysis reveals that rss03 interacts with the coding region of glpF mRNA, and unexpectedly rss03 protects glpF mRNA from degradation by RNase J1. The GlpF protein is an aquaporin, contributes to S. suis oxidative stress resistance by H2O2 efflux, and facilitates bacterial survival in murine macrophages RAW264.7. Finally, we showed that rss03 and GlpF are required to maintain a high bacterial load in mouse blood and brain. Our study presents the first sRNA targetome in streptococci, enriches the knowledge of sRNA regulation in streptococci, and identifies pathways contributing to S. suis pathogenesis.
Collapse
Affiliation(s)
- Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Shuoyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Xinchi Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-Breeding and Pig-Disease Prevention, Guangdong Haid Institute of Animal Husbandry & Veterinary, Guangzhou, China
| |
Collapse
|
2
|
Fan Q, Wang H, Yuan S, Quan Y, Li R, Yi L, Jia A, Wang Y, Wang Y. Pyruvate formate lyase regulates fermentation metabolism and virulence of Streptococcus suis. Virulence 2025; 16:2467156. [PMID: 39977342 PMCID: PMC11845055 DOI: 10.1080/21505594.2025.2467156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Streptococcus suis, a zoonotic pathogen, is commonly found as a commensal bacterium in the respiratory tracts of pigs. Under specific conditions, it becomes invasive and enters the blood, causing severe systemic infections. For S. suis, effective acquisition of carbon sources in different host niches is necessary for its survival. However, as of now, our understanding of the metabolism of S. suis within the host is highly restricted. Pyruvate formate lyase (PFL) plays a crucial role in bacterial survival of in glucose-limited and hypoxic host tissues. Here, we investigated the physiological and metabolic functions of PFL PflB in S. suis and elucidated its pivotal role in regulating virulence within the mucosal and blood niches. We demonstrate that PflB is a key enzyme for S. suis to support mixed-acid fermentation under glucose-limited and hypoxic conditions. Additionally, PflB is involved in regulating S. suis morphology and stress tolerance, and its regulation of capsular polysaccharide content depends on dynamic carbon availability. We also found that PflB is associated with the capacity of S. suis to cause bacteremia and persist in the upper respiratory tract to induce persistent infection. Our results provide highly persuasive evidence for the relationship between metabolic regulation and the virulence of S. suis.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, P.R. China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| |
Collapse
|
3
|
Peng W, Jiang Q, Wu Y, He L, Li B, Bei W, Yang X. The role of glutathione for oxidative stress and pathogenicity of Streptococcus suis. Virulence 2025; 16:2474866. [PMID: 40048653 PMCID: PMC11901377 DOI: 10.1080/21505594.2025.2474866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Streptococcus suis is an important zoonotic pathogen that threatens human and pig health. During infection, the host can impose oxidative stress to resist pathogen invasion. Resistance to oxidative toxicity is an important factor for pathogens. Glutathione synthesis contributes to reactive oxygen species (ROS) detoxification in bacterial cells. Little is known about the roles of glutathione synthesis and transport in S. suis. In this study, we demonstrated that glutathione treatment increased oxidative stress tolerance in S. suis. GshAB and GshT were found in S. suis glutathione synthesis and import by bioinformatics. In vitro, inactivation of gshAB and gshT led to increased sensitivity to oxidative stress. Inactivation of gshT led to growth defects in the medium. The intracellular glutathione content of gshAB or gshT deletion mutants was lower than that of wild type (WT) strain. The phagocytic resistance of gshAB and gshT mutants was lower than that of the WT strain. Moreover, the virulence of gshAB and gshT deletion mutants was significantly lower than that of the WT strain in mouse survival and tissue loading experiments. In conclusion, these results revealed the functions of GshAB and GshT in the pathogenesis of S. suis. These findings enhance our understanding of bacterial virulence mechanisms and may provide a new avenue for therapeutic intervention aimed at curbing S. suis infections.
Collapse
Affiliation(s)
- Wei Peng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qinggen Jiang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuting Wu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Li He
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bei Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xia Yang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
4
|
Osei EK, O'Hea R, Cambillau C, Athalye A, Hille F, Franz CMAP, O'Doherty Á, Wilson M, Murray GGR, Weinert LA, Manzanilla EG, Mahony J, Kenny JG. Isolation of phages infecting the zoonotic pathogen Streptococcus suis reveals novel structural and genomic characteristics. Microbiol Res 2025; 296:128147. [PMID: 40132484 DOI: 10.1016/j.micres.2025.128147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Bacteriophage research has experienced a renaissance in recent years, owing to their therapeutic potential and versatility in biotechnology, particularly in combating antibiotic resistant-bacteria along the farm-to-fork continuum. However, certain pathogens remain underexplored as targets for phage therapy, including the zoonotic pathogen Streptococcus suis which causes infections in pigs and humans. Despite global efforts, the genome of only one infective S. suis phage has been described. Here, we report the isolation of two phages that infect S. suis: Bonnie and Clyde. The phages infect 58 of 100 S. suis strains tested, including representatives of seven different serotypes and thirteen known sequence types from diverse geographical origins. Clyde suppressed bacterial growth in vitro within two multi-strain mixes designed to simulate a polyclonal S. suis infection. Both phages demonstrated stability across various temperatures and pH levels, highlighting their potential to withstand storage conditions and maintain viability in delivery formulations. Genome comparisons revealed that neither phage shares significant nucleotide identity with any cultivated phages in the NCBI database and thereby represent novel species belonging to two distinct novel genera. This study is the first to investigate the adhesion devices of S. suis infecting phages. Structure prediction and analysis of adhesion devices with AlphaFold2 revealed two distinct lineages of S. suis phages: Streptococcus thermophilus-like (Bonnie) and S. suis-like (Clyde). The structural similarities between the adhesion devices of Bonnie and S. thermophilus phages, despite the lack of nucleotide similarity and differing ecological niches, suggest a common ancestor or convergent evolution, highlighting evolutionary links between pathogenic and non-pathogenic streptococcal species. These findings provide valuable insights into the genetic and phenotypic characteristics of phages that can infect S. suis, providing new data for the therapeutic application of phages in a One Health context.
Collapse
Affiliation(s)
- Emmanuel Kuffour Osei
- School of Microbiology, University College Cork, Co., Cork T12 K8AF, Ireland; APC Microbiome Ireland, University College Cork, Co, Cork T12 YT20, Ireland; Food Bioscience, Teagasc Food Research Centre, Moorepark, Co, Cork P61 C996, Ireland
| | - Reuben O'Hea
- School of Microbiology, University College Cork, Co., Cork T12 K8AF, Ireland
| | - Christian Cambillau
- School of Microbiology, University College Cork, Co., Cork T12 K8AF, Ireland; APC Microbiome Ireland, University College Cork, Co, Cork T12 YT20, Ireland; Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, Marseille UMR 7255, France
| | - Ankita Athalye
- School of Microbiology, University College Cork, Co., Cork T12 K8AF, Ireland
| | - Frank Hille
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str. 1, Kiel 24103, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str. 1, Kiel 24103, Germany
| | - Áine O'Doherty
- Central Veterinary Research Laboratory, Backweston, Co, Kildare, Ireland
| | - Margaret Wilson
- Central Veterinary Research Laboratory, Backweston, Co, Kildare, Ireland
| | - Gemma G R Murray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK; Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Edgar Garcia Manzanilla
- Pig and Poultry Research and Knowledge Transfer Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland; School of Veterinary Medicine, University College Dublin, Co., Dublin D04 V1W8, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Co., Cork T12 K8AF, Ireland; APC Microbiome Ireland, University College Cork, Co, Cork T12 YT20, Ireland.
| | - John G Kenny
- APC Microbiome Ireland, University College Cork, Co, Cork T12 YT20, Ireland; Food Bioscience, Teagasc Food Research Centre, Moorepark, Co, Cork P61 C996, Ireland; VistaMilk SFI Research Centre, Fermoy, Co, Cork P61 C996, Ireland.
| |
Collapse
|
5
|
Wiebe M, Ingebritson A, Sholeh M, Tichenor C, Visek C, Victoria J, Beck M, Tiwari R, Hardwidge P, Zhu L. Streptococcus suis manganese transporter mutant as a live attenuated vaccine: Safety, efficacy, and virulence reversion mechanisms. Vet Microbiol 2025; 305:110521. [PMID: 40239440 DOI: 10.1016/j.vetmic.2025.110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Streptococcus suis is the leading cause of mortality in piglets and is responsible for severe economic losses in the global pork industry. Severe invasive diseases caused by S. suis include sepsis, meningitis, arthritis, and endocarditis. S. suis disease prevention is hampered by the lack of safe and efficacious vaccines. In this study, we constructed an S. suis live attenuated vaccine candidate lacking the major streptococcal manganese transporter, a known virulence determinant of this organism. The safety and efficacy of this live vaccine were evaluated in swine. Our clinical study results showed that when administered at a dose of 1010 CFU, the vaccine strain was safe and efficacious. However, a lower dose of 109 CFU failed to generate significant immune protection. To investigate if an adjuvant could enhance the efficacy of the vaccine at a lower dose, we spiked the vaccine with a polymeric adjuvant and evaluated its performance. Surprisingly, four pigs receiving the adjuvanted vaccine died during the vaccination phase. Pathology, microbiology, and genetic analyses suggested that the vaccine strain reverted to virulence in these animals. Functional genetic analysis found that the vaccine strain acquired compensatory mutations that upregulated the expression of a secondary manganese transporter, which in turn restored the virulence of the vaccine strain. Our results provide a new understanding of S. suis host adaptation mechanisms and useful information for the design of future live-attenuated vaccines.
Collapse
Affiliation(s)
- Michelle Wiebe
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Melody Sholeh
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Callie Visek
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Michael Beck
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | - Raksha Tiwari
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Luchang Zhu
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA.
| |
Collapse
|
6
|
Boueroy P, Phetburom N, Duangjanchot R, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Hatrongjit R, Zheng H, Li J, Kerdsin A. Genomic characterization of Streptococcus suis serotype 31 isolated from one human and 17 clinically asymptomatic pigs in Thailand. Vet Microbiol 2025; 304:110482. [PMID: 40107014 DOI: 10.1016/j.vetmic.2025.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Streptococcus suis is a zoonotic pathogen capable of causing severe diseases in humans and pigs. Frequently, S. suis serotype 31 strains have been isolated from pigs. The first human case of S. suis was reported in Thailand in 2015. In total, 18 strains from one human and 17 clinically asymptomatic pigs in Thailand were analyzed to characterize S. suis serotype 31. In total, 11 different STs were identified, with the major ST being ST2767 (38.89 %; 7/18). The minimum core-genome (MCG) classification revealed that almost all of the serotype 31 strains belonged to MCG7 (94.44 %; 17/18). Genomic analysis revealed that the serotype 31 isolates were major clusters with the porcine-healthy strains from China, Viet Nam, and Thailand. The human serotype 31 ST221 isolate was closely related to S. suis serotype 5 and 24 strains (CC221/234) isolated from Thailand. All serotype 31 strains were multidrug resistant with resistance to azithromycin (100 %; 18/18) and tetracycline (100 %; 18/18). Notably, 10 (55.56 %) of the serotype 31 strains were resistant to penicillin, while 8 strains (44.44 %) showed intermediate resistance to this agent. High substitutions were observed in three penicillin-binding proteins (1 A, 2B, and 2X) of these serotype 31 strains. The most prevalent antimicrobial resistance genes were erm(B) (100 %; 18/18) and tet(O) (66.67 %; 12/18). Overall, 7 strains carried integrative conjugative elements (ICEs) that harbored antimicrobial resistance genes, such as erm(B), tet(O), and tet(W). This study contribute to understanding the genomic diversity and provide valuable information for public health awareness of multidrug-resistant S. suis serotype 31.
Collapse
Affiliation(s)
- Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| | - Nattamol Phetburom
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rapeephan Duangjanchot
- Siriraj Long-read Laboratory, Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Siriraj Long-read Laboratory, Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Siriraj Long-read Laboratory, Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Han Zheng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Sakon Nakhon, Huazhong Agricultural University, Wuhan, China
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
7
|
Zhu L, He Z, Li M, Xu J, Ding W, Zeng W, Jiang X. Antimicrobial and antivirulence function of cinnamaldehyde against Streptococcus suis type 2. Microbiol Spectr 2025; 13:e0256124. [PMID: 39945529 PMCID: PMC11960091 DOI: 10.1128/spectrum.02561-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 04/03/2025] Open
Abstract
Streptococcus suis type 2 (SS2) is an important zoonotic pathogen for swine and humans. The increasing prevalence of antimicrobial resistance in S. suis isolates poses a threat to public health. This study investigated the antimicrobial activity and therapeutic potential of cinnamaldehyde (CA), a natural compound from cinnamon, against SS2. CA showed significant antimicrobial activity with a minimal inhibition concentration of 0.25 µg/mL and prolonged post-antibiotic effect of over 7 h in SS2. Increased bacterial cell membrane permeability and blocked protein synthesis of SS2 were observed after being treated with CA. CA could effectively prevent biofilm formation. CA treatment reduced the crucial virulence factor of suilysin expression and secretion in SS2 cells through a probable interaction with the suilysin protein. CA treatment could prominently alleviate both epithelial HEp-2 and phagocytic RAW264.7 cell cytotoxicity induced by SS2. The pathogenic SS2 strain was attenuated by CA, as demonstrated by the diminished adherence in HEp-2 cells, increased clearance by RAW264.7 and mice whole blood, and improved survival rate in a mouse infection model. CA possessed therapeutic efficacy since the CA treatment exhibited a 50% improvement in mouse survival rate, which surpassed the traditional ampicillin therapy control group. Alleviated clinical symptoms and histopathological phenotypes, with reduced bacterial burden in mouse organs after CA treatment, were examined. Overall, this study identified cinnamaldehyde as a novel antibacterial compound against SS2 with potential therapeutic protective effects, offering an alternative drug for controlling SS2 prevalence and infection. IMPORTANCE Widespread infections caused by Streptococcus suis type 2 (SS2) have garnered significant attention in the realm of public health due to their zoonotic nature. In recent years, antimicrobial resistance phenotypes in SS2 have emerged and intensified within the context of animal husbandry. Herbal compounds and medicinal plants are increasingly recognized as promising therapeutic alternatives for mitigating or addressing the challenges posed by antimicrobial resistance. The aim of this present study was to explore a novel compound of cinnamaldehyde, which obtained significant antimicrobial activity and potential therapeutic protective effect against SS2 infection. The research has made an innovative discovery that the bactericidal effect of cinnamaldehyde is associated with its antivirulence strategies, such as targeting the key virulence factors of SS2 and countering the bacterial infection process.
Collapse
Affiliation(s)
- Lexin Zhu
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Zhishu He
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Mengqing Li
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Jixin Xu
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Wei Ding
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Wenzhen Zeng
- College of Medicine, Yichun University, Yichun, Jiangxi, China
| | - Xiaowu Jiang
- College of Medicine, Yichun University, Yichun, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Active Component of Natural Drugs, Poster-Doctoral Research Center, Yichun, Jiangxi, China
| |
Collapse
|
8
|
Fan S, Tan Y, Li Z, Zhang Y, Li J, Feng Y, He Y, Chen X, Dong X. Mechanisms Underlying the Effects of Secretory Protein G22 on Biological Characteristics and Virulence of Streptococcus suis. Microorganisms 2025; 13:774. [PMID: 40284611 PMCID: PMC12029192 DOI: 10.3390/microorganisms13040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that seriously harms the swine industry and human health. However, its pathogenic mechanisms are largely unknown, and the few virulence factors reported so far are insufficient to systematically explain its infectious and pathogenic mechanisms. In preliminary research, we identified a gene named G22 encoding a hypothetical secreted protein that may be closely associated with the high-level pathogenicity of S. suis. In this study, we constructed deletion and complementation strains of the G22 gene through homologous recombination and explored its roles in the pathogenicity and susceptibility of S. suis to environmental stresses through in vitro and in vivo experiments. The deletion of G22 clearly influenced the typical capsular structure of SS2 and impaired the bacterium's growth in a medium containing hydrogen peroxide (showing a growth reduction of 32.98% ± 5.23% compared to the wild-type strain SC19, p < 0.001) or with a low pH (with a growth inhibition of 17.44% ± 1.9% relative to the wild-type strain SC19, p < 0.01). ΔG22 also showed reduced survival in whole blood and in RAW 264.7 macrophages (with a survival reduction of 16.44% ± 2.29% compared to the wild-type, p < 0.001). The deletion of G22 also sharply attenuated the virulence of SS2 in a mouse infection model (reducing the mortality rate by 50% ± 0.04%, p < 0.05). We also demonstrated that G22 is required for the adhesion and invasion of SS2 in host cells. An RNA sequencing analysis revealed that 50 genes were differentially expressed in the ΔG22 and wild-type strains: 23 upregulated and 37 downregulated. Many of the genes are involved in carbohydrate metabolism and the synthesis of virulence-associated factors. Several genes associated with the phosphotransferase system were significantly upregulated in strain ΔG22. In summary, G22 plays a role in the morphological development and pathogenesis of the highly virulent SS2 strain SC19.
Collapse
Affiliation(s)
- Shiyue Fan
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Yanping Tan
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Zhiwei Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China;
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ye Feng
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China;
| | - Yi He
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Xiaoling Chen
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| | - Xingxing Dong
- National R&D Center for Serich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.F.); (Y.T.); (Y.H.)
| |
Collapse
|
9
|
Wang L, Duan X, Zhu M, Wang H, Li X, Hu D, Li X, Qian P. Surface display of Lys0859, a Streptococcus suis prophage lysin, on Bacillus subtilis spores and its antibacterial activity against Streptococcus suis. Front Microbiol 2025; 16:1519935. [PMID: 40196032 PMCID: PMC11973311 DOI: 10.3389/fmicb.2025.1519935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Streptococcus suis, an important zoonotic and opportunistic pathogen in pigs, brings huge economic losses to the pig-raising industry and infects humans with diseases. Phage lysin is regarded as a promising substitute for antibiotics due to its ability to quickly and efficiently kill bacteria without easily developing resistance. However, their clinical applications have been hindered by inherent instability under environmental stressors. Methods We constructed B. subtilis spores displaying bacteriophage lysin Lys0859 using spore coat protein CotG as an anchoring motif. Environmental tolerance was evaluated through thermal (37-95°C), pH (1.0-8.0), and enzymatic challenges, while antibacterial efficacy against S. suis was assessed using agar diffusion assays and murine infection models with systemic bacterial load quantification. Results The spore-display system enhanced environmental resistance of Lys0859 while preserving its bactericidal efficacy. In vitro assays demonstrated 1 × 106 CFU rBSCotG-0859 spores exhibited equivalent bactericidal activity to 39.11 μg free Lys0859 against S. suis. In vivo, spore treatment reduced S. suis SC19 colonization by 0.47-1.96 log units (p < 0.05) across all tissues compared with PBS controls. Discussion This study achieved functional display of prophage lysin Lys0859 on B. subtilis spores through CotG anchoring, demonstrating potent in vitro anti-streptococcal activity. Crucially, this strategy streamlined bioproduction by eliminating purification demands and lowering costs, lays the foundation for the clinical application of prophage lysin.
Collapse
Affiliation(s)
- Linkang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaochao Duan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Mengyuan Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Haiyan Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Xinxin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Dayue Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
10
|
Jiemsup S, Lunha K, Chumpol W, Meekhanon N, Kerdsin A, Yongkiettrakul S. Development of a high-throughput MassARRAY-based single assay for the characterization of Streptococcus suis species and serotypes. Sci Rep 2025; 15:7822. [PMID: 40050386 PMCID: PMC11885608 DOI: 10.1038/s41598-025-92524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/28/2025] [Indexed: 03/09/2025] Open
Abstract
Streptococcus suis is a significant porcine pathogen and zoonotic agent responsible for infectious diseases in humans worldwide. It is classified into 29 serotypes, each with varying geographical prevalence and pathogenicity. Hence, serotyping of S. suis is crucial for active surveillance, outbreak monitoring, and infection control. This study developed a novel MassARRAY-based single assay to simultaneously identify S. suis species and differentiate all 29 serotypes. The assay targeted glutamate dehydrogenase (gdh) and recombination/repair protein (recN) for species identification, and capsular polysaccharide (cps) genes for serotyping. Based on single nucleotide polymorphisms (SNPs) at position 483 of cpsK gene, the assay accurately distinguished between two pairs of serotypes: ½ and 2, as well as 1 and 14. The assay, validated with genomic DNA from 105 whole-genome sequencing (WGS)-confirmed isolates, demonstrated 100% specificity and sensitivity for both species identification and serotyping. In the evaluation with 143 field isolates, the results demonstrated perfect agreement between the MassARRAY-based assay and WGS for species identification, with 100% sensitivity and specificity, and for serotyping, with 99.15% sensitivity and 100% specificity (κ-value = 0.98). The agreement between WGS-based serotyping and multiplex PCR serotyping was substantial (κ = 0.65). Moreover, the results showed that the limit of detection for both species and serotypes ranged from 1 to 10 pg of gDNA per reaction.
Collapse
Affiliation(s)
- Surasak Jiemsup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Kamonwan Lunha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wiyada Chumpol
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Nattakan Meekhanon
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok, 10900, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Suganya Yongkiettrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
11
|
Zhao X, Han S, Zhang F, Cui L, Ji G, Wang S, Jiang Y, Wang G, Yu J, Wang K, Wang Z. Identification and characterization of Streptococcus suis strains isolated from eastern China Swine Farms, 2021-2023. Sci Rep 2025; 15:5677. [PMID: 39955355 PMCID: PMC11829963 DOI: 10.1038/s41598-025-90308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
The Streptococcus suis (S. suis) is an important zoonotic pathogen that causes streptococcal disease in pigs and poses a threat to humans. This study provides an understanding of the prevalence of S.suis in eastern China and provides guidance for clinical prophylaxis. From 2021 to 2023, a total of 143 strains of S. suis were isolated from 1642 lung tissue and nasal swabs from healthy and suspected infected pigs in Shandong Province, China, using the Phenotypic tests and PCR technique. The isolates were then tested for serotype, virulence-related genes, and resistance genes. Among the 143 isolates, type 2 was the predominant serotype with 98 isolates (98/143, 68.5%), followed by type 5 with 22 isolates (22/143, 15.3%), type 4 with 6 isolates (6/143, 4.2%), type 19 with 4 isolates (4/143, 2.8%) and type 21 with 5 isolates (5/143, 3.5%), respectively. A minimum of 78.3% of the strains exhibited the presence of virulence-related genes including pgda, dlta, mann, fbps, orf2, and sspa, whereas the virulence-associated genes Sum, Sly, and Salkr are not widely prevalent. For the detection of resistance genes, it was found that the tetO gene had a high detection rate of 70.1% (101/143), whereas neither the pbp2b gene nor the cat1 and cat2 genes were detected. Antimicrobial susceptibility testing revealed that 96.5% (138/143) of the isolates exhibited multidrug resistance (MDR). And polypeptide B was found to be tolerated by 125 of the 143 strains (87.4%). Although we did not detect the β-lactam resistance gene in any of the 143 strains, an average of 39.2% of the strains were resistant to β-lactam antibiotics. The results of the current study is thought it may be help to understand the prevalence of S. suis and provide important insights into treatment and prevention.
Collapse
Affiliation(s)
- Xinkun Zhao
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Shanshan Han
- Shandong New Hope Liuhe Group Co., Ltd, Qingdao, 266100, China
| | - Fei Zhang
- Shandong Vocational College of Special Educational, Jinan, 250355, China
| | - Li Cui
- Shandong Animal Husbandry Association, Jinan, 250000, China
| | - Guangying Ji
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Shuo Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Youheng Jiang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control, Jinan, 250100, China
| | - Jieshi Yu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kezhou Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China.
| |
Collapse
|
12
|
Vreman S, Jansen R, Bastian M, Beckers P, van Riet M, Fijten H, Fledderus J, de Greeff A, Winkelman H, Stockhofe-Zurwieden N, Fabà L, Wisselink HJ, Vrieling M. The kinetics of maternal and self-developed Streptococcus suis-specific antibodies. Porcine Health Manag 2025; 11:7. [PMID: 39920863 PMCID: PMC11806565 DOI: 10.1186/s40813-025-00422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Streptococcus suis (S. suis) infections are responsible for a large disease burden in piglets during the nursery phase, compromising animal welfare and increasing antibiotic use. The immune gap caused by decreased maternal-derived antibodies (MDA) and insufficient levels or functionality of acquired antibodies in weaned pigs could play a role in the increased susceptibility to S. suis infections. To better understand this, two studies were performed. Study I evaluated the associations between sow antibodies in colostrum and serum, birth parameters (e.g., birth weight, colostrum intake and piglet growth) and the levels of S. suis-specific (serotypes 2 and 9) antibodies in one-day-old piglets from four farms. Subsequently, study II used one of these farms to evaluate S. suis-specific and total antibody kinetics in piglets (10 litters with 6 selected piglets per litter, total n = 60) from birth until 10 weeks of age. Additionally, tonsil swabs from sows and piglets were taken to evaluate the S. suis tonsillar carrier status (serotypes 2 and 9) before and after weaning. RESULTS High variability in serum and colostrum antibody levels was observed between and within the four farms (study I). In study II, there was a decrease in S. suis-specific MDA after 24 h of age, with the lowest level occurring at approximately 18/19 days of age. Afterwards, there was an increase in specific antibodies, most likely due to acquired immunity. Colostrum intake, birth weight and 24-h weight gain after birth were important parameters that were positively associated with S. suis antibody levels in piglets after birth but also affected these antibody levels at a later age. All the piglet tonsils were colonized with S. suis serotype 9 before weaning, while the prevalence of serotype 2 increased after weaning. CONCLUSIONS Total Ig against S. suis in serum declined after birth and the lowest level was detected just before weaning. Farmers and veterinarians should focus on piglets with low birth weights and late-born piglets because these parameters reduce both the S. suis-specific MDA preweaning and the specific antibodies acquired postweaning. Colostrum intake and 24 h-weight gain also affect the level of S. suis specific antibodies on day 1.
Collapse
Grants
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
- AF-17059 Ministerie van Economische Zaken, Landbouw en Innovatie
Collapse
Affiliation(s)
- Sandra Vreman
- Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 65, Lelystad, 8200 AB, The Netherlands.
| | - Rutger Jansen
- Boehringer Ingelheim Animal Health Netherlands B.V, Basisweg 10, Amsterdam, 1043 AP, The Netherlands
| | - Mikael Bastian
- ForFarmers Nederland B.V, P.O. Box 91, Lochem, 7240 AB, The Netherlands
| | - Patricia Beckers
- ForFarmers Nederland B.V, P.O. Box 91, Lochem, 7240 AB, The Netherlands
| | - Miriam van Riet
- ForFarmers Nederland B.V, P.O. Box 91, Lochem, 7240 AB, The Netherlands
| | - Helmi Fijten
- Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 65, Lelystad, 8200 AB, The Netherlands
| | - Jan Fledderus
- ForFarmers Nederland B.V, P.O. Box 91, Lochem, 7240 AB, The Netherlands
| | - Astrid de Greeff
- Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 65, Lelystad, 8200 AB, The Netherlands
| | - Hélène Winkelman
- Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 65, Lelystad, 8200 AB, The Netherlands
| | - Norbert Stockhofe-Zurwieden
- Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 65, Lelystad, 8200 AB, The Netherlands
| | - Lluís Fabà
- Trouw Nutrition, R&D, Swine Research Centre, 5831 JN, Veerstraat 38, Boxmeer, The Netherlands
| | - Henk J Wisselink
- Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 65, Lelystad, 8200 AB, The Netherlands
| | - Manouk Vrieling
- Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 65, Lelystad, 8200 AB, The Netherlands
| |
Collapse
|
13
|
Gao S, Yuan S, Quan Y, Jin W, Shen Y, Li R, Liu B, Wang Y, Yi L, Wang S, Hou X, Wang Y. Targeting AI-2 quorum sensing: harnessing natural products against Streptococcus suis biofilm infection. Vet Res 2025; 56:26. [PMID: 39905565 PMCID: PMC11796197 DOI: 10.1186/s13567-025-01450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025] Open
Abstract
The biofilm acts as a protective layer for Streptococcus suis (S. suis), contributing to the development of drug resistance and chronic infections. Autoinducer 2 (AI-2) quorum sensing represents the primary regulatory pathway governing biofilm formation in S. suis. Consequently, targeting AI-2 quorum sensing to inhibit biofilm formation represents a promising strategy for preventing and managing drug resistance and chronic infections caused by S. suis. This study established a small natural product library by integrating commercial drug molecules with Chinese herbal medicine molecules. Consequently, two natural products, salvianolic acid A (SAA) and rhapontin (RH), which target S. suis AI-2 via quorum sensing, were identified. SAA and RH inhibit AI-2 synthesis through noncompetitive and competitive binding to S-ribosylhomocysteinase (LuxS). By inhibiting S. suis AI-2 quorum sensing, these compounds modulate the expression of adhesion genes and the synthesis of extracellular polysaccharides (EPS), reducing the adhesion ability of S. suis and ultimately inhibiting biofilm formation. Using LC‒MS/MS, we further analysed the impact of SAA and RH on the metabolic activity of S. suis, revealing the potential medicinal value of these compounds. Finally, the efficacy of SAA and RH against S. suis infection was validated in Galleria mellonella larvae, confirming their significant anti-infection effects.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Shaohui Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Xiaogai Hou
- College of Agriculture/College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
14
|
Gu Q, Zhu X, Ma J, Jiang T, Pan Z, Yao H. Functional analysis of the type II toxin-antitoxin system ParDE in Streptococcus suis serotype 2. BMC Vet Res 2025; 21:30. [PMID: 39833840 PMCID: PMC11744833 DOI: 10.1186/s12917-024-04069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/08/2024] [Indexed: 01/22/2025] Open
Abstract
Streptococcus suis (S. suis) is a major pathogen in swine and poses a potential zoonotic threat, which may cause serious diseases. Many toxin-antitoxin (TA) systems have been discovered in S. suis, but their functions have not yet been fully elucidated. In this study, an auto-regulating type II TA system, ParDE, was identified in S. suis serotype 2 strain ZY05719. We constructed a mutant strain, ΔparDE, to explore its functions in bacterial virulence, various stress responses, and biofilm formation capabilities. The toxicity exerted by the toxin ParE can be neutralized by the antitoxin ParD. The β-galactosidase activity analysis indicated that ParDE has an autoregulatory function. An electrophoretic mobility shift assay (EMSA) confirmed that the antitoxin ParD bound to the promoter of ParDE as dimers. In the mouse infection model, the deletion of ParDE in ZY05719 significantly attenuated virulence. ΔparDE also exhibited a reduced anti-oxidative stress ability, and ΔparDE was more susceptible to phagocytosis and killing by macrophages. Moreover, the biofilm formation ability of the ΔparDE strain was significantly enhanced compared to ZY05719. Taken together, these findings indicate that the type II TA system ParDE plays a significant role in the pathogenesis of S. suis, providing new insights into its pathogenic mechanisms.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Xiayu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Tao Jiang
- Department of Stomatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| |
Collapse
|
15
|
Albert E, Kis IE, Kiss K, K-Jánosi K, Révész T, Biksi I. Serotype distribution and antimicrobial susceptibility of Streptococcus suis isolates from porcine diagnostic samples in Hungary, 2020-2023. Porcine Health Manag 2025; 11:3. [PMID: 39780272 PMCID: PMC11708007 DOI: 10.1186/s40813-024-00419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Streptococcus suis (S. suis) is a major swine pathogen and a significant zoonotic agent, causing substantial economic losses in the swine sector and having considerable public health importance. The control and management of S. suis-related conditions has become increasingly challenging due to the multitude of involved serotypes with varying antimicrobial resistance patterns. Here, we report the serological distribution and antimicrobial susceptibility of S. suis isolates isolated form clinical samples of Hungarian large-scale swine farms. RESULTS Between 2020 and 2023, altogether 296 S. suis isolates were obtained from diseased pigs of 64 Hungarian pig operations. Serotyping of the isolates was carried out by using molecular methods (cps-typing). The isolated strains belonged to 24 single cps-types. The most frequently detected cps-types during the four years of this passive survey were 9 (19.6%), 2 (19.3%), 1/2 (18.9%) and 7 (14.5%). The brain, spleen, endocardial valve thrombus and lung proved to be the most frequent site of S. suis strain isolation, and animals 29-75 days of age were affected in the highest proportion. Antimicrobial susceptibility testing of the isolates was performed by determining the minimal inhibitory concentration for 15 antimicrobial agents of veterinary and human importance using a commercial microdilution assay. More than 90% of the tested isolates proved to be susceptible to the examined beta-lactams, cephalosporins and florfenicol, as well as to rifampicin, trimethoprim/sulfamethoxazole and vancomycin. Phenotypic resistance profiles (resistotypes) of clindamycin-tetracyclin (3.8%), clindamycin-erythromycin-tetracyclin (8.4%) and clindamycin-erythromycin-tetracyclin-trimethoprim / sulfamethoxazole (3.8%) were most frequently detected. Vancomycin resistance was observed in the case of 1 S. suis strain. CONCLUSIONS The dominance of S. suis cps-types 9, 2, 1/2 and 7 in Hungary over the four years of this study aligns with previous reports from several countries worldwide. The presence of highly susceptible S. suis isolates suggests a prudent antibiotic usage and treatment practice in the surveyed Hungarian swine operations. In contrary, the presence of several resistotypes could indicate the problem of antibiotic resistance in the future.
Collapse
Affiliation(s)
- Ervin Albert
- Department of Pathology, University of Veterinary Medicine Budapest, Üllő, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - István Emil Kis
- Department of Pathology, University of Veterinary Medicine Budapest, Üllő, Hungary
| | | | - Katalin K-Jánosi
- Department of Pathology, University of Veterinary Medicine Budapest, Üllő, Hungary.
| | | | - Imre Biksi
- Department of Pathology, University of Veterinary Medicine Budapest, Üllő, Hungary
| |
Collapse
|
16
|
Osei EK, O'Hea R, Cambillau C, Athalye A, Hille F, Franz CMAP, O'Doherty Á, Wilson M, Murray GGR, Weinert LA, Manzanilla EG, Mahony J, Kenny JG. Isolation of phages infecting the zoonotic pathogen Streptococcus suis reveals novel structural and genomic characteristics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631744. [PMID: 39829746 PMCID: PMC11741397 DOI: 10.1101/2025.01.07.631744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Bacteriophage research has experienced a renaissance in recent years, owing to their therapeutic potential and versatility in biotechnology, particularly in combating antibiotic resistant-bacteria along the farm-to-fork continuum. However, certain pathogens remain underexplored as targets for phage therapy, including the zoonotic pathogen Streptococcus suis which causes infections in pigs and humans. Despite global efforts, the genome of only one infective S. suis phage has been described. Here, we report the isolation of two phages that infect S. suis: Bonnie and Clyde. The phages infect 58% of 100 S. suis strains tested, including representatives of seven different serotypes and thirteen known sequence types from diverse geographical origins. Clyde suppressed bacterial growth in vitro within two multi-strain mixes designed to simulate a polyclonal S. suis infection. Both phages demonstrated stability across various temperatures and pH levels, highlighting their potential to withstand storage conditions and maintain viability in delivery formulations. Genome comparisons revealed that neither phage shares significant nucleotide identity with any cultivated phages in the NCBI database and thereby represent novel species belonging to two distinct novel genera. This study is the first to investigate the adhesion devices of S. suis infecting phages. Structure prediction and analysis of adhesion devices with AlphaFold2 revealed two distinct lineages of S. suis phages: Streptococcus thermophilus-like (Bonnie) and S. suis-like (Clyde). The structural similarities between the adhesion devices of Bonnie and S. thermophilus phages, despite the lack of nucleotide similarity and differing ecological niches, suggest a common ancestor or convergent evolution, highlighting evolutionary links between pathogenic and non-pathogenic streptococcal species. These findings provide valuable insights into the genetic and phenotypic characteristics of phages that can infect S. suis, providing new data for the therapeutic application of phages in a One Health context.
Collapse
Affiliation(s)
- Emmanuel Kuffour Osei
- School of Microbiology, University College Cork, Co. Cork, T12 K8AF, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, T12 YT20, Ireland
- Food Bioscience, Teagasc Food Research Centre, Moorepark, Co. Cork, P61 C996, Ireland
| | - Reuben O'Hea
- School of Microbiology, University College Cork, Co. Cork, T12 K8AF, Ireland
| | - Christian Cambillau
- School of Microbiology, University College Cork, Co. Cork, T12 K8AF, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, T12 YT20, Ireland
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, UMR 7255 Marseille, France
| | - Ankita Athalye
- School of Microbiology, University College Cork, Co. Cork, T12 K8AF, Ireland
| | - Frank Hille
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Áine O'Doherty
- Central Veterinary Research Laboratory, Backweston, Co. Kildare, Ireland
| | - Margaret Wilson
- Central Veterinary Research Laboratory, Backweston, Co. Kildare, Ireland
| | - Gemma G R Murray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Edgar Garcia Manzanilla
- Pig and Poultry Research and Knowledge Transfer Department, Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland
- School of Veterinary Medicine, University College Dublin, Co. Dublin, D04 V1W8 Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Co. Cork, T12 K8AF, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, T12 YT20, Ireland
| | - John G Kenny
- APC Microbiome Ireland, University College Cork, Co. Cork, T12 YT20, Ireland
- Food Bioscience, Teagasc Food Research Centre, Moorepark, Co. Cork, P61 C996, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
17
|
Ma R, Peng L, Tang R, Jiang T, Chang J, Li G, Wang J, Yang Y, Yuan J. Bioaerosol emission characteristics and potential risks during composting: Focus on pathogens and antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136466. [PMID: 39549575 DOI: 10.1016/j.jhazmat.2024.136466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
In this study, we analyzed bioaerosol emission characteristics and potential risks of antimicrobial resistance (AMR) during composting using the impaction culture method and metagenomic sequencing. The results showed that the highly saturated water vapor in the emission gas mitigated particulate matter emission during the thermophilic period. About the bioaerosols, the airborne aerobic bacterial emissions were suppressed as composting enters the mature period, and the airborne fungi are usually present as single-cell or small-cell aggregates (< 3.3 µm). In addition, the microbial community structure in bioaerosols was stable and independent of composting time. Most importantly, the PM2.5 in bioaerosols contained large amounts of antibiotic resistance genes (ARGs), potential pathogens, and multidrug resistant pathogens, which were diverse and present in high concentrations. Among them, ARGs concentrations encoding 21 antibiotics ranged from - 4.50 to 0.70 ppm/m3 (Log10 ARGs). Among the 89 potential human pathogens detected, Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus were the only culturable potentially multidrug resistant pathogens carrying multiple ARGs encoding resistance at high concentrations (- 0.57 to 1.15 ppm/m3 (Log10 ARGs)), and were more likely to persist and multiply in oligotrophic environments. Our findings indicate that composting technology can transfer AMR from solid compost to gas phase and increase the risk of AMR transmission.
Collapse
Affiliation(s)
- Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Lijuan Peng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruolan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Tao Jiang
- School of New Energy Materials and Chemistry, Leshan Normal University, Sichuan 614000, China
| | - Jiali Chang
- School of New Energy Materials and Chemistry, Leshan Normal University, Sichuan 614000, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Ma J, Wu H, Ma Z, Wu Z. Bacterial and host factors involved in zoonotic Streptococcal meningitis. Microbes Infect 2025; 27:105335. [PMID: 38582147 DOI: 10.1016/j.micinf.2024.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Zoonotic streptococci cause several invasive diseases with high mortality rates, especially meningitis. Numerous studies elucidated the meningitis pathogenesis of zoonotic streptococci, some specific to certain bacterial species. In contrast, others are shared among different bacterial species, involving colonization and invasion of mucosal barriers, survival in the bloodstream, breaching the blood-brain and/or blood-cerebrospinal fluid barrier to access the central nervous system, and triggering inflammation of the meninges. This review focuses on the recent advancements in comprehending the molecular and cellular events of five major zoonotic streptococci responsible for causing meningitis in humans or animals, including Streptococcus agalactiae, Streptococcus equi subspecies zooepidemicus, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus iniae. The underlying mechanism was summarized into four themes, including 1) bacterial survival in blood, 2) brain microvascular endothelial cell adhesion and invasion, 3) penetration of the blood-brain barrier, and 4) activation of the immune system and inflammatory reaction within the brain. This review may contribute to developing therapeutics to prevent or mitigate injury of streptococcal meningitis and improve risk stratification.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou 511400, China.
| |
Collapse
|
19
|
Zhu L, Li M, Yu G, Zhan D, Zeng W, Fu N, Jiang X. Investigation of choline-binding protein of CbpD in the pathogenesis of Streptococcus suis type 2. Front Vet Sci 2024; 11:1486347. [PMID: 39691375 PMCID: PMC11649669 DOI: 10.3389/fvets.2024.1486347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Streptococcus suis serotype 2 (S. suis type 2, SS2) is one of the zoonotic pathogens known to induce meningitis, septicemia, and arthritis in both pigs and humans, resulting in public health concerns. CbpD, also termed CrfP, is one of the choline-binding proteins (CBPs) that was found as a murein hydrolase in SS2 and plays crucial roles in natural genetic transformation under the control of ComRS-ComX regulatory system by a previous study. Nonetheless, the possible functions of CbpD in virulence and pathogenesis in SS2 remain unclear. In this study, a cbpD gene mutant (ΔcbpD) with its complemental strain (cΔcbpD) was constructed and further used to examine the pathogenic roles of CbpD in SS2 infection. The results showed that the CbpD deficiency leads to increased bacterial chain elongation and aggregation with little impact on the growth capability of SS2. The ΔcbpD strain represented more vulnerable to a thermo, acid, or oxidative stress. Elevated adhesion to human epithelial HEp-2 cells, decreased invasion into bEND3.0 cells, and more easily phagocytosed by murine RAW264.7 macrophages of ΔcbpD were found. The virulence of cbpD mutant was attenuated in a mouse infection model. Enhanced susceptibility within mice blood and impaired ability to colonize organs with alleviated histopathological lesions were also demonstrated as compared with wild-type SS2. It is noteworthy that the discrepant expression of multiple virulence-associated factors including serine/threonine phosphorylase Stp, anti-phagocytosis factor of transglutaminase TGase and adhesin of chaperon DnaJ, were examined resulting from the deletion of cbpD. Overall, these findings provided evidence that the CbpD factor contributes to SS2 infection and is involved in bacterial adhesion, invasion, and anti-phagocytosis processes by modulating crucial virulence-associated factors expression.
Collapse
Affiliation(s)
- Lexin Zhu
- College of Medicine, Yichun University, Yichun, China
| | - Mengqing Li
- College of Medicine, Yichun University, Yichun, China
| | - Guijun Yu
- College of Medicine, Yichun University, Yichun, China
| | - Dongbo Zhan
- College of Medicine, Yichun University, Yichun, China
| | - Wenzhen Zeng
- College of Medicine, Yichun University, Yichun, China
| | - Nanyan Fu
- College of Medicine, Yichun University, Yichun, China
| | - Xiaowu Jiang
- College of Medicine, Yichun University, Yichun, China
- Jiangxi Provincial Key Laboratory of Active Component of Natural Drugs, Poster-Doctoral Research Center, Yichun, China
| |
Collapse
|
20
|
Zhang Y, Liang S, Zhang S, Bai Q, Dai L, Wang J, Yao H, Zhang W, Liu G. Streptococcal arginine deiminase system defences macrophage bactericidal effect mediated by XRE family protein XtrSs. Virulence 2024; 15:2306719. [PMID: 38251714 PMCID: PMC10841013 DOI: 10.1080/21505594.2024.2306719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected Streptococcus suis virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that S. suis could utilize arginine via ADS to adapt to acid stress, while ΔxtrSs enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout S. suis increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while ΔxtrSs consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in S. suis, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting S. suis intracellular survival. Meanwhile, our findings provide a new perspective on how Streptococci evade the host's innate immune system.
Collapse
Affiliation(s)
- Yumin Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Song Liang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shidan Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiankun Bai
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Dai
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Jinxiu Wang
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Huochun Yao
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Zhu J, Wang J, Kang W, Zhang X, Kerdsin A, Yao H, Zheng H, Wu Z. Streptococcus suis serotype 4: a population with the potential pathogenicity in humans and pigs. Emerg Microbes Infect 2024; 13:2352435. [PMID: 38703011 PMCID: PMC11097711 DOI: 10.1080/22221751.2024.2352435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Streptococcus suis is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Surveillance data highlight the significance of S. suis serotype 4 (SS4) in swine streptococcusis, a pathotype causing human infections. However, except for a few epidemiologic studies, the information on SS4 remains limited. In this study, we investigated the population structure, pathogenicity, and antimicrobial characteristics of SS4 based on 126 isolates, including one from a patient with septicemia. We discovered significant diversities within this population, clustering into six minimum core genome (MCG) groups (1, 2, 3, 4, 7-2, and 7-3) and five lineages. Two main clonal complexes (CCs), CC17 and CC94, belong to MCG groups 1 and 3, respectively. Numerous important putative virulence-associated genes are present in these two MCG groups, and 35.00% (7/20) of pig isolates from CC17, CC94, and CC839 (also belonging to MCG group 3) were highly virulent (mortality rate ≥ 80%) in zebrafish and mice, similar to the human isolate ID36054. Cytotoxicity assays showed that the human and pig isolates of SS4 strains exhibit significant cytotoxicity to human cells. Antimicrobial susceptibility testing showed that 95.83% of strains isolated from our labs were classified as multidrug-resistant. Prophages were identified as the primary vehicle for antibiotic resistance genes. Our study demonstrates the public health threat posed by SS4, expanding the understanding of SS4 population structure and pathogenicity characteristics and providing valuable information for its surveillance and prevention.
Collapse
Affiliation(s)
- Jinlu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, People’s Republic of China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, People’s Republic of China
| | - Jianping Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Weiming Kang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiyan Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, People’s Republic of China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, People’s Republic of China
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, People’s Republic of China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou, People’s Republic of China
| |
Collapse
|
22
|
Deng S, Liao J, Li H, Xu J, Fan J, Xia J, Wang J, Lei L, Chen M, Han Y, Zhai R, Zhou C, Zhou R, Cheng C, Song H. Streptococcus suis subtilisin-like serine proteases SspA-1 and SspA-2 interplay with complement C3a and C5a to facilitate bacterial immune evasion and infection. Virulence 2024; 15:2301246. [PMID: 38170683 PMCID: PMC10795781 DOI: 10.1080/21505594.2023.2301246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Streptococcus suis (S. suis), a significant zoonotic bacterial pathogen impacting swine and human, is associated with severe systemic diseases such as streptococcal toxic shock-like syndrome, meningitis, septicaemia, and abrupt fatality. The multifaceted roles of complement components C5a and C3a extend to orchestrating inflammatory cells recruitment, oxidative burst induction, and cytokines release. Despite the pivotal role of subtilisin-like serine proteases in S. suis pathogenicity, their involvement in immune evasion remains underexplored. In the present study, we identify two cell wall-anchored subtilisin-like serine proteases in S. suis, SspA-1 and SspA-2, as binding partners for C3a and C5a. Through Co-Immunoprecipitation, Enzyme-Linked Immunosorbent and Far-Western Blotting Assays, we validate their interactions with the aforementioned components. However, SspA-1 and SspA-2 have no cleavage activity against complement C3a and C5a performed by Cleavage assay. Chemotaxis assays reveal that recombinant SspA-1 and SspA-2 effectively attenuate monocyte chemotaxis towards C3a and C5a. Notably, the ΔsspA-1, ΔsspA-1, and ΔsspA-1/2 mutant strains exhibit compromised survival in blood, and resistance of opsonophagocytosis, alongside impaired survival in blood and in vivo colonization compared to the parental strain SC-19. Critical insights from the murine and Galleria mellonella larva infection models further underscore the significance of sspA-1 in altering mortality rates. Collectively, our findings indicate that SspA-1 and SspA-2 are novel binding proteins for C3a and C5a, thereby shedding light on their pivotal roles in S. suis immune evasion and the pathogenesis.
Collapse
Affiliation(s)
- Simin Deng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Junhui Liao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Haojie Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jingyan Fan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Jing Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Yue Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Ruidong Zhai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Chang Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Rui Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
23
|
Liu J, Zhang Z, Pu W, Pan X, Li P, Bai Q, Liang S, Li C, Yu Y, Yao H, Ma J. A multi-epitope subunit vaccine providing broad cross-protection against diverse serotypes of Streptococcus suis. NPJ Vaccines 2024; 9:216. [PMID: 39543108 PMCID: PMC11564553 DOI: 10.1038/s41541-024-01015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Streptococcus suis infection represents a major challenge in pig farming and public health due to its zoonotic potential and diverse serotypes, while existing vaccines lack effective cross-protection. This study employed reverse vaccinology and immunoinformatics to identify 8 conserved proteins across 11 prevalent serotypes of S. suis. 16 candidate epitopes were selected to design three multi-epitope antigens against S. suis (designated as MEASs), which fused with a dendritic cell-targeting peptide to improve antigen presentation in host. Purified MEASs displayed favorable cross-reactogenicity against 29 serotype-specific antiserums. Robust humoral and cellular immune responses can be induced by MEAS 1 and MEAS 3 in a mouse model, which provided substantial protection against virulent strains from two different serotypes. In particular, their immune serums exhibited positive opsonization effects within bloodstream and macrophage phagocytosis. Taken together, we identified two promising MEASs with excellent cross-protection, offering potential in preventing S. suis infections in a mouse model.
Collapse
Affiliation(s)
- Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Zhen Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Wanxia Pu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Song Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Caiying Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Yong Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
24
|
Santos Streauslin J, Nielsen DW, Schwartz KJ, Derscheid RJ, Magstadt DR, Burrough ER, Gauger PC, Schumacher LL, Rahe MC, Michael A, Sitthicharoenchai P, Siepker CL, Matias Ferreyra F, Nunes de Almeida M, Main R, Bradner LK, Hu X, Li G, Poeta Silva APS, Sahin O, Arruda BL. Characterization of neurologic disease-associated Streptococcus suis strains within the United States swine herd and use of diagnostic tools. J Clin Microbiol 2024; 62:e0037424. [PMID: 39377593 PMCID: PMC11562895 DOI: 10.1128/jcm.00374-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/01/2024] [Indexed: 10/09/2024] Open
Abstract
Streptococcus suis negatively impacts swine health, posing diagnostic and preventative challenges. S. suis can induce disease and also quietly reside on mucosal surfaces. The limited use of diagnostic tools to identify disease-associated strains and rule out differential diagnoses, alongside the complex ecology of S. suis, poses significant challenges in comprehending this important pathogen and defining pathotypes. This study evaluated 2,379 S. suis central nervous system (CNS) isolates from diagnostic submissions between 2015 and 2019. Isolates originating from submissions with histologic evidence of CNS infection (n = 1,032) were further characterized by standard and advanced diagnostic techniques. We identified 29 S. suis serotypes and 4 reclassified serotypes as putative causes of CNS disease. Among these, serotypes 1 and 7 emerged as the predominant putative causes of CNS infection (32% of submissions). Furthermore, 51 sequence types (STs), of which 15 were novel, were detected with ST1 predominating. Through whole-genome sequencing of 145 isolates, we observed that five commonly used virulence-associated genes (VAGs; epf, mrp, sly, ofs, and srtF) were not present in most disease-associated isolates, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) yielded false-positive results in 7% of isolates. These data indicate that (i) clinical signs and site of isolation alone are insufficient for defining a pathotype, (ii) S. suis serotypes and STs associated with CNS infection are more diverse than previously reported, (iii) MALDI-TOF MS may need to be supplemented with additional diagnostic tools for precise S. suis identification, and (iv) VAGs remain an unreliable means for identifying isolates associated with CNS disease.IMPORTANCEStreptococcus suis is an important and complex systemic bacterial pathogen of swine. Characterization of S. suis strains originating from pigs with histologic confirmation of neurologic disease is limited. Review of swine diagnostic submissions revealed that fewer than half of cases from which S. suis was isolated from the brain had histologic evidence of neurologic disease. This finding demonstrates that clinical signs and site of isolation alone are not sufficient for identifying a neurologic disease-associated strain. Characterization of strains originating from cases with evidence of disease using classic and advanced diagnostic techniques revealed that neurologic disease-associated strains are diverse and commonly lack genes previously associated with virulence.
Collapse
Affiliation(s)
- Jessica Santos Streauslin
- Department of
Veterinary Microbiology and Preventive Medicine, College of Veterinary
Medicine, Iowa State University,
Ames, Iowa, USA
| | - Daniel W. Nielsen
- Ruminant Diseases and
Immunology Research Unit, National Animal Disease Center, U.S.
Department of Agriculture, Agricultural Research
Service, Ames,
Iowa, USA
| | - Kent J. Schwartz
- Veterinary Diagnostic
Laboratory, College of Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Rachel J. Derscheid
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Drew R. Magstadt
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Eric R. Burrough
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Phillip C. Gauger
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Loni L. Schumacher
- Veterinary Diagnostic
Laboratory, College of Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Michael C. Rahe
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Alyona Michael
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Panchan Sitthicharoenchai
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Christopher L. Siepker
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Franco Matias Ferreyra
- Veterinary Diagnostic
Laboratory, College of Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Marcelo Nunes de Almeida
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Rodger Main
- Veterinary Diagnostic
Laboratory, College of Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Laura K. Bradner
- Veterinary Diagnostic
Laboratory, College of Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Xiao Hu
- Veterinary Diagnostic
Laboratory, College of Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Ganwu Li
- Veterinary Diagnostic
Laboratory, College of Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Ana Paula S. Poeta Silva
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Orhan Sahin
- Department of
Veterinary Diagnostic and Production Animal Medicine, College of
Veterinary Medicine, Iowa State
University, Ames,
Iowa, USA
| | - Bailey L. Arruda
- Virus and Prion
Research Unit, National Animal Disease Center, U.S. Department of
Agriculture, Agricultural Research
Service, Ames,
Iowa, USA
| |
Collapse
|
25
|
Králová N, Fittipaldi N, Zouharová M, Nedbalcová K, Matiašková K, Gebauer J, Kulich P, Šimek B, Matiašovic J. Streptococcus suis strains with novel and previously undescribed capsular loci circulate in Europe. Vet Microbiol 2024; 298:110265. [PMID: 39340873 DOI: 10.1016/j.vetmic.2024.110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Streptococcus suis (S. suis) causes serious diseases in pigs, and certain serotypes also pose a risk to humans. The expression of capsular polysaccharides (CPS) is considered an important virulence property of the pathogen. Recently, some serotypes have been reclassified as other organisms, while novel S. suis serotypes are being described. Although the CPS can be typed by serological methods using antisera, the presence of unique sequences for each capsular polysaccharide synthesis locus (cps locus) enables convenient PCR-based serotyping. In this study, we characterized 33 non-serotypeable S. suis strains obtained from diseased pigs in the Czech Republic by sequencing and analyzing the cps locus. Phylogenetic analysis of cpn60 confirmed that all isolates belong to the S. suis species. Four isolates had cps loci similar to the previously described reference S. suis serotypes. Eleven isolates were classified as recently described novel cps loci (NCLs). Nine isolates had substitutions, insertions and/or deletions in their cps loci and showed only partial similarity to the already described NCLs. Another eight isolates had previously undescribed cps locus structures and were proposed as novel NCLs. One isolate had lost the genes encoding capsule biosynthesis. Only four sequence types (ST) had two isolates each; the rest had unique STs. Two isolates harbored the classical virulence associated genes (VAGs) mrp and sly. Another isolate had only the mrp gene, while a different isolate harbored only the sly gene. This study provides insight into untypeable isolates in the Czech Republic, highlighting the genetic diversity and potential for novel serotype identification.
Collapse
Affiliation(s)
- Natálie Králová
- Veterinary Research Institute, Brno 621 00, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic.
| | - Nahuel Fittipaldi
- GREMIP and CRIPA, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada.
| | | | | | | | - Jan Gebauer
- Veterinary Research Institute, Brno 621 00, Czech Republic.
| | - Pavel Kulich
- Veterinary Research Institute, Brno 621 00, Czech Republic.
| | - Bronislav Šimek
- State Veterinary Institute Jihlava, Jihlava 586 01, Czech Republic.
| | - Ján Matiašovic
- Veterinary Research Institute, Brno 621 00, Czech Republic.
| |
Collapse
|
26
|
Shen X, Ran J, Yang Q, Li B, Lu Y, Zheng J, Xu L, Jia K, Li Z, Peng L, Fang R. RACK1 and NEK7 mediate GSDMD-dependent macrophage pyroptosis upon Streptococcus suis infection. Vet Res 2024; 55:120. [PMID: 39334337 PMCID: PMC11428613 DOI: 10.1186/s13567-024-01376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that induces an NLRP3-dependent cytokine storm. NLRP3 inflammasome activation triggers not only an inflammatory response but also pyroptosis. However, the exact mechanism underlying S. suis-induced macrophage pyroptosis is not clear. Our results showed that SS2 induced the expression of pyroptosis-associated factors, including lactate dehydrogenase (LDH) release, propidium iodide (PI) uptake and GSDMD-N expression, as well as NLRP3 inflammasome activation and IL-1β secretion. However, GSDMD deficiency and NLRP3 inhibition using MCC950 attenuated the SS2-induced expression of pyroptosis-associated factors, suggesting that SS2 induces NLRP3-GSDMD-dependent pyroptosis. Furthermore, RACK1 knockdown also reduced the expression of pyroptosis-associated factors. In addition, RACK1 knockdown downregulated the expression of NLRP3 and Pro-IL-1β as well as the phosphorylation of P65. Surprisingly, the interaction between RACK1 and P65 was detected by co-immunoprecipitation, indicating that RACK1 induces macrophage pyroptosis by mediating the phosphorylation of P65 to promote the transcription of NLRP3 and pro-IL-1β. Similarly, NEK7 knockdown decreased the expression of pyroptosis-associated factors and ASC oligomerization. Moreover, the results of co-immunoprecipitation revealed the interaction of NEK7-RACK1-NLRP3 during SS2 infection, demonstrating that NEK7 mediates SS2-induced pyroptosis via the regulation of NLRP3 inflammasome assembly and activation. These results demonstrate the important role of RACK1 and NEK7 in SS2-induced pyroptosis. Our study provides new insight into SS2-induced cell death.
Collapse
Affiliation(s)
- Xin Shen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jinrong Ran
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Qingqing Yang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Bingjie Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jiajia Zheng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Liuyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Zhiwei Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
27
|
Li K, Lacouture S, Lewandowski E, Thibault E, Gantelet H, Gottschalk M, Fittipaldi N. Molecular characterization of Streptococcus suis isolates recovered from diseased pigs in Europe. Vet Res 2024; 55:117. [PMID: 39334446 PMCID: PMC11429987 DOI: 10.1186/s13567-024-01366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus suis is a major swine pathogen and zoonotic agent, causing important economic losses to the porcine industry. Here, we used genomics approaches to characterize 251 S. suis isolates recovered from diseased pigs across Belgium, France, Germany, Hungary, the Netherlands, Spain, and the United Kingdom. We identified 13 serotypes, being serotypes 9 and 2 the most prevalent, and 34 sequence types (STs), including 16 novel STs, although ST16 and ST1 dominated the strain population. Phylogenetic analysis revealed complex genetic relationships, notable geographic clustering, and potential differential capacity for capsular switching among serotype 9 isolates. We found antimicrobial resistance (AMR) genes in 85.3% of the isolates, with high frequencies of genes conferring resistance to tetracyclines and macrolides. Specifically, 49.4% of the isolates harbored the tetO gene, and 64.9% possessed the ermB gene. Additionally, we observed a diverse array of virulence-associated genes (VAGs), including the classical VAGs mrp, epf, and sly, with variable presence across different genotypes. The high genetic diversity among European S. suis isolates highlights the importance of targeted antimicrobial use and flexible vaccine strategies. Rapid strain characterization is crucial for optimizing swine health management, enabling tailored interventions like the development of autovaccines to mitigate S. suis infections.
Collapse
Affiliation(s)
- Kevin Li
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Sonia Lacouture
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | | - Marcelo Gottschalk
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Nahuel Fittipaldi
- Groupe de recherche sur les maladies infectieuses en production animale, and Centre de recherche en infectiologie porcine et avicole, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada.
| |
Collapse
|
28
|
Breitfelder AK, Schrödl W, Baums CG, Alber G, Müller U. The immunoglobulin M-degrading enzyme of Streptococcus suis (Ide Ssuis) leads to long-lasting inhibition of the activation of porcine IgM-secreting B cells. Vet Res 2024; 55:114. [PMID: 39313819 PMCID: PMC11421183 DOI: 10.1186/s13567-024-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 09/25/2024] Open
Abstract
Streptococcus suis (S. suis) is one of the most important porcine pathogens, causing severe pathologies such as meningitis or polyarthritis. It is also a very successful colonizer of mucosal surfaces. The IgM-degrading enzyme of S. suis (IdeSsuis) specifically cleaves porcine IgM, which results in complement evasion. On the basis of our previous finding that IdeSsuis also cleaves the IgM B cell receptor in vitro, we verified IgM B cell receptor cleavage ex vivo in whole regional lymph nodes and investigated the working hypothesis that this IgM B cell receptor cleavage results in a long-lasting impaired B cell function. The number of IgM-secreting cells was determined via ELISpot analysis after porcine peripheral blood mononuclear cells had initially been treated with different recombinant S. suis proteins and subsequently stimulated with interleukin-2 and the toll-like receptor 7/8 ligand R848. Compared with treatment with medium or recombinant muramidase-released protein, treatment with rIdeSsuis but also with a cleavage-deficient variant led to a reduction in the number of IgM-secreting cells as well as the level of secreted IgM. Flow cytometry analysis confirmed that the IgM B cell receptor was cleaved only by rIdeSsuis, and the receptor recovered to pretreatment levels on day 2 after treatment. Flow cytometry analysis of B and T cells incubated with fluorescein-labelled recombinant proteins revealed that different rIdeSsuis variants bind specifically to B cells, most prominently the cleavage-deficient variant. Our results indicate that in vitro interference of rIdeSsuis with the IgM B cell receptor results in long-lasting impaired IgM secretion by B cells after toll-like receptor activation. Further studies are warranted to prove that the modulation of B cell function by IdeSsuis could play a role in vivo.
Collapse
Affiliation(s)
- Annika Katharina Breitfelder
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Wieland Schrödl
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, BBZ, University of Leipzig, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, BBZ, University of Leipzig, Leipzig, Germany
| |
Collapse
|
29
|
Gao S, Yuan S, Quan Y, Jin W, Shen Y, Liu B, Wang Y, Wang Y. Effects of AI-2 quorum sensing related luxS gene on Streptococcus suis formatting monosaccharide metabolism-dependent biofilm. Arch Microbiol 2024; 206:407. [PMID: 39297992 DOI: 10.1007/s00203-024-04126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Biofilm is the primary cause of persistent infections caused by Streptococcus suis (S. suis). Metabolism and AI-2 quorum sensing are intricately linked to S. suis biofilm formation. Although the role of the AI-2 quorum sensing luxS gene in S. suis biofilm has been reported, its specific regulatory mechanism remains unclear. This study explored the differences in biofilm formation and monosaccharide metabolism among the wild type (WT), luxS mutant (ΔluxS) and complement strain (CΔluxS), and Galleria mellonella larvae were used to access the effect of luxS gene deletion on the virulence of S. suis in different monosaccharide medias. The results indicated that deletion of the luxS gene further compromised the monosaccharide metabolism of S. suis, impacting its growth in media with fructose, galactose, rhamnose, and mannose as the sole carbon sources. However, no significant impact was observed in media with glucose and N-acetylglucosamine. This deletion also weakened EPS synthesis, thereby diminishing the biofilm formation capacity of S. suis. Additionally, the downregulation of adhesion gene expression due to luxS gene deletion was found to be independent of the monosaccharide medias of S. suis.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
30
|
Hu X, Lu Y, Yu X, Jia K, Xiong Q, Fang R. The suppressive role of NLRP6 in host defense against Streptococcus suis infection. Vet Microbiol 2024; 296:110166. [PMID: 38968694 DOI: 10.1016/j.vetmic.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Streptococcus suis (S. suis) disease is a prevalent zoonotic infectious threat that elicits a systemic inflammatory response in both swine and humans, frequently culminating in high mortality rates. The excessive inflammation triggered by S. suis infection can precipitate tissue damage and sudden death; however, a comprehensive strategy to mitigate this inflammatory response remains elusive. Our study examines the role of NLRP6 in S. suis infection, with a particular focus on its involvement in pathogen regulation. A marked upregulation of NLRP6 was observed in peritoneal macrophages post-infection with S. suis SC19 strain, consequently activating the NLRP6 inflammasome. Furthermore, SC19 infection was found to augment the secretion of pro-inflammatory cytokines IL-1β via NLRP6 activation, while NLRP6 deficiency mitigates the invasion and adhesion of SC19 to macrophages. In vivo models revealed that NLRP6 deletion enhanced survival rates of SC19-infected mice, alongside a reduction in tissue bacterial load and inflammatory cytokine levels. NLRP6-/- mice were shown to exhibit attenuated inflammatory responses in pulmonary, hepatic, and splenic tissues post-SC19 infection, as evidenced by lower inflammation scores. Flow cytometry analyses further substantiated that NLRP6 is involved in modulating macrophage and neutrophil recruitment during infection. Our findings suggest that NLRP6 negatively regulates host resistance against S. suis infection; its absence results in reduced mortality, bacterial colonization, and a milder inflammatory response. Elucidating the mechanism of NLRP6 in S. suis-induced inflammation provides novel insights and theoretical underpinnings for the prophylaxis and therapeutics of S. suis diseases.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoying Yu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qiuting Xiong
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
31
|
Godbold GD, Scholz MB. Annotation of Functions of Sequences of Concern and Its Relevance to the New Biosecurity Regulatory Framework in the United States. APPLIED BIOSAFETY 2024; 29:142-149. [PMID: 39372509 PMCID: PMC11447126 DOI: 10.1089/apb.2023.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Introduction Recent regulations from United States Government agencies reshape the screening of synthetic nucleic acids. These take a step away from categorizing hazard on the basis of "bad" taxa and invoke the function of the sequence in pathogenesis or intoxication. Ascertaining functions related to pathogenesis and distinguishing these from other molecular abilities that are unproblematic is not simple. Some have suggested that this information can be readily obtained from existing databases of pathogens. Objectives We evaluate how virulence factors are described in current databases of pathogens and their adequacy for biothreat data science. We discuss limitations of how virulence factors have been conceived and propose using the sequence of concern (SoC) term to distinguish sequences with biothreat from those without. We discuss ways in which databases of SoCs might be implemented for research and regulatory purposes. We describe ongoing work improving functional descriptions of SoCs. Methods We assess the adequacy of descriptions of virulence factors in pathogen databases following extensive engagement with the literature in microbial pathogenesis. Results/Conclusions Descriptions of virulence factors in pathogen databases are inadequate for understanding biothreats. Many are not biothreats and would not be concerning if transferred to another pathogen. New gene ontology terms have been authored, and those specific to pathogenic viral processes are being generalized to make them relevant to other pathogenic taxa. This allows better understanding by humans and better recognition by machines. A database of annotated functions of SoCs could benefit the evolving biosecurity regulatory framework in the United States.
Collapse
|
32
|
Cao P, Lin M, Chen Z, Zhang G, Lai XH, Wu X, Niu L. Identification and genomic analyses of a Streptococcus suis ST25 strain associated with the first human septicemia in mainland China. Heliyon 2024; 10:e35456. [PMID: 39170392 PMCID: PMC11336695 DOI: 10.1016/j.heliyon.2024.e35456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Streptococcus suis (S. suis) is a Gram-positive bacterium and the main culprit behind zoonotic outbreaks, posing a serious threat to public health. The prevalent strains in China are mainly of sequence types (ST) 1 and 7, with few cases of human infections caused by other sequence type being reported. This study presents the first isolation of a ST25 strain from the blood of a septicemic patient. A 57-year-old febrile patient was admitted to a hospital in Hainan of China, diagnosed as septicemia and hepatic dysfunction. A strain of S. suis was isolated from blood culture and confirmed to be serotype 2 and ST25 through 16S rRNA sequencing and whole-genome sequencing, and its genome was further analyzed for gene functions and presence of drug resistance genes. The full-length genome of strain HN28 spans 2,280,124 bp and encodes a total of 2291 proteins. Genes annotated in COG, GO, KEGG, CAZy, and PHl databases accounted for 75.38 %, 69.14 %, 55.35 %, 4.58 %, and 11.87 % of the total predicted proteins, respectively. Virulence factor analysis revealed the presence of seven putative virulence genes in strain HN28. Analysis using the CARD database identified 51 resistance genes in HN28, alongside abundant exocytosis systems. These findings underscore the occurrence of S. suis infections in humans caused by less common ST, emphasizing the need for enhanced epidemiological investigations and monitoring of S. suis infections in the human population.
Collapse
Affiliation(s)
- Peipei Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Meixing Lin
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, China
| | - Zhiling Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Guannan Zhang
- Hainan Medical University Public Research Center, Haikou, Hainan, China
| | - Xin-He Lai
- Shenzhen Boya Gene Technology Company Limited, Shenzhen, China
| | - Xiang Wu
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
33
|
Cao X, Jia K, Liu Q, Yin H, Yu X, Hu X, Ye C, Peng L, Fang R. The critical role of NLRP3 inflammasome activation in Streptococcus suis-induced blood-brain barrier disruption. Vet Microbiol 2024; 295:110161. [PMID: 38945021 DOI: 10.1016/j.vetmic.2024.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Streptococcus suis (S. suis) type 2 (SS2) is an important zoonotic pathogen causing severe neural infections in pigs and causes serious threat to public health. Inflammasome activation plays an important role in the host against microbial infection but the role of inflammasome activation in the blood-brain barrier (BBB) integrity during S. suis infection is rarely studied. This study investigated the mechanism by which S. suis-induced NLRP3 inflammasome activation led to BBB disruption. Our results showed that S. suis infection activated NLRP3 inflammasome in brain microvascular endothelial cells (BMECs) leading to the secretion of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and chemokines (CCL-2 and CXCL-2) as well as the cleavage of Gasdermin D (GSDMD) which were significantly attenuated by inflammasome inhibitor MCC950. Furthermore, S. suis infection significantly downregulated expression of tight junctions (TJs) proteins and trans-endothelial electrical resistance (TEER) while NLRP3 inhibition rescued S. suis-induced degradation of TJs proteins and significantly reduced the number of S. suis crossing BBB in transwell infection model. Moreover, recombinant IL-1β exacerbated the reduction of TJs proteins in BMECs. In murine S. suis-infection model, MCC950 reduced the bacterial load and the excessive inflammatory response in mice brain. In addition, the integrity of the BBB was protected with increased TJ proteins expression and decreased pathological injury after the inhibition of NLRP3 inflammasome, indicating NLRP3 inflammasome plays a destructive role in meningitis induced by S. suis. Our study expands the understanding on the role of NLRP3 inflammasome in bacterial meningitis, which provide the valuable information for the development of anti-infective agents targeting NLRP3 to treat bacterial meningitis.
Collapse
Affiliation(s)
- Xinrui Cao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qian Liu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hang Yin
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoying Yu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiaoxiang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China.
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China.
| |
Collapse
|
34
|
Chen Q, Zhang F, Bai J, Che Q, Xiang L, Zhang Z, Wang Y, Sjöling Å, Martín-Rodríguez AJ, Zhu B, Fu L, Zhou Y. Bacteriophage-resistant carbapenem-resistant Klebsiella pneumoniae shows reduced antibiotic resistance and virulence. Int J Antimicrob Agents 2024; 64:107221. [PMID: 38810938 DOI: 10.1016/j.ijantimicag.2024.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Phage therapy has shown great promise in the treatment of bacterial infections. However, the effectiveness of phage therapy is compromised by the inevitable emergence of phage-resistant strains. In this study, a phage-resistant carbapenem-resistant Klebsiella pneumoniae strain SWKP1711R, derived from parental carbapenem-resistant K. pneumoniae strain SWKP1711 was identified. The mechanism of bacteriophage resistance in SWKP1711R was investigated and the molecular determinants causing altered growth characteristics, antibiotic resistance, and virulence of SWKP1711R were tested. Compared to SWKP1711, SWKP1711R showed slower growth, smaller colonies, filamentous cells visible under the microscope, reduced production of capsular polysaccharide (CPS) and lipopolysaccharide, and reduced resistance to various antibiotics accompanied by reduced virulence. Adsorption experiments showed that phage vB_kpnM_17-11 lost the ability to adsorb onto SWKP1711R, and the adsorption receptor was identified to be bacterial surface polysaccharides. Genetic variation analysis revealed that, compared to the parental strain, SWKP1711R had only one thymine deletion at position 78 of the open reading frame of the lpcA gene, resulting in a frameshift mutation that caused alteration of the bacterial surface polysaccharide and inhibition of phage adsorption, ultimately leading to phage resistance. Transcriptome analysis and quantitative reverse transcriptase PCR revealed that genes encoding lipopolysaccharide synthesis, ompK35, blaTEM-1, and type II and Hha-TomB toxin-antitoxin systems, were all downregulated in SWKP1711R. Taken together, the evidence presented here indicates that the phenotypic alterations and phage resistance displayed by the mutant may be related to the frameshift mutation of lpcA and altered gene expression. While evolution of phage resistance remains an issue, our study suggests that the reduced antibiotic resistance and virulence of phage-resistant strain derivatives might be beneficial in alleviating the burden caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Qiao Chen
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Feiyang Zhang
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jiawei Bai
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qian Che
- Sichuan Center For Disease Control And Prevention, Chengdu, 610000, China
| | - Li Xiang
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhikun Zhang
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ying Wang
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Stockholm, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Alberto J Martín-Rodríguez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Stockholm, Sweden; Department of Clinical Sciences, University of Las Palmas de Gran Canaria, 35016, Las Palmas de Gran Canaria, Spain
| | - Baoli Zhu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Fu
- The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Yingshun Zhou
- Department of Pathogeic Biology, School of Basic Medical, Southwest Medical University, Luzhou, Sichuan, 646000, China; Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
35
|
Gao S, Mao C, Yuan S, Quan Y, Jin W, Shen Y, Zhang X, Wang Y, Yi L, Wang Y. AI-2 quorum sensing-induced galactose metabolism activation in Streptococcus suis enhances capsular polysaccharide-associated virulence. Vet Res 2024; 55:80. [PMID: 38886823 PMCID: PMC11184709 DOI: 10.1186/s13567-024-01335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Bacteria utilize intercellular communication to orchestrate essential cellular processes, adapt to environmental changes, develop antibiotic tolerance, and enhance virulence. This communication, known as quorum sensing (QS), is mediated by the exchange of small signalling molecules called autoinducers. AI-2 QS, regulated by the metabolic enzyme LuxS (S-ribosylhomocysteine lyase), acts as a universal intercellular communication mechanism across gram-positive and gram-negative bacteria and is crucial for diverse bacterial processes. In this study, we demonstrated that in Streptococcus suis (S. suis), a notable zoonotic pathogen, AI-2 QS enhances galactose utilization, upregulates the Leloir pathway for capsular polysaccharide (CPS) precursor production, and boosts CPS synthesis, leading to increased resistance to macrophage phagocytosis. Additionally, our molecular docking and dynamics simulations suggest that, similar to S. pneumoniae, FruA, a fructose-specific phosphoenolpyruvate phosphotransferase system prevalent in gram-positive pathogens, may also function as an AI-2 membrane surface receptor in S. suis. In conclusion, our study demonstrated the significance of AI-2 in the synthesis of galactose metabolism-dependent CPS in S. suis. Additionally, we conducted a preliminary analysis of the potential role of FruA as a membrane surface receptor for S. suis AI-2.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Chenlong Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
36
|
Hatrongjit R, Fittipaldi N, Gottschalk M, Kerdsin A. Genomic epidemiology in Streptococcus suis: Moving beyond traditional typing techniques. Heliyon 2024; 10:e27818. [PMID: 38509941 PMCID: PMC10951601 DOI: 10.1016/j.heliyon.2024.e27818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Streptococcus suis is a bacterial gram-positive pathogen that causes invasive infections in swine and is also a zoonotic disease agent. Traditional molecular typing techniques such as ribotyping, multilocus sequence typing, pulse-field gel electrophoresis, or randomly amplified polymorphic DNA have been used to investigate S. suis population structure, evolution, and genetic relationships and support epidemiological and virulence investigations. However, these traditional typing techniques do not fully reveal the genetically heterogeneous nature of S. suis strains. The high-resolution provided by whole-genome sequencing (WGS), which is now more affordable and more commonly available in research and clinical settings, has unlocked the exploration of S. suis genetics at full resolution, permitting the determination of population structure, genetic diversity, identification of virulent clades, genetic markers, and other bacterial features of interest. This approach will likely become the new gold standard for S. suis strain typing as WGS instruments become more widely available and traditional typing techniques are gradually replaced.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nahuel Fittipaldi
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
37
|
Payen S, Giroux MC, Gisch N, Schombel U, Fittipaldi N, Segura M, Gottschalk M. Lipoteichoic acids influence cell shape and bacterial division of Streptococcus suis serotype 2, but play a limited role in the pathogenesis of the infection. Vet Res 2024; 55:34. [PMID: 38504299 PMCID: PMC10953176 DOI: 10.1186/s13567-024-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Streptococcus suis serotype 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans, responsible for substantial economic losses to the swine industry worldwide. The pathogenesis of infection and the role of bacterial cell wall components in virulence have not been fully elucidated. Lipoproteins, peptidoglycan, as well as lipoteichoic acids (LTA) have all been proposed to contribute to virulence. In the present study, the role of the LTA in the pathogenesis of the infection was evaluated through the characterisation of a mutant of the S. suis serotype 2 strain P1/7 lacking the LtaS enzyme, which mediates the polymerization of the LTA poly-glycerolphosphate chain. The ltaS mutant was confirmed to completely lack LTA and displayed significant morphological defects. Although the bacterial growth of this mutant was not affected, further results showed that LTA is involved in maintaining S. suis bacterial fitness. However, its role in the pathogenesis of the infection appears limited. Indeed, LTA presence reduces self-agglutination, biofilm formation and even dendritic cell activation, which are important aspects of the pathogenesis of the infection caused by S. suis. In addition, it does not seem to play a critical role in virulence using a systemic mouse model of infection.
Collapse
Affiliation(s)
- Servane Payen
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Marie-Christine Giroux
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ursula Schombel
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nahuel Fittipaldi
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Mariela Segura
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Marcelo Gottschalk
- Research Group On Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
38
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
39
|
Dechêne-Tempier M, de Boisséson C, Lucas P, Bougeard S, Libante V, Marois-Créhan C, Payot S. Virulence genes, resistome and mobilome of Streptococcus suis strains isolated in France. Microb Genom 2024; 10:001224. [PMID: 38536216 PMCID: PMC10995628 DOI: 10.1099/mgen.0.001224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Streptococcus suis is a leading cause of infection in pigs, causing extensive economic losses. In addition, it can also infect wild fauna, and can be responsible for severe infections in humans. Increasing antimicrobial resistance (AMR) has been described in S. suis worldwide and most of the AMR genes are carried by mobile genetic elements (MGEs). This contributes to their dissemination by horizontal gene transfer. A collection of 102 strains isolated from humans, pigs and wild boars in France was subjected to whole genome sequencing in order to: (i) study their genetic diversity, (ii) evaluate their content in virulence-associated genes, (iii) decipher the mechanisms responsible for their AMR and their association with MGEs, and (iv) study their ability to acquire extracellular DNA by natural transformation. Analysis by hierarchical clustering on principal components identified a few virulence-associated factors that distinguish invasive CC1 strains from the other strains. A plethora of AMR genes (n=217) was found in the genomes. Apart from the frequently reported erm(B) and tet(O) genes, more recently described AMR genes were identified [vga(F)/sprA, vat(D)]. Modifications in PBPs/MraY and GyrA/ParC were detected in the penicillin- and fluoroquinolone-resistant isolates respectively. New AMR gene-MGE associations were detected. The majority of the strains have the full set of genes required for competence, i.e for the acquisition of extracellular DNA (that could carry AMR genes) by natural transformation. Hence the risk of dissemination of these AMR genes should not be neglected.
Collapse
Affiliation(s)
- Manon Dechêne-Tempier
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Claire de Boisséson
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
| | - Pierrick Lucas
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Génétique Virale et Biosécurité, BP53 22440 Ploufragan, France
| | - Stéphanie Bougeard
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Épidémiologie, santé et bien-être, BP53 22440 Ploufragan, France
| | | | - Corinne Marois-Créhan
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
| | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| |
Collapse
|
40
|
Zhao T, Gussak A, van der Hee B, Brugman S, van Baarlen P, Wells JM. Identification of plasminogen-binding sites in Streptococcus suis enolase that contribute to bacterial translocation across the blood-brain barrier. Front Cell Infect Microbiol 2024; 14:1356628. [PMID: 38456079 PMCID: PMC10919400 DOI: 10.3389/fcimb.2024.1356628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must cross the blood-brain barrier (BBB) comprising blood vessels that vascularize the central nervous system (CNS). The BBB is highly selective due to interactions with other cell types in the brain and the composition of the extracellular matrix (ECM). Purified streptococcal surface enolase, an essential enzyme participating in glycolysis, can bind human plasminogen (Plg) and plasmin (Pln). Plg has been proposed to increase bacterial traversal across the BBB via conversion to Pln, a protease which cleaves host proteins in the ECM and monocyte chemoattractant protein 1 (MCP1) to disrupt tight junctions. The essentiality of enolase has made it challenging to unequivocally demonstrate its role in binding Plg/Pln on the bacterial surface and confirm its predicted role in facilitating translocation of the BBB. Here, we report on the CRISPR/Cas9 engineering of S. suis enolase mutants eno261, eno252/253/255, eno252/261, and eno434/435 possessing amino acid substitutions at in silico predicted binding sites for Plg. As expected, amino acid substitutions in the predicted Plg binding sites reduced Plg and Pln binding to S. suis but did not affect bacterial growth in vitro compared to the wild-type strain. The binding of Plg to wild-type S. suis enhanced translocation across the human cerebral microvascular endothelial cell line hCMEC/D3 but not for the eno mutant strains tested. To our knowledge, this is the first study where predicted Plg-binding sites of enolase have been mutated to show altered Plg and Pln binding to the surface of S. suis and attenuation of translocation across an endothelial cell monolayer in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | - Jerry M. Wells
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
41
|
Massacci FR, Cucco L, Panicciá M, Luppi A, Albini E, Peruzzo A, Ferroni L, Ustulin M, Orsini M, Magistrali CF. Streptococcus suis serotype 9 in Italy: genomic insights into high-risk clones with emerging resistance to penicillin. J Antimicrob Chemother 2024; 79:403-411. [PMID: 38153239 PMCID: PMC10832592 DOI: 10.1093/jac/dkad395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Streptococcus suis is an important pig pathogen and an emerging zoonotic agent. In a previous study, we described a high proportion of penicillin-resistant serotype 9 S. suis (SS9) isolates on pig farms in Italy. OBJECTIVES We hypothesized that resistance to penicillin emerged in some SS9 lineages characterized by substitutions at the PBPs, contributing to the successful spread of these lineages in the last 20 years. METHODS Sixty-six SS9 isolates from cases of streptococcosis in pigs were investigated for susceptibility to penicillin, ceftiofur and ampicillin. The isolates were characterized for ST, virulence profile, and antimicrobial resistance genes through WGS. Multiple linear regression models were employed to investigate the associations between STs, year of isolation, substitutions at the PBPs and an increase in MIC values to β-lactams. RESULTS MIC values to penicillin increased by 4% each year in the study period. Higher MIC values for penicillin were also positively associated with ST123, ST1540 and ST1953 compared with ST16. The PBP sequences presented a mosaic organization of blocks. Within the same ST, substitutions at the PBPs were generally more frequent in recent isolates. Resistance to penicillin was driven by substitutions at PBP2b, including K479T, D512E and K513E, and PBP2x, including T551S, while reduced susceptibility to ceftiofur and ampicillin were largely dependent on substitutions at PBP2x. CONCLUSIONS Here, we identify the STs and substitutions at the PBPs responsible for increased resistance of SS9 to penicillin on Italian pig farms. Our data highlight the need for monitoring the evolution of S. suis in the coming years.
Collapse
Affiliation(s)
| | - Lucilla Cucco
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Marta Panicciá
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Andrea Luppi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Parma, Italy
| | - Elisa Albini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Arianna Peruzzo
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Laura Ferroni
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Martina Ustulin
- Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | | | | |
Collapse
|
42
|
Liang S, Zhang S, Bao Y, Zhang Y, Liu X, Yao H, Liu G. Combined Immunoinformatics to Design and Evaluate a Multi-Epitope Vaccine Candidate against Streptococcus suis Infection. Vaccines (Basel) 2024; 12:137. [PMID: 38400121 PMCID: PMC10892848 DOI: 10.3390/vaccines12020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Streptococcus suis (S. suis) is a zoonotic pathogen with multiple serotypes, and thus, multivalent vaccines generating cross-protection against S. suis infections are urgently needed to improve animal welfare and reduce antibiotic abuse. In this study, we established a systematic and comprehensive epitope prediction pipeline based on immunoinformatics. Ten candidate epitopes were ultimately selected for building the multi-epitope vaccine (MVSS) against S. suis infections. The ten epitopes of MVSS were all derived from highly conserved, immunogenic, and virulence-associated surface proteins in S. suis. In silico analyses revealed that MVSS was structurally stable and affixed with immune receptors, indicating that it would likely trigger strong immunological reactions in the host. Furthermore, mice models demonstrated that MVSS elicited high titer antibodies and diminished damages in S. suis serotype 2 and Chz infection, significantly reduced sequelae, induced cytokine transcription, and decreased organ bacterial burdens after triple vaccination. Meanwhile, anti-rMVSS serum inhibited five important S. suis serotypes in vitro, exerted beneficial protective effects against S. suis infections and significantly reduced histopathological damage in mice. Given the above, it is possible to develop MVSS as a universal subunit vaccine against multiple serotypes of S. suis infections.
Collapse
Affiliation(s)
- Song Liang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shidan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinli Bao
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University, College of Life Science, Longyan University, Longyan 364012, China
| | - Yumin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572000, China
| |
Collapse
|
43
|
Uruén C, Fernandez A, Arnal JL, Del Pozo M, Amoribieta MC, de Blas I, Jurado P, Calvo JH, Gottschalk M, González-Vázquez LD, Arenas M, Marín CM, Arenas J. Genomic and phenotypic analysis of invasive Streptococcus suis isolated in Spain reveals genetic diversification and associated virulence traits. Vet Res 2024; 55:11. [PMID: 38268053 PMCID: PMC10807230 DOI: 10.1186/s13567-024-01267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes a major health problem in the pig production industry worldwide. Spain is one of the largest pig producers in the world. This work aimed to investigate the genetic and phenotypic features of invasive S. suis isolates recovered in Spain. A panel of 156 clinical isolates recovered from 13 Autonomous Communities, representing the major pig producers, were analysed. MLST and serotyping analysis revealed that most isolates (61.6%) were assigned to ST1 (26.3%), ST123 (18.6%), ST29 (9.6%), and ST3 (7.1%). Interestingly, 34 new STs were identified, indicating the emergence of novel genetic lineages. Serotypes 9 (27.6%) and 1 (21.8%) prevailed, followed by serotypes 7 (12.8%) and 2 (12.2%). Analysis of 13 virulence-associated genes showed significant associations between ST, serotype, virulence patterns, and clinical features, evidencing particular virulence traits associated with genetic clusters. The pangenome was generated, and the core genome was distributed in 7 Bayesian groups where each group included a variable set of over- and under-represented genes of different categories. The study provides comprehensive data and knowledge to improve the design of new vaccines, antimicrobial treatments, and bacterial typing approaches.
Collapse
Affiliation(s)
- Cristina Uruén
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
- Institute Agrofood of Aragón-IA2, University of Zaragoza-Center of Research and Technology of Aragón (CITA), Zaragoza, Spain
| | - Ana Fernandez
- Exopol. Veterinary Diagnostic and Autogenous Vaccine Laboratory, San Mateo de Gállego, Zaragoza, Spain
| | - José Luis Arnal
- Exopol. Veterinary Diagnostic and Autogenous Vaccine Laboratory, San Mateo de Gállego, Zaragoza, Spain
| | | | | | - Ignacio de Blas
- Institute Agrofood of Aragón-IA2, University of Zaragoza-Center of Research and Technology of Aragón (CITA), Zaragoza, Spain
- Unit of Infectious Diseases, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Paula Jurado
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
- Institute Agrofood of Aragón-IA2, University of Zaragoza-Center of Research and Technology of Aragón (CITA), Zaragoza, Spain
| | - Jorge Hugo Calvo
- Department of Animal Science, Center of Research and Technology of Aragón CITA, Zaragoza, Spain
- ARAID, Saragossa, Spain
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | | | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- CINBIO, Vigo, Spain
| | - Clara M Marín
- Institute Agrofood of Aragón-IA2, University of Zaragoza-Center of Research and Technology of Aragón (CITA), Zaragoza, Spain
- Department of Animal Science, Center of Research and Technology of Aragón CITA, Zaragoza, Spain
| | - Jesús Arenas
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain.
- Institute Agrofood of Aragón-IA2, University of Zaragoza-Center of Research and Technology of Aragón (CITA), Zaragoza, Spain.
| |
Collapse
|
44
|
Bleuzé M, Lavoie JP, Bédard C, Gottschalk M, Segura M. Encapsulated Streptococcus suis impairs optimal neutrophil functions which are not rescued by priming with colony-stimulating factors. PLoS One 2024; 19:e0296844. [PMID: 38261585 PMCID: PMC10805302 DOI: 10.1371/journal.pone.0296844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
The porcine pathogen and zoonotic agent Streptococcus suis induces an exacerbated inflammation in the infected hosts that leads to sepsis, meningitis, and sudden death. Several virulence factors were described for S. suis of which the capsular polysaccharide (CPS) conceals it from the immune system, and the suilysin exhibits cytotoxic activity. Although neutrophils are recruited rapidly upon S. suis infection, their microbicidal functions appear to be poorly activated against the bacteria. However, during disease, the inflammatory environment could promote neutrophil activation as mediators such as the granulocyte colony-stimulating factor granulocyte (G-CSF) and the granulocyte-macrophages colony-stimulating factor (GM-CSF) prime neutrophils and enhance their responsiveness to bacterial detection. Thus, we hypothesized that CPS and suilysin prevent an efficient activation of neutrophils by S. suis, but that G-CSF and GM-CSF rescue neutrophil activation, leading to S. suis elimination. We evaluated the functions of porcine neutrophils in vitro in response to S. suis and investigated the role of the CPS and suilysin on cell activation using isogenic mutants of the bacteria. We also studied the influence of G-CSF and GM-CSF on neutrophil response to S. suis by priming the cells with recombinant proteins. Our study confirmed that CPS prevents S. suis-induced activation of most neutrophil functions but participates in the release of neutrophil-extracellular traps (NETs). Priming with G-CSF did not influence cell activation, but GM-CSF strongly promote IL-8 release, indicating its involvement in immunomodulation. However, priming did not enhance microbicidal functions. Studying the interaction between S. suis and neutrophils-first responders in host defense-remains fundamental to understand the immunopathogenesis of the infection and to develop therapeutical strategies related to neutrophils' defense against this bacterium.
Collapse
Affiliation(s)
- Marêva Bleuzé
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Christian Bédard
- Faculty of Veterinary Medicine, Department of Pathology and Microbiology, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Mariela Segura
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP) & Swine and Poultry Infectious Diseases Research Center (CRIPA), Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
45
|
Petrocchi Rilo M, Gutiérrez Martín CB, Acebes Fernández V, Aguarón Turrientes Á, González Fernández A, Miguélez Pérez R, Martínez Martínez S. Streptococcus suis Research Update: Serotype Prevalence and Antimicrobial Resistance Distribution in Swine Isolates Recovered in Spain from 2020 to 2022. Vet Sci 2024; 11:40. [PMID: 38250946 PMCID: PMC10819597 DOI: 10.3390/vetsci11010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to update the Streptococcus suis serotype distribution in Spain by analysing 302 clinical isolates recovered from diseased pigs between 2020 and 2022. The main objectives were to identify prevalent serotypes, differentiate specific serotypes 1, 14, 2, and 1/2, investigate specific genotypic and phenotypic antimicrobial resistance features, and explore associations between resistance genes and phenotypic resistances. Serotypes 9 (21.2%), 1 (16.2%), 2 (15.6%), 3 (6%), and 7 (5.6%) were the most prevalent, whereas serotypes 14 and 1/2 corresponded with 4.3% and 0.7% of all isolates. Antimicrobial resistance genes, including tet(O), erm(B), lnu(B), lsa(E), tet(M), and mef(A/E), were analysed, which were present in 85.8%, 65.2%, 7%, 7%, 6.3%, and 1% of the samples, respectively. Susceptibility testing for 18 antimicrobials revealed high resistance levels, particularly for clindamycin (88.4%), chlortetracycline (89.4%), and sulfadimethoxine (94.4%). Notably, seven significant associations (p < 0.0001) were detected, correlating specific antimicrobial resistance genes to the observed phenotypic resistance. These findings contribute to understanding the S. suis serotype distribution and its antibiotic resistance profiles in Spain, offering valuable insights for veterinary and public health efforts in managing S. suis-associated infections.
Collapse
Affiliation(s)
- Máximo Petrocchi Rilo
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - César Bernardo Gutiérrez Martín
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - Vanessa Acebes Fernández
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | | | - Alba González Fernández
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - Rubén Miguélez Pérez
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - Sonia Martínez Martínez
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| |
Collapse
|
46
|
Wu T, Jiang H, Li F, Jiang X, Wang J, Wei S, Sun Y, Tian Y, Chu H, Shi Y, Zhang N, Li N, Lei L. O-acetyl-homoserine sulfhydrylase deficient Streptococcus suis serotype 2 strain SC19 becomes an avirulent strain and provides immune protection against homotype infection in mice. Vet Microbiol 2024; 288:109943. [PMID: 38113574 DOI: 10.1016/j.vetmic.2023.109943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
O-acetyl-homoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis, which catalyzes the conversion of o-acetyl-homoserine (OAH) to homocysteine. In our previous study, we found that OAHS of Streptococcus suis serotype 2 (SS2) can interact with the porcine blood-brain barrier (BBB) model, but whether OAHS regulates the penetration of BBB during SS2 infection is still unclear. To explore the role of OAHS in SS2 infection, OAHS-deficient SS2 mutant strain (SC19-ΔOAHS) and gene complemental strain (SC19-cΔOAHS) were constructed. Compared to the parent strain, with the loss of oahs, the chain length of SC19-ΔOAHS was shortened, the virulence was significantly reduced, the survival rate of mice infected with SC19-ΔOAHS was obviously increased accompanied by the relieved clinical symptoms. And the survival ability of SC19-ΔOAHS in whole blood was also remarkably decreased. Interestingly, the adhesion of SC19-ΔOAHS to endothelial cells was markedly increased, but the deficiency of OAHS significantly inhibited the strain penetrating BBB both in vivo and in vitro. Most of these phenomena can be reversed by the complemental strain (SC19-cΔOAHS). Further study showed that the deficiency of OAHS severely reduced SC19-induced endothelial cell apoptosis, tight junctions (TJs) protein impairment and the expression of SS2 virulence factor Enolase (Eno), involved in the destruction of BBB. Additionally, SC19-ΔOAHS immunized mice were able to resist SC19 or JZLQ022 infection. In conclusion, we confirmed that OAHS promoted the pathogenicity by enhancing host's BBB permeability and immune escape, and SC19- ΔOAHS is a potential live vaccine.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Hexiang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Fengyang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shaopeng Wei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yi Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanyan Tian
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hong Chu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Shi
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
| | - Nan Zhang
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Liancheng Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Veterinary Medicine, College of Animal Science, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
47
|
Lee CY, Zakaria Z, Selvarajah GT, Mustaffa-Kamal F, Voon KGL, Fong MWC, Ooi PT. Screening of Streptococcus suis in swine workers of selected states in Peninsular Malaysia. Vet World 2024; 17:1-7. [PMID: 38406356 PMCID: PMC10884579 DOI: 10.14202/vetworld.2024.1-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Streptococcus suis is a zoonotic pathogen that is highly associated with contact between live pigs and raw pig material. In view of the recent reports of human infections in Malaysia, epidemiological data on the status of S. suis in the human population, especially among people working closely with pigs and/or raw pork, should be provided. The aim of this study was to detect S. suis among individuals working in the swine industry in several major pig production areas in Peninsular Malaysia. Materials and Methods Demographic information, exposure determinants, and oral swabs were collected from swine personnel, including farmers, butchers, and veterinarians. Oral swabs were subjected to bacterial isolation and conventional polymerase chain reaction (PCR) assays for S. suis detection. Results The study included 40 participants working in the swine industry, with a predominant representation of males (62.5%) and Malaysian Chinese individuals (60.0%) who consumed pork (92.5%). Notably, none of the participants reported consuming raw or partially cooked pork. In spite of their occupational exposure risk, none of the oral swabs showed positive results for S. suis infection. Conclusion To the best of our knowledge, this is the first report and detection study of S. suis using oral swabs obtained from swine personnel in Peninsular Malaysia.
Collapse
Affiliation(s)
- Chee Yien Lee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zunita Zakaria
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Gayathri Thevi Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- UPM - MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Farina Mustaffa-Kamal
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kenny Gah Leong Voon
- Division of Biomedical Science, School of Pharmacy, University of Nottingham, 43500 Semenyih, Selangor, Malaysia
| | - Michelle Wai Cheng Fong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
48
|
Dolbec D, Lehoux M, de Beauville AA, Zahn A, Di Noia JM, Segura M. Unmutated but T cell dependent IgM antibodies targeting Streptococcus suis play an essential role in bacterial clearance. PLoS Pathog 2024; 20:e1011957. [PMID: 38241393 PMCID: PMC10829992 DOI: 10.1371/journal.ppat.1011957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Streptococcus suis serotype 2 is an important encapsulated bacterial swine pathogen and zoonotic agent for which no effective vaccine exists. The interaction with B cells and the humoral response against S. suis are poorly understood despite their likely relevance for a potential vaccine. We evaluated germinal center (GC) B cell kinetics, as well as the production and role of S. suis-specific antibodies following infections in a mouse model. We found that mice infected with S. suis developed GC that peaked 13-21 days post-infection. GC further increased and persisted upon periodic reinfection that mimics real life conditions in swine farms. Anti-S. suis IgM and several IgG subclasses were produced, but antibodies against the S. suis capsular polysaccharide (CPS) were largely IgM. Interestingly, depletion of total IgG from the wild-type mice sera had no effect on bacterial killing by opsonophagocytosis in vitro. Somatic hypermutation and isotype switching were dispensable for controlling the infection or anti-CPS IgM production. However, T cell-deficient (Tcrb-/-) mice were unable to control bacteremia, produce optimal anti-CPS IgM titers, or elicit antibodies with opsonophagocytic activity. SAP deficiency, which prevents GC formation but not extrafollicular B cell responses, ablated anti S. suis-IgG production but maintained IgM production and eliminated the infection. In contrast, B cell deficient mice were unable to control bacteremia. Collectively, our results indicate that the antibody response plays a large role in immunity against S. suis, with GC-independent but T cell-dependent germline IgM being the major effective antibody specificities. Our results further highlight the importance IgM, and potentially anti-CPS antibodies, in clearing S. suis infections and provide insight for future development of S. suis vaccines.
Collapse
Affiliation(s)
- Dominic Dolbec
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mélanie Lehoux
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Alexis Asselin de Beauville
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Center for Immunity, Inflammation and Infectious Diseases, Quebec, Canada
| | - Javier Marcelo Di Noia
- Institut de Recherches Cliniques de Montréal, Center for Immunity, Inflammation and Infectious Diseases, Quebec, Canada
- Department of Medicine, Faculty of Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
49
|
Weldearegay YB, Brogaard L, Nerlich A, Schaaf D, Heegaard PMH, Valentin-Weigand P. Transcriptional Host Responses to Infection with Streptococcus suis in a Porcine Precision-Cut Lung Slice Model: Between-Strain Differences Suggest Association with Virulence Potential. Pathogens 2023; 13:4. [PMID: 38276150 PMCID: PMC10820225 DOI: 10.3390/pathogens13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Streptococcus suis is a porcine and zoonotic pathogen in the upper respiratory tract, expressing different capsular serotypes and virulence-associated factors. Given its genomic and phenotypic diversity, the virulence potential of S. suis cannot be attributed to a single factor. Since strong inflammatory response is a hallmark of S. suis infection, the objective of this study was to investigate the differences in transcriptional host responses to two serotype 2 and one serotype 9 strains. Both serotypes are frequently found in clinical isolates. We infected porcine precision-cut lung slices (PCLSs) with two serotype 2 strains of high (strain S10) and low (strain T15) virulence, and a serotype 9 strain 8067 of moderate virulence. We observed higher expression of inflammation-related genes during early infection with strains T15 and 8067, in contrast to infection with strain 10, whose expression peaked late. In addition, bacterial gene expression from infected PCLSs revealed differences, mainly of metabolism-related and certain virulence-associated bacterial genes amongst these strains. We conclude that the strain- and time-dependent induction of genes involved in innate immune response might reflect clinical outcomes of infection in vivo, implying rapid control of infection with less virulent strains compared to the highly virulent strain S10.
Collapse
Affiliation(s)
- Yenehiwot Berhanu Weldearegay
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
| | - Louise Brogaard
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.B.); (P.M.H.H.)
| | - Andreas Nerlich
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Désirée Schaaf
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
| | - Peter M. H. Heegaard
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.B.); (P.M.H.H.)
- Department of Health Technology, Experimental & Translational Immunology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (Y.B.W.); (A.N.); (D.S.)
| |
Collapse
|
50
|
Hosseindoust A, Choi Y, Ha S, Tajudeen H, Mun J, Kinara E, Kim Y, Kim J. Anti-Bordetella bronchiseptica effects of targeted bacteriophages via microbiome and metabolic mediated mechanisms. Sci Rep 2023; 13:21755. [PMID: 38066337 PMCID: PMC10709636 DOI: 10.1038/s41598-023-49248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Bordetella bronchiseptica poses a significant challenge in the context of respiratory infections, particularly in weanling pigs. In this study, we investigated the impact of a novel targeted bacteriophage in controlling B. bronchiseptica challenge (BBC) in an experimental design involving five distinct treatment groups: NC (no challenge), PC (BBC challenge), BF (108 pfu bacteriophage/kg diet + BBC), BN (2 × 107 pfu/day bacteriophage by nasal spray + BBC), and AT (antibiotic + BBC). The experiment was conducted for 2 weeks. The highest turbinate score was observed in the PC. The BF treatment showed higher plasma IL (interleukine)-1β and IL-6 compared with the BN and AT treatments. Plasma concentrations of IL-1β were increased in the BF pigs compared with the BN, AT, and NC. Among the BBC groups, the PC treatment exhibited a higher abundance of Staphylococcus. aureus and B. bronchiseptica in the lung. A lower S. aureus, Streptococcus. suis, and B. bronchiseptica colonization was detected in the AT compared with the BF and BN treatments. The BF showed lower plasma zonulin compared with the BN and AT. A higher plasma concentration of superoxide dismutase was observed in the BF and AT compared with PC and BN. The BN influenced the glycine, serine-threonine metabolism; glycerolipid metabolism; glyoxylate-dicarboxylate metabolism; and arachidonic acid metabolism compared with the NC. In conclusion, nasal-sprayed bacteriophage effectively controlled B. bronchiseptica infection, however, their efficiency was lower than the antibiotic.
Collapse
Affiliation(s)
- Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoHan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - SangHun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Habeeb Tajudeen
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - JunYoung Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Elick Kinara
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - YoungIn Kim
- CTC Bio, Inc., Seoul, 138-858, Republic of Korea
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|