1
|
Bharathan A, Arafath Y, Fathima A, Hassan S, Singh P, Kiran GS, Selvin J. Implication of environmental factors on the pathogenicity of Vibrio vulnificus: Insights into gene activation and disease outbreak. Microb Pathog 2025; 204:107591. [PMID: 40246153 DOI: 10.1016/j.micpath.2025.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/18/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Climate change, particularly rising sea surface temperatures and altered salinity levels has contributed to the increased prevalence of Vibrio vulnificus infections in humans and marine life. This opportunistic pathogen thrives in warm, estuarine environments, and its virulence is influenced by temperature-dependent gene expression, such as the activation of pVvBt2. Elevated temperatures and iron availability enhance pathogenicity by upregulating key virulence factors, including hemolysin, exotoxins, and biofilm-associated genes. Climate-driven shifts in microbial ecology have also facilitated the global expansion of V. vulnificus, leading to more frequent outbreaks and an increasing threat to public health. The unregulated use of antibiotics has also contributed to the emergence of resistant strains, complicating treatment strategies. This review explores the complex interplay between climate change and the molecular mechanisms driving V. vulnificus pathogenicity, global gene expression responses, and the implications for disease outbreaks. We also discuss current and emerging therapeutic approaches, including antibiotic stewardship and vaccine development, to mitigate the rising health risks posed by this climate-sensitive pathogen.
Collapse
Affiliation(s)
- Aswathi Bharathan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Yaser Arafath
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Aifa Fathima
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - George Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
2
|
Shu Y, Qi Y, Zou Y, Huang Y, Chen J, Li J, Chen L, Zhu X. A gelatin microneedles featuring antibacterial and reactive oxygen species scavenging properties for treating Vibrio vulnificus-infected wounds. Int J Biol Macromol 2025; 309:142640. [PMID: 40158599 DOI: 10.1016/j.ijbiomac.2025.142640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Vibrio vulnificus (V. vulnificus) is highly toxic and lethal. Vibrio vulnificus infected wounds are one of the great challenges in the treatment of its associated diseases. Recent studies have found that dissolvable microneedles can effectively promote repair of infected wounds. Therefore, gelatin microneedles (CeO2-CIP MN) doped with cerium dioxide nanoparticles (CeO2 NPs) and ciprofloxacin (CIP) were rationally designed and prepared based on the characteristics of the microenvironment of bacterial infection. The results of in vitro studies showed that CeO2-CIP MN possessed broad-spectrum antimicrobial activity and antioxidant activity. Importantly, in the seawater-immersed V. vulnificus infected wound model, CeO2-CIP MN effectively killed V. vulnificus, scavenged wound reactive oxygen species (ROS), and promoted cell migration, which subsequently accelerated the repair of the infected wound. In conclusion, this study demonstrated that CeO2-CIP MN can effectively promote the repair of V. vulnificus infected wounds, and also provide ideas for innovative treatment modalities for marine-related diseases.
Collapse
Affiliation(s)
- Yuling Shu
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yi Qi
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yan Zou
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yating Huang
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jinjun Chen
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jihua Li
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Lanmei Chen
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Xufeng Zhu
- School of Ocean and Tropical Medicine, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
3
|
Zhang P, Wu X, Ji L, Yan W, Chen L, Dong F. Comparative pan-genomic analysis reveals pathogenic mechanisms and genomic plasticity in Vibrio parahaemolyticus clinical and environmental isolates. Front Cell Infect Microbiol 2025; 15:1574627. [PMID: 40276381 PMCID: PMC12018335 DOI: 10.3389/fcimb.2025.1574627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Vibrio parahaemolyticus is a human pathogen capable of inducing bacterial gastroenteritis. Clinical strains of V. parahaemolyticus are considered pathogenic due to their possession of hemolysin and a type III secretion system (T3SS). Some environmental isolates are also acquiring corresponding virulence genes. Methods This study initially examines the infection characteristics of V. parahaemolyticus, and subsequently employs pan-genomic analysis to identify genes that exhibit significant differences in distribution between environmental and clinical isolates, thereby revealing their potential impact on virulence. Results and discussion The epidemiological analysis of clinical isolates suggests that infections of V. parahaemolyticus are more prevalent in warm seasons, with O4:KUT serotype presenting more severe symptoms. OrthoFinder analysis revealed that environmental isolates possess a higher number of core genes. PEPPAN and KEGG analysis revealed that the 10 genes exclusively found in clinical isolates were predominantly associated with virulence. Additionally, the functions of genes differentially distributed in the environment were significantly more diverse compared to those in clinical settings. Analysis of mobile genetic elements suggested that environmental isolates harbor more mobile genetic elements, implying a potential for an increased number of resistance genes. The pathogenic characteristics of the strains examined in this study, genomic diversity and variation in mobile genetic elements are highly significant for deepening our understanding of the pathogenic mechanisms of V. parahaemolyticus and for the development of strategies to prevent its infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Fenfen Dong
- Microbiology Laboratory, Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Chen YW, Tseng TS, Chen KT, Lai SJ. A novel Diguanylate cyclase VdcR has multifaceted regulatory functions in the pathogenicity of Vibrio vulnificus. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:258-264. [PMID: 39627112 DOI: 10.1016/j.jmii.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/20/2024] [Accepted: 11/28/2024] [Indexed: 03/18/2025]
Abstract
BACKGROUND Vibrio vulnificus is a Gram-negative pathogen that infects humans through foodborne or wound infections. Victims of V. vulnificus infections face significant health risks, including cellulitis and septicemia, which have rapid disease progression and high mortality rates. Diguanylate cyclase is responsible for producing the secondary messenger cyclic di-GMP. It plays a crucial role in regulating various bacterial physiological processes, such as motility, toxicity, and pathogenicity, through transcriptional regulation and affecting cyclic di-GMP levels. However, the DGC-mediated pathogenicity regulation in V. vulnificus is still unclear. METHODS The vdcR gene in V. vulnificus was studied using a deletion strain (ΔVdcR) and an overexpression strain (oeVdcR) to understand its role in regulating the bacterium's pathogenicity. The electrophoretic mobility shift assay and RT-qPCR confirmed VdcR's impact on phosphodiesterase gene expression. To investigate how VdcR affects pathogenicity, V. vulnificus variant strains were assays for hemolysis, metalloprotease activity, cytotoxicity, resistance to phagocytosis, and lethality assays of the nematode Caenorhabditis elegans after infection. RESULTS This study discovered a virulence-associated diguanylate cyclase, VdcR, which serves as a transcriptional regulator to induce phosphodiesterases and reduce the accumulation of cyclic di-GMP. VdcR expression resulted in low hemolysis, metalloprotease, and cytotoxicity activity. It also improved the cell adhesion ability and anti-phagocytosis activity to infect the host cell and escape the macrophage phagocytosis. The constitutively expressed VdcR in V. vulnificus caused low mortality rates in Caenorhabditis elegans survival assays. CONCLUSION The above evidence demonstrated that VdcR suppresses the pathogenicity in V. vulnificus YJ016.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Kai-Ting Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Gong Y, Jiang R, Guo RH, Jo SJ, Jeong H, Moon K, Rhee JH, Kim YR. TolCV1 inhibition by NPPB renders Vibrio vulnificus less virulent and more susceptible to antibiotics. Antimicrob Agents Chemother 2025; 69:e0050224. [PMID: 39670721 PMCID: PMC11784226 DOI: 10.1128/aac.00502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024] Open
Abstract
Bacterial efflux pumps play important roles in the antibiotic resistance and excretion of virulence factors. We previously characterized that TolCV1, a component of efflux pumps, plays critical roles in resistance to antibiotics and bile and also RtxA1 toxin secretion of Vibrio vulnificus. In this context, we speculated that TolCV1 blockers would have a dual effect of enhancing susceptibility to antibiotics and suppressing virulence of V. vulnificus. Here, we show that the chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) increases susceptibility to antibiotics and suppresses cytotoxicity of V. vulnificus through inhibition of TolCV1. NPPB significantly decreased TolCV1 in V. vulnificus cells by liberating the protein from the cell body. Checkerboard assay showed that NPPB enhanced the antimicrobial activities of antibiotics such as kanamycin, tetracycline, erythromycin, and ampicillin against V. vulnificus. Moreover, NPPB inhibited the secretion of RtxA1 toxin and protected host cells from V. vulnificus-induced cytotoxicity. In addition, NPPB markedly suppressed V. vulnificus growth in the presence of bile salts and enhanced the therapeutic effect of tetracycline in V. vulnificus-infected mice. The safety and efficacy of NPPB were confirmed at the cellular and animal levels. Collectively, TolCV1 inhibition by NPPB renders V. vulnificus less virulent and more susceptible to antibiotics.
Collapse
Affiliation(s)
- Yue Gong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Jiang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Rui Hong Guo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Se Jin Jo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeongju Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Kyuho Moon
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center and Department of Microbiology, Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Sung D, Choi G, Ahn M, Byun H, Kim T, Lee H, Lee ZW, Park J, Jung Y, Han H, Choi S. Genome-wide phenotypic profiling of transcription factors and identification of novel targets to control the virulence of Vibrio vulnificus. Nucleic Acids Res 2025; 53:gkae1238. [PMID: 39704106 PMCID: PMC11797071 DOI: 10.1093/nar/gkae1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/15/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
For successful infection, the life-threatening pathogen Vibrio vulnificus elaborately regulates the expression of survival and virulence genes using various transcription factors (TFs). In this study, a library of the V. vulnificus mutants carrying specific signature tags in 285 TF genes was constructed and subjected to 16 phenotypic analyses. Consequently, 89 TFs affecting more than one phenotype of V. vulnificus were identified. Of these, 59 TFs affected the in vitro survival including growth, stress resistance, biofilm formation and motility, and 64 TFs affected the virulence of V. vulnificus. Particularly, 27 of the 64 TFs enhanced the in vitro hemolytic or cytotoxic activities, and 8 of the 27 TFs also increased the in vivo brine shrimp or murine infectivities of V. vulnificus. Among the eight TFs, HlyU, IscR, NagC, MetJ and Tet2 did not affect the growth of V. vulnificus but still regulated the expression of major exotoxin genes, including rtxA, vvhA and plpA, thereby emerging as potential drug targets for anti-virulence therapies with low selective pressure for developing resistance. Altogether, this study characterized the functions of TFs at a genome-wide scale and identified novel targets to control the virulence of V. vulnificus.
Collapse
Affiliation(s)
- Dayoung Sung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minji Ahn
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hokyung Byun
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae Young Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hojun Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Zee-Won Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Choi W, Lee H, Wang Q, Bang YJ, Choi SH. Discovery of a Small-Molecule Inhibitor Targeting the Biofilm Regulator BrpT in Vibrio vulnificus. J Microbiol Biotechnol 2024; 34:2201-2210. [PMID: 39403724 PMCID: PMC11637837 DOI: 10.4014/jmb.2406.06052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 11/29/2024]
Abstract
Vibrio vulnificus, an opportunistic human pathogen, employs biofilm formation as a key survival and virulence mechanism. BrpT, a transcriptional regulator, is essential for V. vulnificus biofilm development by regulating the expression of biofilm-related genes. In this study, we aimed to identify a small molecule inhibitor of BrpT to combat V. vulnificus biofilm formation. High-throughput screening of 7,251 compounds using an Escherichia coli reporter strain carrying the arabinose-inducible brpT gene and a BrpT-activated promoter fused to the luxCDABE operon identified a hit compound, BTI (BrpT Inhibitor). BTI potently inhibited BrpT activity in V. vulnificus (EC50 of 6.48 μM) without affecting bacterial growth or host cell viability. Treatment with BTI significantly reduced the expression of the BrpT regulon and impaired biofilm formation and colony rugosity in V. vulnificus, thus increasing its susceptibility to antibiotics. In vitro biochemical analyses revealed that BTI directly binds to BrpT and inhibits its transcriptional regulatory activity. The identification of BTI as a specific inhibitor of BrpT that effectively diminishes V. vulnificus biofilm formation provides a promising foundation for the development of novel anti-biofilm strategies, with the potential to address the growing challenge of antibiotic resistance and improve the treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Wonwoo Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hojun Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P.R. China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, P.R, China
| | - Ye-Ji Bang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Xu H, Liu Y, Niu H, Cai X, Zhan F. Characteristics, symptoms, and outcomes of patients with Vibrio vulnificus infection in Hainan, China: A retrospective study. Medicine (Baltimore) 2024; 103:e40706. [PMID: 39809157 PMCID: PMC11596693 DOI: 10.1097/md.0000000000040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025] Open
Abstract
With global temperatures on the rise and an expanding seafood trade, infections by Vibrio vulnificus, particularly in warm coastal areas like Hainan, China, are increasingly prevalent. These bacteria are notorious for causing grave infections with a high fatality rate. This study aims to dissect the clinical features, laboratory findings, treatment modalities, and patient outcomes associated with V vulnificus infections in Hainan Province. The medical records and clinical data of intensive care unit patients from Hainan General Hospital were retrospectively analyzed. Conventional sequencing and metagenomic sequencing were used to identify V vulnificus. The study involved 10 patients (9 males and 1 female) with a median age of 60.5 years, predominantly fishermen, with infections mainly occurring between May and October. Of note, 2 cases were linked to plant-related injuries. The typical manifestations included fever, pain, swelling, hemorrhagic vesicles, septic shock, and multi-organ dysfunction. It was found that delayed hospital admissions were associated with elevated Sequential Organ Failure Assessment and Acute Physiology and Chronic Health Evaluation II scores and increased mortality. Laboratory results indicated a robust inflammatory response, and interventions comprised antibiotic therapy and surgical procedures. A mortality rate of 50% was recorded. Vigilance for V vulnificus infections is crucial in coastal locales. The study endorses immediate and assertive treatment strategies, including the use of targeted antibiotics and surgical interventions, to enhance patient survival rates. A call for heightened awareness, intensified surveillance, and expanded research is essential to combat this life-threatening condition.
Collapse
Affiliation(s)
- Heping Xu
- Department of Emergency Medicine, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Yiqiao Liu
- Department of Emergency Medicine, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Huan Niu
- Department of Emergency Medicine, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Xiongwei Cai
- Department of Emergency Medicine, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Feng Zhan
- Department of Emergency Medicine, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| |
Collapse
|
9
|
Ma LC, Li M, Chen YM, Chen WY, Chen YW, Cheng ZL, Zhu YZ, Zhang Y, Guo XK, Liu C. Genomic Insight into Zoonotic and Environmental Vibrio vulnificus: Strains with T3SS2 as a Novel Threat to Public Health. Microorganisms 2024; 12:2375. [PMID: 39597763 PMCID: PMC11596471 DOI: 10.3390/microorganisms12112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Vibrio vulnificus is a significant opportunistic pathogen with the highest fatality rate among foodborne microbes. However, due to a lack of comprehensive surveillance, the characteristics of isolates in China remain poorly understood. This study analyzed 60 strains of V. vulnificus isolated from diverse sources in Shanghai, including shellfish, crabs, shrimps, throat swabs of migratory birds, as well as seafood farming water and seawater. Identification of the genotypes was performed using PCR, and cytotoxicity was determined using an LDH assay. DNA was sequenced using Illumina NovaSeq followed by a bioinformatic analysis. The results demonstrated that a majority of the strains belonged to the 16S rRNA B-vcgC genotype. All strains carried five antibiotic resistance genes (ARGs), with some strains carrying over ten ARGs, mediating resistance to multiple antibiotics. Five strains possessed a highly abundant effector delivery system, which further investigations revealed to be a type III secretion system II (T3SS2), marking the first description of T3SS2 in V. vulnificus. Phylogenetic analysis indicated that it belonged to a different genetic lineage from T3SS2α and T3SS2β of V. parahaemolyticus. Bacteria with T3SS2 sequences were concentrated in coastal areas and mostly within the genus Vibrio in the global prevalence survey. Our study provides essential baseline information for non-clinical V. vulnificus and discovers the existence of T3SS2 in several strains which may be more virulent, thereby posing a new threat to human health.
Collapse
Affiliation(s)
- Ling-Chao Ma
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Yi-Ming Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Ye Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Wen Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zi-Le Cheng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong-Zhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Yan Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Xiao-Kui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (L.-C.M.); (M.L.)
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Li J, Ye S, Su F, Yu B, Xu L, Sun H, Yuan X. Transcriptome analysis reveals a new virulence-associated trimeric autotransporter responsible for Glaesserella parasuis autoagglutination. Vet Res 2024; 55:130. [PMID: 39375812 PMCID: PMC11460128 DOI: 10.1186/s13567-024-01387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Capsular polysaccharide is an important virulence factor of Glaesserella parasuis. An acapsular mutant displays multiple phenotype variations, while the underlying mechanism for these variations is unknown. In this study, we created an acapsular mutant by deleting the wza gene in the capsule locus. We then used transcriptome analysis to compare the gene expression profiles of the wza deletion mutant with those of the parental strain to understand the possible reasons for the phenotypic differences. The mutant Δwza, which has a deleted wza gene, secreted less polysaccharide and lost its capsule structure. The Δwza exhibited increased autoagglutination, biofilm formation and adherence to eukaryotic cells, while the complementary strain C-Δwza partially restored the phenotype. Transcriptome analysis revealed several differentially expressed genes (DEGs) in Δwza, including up-regulated outer membrane proteins and proteins involved in peptidoglycan biosynthesis, suggesting that wza deletion affects the cell wall homeostasis of G. parasuis. Transcriptome analysis revealed the contribution of non-coding RNAs in the regulation of DEGs. Moreover, a new virulence-associated trimeric autotransporter, VtaA31 is upregulated in Δwza. It is responsible for enhanced autoagglutination but not for enhanced biofilm formation and adherence to eukaryotic cells in Δwza. In conclusion, these data indicate that wza affects the expression of multiple genes, especially those related to cell wall synthesis. Furthermore, they provide evidence that vtaA31 is involved in the autoagglutination of G. parasuis.
Collapse
Affiliation(s)
- Junxing Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shiyi Ye
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fei Su
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongchao Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
11
|
Lee H, Hwang SH, Shin H, Ha NC, Wang Q, Choi SH. Identification and characterization of a small molecule BFstatin inhibiting BrpR, the transcriptional regulator for biofilm formation of Vibrio vulnificus. Front Microbiol 2024; 15:1468567. [PMID: 39314881 PMCID: PMC11416940 DOI: 10.3389/fmicb.2024.1468567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Many pathogenic bacteria form biofilms that are resistant to not only host immune defenses but also antibiotics, posing a need for the development of strategies to control biofilms. In this study, to prevent biofilm formation of the fulminating foodborne pathogen Vibrio vulnificus, chemical libraries were extensively screened to identify a small molecule inhibiting the activity of BrpR, a transcriptional regulator for biofilm genes. Accordingly, the BrpR inhibitor BFstatin [N1-(2-chloro-5-fluorophenyl)-N3-propylmalonamide], with a half-maximal effective concentration of 8.01 μM, was identified. BFstatin did not interfere with bacterial growth or exhibit cytotoxicity to the human epithelial cell line. BFstatin directly bound to BrpR and interrupted its binding to the target promoter DNAs of the downstream genes. Molecular dynamics simulation of the interaction between BFstatin and BrpR proposed that BFstatin modifies the structure of BrpR, especially the DNA-binding domain. Transcriptomic analyses revealed that BFstatin reduces the expression of the BrpR regulon including the cabABC operon and brp locus which contribute to the production of biofilm matrix of V. vulnificus. Accordingly, BFstatin diminished the biofilm levels of V. vulnificus by inhibiting the matrix development in a concentration-dependent manner. Altogether, BFstatin could be an anti-biofilm agent targeting BrpR, thereby rendering V. vulnificus more susceptible to host immune defenses and antibiotics.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Agricultural Biotechnology, National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ho Hwang
- Department of Agricultural Biotechnology, National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul, Republic of Korea
| | - Hyunwoo Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024; 65:2976-3000. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Liang H, Huang J, Xia Y, Yang Y, Yu Y, Zhou K, Lin L, Li X, Li B. Spatial distribution and assembly processes of bacterial communities in riverine and coastal ecosystems of a rapidly urbanizing megacity in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173298. [PMID: 38761945 DOI: 10.1016/j.scitotenv.2024.173298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Rapid urbanization has precipitated significant anthropogenic pollution (nutrients and pathogens) in urban rivers and their receiving systems, which consequentially disrupted the compositions and assembly of bacterial community within these ecosystems. However, there remains scarce information regarding the composition and assembly of both planktonic and benthic bacterial communities as well as pathogen distribution in such environments. In this study, full-length 16S rRNA gene sequencing was conducted to investigate the bacterial community composition, interactions, and assembly processes as well as the distribution of potential pathogens along a riverine-coastal continuum in Shenzhen megacity, China. The results indicated that both riverine and coastal bacterial communities were predominantly composed of Gammaproteobacteria (24.8 ± 12.6 %), Alphaproteobacteria (16.1 ± 9.8 %), and Bacteroidota (14.3 ± 8.6 %), while sedimentary bacterial communities exhibited significantly higher diversity compared to their planktonic counterparts. Bacterial community patterns exhibited significant divergences across different habitats, and a significant distance-decay relationship of bacterial community similarity was particularly observed within the urban river ecosystem. Moreover, the urban river ecosystem displayed a more complex bacterial co-occurrence network than the coastal ecosystem, and a low ratio of negative:positive cohesion suggested the inherent instability of these networks. Homogeneous selection and dispersal limitation emerged as the predominant influences on planktonic and sedimentary bacterial communities, respectively. Pathogenic genera such as Vibrio, Bacteroides, and Acinetobacter, known for their roles in foodborne diseases or wound infection, were also identified. Collectively, these findings provided critical insights into bacterial community dynamics and their implications for ecosystem management and pathogen risk control in riverine and coastal environments impacted by rapid urbanization.
Collapse
Affiliation(s)
- Hebin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Huang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), Shenzhen 518020, China
| | - Lin Lin
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
14
|
Naknaen A, Surachat K, Manit J, Jetwanna KWN, Thawonsuwan J, Pomwised R. Virulent properties and genomic diversity of Vibrio vulnificus isolated from environment, human, diseased fish. Microbiol Spectr 2024; 12:e0007924. [PMID: 38860819 PMCID: PMC11218479 DOI: 10.1128/spectrum.00079-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
The incidence of Vibrio vulnificus infections, with high mortality rates in humans and aquatic animals, has escalated, highlighting a significant public health challenge. Currently, reliable markers to identify strains with high virulence potential are lacking, and the understanding of evolutionary drivers behind the emergence of pathogenic strains is limited. In this study, we analyzed the distribution of virulent genotypes and phenotypes to discern the infectious potential of V. vulnificus strains isolated from three distinct sources. Most isolates, traditionally classified as biotype 1, possessed the virulence-correlated gene-C type. Environmental isolates predominantly exhibited YJ-like alleles, while clinical and diseased fish isolates were significantly associated with the nanA gene and pathogenicity region XII. Hemolytic activity was primarily observed in the culture supernatants of clinical and diseased fish isolates. Genetic relationships, as determined by multiple-locus variable-number tandem repeat analysis, suggested that strains originating from the same source tended to cluster together. However, multilocus sequence typing revealed considerable genetic diversity across clusters and sources. A phylogenetic analysis using single nucleotide polymorphisms of diseased fish strains alongside publicly available genomes demonstrated a high degree of evolutionary relatedness within and across different isolation sources. Notably, our findings reveal no direct correlation between phylogenetic patterns, isolation sources, and virulence capabilities. This underscores the necessity for proactive risk management strategies to address pathogenic V. vulnificus strains emerging from environmental reservoirs.IMPORTANCEAs the global incidence of Vibrio vulnificus infections rises, impacting human health and marine aquacultures, understanding the pathogenicity of environmental strains remains critical yet underexplored. This study addresses this gap by evaluating the virulence potential and genetic relatedness of V. vulnificus strains, focusing on environmental origins. We conduct an extensive genotypic analysis and phenotypic assessment, including virulence testing in a wax moth model. Our findings aim to uncover genetic and evolutionary factors that drive pathogenic strain emergence in the environment. This research advances our ability to identify reliable virulence markers and understand the distribution of pathogenic strains, offering significant insights for public health and environmental risk management.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jutamas Manit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Jumroensri Thawonsuwan
- Department of Fisheries, Aquatic Animal Health Research and Development Division, Songkhla Aquatic Animal Health Research Center, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
15
|
Morgado ME, Brumfield KD, Chattopadhyay S, Malayil L, Alawode T, Amokeodo I, He X, Huq A, Colwell RR, Sapkota AR. Antibiotic resistance trends among Vibrio vulnificus and Vibrio parahaemolyticus isolated from the Chesapeake Bay, Maryland: a longitudinal study. Appl Environ Microbiol 2024; 90:e0053924. [PMID: 38809043 PMCID: PMC11218627 DOI: 10.1128/aem.00539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Antibiotics are often used to treat severe Vibrio infections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009-2012 and 2019-2022). Vibrio parahaemolyticus (n = 134) and Vibrio vulnificus (n = 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%-96%) of V. parahaemolyticus isolates from both sampling periods were resistant to ampicillin and only 2%-6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistant V. vulnificus isolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%-8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns among V. parahaemolyticus and V. vulnificus recovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibrio spp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, some Vibrio isolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed with Vibrio vulnificus infections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severe Vibrio spp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.
Collapse
Affiliation(s)
- Michele E. Morgado
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Suhana Chattopadhyay
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Leena Malayil
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Taiwo Alawode
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Ibiyinka Amokeodo
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Xin He
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Amy R. Sapkota
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| |
Collapse
|
16
|
Fan C, Dai W, Zhang H, Liu S, Lin Z, Xue Q. Genomic and Proteomic Analyses of Extracellular Products Reveal Major Virulence Factors Likely Accounting for Differences in Pathogenicity to Bivalves between Vibrio mediterranei Strains. Animals (Basel) 2024; 14:692. [PMID: 38473077 DOI: 10.3390/ani14050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Vibrio mediterranei, a bacterial pathogen of bivalves, has exhibited strain-dependent virulence. The mechanisms behind the variations in bivalve pathogenicity between V. mediterranei strains have remained unclear. However, a preliminary analysis of the extracellular product (ECP) proteomes has revealed differences in protein compositions between low- and high-virulence strains; in addition to 1265 shared proteins, 127 proteins have been identified to be specific to one low-virulence strain and 95 proteins to be specific to two high-virulence strains. We further studied the ECP proteins of the three V. mediterranei strains from functional perspectives using integrated genomics and proteomics approaches. The results showed that lipid metabolism, transporter activity and membrane transporter pathways were more enriched in the ECPs of the two high-virulence strains than in those of the low-virulence strain. Additionally, 73 of the 95 high-virulence strain-specific proteins were found to have coding genes in the genome but were not expressed in the low-virulence strain. Moreover, comparisons with known virulence factors in the Virulence Factor Database (VFDB) and the Pathogen-Host Interactions Database (PHI-base) allowed us to predict more than 10 virulence factors in the categories of antimicrobial activity/competitive advantage, the effector delivery system and immune modulation, and the high-virulence strain-specific ECP proteins consisted of a greater percentage of known virulence factors than the low-virulence strain. Particularly, two virulence factors, MtrC and KatG, were identified in the ECPs of the two high-virulence strains but not in those of the low-virulence strain. Most coding genes of the ECP proteins including known virulence factors were identified on chromosome 1 of V. mediterranei. Our findings indicate that variations in virulence factor composition in the bacterial ECPs may partially account for the differences in the bivalve pathogenicity between V. mediterranei strains.
Collapse
Affiliation(s)
- Congling Fan
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wenfang Dai
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, Ningbo 315604, China
| | - Haiyan Zhang
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, Ningbo 315604, China
| | - Sheng Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, Ningbo 315604, China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, Ningbo 315604, China
| | - Qinggang Xue
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, Ningbo 315604, China
| |
Collapse
|
17
|
Rasal TA, Mallery CP, Brockley MW, Brown LC, Paczkowski JE, van Kessel JC. Ligand binding determines proteolytic stability of Vibrio LuxR/HapR quorum sensing transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580527. [PMID: 38405947 PMCID: PMC10888775 DOI: 10.1101/2024.02.15.580527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In Vibrio species, quorum sensing signaling culminates in the production of a TetR-type master transcription factor collectively called the LuxR/HapR family, which regulates genes required for colonization and infection of host organisms. These proteins possess a solvent accessible putative ligand binding pocket. However, a native ligand has not been identified, and the role of ligand binding in LuxR/HapR function in Vibrionaceae is unknown. To probe the role of the ligand binding pocket, we utilize the small molecule thiophenesulfonamide inhibitor PTSP (3- p henyl-1-( t hiophen-2-yl s ulfonyl)-1 H - p yrazole) that we previously showed targets LuxR/HapR proteins. Amino acid conservation in the ligand binding pocket determines the specificity and efficacy of PTSP inhibition across Vibrio species. Here, we used structure-function analyses to identify PTSP-interacting residues in the ligand binding pocket of SmcR - the Vibrio vulnificus LuxR/HapR homolog - that are required for PTSP inhibition of SmcR activity in vivo . Forward genetic screening combined with X-ray crystallography structural determination of SmcR bound to PTSP identified substitutions at eight residues that were sufficient to reduce or eliminate PTSP-mediated SmcR inhibition. Small-angle X-ray scattering and computational modeling determined that PTSP drives allosteric unfolding at the N-terminal DNA binding domain. We discovered that SmcR is degraded by the ClpAP protease in the presence of PTSP in vivo ; substitution of key PTSP-interacting residues stabilized or increased SmcR levels in the cell. This mechanism of inhibition is observed for all thiophenesulfonamide compounds tested and against other Vibrio species. We conclude that thiophenesulfonamides specifically bind in the ligand binding pocket of LuxR/HapR proteins, promoting protein degradation and thereby suppressing downstream gene expression, implicating ligand binding as a mediator of LuxR/HapR protein stability and function to govern virulence gene expression in Vibrio pathogens. SIGNIFICANCE LuxR/HapR proteins were discovered in the 1990s as central regulators of quorum sensing gene expression and later discovered to be conserved in all studied Vibrio species. LuxR/HapR homologs regulate a wide range of genes involved in pathogenesis, including but not limited to genes involved in biofilm production and toxin secretion. As archetypal members of the broad class of TetR-type transcription factors, each LuxR/HapR protein has a predicted ligand binding pocket. However, no ligand has been identified for LuxR/HapR proteins that control their function as regulators. Here, we used LuxR/HapR-specific chemical inhibitors to determine that ligand binding drives proteolytic degradation in vivo , the first demonstration of LuxR/HapR function connected to ligand binding for this historical protein family.
Collapse
|
18
|
Xu M, Wang Y, Wan Q, Chen M, Guo S. RNA-seq analysis revealed the pathogenicity of Vibrio vulnificus to American eel (Anguilla rostrata) and the strategy of host anti-V. vulnificus infection. Microb Pathog 2024; 186:106498. [PMID: 38097116 DOI: 10.1016/j.micpath.2023.106498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Vibrio vulnificus is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-V. vulnificus infection remains uncertain. In this study, American eels were infected with different dose of V. vulnificus to determine the LD50. Then, bacterial load in the liver and kidney histopathology were assessed post the LD50 of V. vulnificus infection. Additionally, gene expressions of 18 immune related genes in the liver, spleen and kidney were detected. Furthermore, transcriptome sequencing and enrichment of differentially expressed genes (DEGs) were analyzed in the eel spleens between pre-infection (Con_0), post-36 h (Vv_36), and post-60 h (Vv_60) infection. The results showed that LD50 of V. vulnificus to American eels was determined to be 5.0 × 105 cfu/g body weight, and the bacterial load peaked at 24 and 12 h post the infection (hpi) in the kidney and liver, respectively. The histopathology was highlighted by necrotic hepatocytes and splenic cells, congestion blood vessels in liver and spleen, atrophied glomeruli and vacuolization of renal tubular epithelial cells. The results of RT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated expression post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 16 DEGs play essential role to the immunosuppression in American eels, and the protein-protein interactions shed light on the widespread upregulation GEGs related to metabolism and immune response maintained the host cell homeostasis post the V. vulnificus infection, shedding new light on our understanding of the V. vulnificus pathogenesis towards understudied American eel and the host anti-V. vulnificus infection strategies in gene transcript.
Collapse
Affiliation(s)
- Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Yue Wang
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| |
Collapse
|
19
|
Hernández-Cabanyero C, Sanjuán E, Mercado L, Amaro C. Evidence that fish death after Vibrio vulnificus infection is due to an acute inflammatory response triggered by a toxin of the MARTX family. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109131. [PMID: 37832748 DOI: 10.1016/j.fsi.2023.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
Vibrio vulnificus is an emerging zoonotic pathogen associated with fish farms that is capable of causing a hemorrhagic septicemia known as warm-water vibriosis. According to a recent transcriptomic and functional study, the death of fish due to vibriosis is more related to the inflammatory response of the host than to the tissue lesions caused by the pathogen. In this work, we hypothesize that the RtxA1 toxin (a V. vulnificus toxin of the MARTX (Multifunctional Autoprocessing Repeats in Toxin) family) is the key virulence factor that would directly or indirectly trigger this fatal inflammatory response. Our hypothesis was based on previous studies that showed that rtxA1-deficient mutants maintained their ability to colonize and invade, but were unable to kill fish. To demonstrate this hypothesis, we infected eels (model of fish vibriosis) by immersion with a mutant deficient in RtxA1 production and analyzed their transcriptome in blood, red blood cells and white blood cells during early vibriosis (0, 3 and 12 h post-infection). The transcriptomic results were compared with those obtained in the previous study in which eels were infected with the V. vulnificus parental strain, and were functionally validated. Overall, our results confirm that fish death after V. vulnificus infection is due to an acute, early and atypical inflammatory response triggered by RtxA1 in which red blood cells seem to play a central role. These results could be relevant to other vibriosis as the toxins of this family are widespread in the Vibrio genus.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain
| | - Eva Sanjuán
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain
| | - Luis Mercado
- Instituto de Biología. Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carmen Amaro
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner, 50, 46100, Valencia, Spain.
| |
Collapse
|
20
|
Waidner LA, Potdukhe TV. Tools to Enumerate and Predict Distribution Patterns of Environmental Vibrio vulnificus and Vibrio parahaemolyticus. Microorganisms 2023; 11:2502. [PMID: 37894160 PMCID: PMC10609196 DOI: 10.3390/microorganisms11102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are water- and foodborne bacteria that can cause several distinct human diseases, collectively called vibriosis. The success of oyster aquaculture is negatively impacted by high Vibrio abundances. Myriad environmental factors affect the distribution of pathogenic Vibrio, including temperature, salinity, eutrophication, extreme weather events, and plankton loads, including harmful algal blooms. In this paper, we synthesize the current understanding of ecological drivers of Vv and Vp and provide a summary of various tools used to enumerate Vv and Vp in a variety of environments and environmental samples. We also highlight the limitations and benefits of each of the measurement tools and propose example alternative tools for more specific enumeration of pathogenic Vv and Vp. Improvement of molecular methods can tighten better predictive models that are potentially important for mitigation in more controlled environments such as aquaculture.
Collapse
Affiliation(s)
- Lisa A. Waidner
- Hal Marcus College of Science and Engineering, University of West Florida, 11000 University Pkwy, Building 58, Room 108, Pensacola, FL 32514, USA
| | - Trupti V. Potdukhe
- GEMS Program, College of Medicine, University of Illinois Chicago, 1853 W. Polk St., Chicago, IL 60612, USA;
| |
Collapse
|
21
|
Cutugno L, O'Byrne C, Pané‐Farré J, Boyd A. Rifampicin-resistant RpoB S522L Vibrio vulnificus exhibits disturbed stress response and hypervirulence traits. Microbiologyopen 2023; 12:e1379. [PMID: 37877661 PMCID: PMC10493491 DOI: 10.1002/mbo3.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
Rifampicin resistance, which is genetically linked to mutations in the RNA polymerase β-subunit gene rpoB, has a global impact on bacterial transcription and cell physiology. Previously, we identified a substitution of serine 522 in RpoB (i.e., RpoBS522L ) conferring rifampicin resistance to Vibrio vulnificus, a human food-borne and wound-infecting pathogen associated with a high mortality rate. Transcriptional and physiological analysis of V. vulnificus expressing RpoBS522L showed increased basal transcription of stress-related genes and global virulence regulators. Phenotypically these transcriptional changes manifest as disturbed osmo-stress responses and toxin-associated hypervirulence as shown by reduced hypoosmotic-stress resistance and enhanced cytotoxicity of the RpoBS522L strain. These results suggest that RpoB-linked rifampicin resistance has a significant impact on V. vulnificus survival in the environment and during infection.
Collapse
Affiliation(s)
- Laura Cutugno
- School of Natural SciencesUniversity of GalwayGalwayIreland
| | - Conor O'Byrne
- School of Biological and Chemical SciencesUniversity of GalwayGalwayIreland
| | - Jan Pané‐Farré
- Centre for Synthetic Microbiology (SYNMIKRO) & Department of ChemistryPhilipps‐University MarburgMarburgGermany
| | - Aoife Boyd
- School of Natural SciencesUniversity of GalwayGalwayIreland
| |
Collapse
|
22
|
Ko D, Sung D, Kim TY, Choi G, Bang YJ, Choi SH. CarRS Two-Component System Essential for Polymyxin B Resistance of Vibrio vulnificus Responds to Multiple Host Environmental Signals. Microbiol Spectr 2023; 11:e0030523. [PMID: 37289068 PMCID: PMC10433830 DOI: 10.1128/spectrum.00305-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Enteropathogenic bacteria express two-component systems (TCSs) to sense and respond to host environments, developing resistance to host innate immune systems like cationic antimicrobial peptides (CAMPs). Although an opportunistic human pathogen Vibrio vulnificus shows intrinsic resistance to the CAMP-like polymyxin B (PMB), its TCSs responsible for resistance have barely been investigated. Here, a mutant exhibiting a reduced growth rate in the presence of PMB was screened from a random transposon mutant library of V. vulnificus, and response regulator CarR of the CarRS TCS was identified as essential for its PMB resistance. Transcriptome analysis revealed that CarR strongly activates the expression of the eptA, tolCV2, and carRS operons. In particular, the eptA operon plays a major role in developing the CarR-mediated PMB resistance. Phosphorylation of CarR by the sensor kinase CarS is required for the regulation of its downstream genes, leading to the PMB resistance. Nevertheless, CarR directly binds to specific sequences in the upstream regions of the eptA and carRS operons, regardless of its phosphorylation. Notably, the CarRS TCS alters its own activation state by responding to several environmental stresses, including PMB, divalent cations, bile salts, and pH change. Furthermore, CarR modulates the resistance of V. vulnificus to bile salts and acidic pH among the stresses, as well as PMB. Altogether, this study suggests that the CarRS TCS, in responding to multiple host environmental signals, could provide V. vulnificus with the benefit of surviving within the host by enhancing its optimal fitness during infection. IMPORTANCE Enteropathogenic bacteria have evolved multiple TCSs to recognize and appropriately respond to host environments. CAMP is one of the inherent host barriers that the pathogens encounter during the course of infection. In this study, the CarRS TCS of V. vulnificus was found to develop resistance to PMB, a CAMP-like antimicrobial peptide, by directly activating the expression of the eptA operon. Although CarR binds to the upstream regions of the eptA and carRS operons regardless of phosphorylation, phosphorylation of CarR is required for the regulation of the operons, resulting in the PMB resistance. Furthermore, the CarRS TCS determines the resistance of V. vulnificus to bile salts and acidic pH by differentially regulating its own activation state in response to these environmental stresses. Altogether, the CarRS TCS responds to multiple host-related signals, and thus could enhance the survival of V. vulnificus within the host, leading to successful infection.
Collapse
Affiliation(s)
- Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Dayoung Sung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Tae Young Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Wang J, Weng X, Weng Y, Xu Q, Lu Y, Mo Y. Clinical features and treatment outcomes of Vibrio vulnificus infection in the coastal city of Ningbo, China. Front Microbiol 2023; 14:1220526. [PMID: 37469427 PMCID: PMC10352778 DOI: 10.3389/fmicb.2023.1220526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Background Vibrio vulnificus is a gram-negative, opportunistic pathogen common to warm waters worldwide. Human V. vulnificus infection is rare and typically affects those residing in coastal areas during the summer months, but it causes rapid deterioration and is fatal. Methods The medical records of six patients with sepsis caused by V. vulnificus infection who were treated at the First Affiliated Hospital of Ningbo University from 2020 to 2022 were retrospectively reviewed. The patient demographics, clinical symptoms, laboratory test results, treatments, and outcomes are summarized. Results Vibrio vulnificus infection was confirmed by blood or pus culture, 16S ribosomal DNA sequencing, and metagenomic next-generation sequencing. All six patients were male with pre-existing liver diseases and two reported consuming seafood before the onset of symptoms. Of the six patients, four succumbed to the disease, two recovered, and one underwent leg amputation. Conclusion Vibrio vulnificus infection progresses rapidly and is highly fatal, thus prompt and aggressive treatment is necessary. Vibrio vulnificus infection should be considered in older (>40 years) patients with a history of liver disease and recent consumption of seafood or exposure to seawater, especially those residing in coastal areas during the summer months.
Collapse
|
24
|
Meng X, Chen F, Xiong M, Hao H, Wang KJ. A new pathogenic isolate of Kocuria kristinae identified for the first time in the marine fish Larimichthys crocea. Front Microbiol 2023; 14:1129568. [PMID: 37180261 PMCID: PMC10167289 DOI: 10.3389/fmicb.2023.1129568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
In recent years, new emerging pathogenic microorganisms have frequently appeared in animals, including marine fish, possibly due to climate change, anthropogenic activities, and even cross-species transmission of pathogenic microorganisms among animals or between animals and humans, which poses a serious issue for preventive medicine. In this study, a bacterium was clearly characterized among 64 isolates from the gills of diseased large yellow croaker Larimichthys crocea that were raised in marine aquaculture. This strain was identified as K. kristinae by biochemical tests with a VITEK 2.0 analysis system and 16S rRNA sequencing and named K. kristinae_LC. The potential genes that might encode virulence-factors were widely screened through sequence analysis of the whole genome of K. kristinae_LC. Many genes involved in the two-component system and drug-resistance were also annotated. In addition, 104 unique genes in K. kristinae_LC were identified by pan genome analysis with the genomes of this strain from five different origins (woodpecker, medical resource, environment, and marine sponge reef) and the analysis results demonstrated that their predicted functions might be associated with adaptation to living conditions such as higher salinity, complex marine biomes, and low temperature. A significant difference in genomic organization was found among the K. kristinae strains that might be related to their hosts living in different environments. The animal regression test for this new bacterial isolate was carried out using L. crocea, and the results showed that this bacterium could cause the death of L. crocea and that the fish mortality was dose-dependent within 5 days post infection, indicating the pathogenicity of K. kristinae_LC to marine fish. Since K. kristinae has been reported as a pathogen for humans and bovines, in our study, we revealed a new isolate of K. kristinae_LC from marine fish for the first time, suggesting the potentiality of cross-species transmission among animals or from marine animals to humans, from which we would gain insight to help in future public prevention strategies for new emerging pathogens.
Collapse
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ming Xiong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
25
|
Velez KEC, Leighton RE, Decho AW, Pinckney JL, Norman RS. Modeling pH and Temperature Effects as Climatic Hazards in V ibrio Vulnificus and Vibrio Parahaemolyticus Planktonic Growth and Biofilm Formation. GEOHEALTH 2023; 7:e2022GH000769. [PMID: 37091291 PMCID: PMC10114089 DOI: 10.1029/2022gh000769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Climate-induced stressors, such as changes in temperature, salinity, and pH, contribute to the emergence of infectious diseases. These changes alter geographical constraint, resulting in increased Vibrio spread, exposure, and infection rates, thus facilitating greater Vibrio-human interactions. Multiple efforts have been developed to predict Vibrio exposure and raise awareness of health risks, but most models only use temperature and salinity as prediction factors. This study aimed to better understand the potential effects of temperature and pH on V. vulnificus and V. parahaemolyticus planktonic and biofilm growth. Vibrio strains were grown in triplicate at 25°, 30°, and 37°C in 96 well plates containing Modified Seawater Yeast Extract modified with CaCl2 at pH's ranging from 5 to 9.6. AMiGA software was used to model growth curves using Gaussian process regression. The effects of temperature and pH were evaluated using randomized complete block analysis of variance, and the growth rates of V. parahaemolyticus and V. vulnificus were modeled using the interpolation fit on the MatLab Curve Fitting Toolbox. Different optimal conditions involving temperature and pH were observed for planktonic and biofilm Vibrio growth within- and between-species. This study showed that temperature and pH factors significantly affect Vibrio planktonic growth rates and V. parahaemolyticus biofilm formation. Therefore, pH effects must be added to the Vibrio growth modeling efforts to better predict Vibrio risk in estuarine and coastal zones that can potentially experience the cooccurrence of Vibrio and harmful algal bloom outbreak events.
Collapse
Affiliation(s)
- K. E. Correa Velez
- Department of Environmental Health SciencesUniversity of South CarolinaSCColumbiaUSA
- NIEHS Center for Oceans and Human Health and Climate Change InteractionsUniversity of South CarolinaSCColumbiaUSA
| | - R. E. Leighton
- Department of Environmental Health SciencesUniversity of South CarolinaSCColumbiaUSA
- NIEHS Center for Oceans and Human Health and Climate Change InteractionsUniversity of South CarolinaSCColumbiaUSA
| | - A. W. Decho
- Department of Environmental Health SciencesUniversity of South CarolinaSCColumbiaUSA
- NIEHS Center for Oceans and Human Health and Climate Change InteractionsUniversity of South CarolinaSCColumbiaUSA
| | - J. L. Pinckney
- Department of Biological SciencesUniversity of South CarolinaSCColumbiaUSA
- School of the Earth, Ocean and EnvironmentUniversity of South CarolinaSCColumbiaUSA
| | - R. S. Norman
- Department of Environmental Health SciencesUniversity of South CarolinaSCColumbiaUSA
- NIEHS Center for Oceans and Human Health and Climate Change InteractionsUniversity of South CarolinaSCColumbiaUSA
| |
Collapse
|
26
|
Amaro C, Carmona-Salido H. Vibrio vulnificus, an Underestimated Zoonotic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:175-194. [PMID: 36792876 DOI: 10.1007/978-3-031-22997-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
V. vulnificus, continues being an underestimated yet lethal zoonotic pathogen. In this chapter, we provide a comprehensive review of numerous aspects of the biology, epidemiology, and virulence mechanisms of this poorly understood pathogen. We will emphasize the widespread role of horizontal gene transfer in V. vulnificus specifically virulence plasmids and draw parallels from aquaculture farms to human health. By placing current findings in the context of climate change, we will also contend that fish farms act as evolutionary drivers that accelerate species evolution and the emergence of new virulent groups. Overall, we suggest that on-farm control measures should be adopted both to protect animals from Vibriosis, and also as a public health measure to prevent the emergence of new zoonotic groups.
Collapse
Affiliation(s)
- Carmen Amaro
- Departamento de Microbiología y Ecología, & Instituto Universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain.
| | - Héctor Carmona-Salido
- Departamento de Microbiología y Ecología, & Instituto Universitario de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
27
|
Lee H, Im H, Hwang SH, Ko D, Choi SH. Two novel genes identified by large-scale transcriptomic analysis are essential for biofilm and rugose colony development of Vibrio vulnificus. PLoS Pathog 2023; 19:e1011064. [PMID: 36656902 PMCID: PMC9888727 DOI: 10.1371/journal.ppat.1011064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/31/2023] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
Many pathogenic bacteria form biofilms to survive under environmental stresses and host immune defenses. Differential expression (DE) analysis of the genes in biofilm and planktonic cells under a single condition, however, has limitations to identify the genes essential for biofilm formation. Independent component analysis (ICA), a machine learning algorithm, was adopted to comprehensively identify the biofilm genes of Vibrio vulnificus, a fulminating human pathogen, in this study. ICA analyzed the large-scale transcriptome data of V. vulnificus cells under various biofilm and planktonic conditions and then identified a total of 72 sets of independently co-regulated genes, iModulons. Among the three iModulons specifically activated in biofilm cells, BrpT-iModulon mainly consisted of known genes of the regulon of BrpT, a transcriptional regulator controlling biofilm formation of V. vulnificus. Interestingly, the BrpT-iModulon additionally contained two novel genes, VV1_3061 and VV2_1694, designated as cabH and brpN, respectively. cabH and brpN were shared in other Vibrio species and not yet identified by DE analyses. Genetic and biochemical analyses revealed that cabH and brpN are directly up-regulated by BrpT. The deletion of cabH and brpN impaired the robust biofilm and rugose colony formation. CabH, structurally similar to the previously known calcium-binding matrix protein CabA, was essential for attachment to the surface. BrpN, carrying an acyltransferase-3 domain as observed in BrpL, played an important role in exopolysaccharide production. Altogether, ICA identified two novel genes, cabH and brpN, which are regulated by BrpT and essential for the development of robust biofilms and rugose colonies of V. vulnificus.
Collapse
Affiliation(s)
- Hojun Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hanhyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ho Hwang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Targeting Virulence Genes Expression in Vibrio vulnificus by Alternative Carbon Sources. Int J Mol Sci 2022; 23:ijms232315278. [PMID: 36499602 PMCID: PMC9737408 DOI: 10.3390/ijms232315278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen causing self-limiting gastroenteritis, life-threatening necrotizing soft tissue infection, and fulminating septicaemia. An increasing rate of infections has been reported worldwide, characterized by sudden onset of sepsis and/or rapid progression to irreversible tissue damage or death. Timely intervention is essential to control the infection, and it is based on antibiotic therapy, which does not always result in the effective and rapid blocking of virulence. Inhibitors of essential virulence regulators have been reported in the last years, but none of them has been further developed, so far. We aimed to investigate whether exposure to some carbon compounds, mostly easily metabolizable, could result in transcriptional down-regulation of virulence genes. We screened various carbon sources already available for human use (thus potentially easy to be repurposed), finding some of them (including mannitol and glycerol) highly effective in down-regulating, in vitro and ex-vivo, the mRNA levels of several relevant -even essential- virulence factors (hlyU, lrp, rtxA, vvpE, vvhA, plpA, among others). This paves the way for further investigations aiming at their development as virulence inhibitors and to unveil mechanisms explaining such observed effects. Moreover, data suggesting the existence of additional regulatory networks of some virulence genes are reported.
Collapse
|