1
|
Moyo NP, Trifunovic Z, Roberts N, Gras SL, Martin GJO. Recovery of Sustainable Yeast Proteins: A Mechanistic Study of Autolysis and Enzyme Proteolysis as Pretreatments for Mechanical Cell Rupture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9197-9209. [PMID: 40190058 DOI: 10.1021/acs.jafc.5c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Single-cell protein from yeast can provide a sustainable means to meet increasing protein demands. For yeast protein to be digestible it must be released from within the cells using methods such as autolysis, enzyme proteolysis, and mechanical rupture. This study investigates the combination of autolysis or proteolysis and subsequent mechanical rupture on the protein release. The effects of autolysis and proteolysis using papain on the size, wall thickness, and internal structure of freshly harvested and 7 day stored Saccharomyces cerevisiae cells were investigated using particle sizing and electron microscopy. Samples were then subjected to high-pressure homogenization (single pass, 800 bar) and the extent of cell rupture and protein solubilization determined. During autolysis and proteolysis, intracellular contents were released, shrinking the cells, allowing the elastic walls to contract and thicken. Autolyzed cells were mostly deformed rather than ruptured by high-pressure homogenization, which expelled cell contents. Intact untreated cells with thin, stretched cell walls burst during high-pressure homogenization, with the proteins mostly remaining unsolubilized. Stored cells were smaller with thicker cell walls and generally more difficult to rupture. These findings can assist in developing efficient processes for recovering sustainably produced proteins from yeast and other microorganisms.
Collapse
Affiliation(s)
- Nobukhosi P Moyo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zlatan Trifunovic
- Ian Holmes Imaging Centre at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nic Roberts
- Bega Foods, 1 Vegemite Way, Port Melbourne, Victoria 3207, Australia
| | - Sally L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gregory J O Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Wang G, Li M, Fan B, Liang X, Wang J, Shi Y, Zheng Q, Li D, An T. Introduction of human m 6Am methyltransferase PCIF1 facilitates the biosynthesis of terpenoids in Saccharomyces cerevisiae. Microb Cell Fact 2025; 24:78. [PMID: 40176045 PMCID: PMC11963462 DOI: 10.1186/s12934-025-02701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND The application of synthetic biology techniques has been recognized as an efficient alternative for the biosynthesis of high-value natural products, and various metabolic engineering strategies have been employed to develop microbial cell factories. However, exploration of more efficient metabolic pathway optimization strategies is still required to further improve the producing potential of microbial cell factories to meet the industrial requirements. RESULTS In this study, we found that the introduction of human N6,2'-O-dimethyladenosine (m6Am) methyltransferase PCIF1 into Saccharomyces cerevisiae significantly promoted the biosynthesis of squalene, increased by 2.3-fold. Transcriptome analysis revealed that PCIF1 upregulated genes associated with glycolysis and acetyl-CoA biosynthesis pathways, and also activated the cell wall integrity mitogen-activated protein kinase (MAPK) pathway to improve the cell wall stress response. Importantly, PCIF1 expression notably enhanced squalene and sesquiterpenoid longifolene production in engineered yeast strains, with 2.3-fold and 1.4-fold higher increase, respectively. CONCLUSION This study presents a PCIF1-based metabolic engineering strategy that could serve as an effective approach for the optimization of terpene biosynthesis in yeast cell factories.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Jun Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yanbing Shi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Reignier Y, Minc N. Analysis of Cell Wall Mechanics in Fission Yeast. Methods Mol Biol 2025; 2862:77-91. [PMID: 39527194 DOI: 10.1007/978-1-0716-4168-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The growth and shape of fungal cells, such as fission yeast, are strongly constrained by the mechanics of their cell wall (CW). The cell wall encases the plasma membrane and defines instantaneous cell shapes by opposing turgor pressure-derived stress on the cell surface. Measuring cell wall mechanical properties may thus bring key insights into the regulation of cell morphogenesis, cell growth, but also cell surface integrity and survival. The fission yeast cell wall has a thickness of a few tens to hundreds of nanometers, and bulk elasticity similar to that of rubber (tens of MPa). These mechanical properties vary locally around single cells, for instance, at the new vs. old growing ends, or birth scars, and may also largely depend on growth conditions and life cycle phases. While cell wall thickness and mechanics have been traditionally measured by complex methodologies including electron microscopy and atomic force microscopy, we here propose a method based on light microscopy to infer with medium-throughput cell wall mechanical properties, as well as turgor pressure in time and space in living cells. This analysis will enhance our appreciation of the mechanical regulation of fission yeast cell morphogenesis and may be directly transferable to the study of other fungal cells.
Collapse
Affiliation(s)
- Yannis Reignier
- Equipe Labellisée LIGUE Contre le Cancer, Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
| | - Nicolas Minc
- Equipe Labellisée LIGUE Contre le Cancer, Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France.
| |
Collapse
|
4
|
Bekirian C, Valsecchi I, Bachellier-Bassi S, Scandola C, Guijarro JI, Chauvel M, Mourer T, Gow NAR, Aimanianda VK, d'Enfert C, Fontaine T. β-1,6-Glucan plays a central role in the structure and remodeling of the bilaminate fungal cell wall. eLife 2024; 13:RP100569. [PMID: 39636210 PMCID: PMC11620752 DOI: 10.7554/elife.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host-pathogen interactions.
Collapse
Affiliation(s)
- Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Isabel Valsecchi
- EA DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (EnvA), USC AnsesCréteilFrance
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging UnitParisFrance
| | - J Inaki Guijarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological PlatformParisFrance
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Mourer
- Institut Pasteur, Advanced Molecular Virology GroupParisFrance
| | - Neil AR Gow
- Medical Research Council Centre for Medical Mycology, University of ExeterExeterUnited Kingdom
| | | | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| |
Collapse
|
5
|
Chen H, Wang Y, Huang Z, Xiao T, Guo T, Wang Y, Wu C, Ren Z. Elastic and recoverable sponges based on collagen/yeast β-glucan for quick hemostasis. Int J Biol Macromol 2024; 282:137095. [PMID: 39486727 DOI: 10.1016/j.ijbiomac.2024.137095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
In this investigation, we aimed to engineer sponges with exceptional mechanical and hemostatic capabilities for effective wound healing. By combining collagen, a stiff fibril protein in ECM, with β-glucan, an elastic and triple-helical polysaccharide from yeast cell wall, we prepared a series of composite sponges, designated as CY sponges. This material exhibited a uniform pore structure, displaying enhanced elasticity and shape recovery ability compared to pure collagen sponges. Also, the incorporation of Yeast β-glucan (YG) significantly improved the fluid absorption ability and stability of the sponges. In vitro hemostasis tests demonstrated that the CY sponges exhibited a notably lower in vitro coagulation index (19.21 %) compared to the collagen control (64.84 %), accompanied by superior erythrocyte (64.64 %) and platelet (64.95 %) adhesion properties. Animal studies further substantiated the sponge's hemostatic efficacy, as CY40 led to a reduction in average bleeding volume by 25.26 % and 28.97 %, and a shorter hemostatic time by 31.70 % and 30.77 % compared to collagen, indicating accelerated wound healing. These findings suggest that the addition of yeast β-glucan into collagen sponges can improve their elasticity, shape recovery ability, hemostatic performance and wound repair ability.
Collapse
Affiliation(s)
- Huaizhong Chen
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yumeng Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhihao Huang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Tian Xiao
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Tengfei Guo
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chaoxi Wu
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
6
|
Boscq S, Billoud B, Theodorou I, Joemmanbaks T, Dufourt T, Charrier B. MUM, a maternal unknown message, inhibits early establishment of the medio-lateral axis in the embryo of the kelp Saccharina latissima. Development 2024; 151:dev202732. [PMID: 39190296 PMCID: PMC11423915 DOI: 10.1242/dev.202732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Brown algae are multicellular photosynthetic organisms that have evolved independently of plants and other algae. Here, we have studied the determinism of body axis formation in the kelp Saccharina latissima. After microdissection of the embryo, we show that the stalk, an empty cell that retains the embryo on the maternal tissue, represses longitudinal cell divisions in the early embryo, thereby reinforcing the establishment of the initial apico-basal axis. In addition, it promotes cell growth and controls cell shape and arrangement in the flat oblong embryo composed of cells aligned in rows and columns. Although the stalk persists for several weeks until the embryo reaches at least 500 cells, proper embryogenesis requires connection to maternal tissue only during the first 4 days after fertilisation, i.e. before the embryo reaches the 8-cell stage. Transplantation experiments indicate that the maternal signal is not diffused in seawater, but requires contact between the embryo and the maternal tissue. This first global quantitative study of brown algal embryogenesis highlights the role of MUM, an unknown maternal message, in the control of growth axes and tissue patterning in kelp embryos.
Collapse
Affiliation(s)
- Samuel Boscq
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Bernard Billoud
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Ioannis Theodorou
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Tanweer Joemmanbaks
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Tanguy Dufourt
- Institut de Génomique Fonctionnelle de Lyon (IGFL), UMR5242, ENS-Lyon, CNRS, INRAE, UCBL, 32-34 Avenue Tony Garnier, 69007 Lyon, France
| | - Bénédicte Charrier
- Morphogenesis of Macro Algae, UMR8227, CNRS - Sorbonne University, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| |
Collapse
|
7
|
Robinson JM, Annells A, Cando-Dumancela C, Breed MF. Sonic restoration: acoustic stimulation enhances plant growth-promoting fungi activity. Biol Lett 2024; 20:20240295. [PMID: 39353567 PMCID: PMC11444772 DOI: 10.1098/rsbl.2024.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Ecosystem restoration interventions often utilize visible elements to restore an ecosystem (e.g. replanting native plant communities and reintroducing lost species). However, using acoustic stimulation to help restore ecosystems and promote plant growth has received little attention. Our study aimed to assess the effect of acoustic stimulation on the growth rate and sporulation of the plant growth-promoting fungus Trichoderma harzianum Rifai, 1969. We played a monotone acoustic stimulus (80 dB sound pressure level (SPL) at a peak frequency of 8 kHz and a bandwidth at -10 dB from the peak of 6819 Hz-parameters determined via review and pilot research) over 5 days to T. harzianum to assess whether acoustic stimulation affected the growth rate and sporulation of this fungus (control samples received only ambient sound stimulation less than 30 dB). We show that the acoustic stimulation treatments resulted in increased fungal biomass and enhanced T. harzianum conidia (spore) activity compared to controls. These results indicate that acoustic stimulation influences plant growth-promoting fungal growth and potentially facilitates their functioning (e.g. stimulating sporulation). The mechanism responsible for this phenomenon may be fungal mechanoreceptor stimulation and/or potentially a piezoelectric effect; however, further research is required to confirm this hypothesis. Our novel study highlights the potential of acoustic stimulation to alter important fungal attributes, which could, with further development, be harnessed to aid ecosystem restoration and sustainable agriculture.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Amy Annells
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Christian Cando-Dumancela
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
8
|
Bandara A, Li E, Charlebois DA. Magnetic field platform for experiments on well-mixed and spatially structured microbial populations. BIOPHYSICAL REPORTS 2024; 4:100165. [PMID: 38897412 PMCID: PMC11276921 DOI: 10.1016/j.bpr.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Magnetic fields have been shown to affect sensing, migration, and navigation in living organisms. However, the effects of magnetic fields on microorganisms largely remain to be elucidated. We develop an open-source, 3D-printed magnetic field exposure device to perform experiments on well-mixed and spatially structured microbial populations. This device is designed in AutoCAD, modeled in COMSOL, and validated using a Gaussmeter and experiments on the budding yeast Saccharomyces cerevisiae. We find that static magnetic field exposure slows the spatially structured expansion of yeast mats that expand in two dimensions, but not yeast mats that expand in three dimensions, across the surface of semi-solid yeast extract-peptone-dextrose agar media. We also find that magnetic fields do not affect the growth of planktonic yeast cells in well-mixed liquid yeast extract-peptone-dextrose media. This study provides an adaptable device for performing controlled magnetic field experiments on microbes and advances our understanding of the effects of magnetic fields on fungi.
Collapse
Affiliation(s)
- Akila Bandara
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Enoki Li
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel A Charlebois
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Chevalier L, Klingelschmitt F, Mousseron L, Minc N. Mechanical strategies supporting growth and size diversity in Filamentous Fungi. Mol Biol Cell 2024; 35:br17. [PMID: 39046771 PMCID: PMC11449389 DOI: 10.1091/mbc.e24-04-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
The stereotypical tip growth of filamentous fungi supports their lifestyles and functions. It relies on the polarized remodeling and expansion of a protective elastic cell wall (CW) driven by large cytoplasmic turgor pressure. Remarkably, hyphal filament diameters and cell elongation rates can vary extensively among different fungi. To date, however, how fungal cell mechanics may be adapted to support these morphological diversities while ensuring surface integrity remains unknown. Here, we combined super-resolution imaging and deflation assays to measure local CW thickness, elasticity and turgor in a set of fungal species spread on the evolutionary tree that spans a large range in cell size and growth speeds. While CW elasticity exhibited dispersed values, presumably reflecting differences in CW composition, both thickness and turgor scaled in dose-dependence with cell diameter and growth speeds. Notably, larger cells exhibited thinner lateral CWs, and faster cells thinner apical CWs. Counterintuitively, turgor pressure was also inversely scaled with cell diameter and tip growth speed, challenging the idea that turgor is the primary factor dictating tip elongation rates. We propose that fast-growing cells with rapid CW turnover have evolved strategies based on a less turgid cytoplasm and thin walls to safeguard surface integrity and survival.
Collapse
Affiliation(s)
- Louis Chevalier
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Flora Klingelschmitt
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Ludovic Mousseron
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| |
Collapse
|
10
|
Maremonti MI, Panzetta V, Netti PA, Causa F. HiViPore: a highly viable in-flow compression for a one-step cell mechanoporation in microfluidics to induce a free delivery of nano- macro-cargoes. J Nanobiotechnology 2024; 22:441. [PMID: 39068464 PMCID: PMC11282774 DOI: 10.1186/s12951-024-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Among mechanoporation techniques for intracellular delivery, microfluidic approaches succeed in high delivery efficiency and throughput. However, especially the entry of large cargoes (e.g. DNA origami, mRNAs, organic/inorganic nanoparticles) is currently impaired since it requires large cell membrane pores with the need to apply multi-step processes and high forces, dramatically reducing cell viability. RESULTS Here, HiViPore presents as a microfluidic viscoelastic contactless compression for one-step cell mechanoporation to produce large pores while preserving high cell viability. Inducing an increase of curvature at the equatorial region of cells, formation of a pore with a size of ~ 1 μm is obtained. The poration is coupled to an increase of membrane tension, measured as a raised fluorescence lifetime of 12% of a planarizable push-pull fluorescent probe (Flipper-TR) labelling the cell plasma membrane. Importantly, the local disruptions of cell membrane are transient and non-invasive, with a complete recovery of cell integrity and functions in ~ 10 min. As result, HiViPore guarantees cell viability as high as ~ 90%. In such conditions, an endocytic-free diffusion of large nanoparticles is obtained with typical size up to 500 nm and with a delivery efficiency up to 12 times higher than not-treated cells. CONCLUSIONS The proposed one-step contactless mechanoporation results in an efficient and safe approach for advancing intracellular delivery strategies. In detail, HiViPore solves the issues of low cell viability when multiple steps of poration are required to obtain large pores across the cell plasma membrane. Moreover, the compression uses a versatile, low-cost, biocompatible viscoelastic fluid, thus also optimizing the operational costs. With HiViPore, we aim to propose an easy-to-use microfluidic device to a wide range of users, involved in biomedical research, imaging techniques and nanotechnology for intracellular delivery applications in cell engineering.
Collapse
Affiliation(s)
- Maria Isabella Maremonti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy.
| |
Collapse
|
11
|
Delmarre L, Harté E, Devin A, Argoul P, Argoul F. Two-layer elastic models for single-yeast compressibility with flat microlevers. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024:10.1007/s00249-024-01710-2. [PMID: 38703210 DOI: 10.1007/s00249-024-01710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 05/06/2024]
Abstract
Unicellular organisms such as yeast can survive in very different environments, thanks to a polysaccharide wall that reinforces their extracellular membrane. This wall is not a static structure, as it is expected to be dynamically remodeled according to growth stage, division cycle, environmental osmotic pressure and ageing. It is therefore of great interest to study the mechanics of these organisms, but they are more difficult to study than other mammalian cells, in particular because of their small size (radius of a few microns) and their lack of an adhesion machinery. Using flat cantilevers, we perform compression experiments on single yeast cells (S. cerevisiae) on poly-L-lysine-coated grooved glass plates, in the limit of small deformation using an atomic force microscope (AFM). Thanks to a careful decomposition of force-displacement curves, we extract local scaling exponents that highlight the non-stationary characteristic of the yeast behavior upon compression. Our multi-scale nonlinear analysis of the AFM force-displacement curves provides evidence for non-stationary scaling laws. We propose to model these phenomena based on a two-component elastic system, where each layer follows a different scaling law..
Collapse
Affiliation(s)
- L Delmarre
- LOMA, Laboratoire Ondes et Matière d'Aquitaine, CNRS, Université de Bordeaux, Talence, France
| | - E Harté
- LOMA, Laboratoire Ondes et Matière d'Aquitaine, CNRS, Université de Bordeaux, Talence, France
| | - A Devin
- IBGC, Institut de Biologie et Génétique Cellulaire, CNRS, Université de Bordeaux, Bordeaux, France
| | - P Argoul
- LVMT, Ecole des Ponts, Université Gustave Eiffel & MAST-EMGCU, Marne la Vallée, France
| | - F Argoul
- LOMA, Laboratoire Ondes et Matière d'Aquitaine, CNRS, Université de Bordeaux, Talence, France.
| |
Collapse
|
12
|
Shen N, Xie H, Liu K, Li X, Wang L, Deng Y, Chen L, Bian Y, Xiao Y. Near-gapless genome and transcriptome analyses provide insights into fruiting body development in Lentinula edodes. Int J Biol Macromol 2024; 263:130610. [PMID: 38447851 DOI: 10.1016/j.ijbiomac.2024.130610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Fruiting body development in macrofungi is an intensive research subject. In this study, high-quality genomes were assembled for two sexually compatible monokaryons from a heterokaryotic Lentinula edodes strain WX1, and variations in L. edodes genomes were analyzed. Specifically, differential gene expression and allele-specific expression (ASE) were analyzed using the two monokaryotic genomes and transcriptome data from four different stages of fruiting body development in WX1. Results revealed that after aeration, mycelia sensed cell wall stress, pheromones, and a decrease in CO2 concentration, leading to up-regulated expression in genes related to cell adhesion, cell wall remodeling, proteolysis, and lipid metabolism, which may promote primordium differentiation. Aquaporin genes and those related to proteolysis, mitosis, lipid, and carbohydrate metabolism may play important roles in primordium development, while genes related to tissue differentiation and sexual reproduction were active in fruiting body. Several essential genes for fruiting body development were allele-specifically expressed and the two nuclear types could synergistically regulate fruiting body development by dominantly expressing genes with different functions. ASE was probably induced by long terminal repeat-retrotransposons. Findings here contribute to the further understanding of the mechanism of fruiting body development in macrofungi.
Collapse
Affiliation(s)
- Nan Shen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haoyu Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kefang Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinru Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lu Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Youjin Deng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lianfu Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinbing Bian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Xiao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
13
|
Kalebina TS, Rekstina VV, Pogarskaia EE, Kulakovskaya T. Importance of Non-Covalent Interactions in Yeast Cell Wall Molecular Organization. Int J Mol Sci 2024; 25:2496. [PMID: 38473742 DOI: 10.3390/ijms25052496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This review covers a group of non-covalently associated molecules, particularly proteins (NCAp), incorporated in the yeast cell wall (CW) with neither disulfide bridges with proteins covalently attached to polysaccharides nor other covalent bonds. Most NCAp, particularly Bgl2, are polysaccharide-remodeling enzymes. Either directly contacting their substrate or appearing as CW lipid-associated molecules, such as in vesicles, they represent the most movable enzymes and may play a central role in CW biogenesis. The absence of the covalent anchoring of NCAp allows them to be there where and when it is necessary. Another group of non-covalently attached to CW molecules are polyphosphates (polyP), the universal regulators of the activity of many enzymes. These anionic polymers are able to form complexes with metal ions and increase the diversity of non-covalent interactions through charged functional groups with both proteins and polysaccharides. The mechanism of regulation of polysaccharide-remodeling enzyme activity in the CW is unknown. We hypothesize that polyP content in the CW is regulated by another NCAp of the CW-acid phosphatase-which, along with post-translational modifications, may thus affect the activity, conformation and compartmentalization of Bgl2 and, possibly, some other polysaccharide-remodeling enzymes.
Collapse
Affiliation(s)
- Tatyana S Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valentina V Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elizaveta E Pogarskaia
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatiana Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino 142290, Russia
| |
Collapse
|
14
|
Blöbaum L, Torello Pianale L, Olsson L, Grünberger A. Quantifying microbial robustness in dynamic environments using microfluidic single-cell cultivation. Microb Cell Fact 2024; 23:44. [PMID: 38336674 PMCID: PMC10854032 DOI: 10.1186/s12934-024-02318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Microorganisms must respond to changes in their environment. Analysing the robustness of functions (i.e. performance stability) to such dynamic perturbations is of great interest in both laboratory and industrial settings. Recently, a quantification method capable of assessing the robustness of various functions, such as specific growth rate or product yield, across different conditions, time frames, and populations has been developed for microorganisms grown in a 96-well plate. In micro-titer-plates, environmental change is slow and undefined. Dynamic microfluidic single-cell cultivation (dMSCC) enables the precise maintenance and manipulation of microenvironments, while tracking single cells over time using live-cell imaging. Here, we combined dMSCC and a robustness quantification method to a pipeline for assessing performance stability to changes occurring within seconds or minutes. RESULTS Saccharomyces cerevisiae CEN.PK113-7D, harbouring a biosensor for intracellular ATP levels, was exposed to glucose feast-starvation cycles, with each condition lasting from 1.5 to 48 min over a 20 h period. A semi-automated image and data analysis pipeline was developed and applied to assess the performance and robustness of various functions at population, subpopulation, and single-cell resolution. We observed a decrease in specific growth rate but an increase in intracellular ATP levels with longer oscillation intervals. Cells subjected to 48 min oscillations exhibited the highest average ATP content, but the lowest stability over time and the highest heterogeneity within the population. CONCLUSION The proposed pipeline enabled the investigation of function stability in dynamic environments, both over time and within populations. The strategy allows for parallelisation and automation, and is easily adaptable to new organisms, biosensors, cultivation conditions, and oscillation frequencies. Insights on the microbial response to changing environments will guide strain development and bioprocess optimisation.
Collapse
Affiliation(s)
- Luisa Blöbaum
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Luca Torello Pianale
- Industrial Biotechnology Division, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Lisbeth Olsson
- Industrial Biotechnology Division, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany.
- Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
15
|
Diankristanti PA, Lin YC, Yi YC, Ng IS. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. BIORESOURCE TECHNOLOGY 2024; 393:130149. [PMID: 38049017 DOI: 10.1016/j.biortech.2023.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.
Collapse
Affiliation(s)
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, USA
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Delesalle C, Vert G, Fujita S. The cell surface is the place to be for brassinosteroid perception and responses. NATURE PLANTS 2024; 10:206-218. [PMID: 38388723 DOI: 10.1038/s41477-024-01621-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Adjusting the microenvironment around the cell surface is critical to responding to external cues or endogenous signals and to maintaining cell activities. In plant cells, the plasma membrane is covered by the cell wall and scaffolded with cytoskeletal networks, which altogether compose the cell surface. It has long been known that these structures mutually interact, but the mechanisms that integrate the whole system are still obscure. Here we spotlight the brassinosteroid (BR) plant hormone receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) since it represents an outstanding model for understanding cell surface signalling and regulation. We summarize how BRI1 activity and dynamics are controlled by plasma membrane components and their associated factors to fine-tune signalling. The downstream signals, in turn, manipulate cell surface structures by transcriptional and post-translational mechanisms. Moreover, the changes in these architectures impact BR signalling, resulting in a feedback loop formation. This Review discusses how BRI1 and BR signalling function as central hubs to integrate cell surface regulation.
Collapse
Affiliation(s)
- Charlotte Delesalle
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Satoshi Fujita
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France.
| |
Collapse
|
17
|
Lemière J, Chang F. Quantifying turgor pressure in budding and fission yeasts based upon osmotic properties. Mol Biol Cell 2023; 34:ar133. [PMID: 37903220 PMCID: PMC10848946 DOI: 10.1091/mbc.e23-06-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
Walled cells, such as plants, fungi, and bacteria cells, possess a high internal hydrostatic pressure, termed turgor pressure, that drives volume growth and contributes to cell shape determination. Rigorous measurement of turgor pressure, however, remains challenging, and reliable quantitative measurements, even in budding yeast are still lacking. Here, we present a simple and robust experimental approach to access turgor pressure in yeasts based upon the determination of isotonic concentration using protoplasts as osmometers. We propose three methods to identify the isotonic condition - three-dimensional cell volume, cytoplasmic fluorophore intensity, and mobility of a cytGEMs nano-rheology probe - that all yield consistent values. Our results provide turgor pressure estimates of 1.0 ± 0.1 MPa for Schizosaccharomyces pombe, 0.49 ± 0.01 MPa for Schizosaccharomyces japonicus, 0.5 ± 0.1 MPa for Saccharomyces cerevisiae W303a and 0.31 ± 0.03 MPa for Saccharomyces cerevisiae BY4741. Large differences in turgor pressure and nano-rheology measurements between the Saccharomyces cerevisiae strains demonstrate how fundamental biophysical parameters can vary even among wild-type strains of the same species. These side-by-side measurements of turgor pressure in multiple yeast species provide critical values for quantitative studies on cellular mechanics and comparative evolution.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143
| |
Collapse
|
18
|
Were E, Viljoen A, Rasche F. Iron necessity for chlamydospore germination in Fusarium oxysporum f. sp. cubense TR4. Biometals 2023; 36:1295-1306. [PMID: 37380939 PMCID: PMC10684721 DOI: 10.1007/s10534-023-00519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Fusarium wilt disease of banana, caused by the notorious soil-borne pathogen Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), is extremely difficult to manage. Manipulation of soil pH or application of synthetic iron chelators can suppress the disease through iron starvation, which inhibits the germination of pathogen propagules called chlamydospores. However, the effect of iron starvation on chlamydospore germination is largely unknown. In this study, scanning electron microscopy was used to assemble the developmental sequence of chlamydospore germination and to assess the effect of iron starvation and pH in vitro. Germination occurs in three distinct phenotypic transitions (swelling, polarized growth, outgrowth). Outgrowth, characterized by formation of a single protrusion (germ tube), occurred at 2 to 3 h, and a maximum value of 69.3% to 76.7% outgrowth was observed at 8 to 10 h after germination induction. Germination exhibited plasticity with pH as over 60% of the chlamydospores formed a germ tube between pH 3 and pH 11. Iron-starved chlamydospores exhibited polarized-growth arrest, characterized by the inability to form a germ tube. Gene expression analysis of rnr1 and rnr2, which encode the iron-dependent enzyme ribonucleotide reductase, showed that rnr2 was upregulated (p < 0.0001) in iron-starved chlamydospores compared to the control. Collectively, these findings suggest that iron and extracellular pH are crucial for chlamydospore germination in Foc TR4. Moreover, inhibition of germination by iron starvation may be linked to a different mechanism, rather than repression of the function of ribonucleotide reductase, the enzyme that controls growth by regulation of DNA synthesis.
Collapse
Affiliation(s)
- Evans Were
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70599, Stuttgart, Germany
| | - Altus Viljoen
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70599, Stuttgart, Germany.
| |
Collapse
|
19
|
Hill TW, Vance S, Loome JF, Haugen BJ, Loprete DM, Stoddard SV, Jackson-Hayes L. A member of the OSCA/TMEM63 family of mechanosensitive calcium channels participates in cell wall integrity maintenance in Aspergillus nidulans. Fungal Genet Biol 2023; 169:103842. [PMID: 37805121 DOI: 10.1016/j.fgb.2023.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
The calF7 mutation in Aspergillus nidulans causes hypersensitivity to the cell wall compromising agents Calcofluor White (CFW) and Congo Red. In this research we demonstrate that the calF7 mutation resides in gene AN2880, encoding a predicted member of the OSCA/TMEM63 family of transmembrane glycoproteins. Those members of the family whose physiological functions have been investigated have been shown to act as mechanosensitive calcium transport channels. Deletion of AN2880 replicates the CFW hypersensitivity phenotype. Separately, we show that CFW hypersensitivity of calF deletion strains can be overcome by inclusion of elevated levels of extracellular calcium ions in the growth medium, and, correspondingly, wild type strains grown in media deficient in calcium ions are no longer resistant to CFW. These observations support a model in which accommodation to at least some forms of cell wall stress is mediated by a calcium ion signaling system in which the AN2880 gene product plays a role. The genetic lesion in calF7 is predicted to result in a glycine-to-arginine substitution at position 638 of the 945-residue CalF protein in a region of the RSN1_7TM domain that is highly conserved amongst filamentous fungi. Homology modeling predicts that the consequence of a G638R substitution is to structurally occlude the principal conductance pore in the protein. GFP-tagged wild type CalF localizes principally to the Spitzenkörper and the plasma membrane at growing tips and forming septa. However, both septation and hyphal morphology appear to be normal in calF7 and AN2880 deletion strains, indicating that any role played by CalF in normal hyphal growth and cytokinesis is dispensable.
Collapse
Affiliation(s)
- Terry W Hill
- Department of Biology, Rhodes College, Memphis, TN 38112, USA; Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA.
| | - Stanley Vance
- Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Jennifer F Loome
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - Benard J Haugen
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA
| | - Darlene M Loprete
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Shana V Stoddard
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| | - Loretta Jackson-Hayes
- Biochemistry and Molecular Biology Program, Rhodes College, Memphis, TN 38112, USA; Department of Chemistry, Rhodes College, Memphis, TN 38112, USA
| |
Collapse
|
20
|
Holt LJ, Delarue M. Macromolecular crowding: Sensing without a sensor. Curr Opin Cell Biol 2023; 85:102269. [PMID: 37897928 DOI: 10.1016/j.ceb.2023.102269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/30/2023]
Abstract
All living cells are crowded with macromolecules. Crowding can directly modulate biochemical reactions to various degrees depending on the sizes, shapes, and binding affinities of the reactants. Here, we explore the possibility that cells can sense and adapt to changes in crowding through the widespread modulation of biochemical reactions without the need for a dedicated sensor. Additionally, we explore phase separation as a general physicochemical response to changes in crowding, and a mechanism to both transduce information and physically restore crowding homeostasis.
Collapse
Affiliation(s)
- Liam J Holt
- New York University Grossman School of Medicine, Institute for Systems Genetics, New York, NY, USA
| | - Morgan Delarue
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
21
|
Lemière J, Chang F. Quantifying turgor pressure in budding and fission yeasts based upon osmotic properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544129. [PMID: 37333400 PMCID: PMC10274794 DOI: 10.1101/2023.06.07.544129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Walled cells, such as plants, fungi, and bacteria cells, possess a high internal hydrostatic pressure, termed turgor pressure, that drives volume growth and contributes to cell shape determination. Rigorous measurement of turgor pressure, however, remains challenging, and reliable quantitative measurements, even in budding yeast are still lacking. Here, we present a simple and robust experimental approach to access turgor pressure in yeasts based upon the determination of isotonic concentration using protoplasts as osmometers. We propose three methods to identify the isotonic condition - 3D cell volume, cytoplasmic fluorophore intensity, and mobility of a cytGEMs nano-rheology probe - that all yield consistent values. Our results provide turgor pressure estimates of 1.0 ± 0.1 MPa for S. pombe, 0.49 ± 0.01 MPa for S. japonicus, 0.5 ± 0.1 MPa for S. cerevisiae W303a and 0.31 ± 0.03 MPa for S. cerevisiae BY4741. Large differences in turgor pressure and nano-rheology measurements between the S. cerevisiae strains demonstrate how fundamental biophysical parameters can vary even among wildtype strains of the same species. These side-by-side measurements of turgor pressure in multiple yeast species provide critical values for quantitative studies on cellular mechanics and comparative evolution.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Cell and Tissue Biology, University of San Francisco, CA, USA
| | - Fred Chang
- Department of Cell and Tissue Biology, University of San Francisco, CA, USA
| |
Collapse
|
22
|
Mochizuki T, Tanigawa T, Shindo S, Suematsu M, Oguchi Y, Mioka T, Kato Y, Fujiyama M, Hatano E, Yamaguchi M, Chibana H, Abe F. Activation of CWI pathway through high hydrostatic pressure, enhancing glycerol efflux via the aquaglyceroporin Fps1 in Saccharomyces cerevisiae. Mol Biol Cell 2023; 34:ar92. [PMID: 37379203 PMCID: PMC10398897 DOI: 10.1091/mbc.e23-03-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
The fungal cell wall is the initial barrier for the fungi against diverse external stresses, such as osmolarity changes, harmful drugs, and mechanical injuries. This study explores the roles of osmoregulation and the cell-wall integrity (CWI) pathway in response to high hydrostatic pressure in the yeast Saccharomyces cerevisiae. We demonstrate the roles of the transmembrane mechanosensor Wsc1 and aquaglyceroporin Fps1 in a general mechanism to maintain cell growth under high-pressure regimes. The promotion of water influx into cells at 25 MPa, as evident by an increase in cell volume and a loss of the plasma membrane eisosome structure, activates the CWI pathway through the function of Wsc1. Phosphorylation of Slt2, the downstream mitogen-activated protein kinase, was increased at 25 MPa. Glycerol efflux increases via Fps1 phosphorylation, which is initiated by downstream components of the CWI pathway, and contributes to the reduction in intracellular osmolarity under high pressure. The elucidation of the mechanisms underlying adaptation to high pressure through the well-established CWI pathway could potentially translate to mammalian cells and provide novel insights into cellular mechanosensation.
Collapse
Affiliation(s)
- Takahiro Mochizuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Toshiki Tanigawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Seiya Shindo
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Momoka Suematsu
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yuki Oguchi
- Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Tetsuo Mioka
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yusuke Kato
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Mina Fujiyama
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Eri Hatano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
23
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
24
|
Holyavkin C, Turanlı-Yıldız B, Yılmaz Ü, Alkım C, Arslan M, Topaloğlu A, Kısakesen Hİ, de Billerbeck G, François JM, Çakar ZP. Genomic, transcriptomic, and metabolic characterization of 2-Phenylethanol-resistant Saccharomyces cerevisiae obtained by evolutionary engineering. Front Microbiol 2023; 14:1148065. [PMID: 37113225 PMCID: PMC10127108 DOI: 10.3389/fmicb.2023.1148065] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
2-Phenylethanol is an aromatic compound commonly used in the food, cosmetic, and pharmaceutical industries. Due to increasing demand for natural products by consumers, the production of this flavor by microbial fermentation is gaining interest, as a sustainable alternative to chemical synthesis or expensive plant extraction, both processes relying on the use of fossil resources. However, the drawback of the fermentation process is the high toxicity of 2-phenylethanol to the producing microorganism. The aim of this study was to obtain a 2-phenylethanol-resistant Saccharomyces cerevisiae strain by in vivo evolutionary engineering and characterize the adapted yeast at the genomic, transcriptomic and metabolic levels. For this purpose, the tolerance to 2-phenylethanol was developed by gradually increasing the concentration of this flavor compound through successive batch cultivations, leading to an adapted strain that could tolerate 3.4 g/L of 2-phenylethanol, which was about 3-times better than the reference strain. Genome sequencing of the adapted strain identified point mutations in several genes, notably in HOG1 that encodes the Mitogen-Activated Kinase of the high-osmolarity signaling pathway. As this mutation is localized in the phosphorylation lip of this protein, it likely resulted in a hyperactive protein kinase. Transcriptomic analysis of the adapted strain supported this suggestion by revealing a large set of upregulated stress-responsive genes that could be explained in great part by HOG1-dependent activation of the Msn2/Msn4 transcription factor. Another relevant mutation was found in PDE2 encoding the low affinity cAMP phosphodiesterase, the missense mutation of which may lead to hyperactivation of this enzyme and thereby enhance the stressful state of the 2-phenylethanol adapted strain. In addition, the mutation in CRH1 that encodes a chitin transglycosylase implicated in cell wall remodeling could account for the increased resistance of the adapted strain to the cell wall-degrading enzyme lyticase. Finally, the potent upregulation of ALD3 and ALD4 encoding NAD+ -dependent aldehyde dehydrogenase together with the observed phenylacetate resistance of the evolved strain suggest a resistance mechanism involving conversion of 2-phenylethanol into phenylacetaldehyde and phenylacetate implicating these dehydrogenases.
Collapse
Affiliation(s)
- Can Holyavkin
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Burcu Turanlı-Yıldız
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Ülkü Yılmaz
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Ceren Alkım
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Mevlüt Arslan
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Alican Topaloğlu
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Halil İbrahim Kısakesen
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | | | - Jean Marie François
- Toulouse Biotechnology Institute (TBI), CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
- *Correspondence: Jean Marie François,
| | - Z. Petek Çakar
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
- Z. Petek Çakar,
| |
Collapse
|
25
|
Chandler LM, Rodriguez M, Choe KP. RNAi screening for modulators of an osmo-sensitive gene response to extracellular matrix damage reveals negative feedback and interactions with translation inhibition. PLoS One 2023; 18:e0285328. [PMID: 37155688 PMCID: PMC10166495 DOI: 10.1371/journal.pone.0285328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
In epidermal tissues, extracellular matrices (ECMs) function as barriers between the organism and environment. Despite being at the interface with the environment, little is known about the role of animal barrier ECMs in sensing stress and communicating with cytoprotective gene pathways in neighboring cells. We and others have identified a putative damage sensor in the C. elegans cuticle that regulates osmotic, detoxification, and innate immune response genes. This pathway is associated with circumferential collagen bands called annular furrows; mutation or loss of furrow collagens causes constitutive activation of osmotic, detoxification, and innate immune response genes. Here, we performed a genome-wide RNAi screen for modulators of osmotic stress response gene gpdh-1 in a furrow collagen mutant strain. RNAi of six genes identified in this screen were tested under other conditions and for effects on other stress responses. The functions of these genes suggest negative feedback within osmolyte accumulation pathways and interactions with ATP homeostasis and protein synthesis. Loss of these gpdh-1 modulators had distinct effects on canonical detoxification and innate immune response genes.
Collapse
Affiliation(s)
- Luke M Chandler
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Michael Rodriguez
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
26
|
Lecinski S, Shepherd JW, Bunting K, Dresser L, Quinn SD, MacDonald C, Leake MC. Correlating viscosity and molecular crowding with fluorescent nanobeads and molecular probes: in vitro and in vivo. Interface Focus 2022; 12:20220042. [PMID: 36330320 PMCID: PMC9560789 DOI: 10.1098/rsfs.2022.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023] Open
Abstract
In eukaryotes, intracellular physico-chemical properties like macromolecular crowding and cytoplasmic viscoelasticity influence key processes such as metabolic activities, molecular diffusion and protein folding. However, mapping crowding and viscoelasticity in living cells remains challenging. One approach uses passive rheology in which diffusion of exogenous fluorescent particles internalized in cells is tracked and physico-chemical properties inferred from derived mean square displacement relations. Recently, the crGE2.3 Förster resonance energy transfer biosensor was developed to quantify crowding in cells, though it is unclear how this readout depends on viscoelasticity and the molecular weight of the crowder. Here, we present correlative, multi-dimensional data to explore diffusion and molecular crowding characteristics of molecular crowding agents using super-resolved fluorescence microscopy and ensemble time-resolved spectroscopy. We firstly characterize in vitro and then apply these insights to live cells of budding yeast Saccharomyces cerevisiae. It is to our knowledge the first time this has been attempted. We demonstrate that these are usable both in vitro and in the case of endogenously expressed sensors in live cells. Finally, we present a method to internalize fluorescent beads as in situ viscoelasticity markers in the cytoplasm of live yeast cells and discuss limitations of this approach including impairment of cellular function.
Collapse
Affiliation(s)
- Sarah Lecinski
- Department of Physics, University of York, York YO10 5DD, UK
| | - Jack W. Shepherd
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Kate Bunting
- Department of Biology, University of York, York YO10 5DD, UK
| | - Lara Dresser
- Department of Physics, University of York, York YO10 5DD, UK
| | - Steven D. Quinn
- Department of Physics, University of York, York YO10 5DD, UK
| | - Chris MacDonald
- Department of Biology, University of York, York YO10 5DD, UK
| | - Mark C. Leake
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
27
|
Shinto H, Kojima M, Shigaki C, Hirohashi Y, Seto H. Effect of salt concentration and exposure temperature on adhesion and cytotoxicity of positively charged nanoparticles toward yeast cells. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Municio-Diaz C, Muller E, Drevensek S, Fruleux A, Lorenzetti E, Boudaoud A, Minc N. Mechanobiology of the cell wall – insights from tip-growing plant and fungal cells. J Cell Sci 2022; 135:280540. [DOI: 10.1242/jcs.259208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABSTRACT
The cell wall (CW) is a thin and rigid layer encasing the membrane of all plant and fungal cells. It ensures mechanical integrity by bearing mechanical stresses derived from large cytoplasmic turgor pressure, contacts with growing neighbors or growth within restricted spaces. The CW is made of polysaccharides and proteins, but is dynamic in nature, changing composition and geometry during growth, reproduction or infection. Such continuous and often rapid remodeling entails risks of enhanced stress and consequent damages or fractures, raising the question of how the CW detects and measures surface mechanical stress and how it strengthens to ensure surface integrity? Although early studies in model fungal and plant cells have identified homeostatic pathways required for CW integrity, recent methodologies are now allowing the measurement of pressure and local mechanical properties of CWs in live cells, as well as addressing how forces and stresses can be detected at the CW surface, fostering the emergence of the field of CW mechanobiology. Here, using tip-growing cells of plants and fungi as case study models, we review recent progress on CW mechanosensation and mechanical regulation, and their implications for the control of cell growth, morphogenesis and survival.
Collapse
Affiliation(s)
- Celia Municio-Diaz
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| | - Elise Muller
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Stéphanie Drevensek
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Antoine Fruleux
- LPTMS, CNRS, Université Paris-Saclay 4 , 91405 Orsay , France
| | - Enrico Lorenzetti
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| |
Collapse
|
29
|
Bhusari S, Sankaran S, del Campo A. Regulating Bacterial Behavior within Hydrogels of Tunable Viscoelasticity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106026. [PMID: 35404519 PMCID: PMC9189655 DOI: 10.1002/advs.202106026] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Engineered living materials (ELMs) are a new class of materials in which living organism incorporated into diffusive matrices uptake a fundamental role in material's composition and function. Understanding how the spatial confinement in 3D can regulate the behavior of the embedded cells is crucial to design and predict ELM's function, minimize their environmental impact and facilitate their translation into applied materials. This study investigates the growth and metabolic activity of bacteria within an associative hydrogel network (Pluronic-based) with mechanical properties that can be tuned by introducing a variable degree of acrylate crosslinks. Individual bacteria distributed in the hydrogel matrix at low density form functional colonies whose size is controlled by the extent of permanent crosslinks. With increasing stiffness and elastic response to deformation of the matrix, a decrease in colony volumes and an increase in their sphericity are observed. Protein production follows a different pattern with higher production yields occurring in networks with intermediate permanent crosslinking degrees. These results demonstrate that matrix design can be used to control and regulate the composition and function of ELMs containing microorganisms. Interestingly, design parameters for matrices to regulate bacteria behavior show similarities to those elucidated for 3D culture of mammalian cells.
Collapse
Affiliation(s)
- Shardul Bhusari
- INM ‐ Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Chemistry DepartmentSaarland University66123SaarbrückenGermany
| | | | - Aránzazu del Campo
- INM ‐ Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Chemistry DepartmentSaarland University66123SaarbrückenGermany
| |
Collapse
|
30
|
Lacalendola N, Tayagui A, Ting M, Malmstrom J, Nock V, Willmott GR, Garrill A. Biomechanical responses of encysted zoospores of the oomycete Achlya bisexualis to hyperosmotic stress are consistent with an ability to turgor regulate. Fungal Genet Biol 2022; 159:103676. [DOI: 10.1016/j.fgb.2022.103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022]
|