1
|
Leighton AH, Cheyne JE, Lohmann C. Clustered synapses develop in distinct dendritic domains in visual cortex before eye opening. eLife 2024; 12:RP93498. [PMID: 38990761 PMCID: PMC11239177 DOI: 10.7554/elife.93498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.
Collapse
Affiliation(s)
- Alexandra H Leighton
- Department of Synapse and Network Development, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Juliette E Cheyne
- Department of Synapse and Network Development, Netherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University AmsterdamAmsterdamNetherlands
| |
Collapse
|
2
|
Huang CH, Lin CCK. New biophysical rate-based modeling of long-term plasticity in mean-field neuronal population models. Comput Biol Med 2023; 163:107213. [PMID: 37413849 DOI: 10.1016/j.compbiomed.2023.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/20/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
The formation of customized neural networks as the basis of brain functions such as receptive field selectivity, learning or memory depends heavily on the long-term plasticity of synaptic connections. However, the current mean-field population models commonly used to simulate large-scale neural network dynamics lack explicit links to the underlying cellular mechanisms of long-term plasticity. In this study, we developed a new mean-field population model, the plastic density-based neural mass model (pdNMM), by incorporating a newly developed rate-based plasticity model based on the calcium control hypothesis into an existing density-based neural mass model. Derivation of the plasticity model was carried out using population density methods. Our results showed that the synaptic plasticity represented by the resulting rate-based plasticity model exhibited Bienenstock-Cooper-Munro-like learning rules. Furthermore, we demonstrated that the pdNMM accurately reproduced previous experimental observations of long-term plasticity, including characteristics of Hebbian plasticity such as longevity, associativity and input specificity, on hippocampal slices, and the formation of receptive field selectivity in the visual cortex. In conclusion, the pdNMM is a novel approach that can confer long-term plasticity to conventional mean-field neuronal population models.
Collapse
Affiliation(s)
- Chih-Hsu Huang
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching K Lin
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Innovation Center of Medical Devices and Technology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Tomar M, Beros J, Meloni B, Rodger J. Interactions between Guidance Cues and Neuronal Activity: Therapeutic Insights from Mouse Models. Int J Mol Sci 2023; 24:ijms24086966. [PMID: 37108129 PMCID: PMC10138948 DOI: 10.3390/ijms24086966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Topographic mapping of neural circuits is fundamental in shaping the structural and functional organization of brain regions. This developmentally important process is crucial not only for the representation of different sensory inputs but also for their integration. Disruption of topographic organization has been associated with several neurodevelopmental disorders. The aim of this review is to highlight the mechanisms involved in creating and refining such well-defined maps in the brain with a focus on the Eph and ephrin families of axon guidance cues. We first describe the transgenic models where ephrin-A expression has been manipulated to understand the role of these guidance cues in defining topography in various sensory systems. We further describe the behavioral consequences of lacking ephrin-A guidance cues in these animal models. These studies have given us unexpected insight into how neuronal activity is equally important in refining neural circuits in different brain regions. We conclude the review by discussing studies that have used treatments such as repetitive transcranial magnetic stimulation (rTMS) to manipulate activity in the brain to compensate for the lack of guidance cues in ephrin-knockout animal models. We describe how rTMS could have therapeutic relevance in neurodevelopmental disorders with disrupted brain organization.
Collapse
Affiliation(s)
- Maitri Tomar
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Jamie Beros
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Bruno Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
4
|
Lin TF, Mohammadi M, Cullen KE, Chacron MJ, Huang MYY. Optokinetic set-point adaptation functions as an internal dynamic calibration mechanism for oculomotor disequilibrium. iScience 2022; 25:105335. [PMID: 36325052 PMCID: PMC9619307 DOI: 10.1016/j.isci.2022.105335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Experience-dependent brain circuit plasticity underlies various sensorimotor learning and memory processes. Recently, a novel set-point adaptation mechanism was identified that accounts for the pronounced negative optokinetic afternystagmus (OKAN) following a sustained period of unidirectional optokinetic nystagmus (OKN) in larval zebrafish. To investigate the physiological significance of optokinetic set-point adaptation, animals in the current study were exposed to a direction-alternating optokinetic stimulation paradigm that better resembles their visual experience in nature. Our results reveal that not only was asymmetric alternating stimulation sufficient to induce the set-point adaptation and the resulting negative OKAN, but most strikingly, under symmetric alternating stimulation some animals displayed an inherent bias of the OKN gain in one direction, and that was compensated by the similar set-point adaptation. This finding, supported by mathematical modeling, suggests that set-point adaptation allows animals to cope with asymmetric optokinetic behaviors evoked by either external stimuli or innate oculomotor biases. Optokinetic set-point adaptation reflects the temporal integration of visual input Wild-type zebrafish larvae may display innate optokinetic left-right asymmetries The degree of the optokinetic asymmetry among larvae is normally distributed The innate optokinetic asymmetry can be compensated by the set-point adaptation
Collapse
Affiliation(s)
- Ting-Feng Lin
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
- Corresponding author
| | - Mohammad Mohammadi
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Kathleen E. Cullen
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Melody Ying-Yu Huang
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
- Corresponding author
| |
Collapse
|
5
|
Winnubst J, Lohmann C. Mapping Synaptic Inputs of Developing Neurons Using Calcium Imaging. Methods Mol Biol 2017; 1538:341-352. [PMID: 27943200 DOI: 10.1007/978-1-4939-6688-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Studying changing synaptic activity patterns during development provides a wealth of information on how activity-dependent processes shape synaptic connectivity. In this chapter we introduce a method that combines whole-cell electrophysiology with calcium imaging to map functional synaptic sites on the dendritic tree and follow their activity over time. The key strength of this method lies in its ability to distinguish between synaptic and non-synaptic calcium signaling by their coincidence with synaptic currents measured at the soma. Next to the required materials and protocols that are necessary to perform these experiments, we thoroughly discuss how the acquired data can be analyzed. Since this method can be employed in many neuronal systems we believe that it can be a valuable tool to study developmental changes in synaptic connectivity.
Collapse
Affiliation(s)
- Johan Winnubst
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, BA, 1105, The Netherlands
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, BA, 1105, The Netherlands.
| |
Collapse
|
6
|
Xu HP, Burbridge TJ, Chen MG, Ge X, Zhang Y, Zhou ZJ, Crair MC. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency. Dev Neurobiol 2015; 75:621-40. [PMID: 25787992 DOI: 10.1002/dneu.22288] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023]
Abstract
Spontaneous activity during early development is necessary for the formation of precise neural connections, but it remains uncertain whether activity plays an instructive or permissive role in brain wiring. In the visual system, retinal ganglion cell (RGC) projections to the brain form two prominent sensory maps, one reflecting eye of origin and the other retinotopic location. Recent studies provide compelling evidence supporting an instructive role for spontaneous retinal activity in the development of eye-specific projections, but evidence for a similarly instructive role in the development of retinotopy is more equivocal. Here, we report on experiments in which we knocked down the expression of β2-containing nicotinic acetylcholine receptors (β2-nAChRs) specifically in the retina through a Cre-loxP recombination strategy. Overall levels of spontaneous retinal activity in retina-specific β2-nAChR mutant mice (Rx-β2cKO), examined in vitro and in vivo, were reduced to a degree comparable to that observed in whole animal β2-nAChR mouse mutants (β2KO). However, many residual spontaneous waves in Rx-β2cKO mice displayed local propagating features with strong correlations between nearby but not distant RGCs typical of waves observed in wild-type (WT) but not β2KO mice. We further observed that eye-specific segregation was disrupted in Rx-β2cKO mice, but retinotopy was spared in a competition-dependent manner. These results suggest that propagating patterns of spontaneous retinal waves are essential for normal development of the retinotopic map, even while overall activity levels are significantly reduced, and support an instructive role for spontaneous retinal activity in both eye-specific segregation and retinotopic refinement.
Collapse
Affiliation(s)
- Hong-Ping Xu
- Department of Neurobiology, Yale University, New Haven, CT, 06510
| | | | - Ming-Gang Chen
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, 06510
| | - Xinxin Ge
- Department of Neurobiology, Yale University, New Haven, CT, 06510
| | - Yueyi Zhang
- Department of Neurobiology, Yale University, New Haven, CT, 06510
| | - Zhimin Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, 06510
| | - Michael C Crair
- Department of Neurobiology, Yale University, New Haven, CT, 06510.,Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, 06510.,Kavli Institute of Neuroscience, Yale University, New Haven, CT, 06510
| |
Collapse
|
7
|
Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice. J Neurosci 2014; 34:10780-92. [PMID: 25100609 DOI: 10.1523/jneurosci.0723-14.2014] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5(-/-) (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5(-/-) mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5(-/-) mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5(-/-) mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.
Collapse
|
8
|
Kirkby LA, Sack GS, Firl A, Feller MB. A role for correlated spontaneous activity in the assembly of neural circuits. Neuron 2014; 80:1129-44. [PMID: 24314725 DOI: 10.1016/j.neuron.2013.10.030] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
Before the onset of sensory transduction, developing neural circuits spontaneously generate correlated activity in distinct spatial and temporal patterns. During this period of patterned activity, sensory maps develop and initial coarse connections are refined, which are critical steps in the establishment of adult neural circuits. Over the last decade, there has been substantial evidence that altering the pattern of spontaneous activity disrupts refinement, but the mechanistic understanding of this process remains incomplete. In this review, we discuss recent experimental and theoretical progress toward the process of activity-dependent refinement, focusing on circuits in the visual, auditory, and motor systems. Although many outstanding questions remain, the combination of several novel approaches has brought us closer to a comprehensive understanding of how complex neural circuits are established by patterned spontaneous activity during development.
Collapse
Affiliation(s)
- Lowry A Kirkby
- Biophysics Graduate Group, UC Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
9
|
Cang J, Feldheim DA. Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 2013; 36:51-77. [PMID: 23642132 DOI: 10.1146/annurev-neuro-062012-170341] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain connections are organized into topographic maps that are precisely aligned both within and across modalities. This alignment facilitates coherent integration of different categories of sensory inputs and allows for proper sensorimotor transformations. Topographic maps are established and aligned by multistep processes during development, including interactions of molecular guidance cues expressed in gradients; spontaneous activity-dependent axonal and dendritic remodeling; and sensory-evoked plasticity driven by experience. By focusing on the superior colliculus, a major site of topographic map alignment for different sensory modalities, this review summarizes current understanding of topographic map development in the mammalian visual system and highlights recent advances in map alignment studies. A major goal looking forward is to reveal the molecular and synaptic mechanisms underlying map alignment and to understand the physiological and behavioral consequences when these mechanisms are disrupted at various scales.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
10
|
Activity-dependent callosal axon projections in neonatal mouse cerebral cortex. Neural Plast 2012; 2012:797295. [PMID: 23213574 PMCID: PMC3507157 DOI: 10.1155/2012/797295] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/21/2012] [Indexed: 12/18/2022] Open
Abstract
Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism.
Collapse
|
11
|
Higenell V, Han SM, Feldheim DA, Scalia F, Ruthazer ES. Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis. Dev Neurobiol 2012; 72:547-63. [PMID: 21656698 DOI: 10.1002/dneu.20930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Eph family of receptor tyrosine kinases and their ligands the ephrins play an essential role in the targeting of retinal ganglion cell axons to topographically correct locations in the optic tectum during visual system development. The African claw-toed frog Xenopus laevis is a popular animal model for the study of retinotectal development because of its amenability to live imaging and electrophysiology. Its visual system undergoes protracted growth continuing beyond metamorphosis, yet little is known about ephrin and Eph expression patterns beyond stage 39 when retinal axons first arrive in the tectum. We used alkaline phosphatase fusion proteins of EphA3, ephrin-A5, EphB2, and ephrin-B1 as affinity probes to reveal the expression patterns of ephrin-As, EphAs, ephrin-Bs, and EphBs, respectively. Analysis of brains from stage 40 to adult frog revealed that ephrins and Eph receptors are expressed throughout development. As observed in other species, staining for ephrin-As displayed a high caudal to low rostral expression pattern across the tectum, roughly complementary to the expression of EphAs. In contrast with the prevailing model, EphBs were found to be expressed in the tectum in a high dorsal to low ventral gradient in young animals. In animals with induced binocular tectal innervation, ocular dominance bands of alternating input from the two eyes formed in the tectum; however, ephrin-A and EphA expression patterns were unmodulated and similar to those in normal frogs, confirming that the segregation of axons into eye-specific stripes is not the consequence of a respecification of molecular guidance cues in the tectum.
Collapse
Affiliation(s)
- Valerie Higenell
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
12
|
Spontaneous activity promotes synapse formation in a cell-type-dependent manner in the developing retina. J Neurosci 2012; 32:5426-39. [PMID: 22514306 DOI: 10.1523/jneurosci.0194-12.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous activity is thought to regulate synaptogenesis in many parts of the developing nervous system. In vivo evidence for this regulation, however, is scarce and comes almost exclusively from experiments in which normal activity was reduced or blocked completely. Thus, whether spontaneous activity itself promotes synaptogenesis or plays a purely permissive role remains uncertain. In addition, how activity influences synapse dynamics to shape connectivity and whether its effects among neurons are uniform or cell-type-dependent is unclear. In mice lacking the cone-rod homeobox gene (Crx), photoreceptors fail to establish normal connections with bipolar cells (BCs). Here, we find that retinal ganglion cells (RGCs) in Crx⁻/⁻ mice become rhythmically hyperactive around the time of eye opening as a result of increased spontaneous glutamate release from BCs. This elevated neurotransmission enhances synaptogenesis between BCs and RGCs, without altering the overall circuit architecture. Using live imaging, we discover that spontaneous activity selectively regulates the rate of synapse formation, not elimination, in this circuit. Reconstructions of the connectivity patterns of three BC types with a shared RGC target further revealed that neurotransmission specifically promotes the formation of multisynaptic appositions from one BC type without affecting the maintenance or elimination of connections from the other two. Although hyperactivity in Crx⁻/⁻ mice persists, synapse numbers do not increase beyond 4 weeks of age, suggesting closure of a critical period for synaptic refinement in the inner retina. Interestingly, despite their hyperactivity, RGC axons maintain normal eye-specific territories and cell-type-specific layers in the dorsal lateral geniculate nucleus.
Collapse
|
13
|
Winnubst J, Lohmann C. Synaptic clustering during development and learning: the why, when, and how. Front Mol Neurosci 2012; 5:70. [PMID: 22666187 PMCID: PMC3364493 DOI: 10.3389/fnmol.2012.00070] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/14/2012] [Indexed: 11/13/2022] Open
Abstract
To contribute to a functional network a neuron must make specific connections and integrate the synaptic inputs that it receives in a meaningful way. Previous modeling and experimental studies have predicted that this specificity could entail a subcellular organization whereby synapses that carry similar information are clustered together on local stretches of dendrite. Recent imaging studies have now, for the first time, demonstrated synaptic clustering during development and learning in different neuronal circuits. Interestingly, this organization is dependent on synaptic activity and most likely involves local plasticity mechanisms. Here we discuss these new insights and give an overview of the candidate plasticity mechanisms that could be involved.
Collapse
Affiliation(s)
- Johan Winnubst
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | | |
Collapse
|
14
|
Kleindienst T, Winnubst J, Roth-Alpermann C, Bonhoeffer T, Lohmann C. Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites. Neuron 2012; 72:1012-24. [PMID: 22196336 DOI: 10.1016/j.neuron.2011.10.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 11/29/2022]
Abstract
During brain development, before sensory systems become functional, neuronal networks spontaneously generate repetitive bursts of neuronal activity, which are typically synchronized across many neurons. Such activity patterns have been described on the level of networks and cells, but the fine-structure of inputs received by an individual neuron during spontaneous network activity has not been studied. Here, we used calcium imaging to record activity at many synapses of hippocampal pyramidal neurons simultaneously to establish the activity patterns in the majority of synapses of an entire cell. Analysis of the spatiotemporal patterns of synaptic activity revealed a fine-scale connectivity rule: neighboring synapses (<16 μm intersynapse distance) are more likely to be coactive than synapses that are farther away from each other. Blocking spiking activity or NMDA receptor activation revealed that the clustering of synaptic inputs required neuronal activity, demonstrating a role of developmentally expressed spontaneous activity for connecting neurons with subcellular precision.
Collapse
Affiliation(s)
- Thomas Kleindienst
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Rodger J, Mo C, Wilks T, Dunlop SA, Sherrard RM. Transcranial pulsed magnetic field stimulation facilitates reorganization of abnormal neural circuits and corrects behavioral deficits without disrupting normal connectivity. FASEB J 2012; 26:1593-606. [PMID: 22223750 DOI: 10.1096/fj.11-194878] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although the organization of neuronal circuitry is shaped by activity patterns, the capacity to modify and/or optimize the structure and function of whole projection pathways using external stimuli is poorly defined. We investigate whether neuronal activity induced by pulsed magnetic fields (PMFs) alters brain structure and function. We delivered low-intensity PMFs to the posterior cranium of awake, unrestrained mice (wild-type and ephrin-A2A5(-/-)) that have disorganized retinocollicular circuitry and associated visuomotor deficits. Control groups of each genotype received sham stimulation. Following daily stimulation for 14 d, we measured biochemical, structural (anterograde tracing), and functional (electrophysiology and behavior) changes in the retinocollicular projection. PMFs induced BDNF, GABA, and nNOS expression in the superior colliculus and retina of wild-type and ephrin-A2A5(-/-) mice. Furthermore, in ephrin-A2A5(-/-) mice, PMFs corrected abnormal neuronal responses and selectively removed inaccurate ectopic axon terminals to improve structural and functional organization of their retinocollicular projection and restore normal visual tracking behavior. In contrast, PMFs did not alter the structure or function of the normal projection in wild-type mice. Sham PMF stimulation had no effect on any mice. Thus, PMF-induced biochemical changes are congruent with its capacity to facilitate beneficial reorganization of abnormal neural circuits without disrupting normal connectivity and function.
Collapse
Affiliation(s)
- Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology M317, The University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | |
Collapse
|
16
|
Sanes DH, Woolley SMN. A behavioral framework to guide research on central auditory development and plasticity. Neuron 2011; 72:912-29. [PMID: 22196328 PMCID: PMC3244881 DOI: 10.1016/j.neuron.2011.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2011] [Indexed: 01/14/2023]
Abstract
The auditory CNS is influenced profoundly by sounds heard during development. Auditory deprivation and augmented sound exposure can each perturb the maturation of neural computations as well as their underlying synaptic properties. However, we have learned little about the emergence of perceptual skills in these same model systems, and especially how perception is influenced by early acoustic experience. Here, we argue that developmental studies must take greater advantage of behavioral benchmarks. We discuss quantitative measures of perceptual development and suggest how they can play a much larger role in guiding experimental design. Most importantly, including behavioral measures will allow us to establish empirical connections among environment, neural development, and perception.
Collapse
Affiliation(s)
- Dan H Sanes
- Center for Neural Science, 4 Washington Place, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
17
|
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron 2011; 70:1115-27. [PMID: 21689598 PMCID: PMC3119851 DOI: 10.1016/j.neuron.2011.04.028] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Complex neural circuits in the mammalian brain develop through a combination of genetic instruction and activity-dependent refinement. The relative role of these factors and the form of neuronal activity responsible for circuit development is a matter of significant debate. In the mammalian visual system, retinal ganglion cell projections to the brain are mapped with respect to retinotopic location and eye of origin. We manipulated the pattern of spontaneous retinal waves present during development without changing overall activity levels through the transgenic expression of β2-nicotinic acetylcholine receptors in retinal ganglion cells of mice. We used this manipulation to demonstrate that spontaneous retinal activity is not just permissive, but instructive in the emergence of eye-specific segregation and retinotopic refinement in the mouse visual system. This suggests that specific patterns of spontaneous activity throughout the developing brain are essential in the emergence of specific and distinct patterns of neuronal connectivity.
Collapse
Affiliation(s)
- Hong-ping Xu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Simpson HD, Giacomantonio CE, Goodhill GJ. Computational modeling of neuronal map development: insights into disease. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the formation of neuronal maps in the brain has greatly increased our understanding of how the brain develops and, in some cases, regenerates. Computational modeling of neuronal map development has been invaluable in integrating complex biological phenomena and synthesizing them into quantitative and predictive frameworks. These models allow us to investigate how neuronal map development is perturbed under conditions of altered development, disease and regeneration. In this article, we use examples of activity-dependent and activity-independent models of retinotopic map formation to illustrate how they can aid our understanding of developmental and acquired disease processes. We note that fully extending these models to specific clinically relevant problems is a largely unexplored domain and suggest future work in this direction. We argue that this type of modeling will be necessary in furthering our understanding of the pathophysiology of neurological diseases and in developing treatments for them. Furthermore, we discuss how the nature of computational and theoretical approaches uniquely places them to bridge the gap between the bench and the clinic.
Collapse
Affiliation(s)
- Hugh D Simpson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Clare E Giacomantonio
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- School of Mathematics & Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
19
|
Srivastava DP, Penzes P. Rapid estradiol modulation of neuronal connectivity and its implications for disease. Front Endocrinol (Lausanne) 2011; 2:77. [PMID: 22654827 PMCID: PMC3356153 DOI: 10.3389/fendo.2011.00077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/04/2011] [Indexed: 12/05/2022] Open
Abstract
Estrogens have multiple actions in the brain including modulating synaptic plasticity, connectivity, and cognitive behaviors. While the classical view of estrogens are as endocrine signals, whose effects manifest via the regulation of gene transcription, mounting evidence has been presented demonstrating that estrogens have rapid effects within specific areas of the brain. The emergence that 17 β-estradiol can be produced locally in the brain which can elicit rapid (within minutes) cellular responses has led to its classification as a neurosteroid. Moreover, recent studies have also begun to detail the molecular and cellular underpinnings of how 17 β-estradiol can rapidly modulate spiny synapses (dendritic spines). Remodeling of dendritic spines is a key step in the rewiring of neuronal circuitry thought to underlie the processing and storage of information in the forebrain. Conversely, abnormal remodeling of dendritic spines is thought to contribute to a number of psychiatric and neurodevelopmental disorders. Here we review recent molecular and cellular work that offers a potential mechanism of how 17 β-estradiol may modulate synapse structure and function of cortical neurons. This mechanism allows cortical neurons to respond to activity-dependent stimuli with greater efficacy. In turn this form of plasticity may provide an insight into how 17 β-estradiol can modulate the rewiring of neuronal circuits, underlying its ability to influencing cortically based behaviors. We will then go on to discuss the potential role of 17 β-estradiol modulation of neural circuits and its potential relevance for the treatment of psychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Deepak P. Srivastava
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King’s College LondonLondon, UK
- *Correspondence: Deepak P. Srivastava, Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA. e-mail:
| | - Peter Penzes
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| |
Collapse
|
20
|
Tsigankov D, Koulakov AA. Sperry versus Hebb: topographic mapping in Isl2/EphA3 mutant mice. BMC Neurosci 2010; 11:155. [PMID: 21190559 PMCID: PMC3019204 DOI: 10.1186/1471-2202-11-155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 12/29/2010] [Indexed: 11/19/2022] Open
Abstract
Background In wild-type mice, axons of retinal ganglion cells establish topographically precise projection to the superior colliculus of the midbrain. This means that axons of neighboring retinal ganglion cells project to the proximal locations in the target. The precision of topographic projection is a result of combined effects of molecular labels, such as Eph receptors and ephrins, and correlated neural activity. In the Isl2/EphA3 mutant mice the expression levels of molecular labels are changed. As a result the topographic projection is rewired so that the neighborhood relationships between retinal cell axons are disrupted. Results Here we study the computational model for retinocollicular connectivity formation that combines the effects of molecular labels and correlated neural activity. We argue that the effects of correlated activity presenting themselves in the form of Hebbian learning rules can facilitate the restoration of the topographic connectivity even when the molecular labels carry conflicting instructions. This occurs because the correlations in electric activity carry information about retinal cells' origin that is independent on molecular labels. We argue therefore that partial restoration of the topographic property of the retinocollicular projection observed in Isl2/EphA3 heterozygous knockin mice may be explained by the effects of correlated neural activity. We address the maps observed in Isl2/EphA3 knockin/EphA4 knockout mice in which the levels of retinal labels are uniformly reduced. These maps can be explained by either the saturation of EphA receptor mapping leading to the relative signaling model or by the reverse signaling conveyed by ephrin-As expressed by retinal axons. Conclusion According to our model, experiments in Isl2/EphA3 knock-in mice test the interactions between effects of molecular labels and correlated activity during the development of neural connectivity. Correlated activity can partially restore topographic order even when molecular labels carry conflicting information.
Collapse
Affiliation(s)
- Dmitry Tsigankov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
21
|
Richards BA, Aizenman CD, Akerman CJ. In vivo spike-timing-dependent plasticity in the optic tectum of Xenopus laevis. Front Synaptic Neurosci 2010; 2:7. [PMID: 21423493 PMCID: PMC3059697 DOI: 10.3389/fnsyn.2010.00007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 05/17/2010] [Indexed: 02/04/2023] Open
Abstract
Spike-timing-dependent plasticity (STDP) is found in vivo in a variety of systems and species, but the first demonstrations of in vivo STDP were carried out in the optic tectum of Xenopus laevis embryos. Since then, the optic tectum has served as an excellent experimental model for studying STDP in sensory systems, allowing researchers to probe the developmental consequences of this form of synaptic plasticity during early development. In this review, we will describe what is known about the role of STDP in shaping feed-forward and recurrent circuits in the optic tectum with a focus on the functional implications for vision. We will discuss both the similarities and differences between the optic tectum and mammalian sensory systems that are relevant to STDP. Finally, we will highlight the unique properties of the embryonic tectum that make it an important system for researchers who are interested in how STDP contributes to activity-dependent development of sensory computations.
Collapse
|
22
|
Singh AP, VijayRaghavan K, Rodrigues V. Dendritic refinement of an identified neuron in the Drosophila CNS is regulated by neuronal activity and Wnt signaling. Development 2010; 137:1351-60. [DOI: 10.1242/dev.044131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dendrites of neurons undergo dramatic reorganization in response to developmental and other cues, such as stress and hormones. Although their morphogenesis is an active area of research, there are few neuron preparations that allow the mechanistic study of how dendritic fields are established in central neurons. Dendritic refinement is a key final step of neuronal circuit formation and is closely linked to emergence of function. Here, we study a central serotonergic neuron in the Drosophila brain, the dendrites of which undergo a dramatic morphological change during metamorphosis. Using tools to manipulate gene expression in this neuron, we examine the refinement of dendrites during pupal life. We show that the final pattern emerges after an initial growth phase, in which the dendrites function as ‘detectors’, sensing inputs received by the cell. Consistent with this, reducing excitability of the cell through hyperpolarization by expression of Kir2.1 results in increased dendritic length. We show that sensory input, possibly acting through NMDA receptors, is necessary for dendritic refinement. Our results indicate that activity triggers Wnt signaling, which plays a ‘pro-retraction’ role in sculpting the dendritic field: in the absence of sensory input, dendritic arbors do not retract, a phenotype that can be rescued by activating Wnt signaling. Our findings integrate sensory activity, NMDA receptors and Wingless/Wnt5 signaling pathways to advance our understanding of how dendritic refinement is established. We show how the maturation of sensory function interacts with broadly distributed signaling molecules, resulting in their localized action in the refinement of dendritic arbors.
Collapse
Affiliation(s)
- Ajeet Pratap Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai-5, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore-65, India
| | - Veronica Rodrigues
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai-5, India
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore-65, India
| |
Collapse
|
23
|
Role of pre- and postsynaptic activity in thalamocortical axon branching. Proc Natl Acad Sci U S A 2010; 107:7562-7. [PMID: 20368417 DOI: 10.1073/pnas.0900613107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Axonal branching is thought to be regulated not only by genetically defined programs but also by neural activity in the developing nervous system. Here we investigated the role of pre- and postsynaptic activity in axon branching in the thalamocortical (TC) projection using organotypic coculture preparations of the thalamus and cortex. Individual TC axons were labeled with enhanced yellow fluorescent protein by transfection into thalamic neurons. To manipulate firing activity, a vector encoding an inward rectifying potassium channel (Kir2.1) was introduced into either thalamic or cortical cells. Firing activity was monitored with multielectrode dishes during culturing. We found that axon branching was markedly suppressed in Kir2.1-overexpressing thalamic cells, in which neural activity was silenced. Similar suppression of TC axon branching was also found when cortical cell activity was reduced by expressing Kir2.1. These results indicate that both pre- and postsynaptic activity is required for TC axon branching during development.
Collapse
|
24
|
Mizuno H, Hirano T, Tagawa Y. Pre-synaptic and post-synaptic neuronal activity supports the axon development of callosal projection neurons during different post-natal periods in the mouse cerebral cortex. Eur J Neurosci 2010; 31:410-24. [PMID: 20105242 DOI: 10.1111/j.1460-9568.2009.07070.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Callosal projection neurons, one of the major types of projection neurons in the mammalian cerebral cortex, require neuronal activity for their axonal projections [H. Mizuno et al. (2007) J. Neurosci., 27, 6760-6770; C. L. Wang et al. (2007) J. Neurosci., 27, 11334-11342]. Here we established a method to label a few callosal axons with enhanced green fluorescent protein in the mouse cerebral cortex and examined the effect of pre-synaptic/post-synaptic neuron silencing on the morphology of individual callosal axons. Pre-synaptic/post-synaptic neurons were electrically silenced by Kir2.1 potassium channel overexpression. Single axon tracing showed that, after reaching the cortical innervation area, green fluorescent protein-labeled callosal axons underwent successive developmental stages: axon growth, branching, layer-specific targeting and arbor formation between post-natal day (P)5 and P9, and the subsequent elaboration of axon arbors between P9 and P15. Reducing pre-synaptic neuronal activity disturbed axon growth and branching before P9, as well as arbor elaboration afterwards. In contrast, silencing post-synaptic neurons disturbed axon arbor elaboration between P9 and P15. Thus, pre-synaptic neuron silencing affected significantly earlier stages of callosal projection neuron axon development than post-synaptic neuron silencing. Silencing both pre-synaptic and post-synaptic neurons impaired callosal axon projections, suggesting that certain levels of firing activity in pre-synaptic and post-synaptic neurons are required for callosal axon development. Our findings provide in-vivo evidence that pre-synaptic and post-synaptic neuronal activities play critical, and presumably differential, roles in axon growth, branching, arbor formation and elaboration during cortical axon development.
Collapse
Affiliation(s)
- Hidenobu Mizuno
- Department of Biophysics, Kyoto University Graduate School of Science, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
25
|
Bamford SA, Murray AF, Willshaw DJ. Large developing receptive fields using a distributed and locally reprogrammable address-event receiver. ACTA ACUST UNITED AC 2010; 21:286-304. [PMID: 20071258 DOI: 10.1109/tnn.2009.2036912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A distributed and locally reprogrammable address-event receiver has been designed, in which incoming address-events are monitored simultaneously by all synapses, allowing for arbitrarily large axonal fan-out without reducing channel capacity. Synapses can change the address of their presynaptic neuron, allowing the distributed implementation of a biologically realistic learning rule, with both synapse formation and elimination (synaptic rewiring). Probabilistic synapse formation leads to topographic map development, made possible by a cross-chip current-mode calculation of Euclidean distance. As well as synaptic plasticity in rewiring, synapses change weights using a competitive Hebbian learning rule (spike-timing-dependent plasticity). The weight plasticity allows receptive fields to be modified based on spatio-temporal correlations in the inputs, and the rewiring plasticity allows these modifications to become embedded in the network topology.
Collapse
Affiliation(s)
- Simeon A Bamford
- Institute of Integrated Micro and Nano Systems, Neuroinformatics Doctoral Training Centre, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
26
|
Interareal coordination of columnar architectures during visual cortical development. Proc Natl Acad Sci U S A 2009; 106:17205-10. [PMID: 19805149 DOI: 10.1073/pnas.0901615106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of cortical columns is often conceptualized as a local process in which synaptic microcircuits confined to the volume of the emerging column are established and selectively refined. Many neurons, however, while wiring up locally are simultaneously building macroscopic circuits spanning widely distributed brain regions, such as different cortical areas or the two brain hemispheres. Thus, it is conceivable that interareal interactions shape the local column layout. Here we show that the columnar architectures of different areas of the cat visual cortex in fact develop in a coordinated manner, not adequately described as a local process. This is revealed by comparing the layouts of orientation columns (i) in left/right pairs of brain hemispheres and (ii) in areas V1 and V2 of individual brain hemispheres. Whereas the size of columns varied strongly within all areas considered, columns in different areas were typically closely matched in size if they were mutually connected. During development, we find that such mutually connected columns progressively become better matched in size as the late phase of the critical period unfolds. Our results suggest that one function of critical-period plasticity is to progressively coordinate the functional architectures of different cortical areas--even across hemispheres.
Collapse
|
27
|
Godfrey KB, Eglen SJ. Theoretical models of spontaneous activity generation and propagation in the developing retina. MOLECULAR BIOSYSTEMS 2009; 5:1527-35. [PMID: 19763323 DOI: 10.1039/b907213f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spontaneous neural activity is present in many parts of the developing nervous system, including visual, auditory and motor areas. In the developing retina, nearby neurons are spontaneously active and produce propagating patterns of activity, known as retinal waves. Such activity is thought to instruct the refinement of retinal axons. In this article we review several computational models used to help evaluate the mechanisms that might be responsible for the generation of retinal waves. We then discuss the models relative to the molecular mechanisms underlying wave activity, including gap junctions, neurotransmitters and second messenger systems. We examine how well the models represent these mechanisms and propose areas for future modelling research. The retinal wave models are also discussed in relation to models of spontaneous activity in other areas of the developing nervous system.
Collapse
Affiliation(s)
- Keith B Godfrey
- Cambridge Computational Biology Institute, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, UK
| | | |
Collapse
|
28
|
Thivierge JP. How does non-random spontaneous activity contribute to brain development? Neural Netw 2009; 22:901-12. [PMID: 19196491 DOI: 10.1016/j.neunet.2009.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/17/2008] [Accepted: 01/01/2009] [Indexed: 11/28/2022]
Abstract
Highly non-random forms of spontaneous activity are proposed to play an instrumental role in the early development of the visual system. However, both the fundamental properties of spontaneous activity required to drive map formation, as well as the exact role of this information remain largely unknown. Here, a realistic computational model of spontaneous retinal waves is employed to demonstrate that both the amplitude and frequency of waves may play determining roles in retinocollicular map formation. Furthermore, results obtained with different learning rules show that spike precision in the order of milliseconds may be instrumental to neural development: a rule based on precise spike interactions (spike-timing-dependent plasticity) reduced the density of aberrant projections to the SC to a markedly greater extent than a rule based on interactions at much broader time-scale (correlation-based plasticity). Taken together, these results argue for an important role of spontaneous yet highly non-random activity, along with temporally precise learning rules, in the formation of neural circuits.
Collapse
Affiliation(s)
- Jean-Philippe Thivierge
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, IN 47405, USA.
| |
Collapse
|
29
|
Berlucchi G. Chapter 13: the contributions of neurophysiology to clinical neurology an exercise in contemporary history. HANDBOOK OF CLINICAL NEUROLOGY 2009; 95:169-88. [PMID: 19892116 DOI: 10.1016/s0072-9752(08)02113-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter reviews a number of historical contributions of neurophysiology to clinical neurology in the hundred years that have elapsed since the publication of Sherrington's The Integrative Action of the Nervous System, a book generally considered the neurophysiologist's bible. In the past, many normal nervous functions have been inferred from disorderly functions in animals by neurophysiologists and in humans by clinical neurologists. If neurophysiologists have undoubtedly learned much from experimental lesions in animals, it has been the clinical neurologists who have obtained first-hand information on the effects of pathology on the functioning of the most complex and interesting of all nervous systems, that of man. Currently this division of labor is less clear, and convergent evidence from neurophysiology and clinical neurology alike has set our current knowledge about brain functions on a firm comparative foundation. This review of the relations between neurophysiology and clinical neurology reports contributions that have been recognized as "historical" by the scientific community because of their documented impact on the development of the entire field of neurosciences. The inclusion of further less famous neurophysiological achievements is justified by their potential influence on the advancement of neuroscience, as seen from the author's personal viewpoint.
Collapse
Affiliation(s)
- Giovanni Berlucchi
- Department of Neurological and Visual Sciences and National Neuroscience Institute, University of Verona, Verona, Italy.
| |
Collapse
|
30
|
Lohmann C. Calcium signaling and the development of specific neuronal connections. PROGRESS IN BRAIN RESEARCH 2009; 175:443-52. [DOI: 10.1016/s0079-6123(09)17529-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Cang J, Wang L, Stryker MP, Feldheim DA. Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus. J Neurosci 2008; 28:11015-23. [PMID: 18945909 PMCID: PMC2588436 DOI: 10.1523/jneurosci.2478-08.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/15/2008] [Accepted: 09/10/2008] [Indexed: 11/21/2022] Open
Abstract
The orderly projections from retina to superior colliculus (SC) preserve a continuous retinotopic representation of the visual world. The development of retinocollicular maps depend on a combination of molecular guidance cues and patterned neural activity. Here, we characterize the functional retinocollicular maps in mice lacking the guidance molecules ephrin-A2, -A3, and -A5 and in mice deficient in both ephrin-As and structured spontaneous retinal activity, using a method of Fourier imaging of intrinsic signals. We find that the SC of ephrin-A2/A3/A5 triple knock-out mice contains functional maps that are disrupted selectively along the nasotemporal (azimuth) axis of the visual space. These maps are discontinuous, with patches of SC responding to topographically incorrect locations. The patches disappear in mice that are deficient in both ephrin-As and structured activity, resulting in a near-absence of azimuth map in the SC. These results indicate that ephrin-As guide the formation of functional topography in the SC, and patterned retinal activity clusters cells based on their correlated firing patterns. Comparison of the SC and visual cortical mapping defects in these mice suggests that although ephrin-As are required for mapping in both SC and visual cortex, ephrin-A-independent mapping mechanisms are more important in visual cortex than in the SC.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | |
Collapse
|
32
|
Nagiel A, Andor-Ardó D, Hudspeth AJ. Specificity of afferent synapses onto plane-polarized hair cells in the posterior lateral line of the zebrafish. J Neurosci 2008; 28:8442-53. [PMID: 18716202 PMCID: PMC2665254 DOI: 10.1523/jneurosci.2425-08.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 11/21/2022] Open
Abstract
The proper wiring of the vertebrate brain represents an extraordinary developmental challenge, requiring billions of neurons to select their appropriate synaptic targets. In view of this complexity, simple vertebrate systems provide necessary models for understanding how synaptic specificity arises. The posterior lateral-line organ of larval zebrafish consists of polarized hair cells organized in discrete clusters known as neuromasts. Here we show that each afferent neuron of the posterior lateral line establishes specific contacts with hair cells of the same hair-bundle polarity. We quantify this specificity by modeling the neuron as a biased selector of hair-cell polarity and find evidence for bias from as early as 2.5 d after fertilization. More than half of the neurons form contacts on multiple neuromasts, but the innervated organs are spatially consecutive and the polarity preference is consistent. Using a novel reagent for correlative electron microscopy, HRP-mCherry, we show that these contacts are indeed afferent synapses bearing vesicle-loaded synaptic ribbons. Moreover, afferent neurons reassume their biased innervation pattern after hair-cell ablation and regeneration. By documenting specificity in the pattern of neuronal connectivity during development and in the context of organ regeneration, these results establish the posterior lateral-line organ as a vertebrate system for the in vivo study of synaptic target selection.
Collapse
Affiliation(s)
- Aaron Nagiel
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065-6399
| | - Daniel Andor-Ardó
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065-6399
| | - A. J. Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065-6399
| |
Collapse
|
33
|
Functional topography and integration of the contralateral and ipsilateral retinocollicular projections of ephrin-A-/- mice. J Neurosci 2008; 28:7376-86. [PMID: 18632942 DOI: 10.1523/jneurosci.1135-08.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Topographically ordered projections are established by molecular guidance cues and refined by neuronal activity. Retinal input to a primary visual center, the superior colliculus (SC), is bilateral with a dense contralateral projection and a sparse ipsilateral one. Both projections are topographically organized, but in opposing anterior-posterior orientations. This arrangement provides functionally coherent input to each colliculus from the binocular visual field, supporting visual function. When guidance cues involved in contralateral topography (ephrin-As) are absent, crossed retinal ganglion cell (RGC) axons form inappropriate terminations within the SC. However, the organization of the ipsilateral projection relative to the abnormal contralateral input remains unknown, as does the functional capacity of both projections. We show here that in ephrin-A(-/-) mice, the SC contains an expanded, diffuse ipsilateral projection. Electrophysiological recording demonstrated that topography of visually evoked responses recorded from the contralateral superior colliculus of ephrin-A(-/-) mice displayed similar functional disorder in all genotypes, contrasting with their different degrees of anatomical disorder. In contrast, ipsilateral responses were retinotopic in ephrin-A2(-/-) but disorganized in ephrin-A2/A5(-/-) mice. The lack of integration of binocular input resulted in specific visual deficits, which could be reversed by occlusion of one eye. The discrepancy between anatomical and functional topography in both the ipsilateral and contralateral projections implies suppression of inappropriately located terminals. Moreover, the misalignment of ipsilateral and contralateral visual information in ephrin-A2/A5(-/-) mice suggests a role for ephrin-As in integrating convergent visual inputs.
Collapse
|
34
|
Using expression profiles of Caenorhabditis elegans neurons to identify genes that mediate synaptic connectivity. PLoS Comput Biol 2008; 4:e1000120. [PMID: 18711638 PMCID: PMC2517614 DOI: 10.1371/journal.pcbi.1000120] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 06/09/2008] [Indexed: 11/19/2022] Open
Abstract
Synaptic wiring of neurons in Caenorhabditis elegans is largely invariable between animals. It has been suggested that this feature stems from genetically encoded molecular markers that guide the neurons in the final stage of synaptic formation. Identifying these markers and unraveling the logic by which they direct synapse formation is a key challenge. Here, we address this task by constructing a probabilistic model that attempts to explain the neuronal connectivity diagram of C. elegans as a function of the expression patterns of its neurons. By only considering neuron pairs that are known to be connected by chemical or electrical synapses, we focus on the final stage of synapse formation, in which neurons identify their designated partners. Our results show that for many neurons the neuronal expression map of C. elegans can be used to accurately predict the subset of adjacent neurons that will be chosen as its postsynaptic partners. Notably, these predictions can be achieved using the expression patterns of only a small number of specific genes that interact in a combinatorial fashion.
Collapse
|
35
|
Borisyuk R, Cooke T, Roberts A. Stochasticity and functionality of neural systems: mathematical modelling of axon growth in the spinal cord of tadpole. Biosystems 2008; 93:101-14. [PMID: 18547713 DOI: 10.1016/j.biosystems.2008.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/10/2008] [Accepted: 03/20/2008] [Indexed: 12/24/2022]
Abstract
In this paper we study a simple mathematical model of axon growth in the spinal cord of tadpole. Axon development is described by a system of three difference equations (the dorso-ventral and longitudinal coordinates of the growth cone and the growth angle) with stochastic components. We find optimal parameter values by fitting the model to experimentally measured characteristics of the axon and using the quadratic cost function. The fitted model generates axons for different neuron types in both ascending and descending directions which are similar to the experimentally measured axons. Studying the model of axon growth we have found the analytical solution for dynamics of the variance of the dorso-ventral coordinate and the variance of the growth angle. Formulas provide conditions for the case when the increase of the variance is limited and the analytical expression for the saturation level. It is remarkable that optimal parameters always satisfy the condition of limited variance increase. Taking into account experimental data on distribution of neuronal cell bodies along the spinal cord and dorso-ventral distribution of dendrites we generate a biologically realistic architecture of the whole tadpole spinal cord. Preliminary study of the electrophysiological properties of the model with Morris-Lecar neurons shows that the model can generate electrical activity corresponding to the experimentally observed swimming pattern activity of the tadpole in a broad range of parameter values.
Collapse
Affiliation(s)
- Roman Borisyuk
- CTCN, University of Plymouth, Plymouth PL4 8AA, United Kingdom.
| | | | | |
Collapse
|
36
|
Geometric constraints on neuronal connectivity facilitate a concise synaptic adhesive code. Proc Natl Acad Sci U S A 2008; 105:9278-83. [PMID: 18583478 DOI: 10.1073/pnas.0712207105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nervous system contains trillions of neurons, each forming thousands of synaptic connections. It has been suggested that this complex connectivity is determined by a synaptic "adhesive code," where connections are dictated by a variable set of cell surface proteins, combinations of which form neuronal addresses. The estimated number of neuronal addresses is orders of magnitude smaller than the number of neurons. Here, we show that the limited number of addresses dictates constraints on the possible neuronal network topologies. We show that to encode arbitrary networks, in which each neuron can potentially connect to any other neuron, the number of neuronal addresses needed scales linearly with network size. In contrast, the number of addresses needed to encode the wiring of geometric networks grows only as the square root of network size. The more efficient encoding in geometric networks is achieved through the reutilization of the same addresses in physically independent portions of the network. We also find that ordered geometric networks, in which the same connectivity patterns are iterated throughout the network, further reduce the required number of addresses. We demonstrate our findings using simulated networks and the C. elegans neuronal network. Geometric neuronal connectivity with recurring connectivity patterns have been suggested to confer an evolutionary advantage by saving biochemical resources on the one hand and reutilizing functionally efficient neuronal circuits. Our study suggests an additional advantage of these prominent topological features--the facilitation of the ability to genetically encode neuronal networks given constraints on the number of addresses.
Collapse
|
37
|
Kerschensteiner D, Wong ROL. A precisely timed asynchronous pattern of ON and OFF retinal ganglion cell activity during propagation of retinal waves. Neuron 2008; 58:851-8. [PMID: 18579076 PMCID: PMC2553397 DOI: 10.1016/j.neuron.2008.04.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/19/2008] [Accepted: 04/18/2008] [Indexed: 10/21/2022]
Abstract
Patterns of coordinated spontaneous activity have been proposed to guide circuit refinement in many parts of the developing nervous system. It is unclear, however, how such patterns, which are thought to indiscriminately synchronize nearby cells, could provide the cues necessary to segregate functionally distinct circuits within overlapping cell populations. Here, we report that glutamatergic retinal waves possess a substructure in the bursting of neighboring retinal ganglion cells with opposite light responses (ON or OFF). Within a wave, cells fire repetitive nonoverlapping bursts in a fixed order: ON before OFF. This pattern is absent from cholinergic waves, which precede glutamate-dependent activity, providing a developmental sequence of distinct activity-encoded cues. Asynchronous bursting of ON and OFF retinal ganglion cells depends on inhibition between these parallel pathways. Similar asynchronous activity patterns could arise throughout the nervous system, as inhibition matures and might help to separate connections of functionally distinct subnetworks.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195, USA.
| | | |
Collapse
|
38
|
Cang J, Niell CM, Liu X, Pfeiffenberger C, Feldheim DA, Stryker MP. Selective disruption of one Cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity. Neuron 2008; 57:511-23. [PMID: 18304481 PMCID: PMC2413327 DOI: 10.1016/j.neuron.2007.12.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 10/31/2007] [Accepted: 12/19/2007] [Indexed: 11/17/2022]
Abstract
The topographic representation of visual space is preserved from retina to thalamus to cortex. We have previously shown that precise mapping of thalamocortical projections requires both molecular cues and structured retinal activity. To probe the interaction between these two mechanisms, we studied mice deficient in both ephrin-As and retinal waves. Functional and anatomical cortical maps in these mice were nearly abolished along the nasotemporal (azimuth) axis of the visual space. Both the structure of single-cell receptive fields and large-scale topography were severely distorted. These results demonstrate that ephrin-As and structured neuronal activity are two distinct pathways that mediate map formation in the visual cortex and together account almost completely for the formation of the azimuth map. Despite the dramatic disruption of azimuthal topography, the dorsoventral (elevation) map was relatively normal, indicating that the two axes of the cortical map are organized by separate mechanisms.
Collapse
Affiliation(s)
- Jianhua Cang
- W.M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143–0444, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | - Cristopher M. Niell
- W.M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143–0444, USA
| | - Xiaorong Liu
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | - Cory Pfeiffenberger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David A. Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael P. Stryker
- W.M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143–0444, USA
| |
Collapse
|
39
|
|
40
|
Li WC, Cooke T, Sautois B, Soffe SR, Borisyuk R, Roberts A. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network. Neural Dev 2007; 2:17. [PMID: 17845723 PMCID: PMC2071915 DOI: 10.1186/1749-8104-2-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/10/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How specific are the synaptic connections formed as neuronal networks develop and can simple rules account for the formation of functioning circuits? These questions are assessed in the spinal circuits controlling swimming in hatchling frog tadpoles. This is possible because detailed information is now available on the identity and synaptic connections of the main types of neuron. RESULTS The probabilities of synapses between 7 types of identified spinal neuron were measured directly by making electrical recordings from 500 pairs of neurons. For the same neuron types, the dorso-ventral distributions of axons and dendrites were measured and then used to calculate the probabilities that axons would encounter particular dendrites and so potentially form synaptic connections. Surprisingly, synapses were found between all types of neuron but contact probabilities could be predicted simply by the anatomical overlap of their axons and dendrites. These results suggested that synapse formation may not require axons to recognise specific, correct dendrites. To test the plausibility of simpler hypotheses, we first made computational models that were able to generate longitudinal axon growth paths and reproduce the axon distribution patterns and synaptic contact probabilities found in the spinal cord. To test if probabilistic rules could produce functioning spinal networks, we then made realistic computational models of spinal cord neurons, giving them established cell-specific properties and connecting them into networks using the contact probabilities we had determined. A majority of these networks produced robust swimming activity. CONCLUSION Simple factors such as morphogen gradients controlling dorso-ventral soma, dendrite and axon positions may sufficiently constrain the synaptic connections made between different types of neuron as the spinal cord first develops and allow functional networks to form. Our analysis implies that detailed cellular recognition between spinal neuron types may not be necessary for the reliable formation of functional networks to generate early behaviour like swimming.
Collapse
Affiliation(s)
- Wen-Chang Li
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Tom Cooke
- Centre for Theoretical and Computational Neuroscience, University of Plymouth, Plymouth PL4 8AA, UK
| | - Bart Sautois
- Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281-S9, B-9000 Ghent, Belgium
| | - Stephen R Soffe
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Roman Borisyuk
- Centre for Theoretical and Computational Neuroscience, University of Plymouth, Plymouth PL4 8AA, UK
| | - Alan Roberts
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| |
Collapse
|
41
|
Uesaka N, Hayano Y, Yamada A, Yamamoto N. Interplay between laminar specificity and activity-dependent mechanisms of thalamocortical axon branching. J Neurosci 2007; 27:5215-23. [PMID: 17494708 PMCID: PMC6672371 DOI: 10.1523/jneurosci.4685-06.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Target and activity-dependent mechanisms of axonal branching were studied in the thalamocortical (TC) projection using organotypic cocultures of the thalamus and cortex. TC axons were labeled with enhanced yellow fluorescent protein (EYFP) by a single-cell electroporation method and observed over time by confocal microscopy. Changes in the firing activity of cocultures grown on multielectrode dishes were also monitored over time. EYFP-labeled TC axons exhibited more branch formation in and around layer 4 of the cortical explant during the second week in vitro, when spontaneous firing activity increased in both thalamic and cortical cells. Time-lapse imaging further demonstrated that branching patterns were generated dynamically by addition and elimination with a bias toward branch accumulation in the target layer. To examine the relationship between neural activity and TC branch formation, the dynamics of axonal branching was analyzed under various pharmacological treatments. Chronic blockade of firing or synaptic activity reduced the remodeling process, in particular, branch addition in the target layer. However, extension of branches was not affected by this treatment. Together, these findings suggest that neural activity can modify the molecular mechanisms that regulate lamina-specific TC axon branching.
Collapse
Affiliation(s)
- Naofumi Uesaka
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasufumi Hayano
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akito Yamada
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuhiko Yamamoto
- Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
42
|
Srinivas KV, Jain R, Saurav S, Sikdar SK. Small-world network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy. Eur J Neurosci 2007; 25:3276-86. [PMID: 17552996 DOI: 10.1111/j.1460-9568.2007.05559.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuronal network topologies and connectivity patterns were explored in control and glutamate-injured hippocampal neuronal networks, cultured on planar multielectrode arrays. Spontaneous activity was characterized by brief episodes of synchronous firing at many sites in the array (network bursts). During such assembly activity, maximum numbers of neurons are known to interact in the network. After brief glutamate exposure followed by recovery, neuronal networks became hypersynchronous and fired network bursts at higher frequency. Connectivity maps were constructed to understand how neurons communicate during a network burst. These maps were obtained by analysing the spike trains using cross-covariance analysis and graph theory methods. Analysis of degree distribution, which is a measure of direct connections between electrodes in a neuronal network, showed exponential and Gaussian distributions in control and glutamate-injured networks, respectively. Although both the networks showed random features, small-world properties in these networks were different. These results suggest that functional two-dimensional neuronal networks in vitro are not scale-free. After brief exposure to glutamate, normal hippocampal neuronal networks became hyperexcitable and fired a larger number of network bursts with altered network topology. The small-world network property was lost and this was accompanied by a change from an exponential to a Gaussian network.
Collapse
Affiliation(s)
- Kalyan V Srinivas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-12, India
| | | | | | | |
Collapse
|
43
|
Voglis G, Tavernarakis N. The role of synaptic ion channels in synaptic plasticity. EMBO Rep 2007; 7:1104-10. [PMID: 17077866 PMCID: PMC1679792 DOI: 10.1038/sj.embor.7400830] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 08/22/2006] [Indexed: 01/28/2023] Open
Abstract
The nervous system receives a large amount of information about the environment through elaborate sensory routes. Processing and integration of these wide-ranging inputs often results in long-term behavioural alterations as a result of past experiences. These relatively permanent changes in behaviour are manifestations of the capacity of the nervous system for learning and memory. At the cellular level, synaptic plasticity is one of the mechanisms underlying this process. Repeated neural activity generates physiological changes in the nervous system that ultimately modulate neuronal communication through synaptic transmission. Recent studies implicate both presynaptic and postsynaptic ion channels in the process of synapse strength modulation. Here, we review the role of synaptic ion channels in learning and memory, and discuss the implications and significance of these findings towards deciphering the molecular biology of learning and memory.
Collapse
Affiliation(s)
- Giannis Voglis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, PO Box 1385, Heraklion 71110, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Vassilika Vouton, PO Box 1385, Heraklion 71110, Crete, Greece
- Tel: +30 2810 39 1066; Fax: +30 2810 39 1067;
| |
Collapse
|
44
|
Nicol X, Voyatzis S, Muzerelle A, Narboux-Nême N, Südhof TC, Miles R, Gaspar P. cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat Neurosci 2007; 10:340-7. [PMID: 17259982 DOI: 10.1038/nn1842] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 01/02/2007] [Indexed: 11/08/2022]
Abstract
Spontaneous activity generated in the retina is necessary to establish a precise retinotopic map, but the underlying mechanisms are poorly understood. We demonstrate here that neural activity controls ephrin-A-mediated responses. In the mouse retinotectal system, we show that spontaneous activity of the retinal ganglion cells (RGCs) is needed, independently of synaptic transmission, for the ordering of the retinotopic map and the elimination of exuberant retinal axons. Activity blockade suppressed the repellent action of ephrin-A on RGC growth cones by cyclic AMP (cAMP)-dependent pathways. Unexpectedly, the ephrin-A5-induced retraction required cAMP oscillations rather than sustained increases in intracellular cAMP concentrations. Periodic photo-induced release of caged cAMP in growth cones rescued the response to ephrin-A5 when activity was blocked. These results provide a direct molecular link between spontaneous neural activity and axon guidance mechanisms during the refinement of neural maps.
Collapse
Affiliation(s)
- Xavier Nicol
- INSERM, U616, Hôpital Salpêtrière, 47 Blvd. de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Horng SH, Sur M. Visual activity and cortical rewiring: activity-dependent plasticity of cortical networks. PROGRESS IN BRAIN RESEARCH 2007; 157:3-11. [PMID: 17167899 DOI: 10.1016/s0079-6123(06)57001-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The mammalian cortex is organized anatomically into discrete areas, which receive, process, and transmit neural signals along functional pathways. These pathways form a system of complex networks that wire up through development and refine their connections into adulthood. Understanding the processes of cortical-pathway formation, maintenance, and experience-dependent plasticity has been among the major goals of contemporary neurobiology. In this chapter, we will discuss an experimental model used to investigate the role of activity in the patterning of cortical networks during development. This model involves the "rewiring" of visual inputs into the auditory thalamus and subsequent remodeling of the auditory cortex to process visual information. We review the molecular, cellular, and physiological mechanisms of visual "rewiring" and activity-dependent shaping of cortical networks.
Collapse
Affiliation(s)
- Sam H Horng
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
46
|
Hiesinger PR, Zhai RG, Zhou Y, Koh TW, Mehta SQ, Schulze KL, Cao Y, Verstreken P, Clandinin TR, Fischbach KF, Meinertzhagen IA, Bellen HJ. Activity-independent prespecification of synaptic partners in the visual map of Drosophila. Curr Biol 2006; 16:1835-43. [PMID: 16979562 PMCID: PMC3351197 DOI: 10.1016/j.cub.2006.07.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/12/2006] [Accepted: 07/13/2006] [Indexed: 01/27/2023]
Abstract
Specifying synaptic partners and regulating synaptic numbers are at least partly activity-dependent processes during visual map formation in all systems investigated to date . In Drosophila, six photoreceptors that view the same point in visual space have to be sorted into synaptic modules called cartridges in order to form a visuotopically correct map . Synapse numbers per photoreceptor terminal and cartridge are both precisely regulated . However, it is unknown whether an activity-dependent mechanism or a genetically encoded developmental program regulates synapse numbers. We performed a large-scale quantitative ultrastructural analysis of photoreceptor synapses in mutants affecting the generation of electrical potentials (norpA, trp;trpl), neurotransmitter release (hdc, syt), vesicle endocytosis (synj), the trafficking of specific guidance molecules during photoreceptor targeting (sec15), a specific guidance receptor required for visual map formation (Dlar), and 57 other novel synaptic mutants affecting 43 genes. Remarkably, in all these mutants, individual photoreceptors form the correct number of synapses per presynaptic terminal independently of cartridge composition. Hence, our data show that each photoreceptor forms a precise and constant number of afferent synapses independently of neuronal activity and partner accuracy. Our data suggest cell-autonomous control of synapse numbers as part of a developmental program of activity-independent steps that lead to a "hard-wired" visual map in the fly brain.
Collapse
Affiliation(s)
- P. Robin Hiesinger
- Howard Hughes Medical Institute, Baylor College of Medicine Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, Texas 77030
| | - R. Grace Zhai
- Howard Hughes Medical Institute, Baylor College of Medicine Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, Texas 77030
| | - Yi Zhou
- Howard Hughes Medical Institute, Baylor College of Medicine Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, Texas 77030
| | - Tong-Wey Koh
- Program in Developmental Biology, Baylor College of Medicine Houston, Texas 77030
| | - Sunil Q. Mehta
- Program in Developmental Biology, Baylor College of Medicine Houston, Texas 77030
| | - Karen L. Schulze
- Howard Hughes Medical Institute, Baylor College of Medicine Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, Texas 77030
| | - Yu Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, Texas 77030
| | - Patrik Verstreken
- Howard Hughes Medical Institute, Baylor College of Medicine Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, Texas 77030
| | | | | | - Ian A. Meinertzhagen
- Neuroscience Institute and Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
| | - Hugo J. Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
47
|
Inan M, Lu HC, Albright MJ, She WC, Crair MC. Barrel map development relies on protein kinase A regulatory subunit II beta-mediated cAMP signaling. J Neurosci 2006; 26:4338-49. [PMID: 16624954 PMCID: PMC6674004 DOI: 10.1523/jneurosci.3745-05.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular and molecular mechanisms mediating the activity-dependent development of brain circuitry are still incompletely understood. Here, we examine the role of cAMP-dependent protein kinase [protein kinase A (PKA)] signaling in cortical development and plasticity, focusing on its role in thalamocortical synapse and barrel map development. We provide direct evidence that PKA activity mediates barrel map formation using knock-out mice that lack type IIbeta regulatory subunits of PKA (PKARIIbeta). We show that PKARIIbeta-mediated PKA function is required for proper dendritogenesis and the organization of cortical layer IV neurons into barrels, but not for the development and plasticity of thalamocortical afferent clustering into a barrel pattern. We localize PKARIIbeta function to postsynaptic processes in barrel cortex and show that postsynaptic PKA targets, but not presynaptic PKA targets, have decreased phosphorylation in pkar2b knock-out (PKARIIbeta(-/-)) mice. We also show that long-term potentiation at TC synapses and the associated developmental increase in AMPA receptor function at these synapses, which normally occurs as barrels form, is absent in PKARIIbeta(-/-) mice. Together, these experiments support an activity-dependent model for barrel map development in which the selective addition and elimination of thalamocortical synapses based on Hebbian mechanisms for synapse formation is mediated by a cAMP/PKA-dependent pathway that relies on PKARIIbeta function.
Collapse
|
48
|
Nicol X, Muzerelle A, Rio JP, Métin C, Gaspar P. Requirement of adenylate cyclase 1 for the ephrin-A5-dependent retraction of exuberant retinal axons. J Neurosci 2006; 26:862-72. [PMID: 16421306 PMCID: PMC6675379 DOI: 10.1523/jneurosci.3385-05.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The calcium-stimulated adenylate cyclase 1 (AC1) has been shown to be required for the refinement of the retinotopic map, but the mechanisms involved are not known. To investigate this question, we devised a retinotectal coculture preparation that reproduces the gradual acquisition of topographic specificity along the rostrocaudal axis of the superior colliculus (SC). Temporal retinal axons invade the entire SC at 4 d in vitro (DIV) and eliminate exuberant branches caudally by 12 DIV. Temporal and nasal axons form branches preferentially in the rostral or caudal SC, respectively. Retinal explants from AC1-deficient mice, AC1(brl/brl), maintain exuberant branches and lose the regional selectivity of branching when confronted with wild-type (WT) SC. Conversely, WT retinas correctly target AC1(brl/brl) collicular explants. The effects of AC1 loss of function in the retina are mimicked by the blockade of ephrin-A5 signaling in WT cocultures. Video microscopic analyses show that AC1(brl/brl) axons have modified responses to ephrin-A5: the collapse of the growth cones occurs, but the rearward movement of the axon is arrested. Our results demonstrate a presynaptic, cell autonomous role of AC1 in the retina and further indicate that AC1 is necessary to enact a retraction response of the retinal axons to ephrin-A5 during the refinement of the retinotopic map.
Collapse
Affiliation(s)
- Xavier Nicol
- Institut National de la Santé et de la Recherche Médicale, U616, University Paris 06, Hôpital Pitié Salpêtrière, Institut Féderatif Neurosciences, F-75013 Paris, France
| | | | | | | | | |
Collapse
|
49
|
Chandrasekaran AR, Plas DT, Gonzalez E, Crair MC. Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse. J Neurosci 2006; 25:6929-38. [PMID: 16033903 PMCID: PMC6725341 DOI: 10.1523/jneurosci.1470-05.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although it is widely accepted that molecular mechanisms play an important role in the initial establishment of retinotopic maps, it has also long been argued that activity-dependent factors act in concert with molecular mechanisms to refine topographic maps. Evidence of a role for retinal activity in retinotopic map refinement in mammals is limited, and nothing is known about the effect of spontaneous retinal activity on the development of receptive fields in the superior colliculus. Using anatomical and physiological methods with two genetically manipulated mouse models and pharmacological interventions in wild-type mice, we show that spontaneous retinal waves instruct retinotopic map refinement in the superior colliculus of the mouse. Activity-dependent mechanisms may play a preferential role in the mapping of the nasal-temporal axis of the retina onto the colliculus, because refinement is particularly impaired along this axis in mutants without retinal waves. Interfering with both axon guidance cues and activity-dependent cues in the same animal has a dramatic cumulative effect. These experiments demonstrate how axon guidance cues and activity-dependent factors combine to instruct retinotopic map development.
Collapse
|
50
|
Lambot MA, Depasse F, Noel JC, Vanderhaeghen P. Mapping labels in the human developing visual system and the evolution of binocular vision. J Neurosci 2006; 25:7232-7. [PMID: 16079405 PMCID: PMC6725223 DOI: 10.1523/jneurosci.0802-05.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Topographic representation of visual fields from the retina to the brain is a central feature of vision. The development of retinotopic maps has been studied extensively in model organisms and is thought to be controlled in part by molecular labels, including ephrin/Eph axon guidance molecules, displayed in complementary gradients across the retina and its targeting areas. The visual system in these organisms is primarily monocular, with each retina mapping topographically to its contralateral target. In contrast, mechanisms of retinal mapping in binocular species such as primates, characterized by the congruent, aligned mapping of both retinas onto the same brain target, remain completely unknown. Here, we show that the distribution of ephrin/Eph genes in the human developing visual system is fundamentally different from what is known in model organisms. In the human embryonic retina, EphA receptors are displayed along two gradients, sloping down from the center of the retina to its periphery. The EphB1 receptor, which controls the ipsilateral routing of retinal axons in the mouse, is expressed throughout the human temporal retina in coordination with the changes in EphA gene expression. In the dorsal lateral geniculate nucleus, ephrin-A/EphAs are displayed along complementary retinotopic gradients. Our data point to an evolutionary model in which the coordinated divergence of the distribution of the receptors controlling retinal guidance and retinal mapping enabled the emergence of a fully binocular system. They also indicate that ephrin/Eph signaling plays a potentially major role in the development of neuronal connectivity in humans.
Collapse
Affiliation(s)
- Marie-Alexandra Lambot
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Campus Erasme, B-1070 Brussels, Belgium
| | | | | | | |
Collapse
|