1
|
Lin HH. An Alternative Mode of GPCR Transactivation: Activation of GPCRs by Adhesion GPCRs. Int J Mol Sci 2025; 26:552. [PMID: 39859266 PMCID: PMC11765499 DOI: 10.3390/ijms26020552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
G protein-coupled receptors (GPCRs), critical for cellular communication and signaling, represent the largest cell surface protein family and play important roles in numerous pathophysiological processes. Consequently, GPCRs have become a primary focus in drug discovery efforts. Beyond their traditional G protein-dependent signaling pathways, GPCRs are also capable of activating alternative signaling mechanisms, including G protein-independent signaling, biased signaling, and signaling crosstalk. A particularly novel signaling mode employed by these receptors is GPCR transactivation, which enables cross-communication between GPCRs and other receptor types. Intriguingly, GPCR transactivation by distinct GPCRs has also been identified. In this review, I provide an overview of the known GPCR transactivation mechanisms and explore recently uncovered GPCR transactivation mediated by adhesion-class GPCRs (aGPCRs). These aGPCR-GPCR transactivation processes regulate unique cell type-specific functions, offering an exciting opportunity to develop therapies that precisely modulate specific GPCR-mediated biological effects.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, Graduate School of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-03-2118800-3321
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung 20401, Taiwan
| |
Collapse
|
2
|
Skapinker E, Aldbai R, Aucoin E, Clarke E, Clark M, Ghokasian D, Kombargi H, Abraham MJ, Li Y, Bunsick DA, Baghaie L, Szewczuk MR. Artificial and Natural Sweeteners Biased T1R2/T1R3 Taste Receptors Transactivate Glycosylated Receptors on Cancer Cells to Induce Epithelial-Mesenchymal Transition of Metastatic Phenotype. Nutrients 2024; 16:1840. [PMID: 38931195 PMCID: PMC11206856 DOI: 10.3390/nu16121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the role of biased taste T1R2/T1R3 G protein-coupled receptors (GPCR) agonists on glycosylated receptor signaling may provide insights into the opposing effects mediated by artificial and natural sweeteners, particularly in cancer and metastasis. Sweetener-taste GPCRs can be activated by several active states involving either biased agonism, functional selectivity, or ligand-directed signaling. However, there are increasing arrays of sweetener ligands with different degrees of allosteric biased modulation that can vary dramatically in binding- and signaling-specific manners. Here, emerging evidence proposes the involvement of taste GPCRs in a biased GPCR signaling crosstalk involving matrix metalloproteinase-9 (MMP-9) and neuraminidase-1 (Neu-1) activating glycosylated receptors by modifying sialic acids. The findings revealed that most natural and artificial sweeteners significantly activate Neu-1 sialidase in a dose-dependent fashion in RAW-Blue and PANC-1 cells. To confirm this biased GPCR signaling crosstalk, BIM-23127 (neuromedin B receptor inhibitor, MMP-9i (specific MMP-9 inhibitor), and oseltamivir phosphate (specific Neu-1 inhibitor) significantly block sweetener agonist-induced Neu-1 sialidase activity. To assess the effect of artificial and natural sweeteners on the key survival pathways critical for pancreatic cancer progression, we analyzed the expression of epithelial-mesenchymal markers, CD24, ADLH-1, E-cadherin, and N-cadherin in PANC-1 cells, and assess the cellular migration invasiveness in a scratch wound closure assay, and the tunneling nanotubes (TNTs) in staging the migratory intercellular communication. The artificial and natural sweeteners induced metastatic phenotype of PANC-1 pancreatic cancer cells to promote migratory intercellular communication and invasion. The sweeteners also induced the downstream NFκB activation using the secretory alkaline phosphatase (SEAP) assay. These findings elucidate a novel taste T1R2/T1R3 GPCR functional selectivity of a signaling platform in which sweeteners activate downstream signaling, contributing to tumorigenesis and metastasis via a proposed NFκB-induced epigenetic reprogramming modeling.
Collapse
Affiliation(s)
- Elizabeth Skapinker
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Rashelle Aldbai
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| | - Emilyn Aucoin
- Faculty of Science, Biology (Biomedical Science), York University, Toronto, ON M3J 1P3, Canada;
| | - Elizabeth Clarke
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Mira Clark
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (M.C.); (Y.L.)
| | - Daniella Ghokasian
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Haley Kombargi
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Merlin J. Abraham
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Yunfan Li
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (M.C.); (Y.L.)
| | - David A. Bunsick
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| |
Collapse
|
3
|
Roy S, Sinha S, Silas AJ, Ghassemian M, Kufareva I, Ghosh P. Growth factor-dependent phosphorylation of Gα i shapes canonical signaling by G protein-coupled receptors. Sci Signal 2024; 17:eade8041. [PMID: 38833528 PMCID: PMC11328959 DOI: 10.1126/scisignal.ade8041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other. Using linear ion trap mass spectrometry and cell-based biophysical, biochemical, and phenotypic assays, we found at least three distinct ways in which epidermal growth factor affected canonical G protein signaling by the Gi-coupled GPCR CXCR4 through the phosphorylation of Gαi. Phosphomimicking mutations in two residues in the αE helix of Gαi (tyrosine-154/tyrosine-155) suppressed agonist-induced Gαi activation while promoting constitutive Gβγ signaling. Phosphomimicking mutations in the P loop (serine-44, serine-47, and threonine-48) suppressed Gi activation entirely, thus completely segregating growth factor and GPCR pathways. As expected, most of the phosphorylation events appeared to affect intrinsic properties of Gαi proteins, including conformational stability, nucleotide binding, and the ability to associate with and to release Gβγ. However, one phosphomimicking mutation, targeting the carboxyl-terminal residue tyrosine-320, promoted mislocalization of Gαi from the plasma membrane, a previously uncharacterized mechanism of suppressing GPCR signaling through G protein subcellular compartmentalization. Together, these findings elucidate not only how growth factor and chemokine signals cross-talk through the phosphorylation-dependent modulation of Gαi but also how such cross-talk may generate signal diversity.
Collapse
Affiliation(s)
- Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Ananta James Silas
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, San Diego, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
- Department of Medicine, University of California San Diego, CA 92093, USA
- Moore’s Comprehensive Cancer Center, University of California San Diego, CA 92093, USA
| |
Collapse
|
4
|
Shewani K, Madhu MK, Murarka RK. Mechanistic insights into G-protein activation via phosphorylation mediated non-canonical pathway. Biophys Chem 2024; 309:107234. [PMID: 38603989 DOI: 10.1016/j.bpc.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Activation of heterotrimeric G-proteins (Gαβγ) downstream to receptor tyrosine kinases (RTKs) is a well-established crosstalk between the signaling pathways mediated by G-protein coupled receptors (GPCRs) and RTKs. While GPCR serves as a guanine exchange factor (GEF) in the canonical activation of Gα that facilitates the exchange of GDP for GTP, the mechanism through which RTK phosphorylations induce Gα activation remains unclear. Recent experimental studies revealed that the epidermal growth factor receptor (EGFR), a well-known RTK, phosphorylates the helical domain tyrosine residues Y154 and Y155 and accelerates the GDP release from the Gαi3, a subtype of Gα-protein. Using well-tempered metadynamics and extensive unbiased molecular dynamics simulations, we captured the GDP release event and identified the intermediates between bound and unbound states through Markov state models. In addition to weakened salt bridges at the domain interface, phosphorylations induced the unfolding of helix αF, which contributed to increased flexibility near the hinge region, facilitating a greater distance between domains in the phosphorylated Gαi3. Although the larger domain separation in the phosphorylated system provided an unobstructed path for the nucleotide, the accelerated release of GDP was attributed to increased fluctuations in several conserved regions like P-loop, switch 1, and switch 2. Overall, this study provides atomistic insights into the activation of G-proteins induced by RTK phosphorylations and identifies the specific structural motifs involved in the process. The knowledge gained from the study could establish a foundation for targeting non-canonical signaling pathways and developing therapeutic strategies against the ailments associated with dysregulated G-protein signaling.
Collapse
Affiliation(s)
- Kunal Shewani
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Midhun K Madhu
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Rajesh K Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
5
|
Bunsick DA, Matsukubo J, Aldbai R, Baghaie L, Szewczuk MR. Functional Selectivity of Cannabinoid Type 1 G Protein-Coupled Receptor Agonists in Transactivating Glycosylated Receptors on Cancer Cells to Induce Epithelial-Mesenchymal Transition Metastatic Phenotype. Cells 2024; 13:480. [PMID: 38534324 PMCID: PMC10969603 DOI: 10.3390/cells13060480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding the role of biased G protein-coupled receptor (GPCR) agonism in receptor signaling may provide novel insights into the opposing effects mediated by cannabinoids, particularly in cancer and cancer metastasis. GPCRs can have more than one active state, a phenomenon called either 'biased agonism', 'functional selectivity', or 'ligand-directed signaling'. However, there are increasing arrays of cannabinoid allosteric ligands with different degrees of modulation, called 'biased modulation', that can vary dramatically in a probe- and pathway-specific manner, not from simple differences in orthosteric ligand efficacy or stimulus-response coupling. Here, emerging evidence proposes the involvement of CB1 GPCRs in a novel biased GPCR signaling paradigm involving the crosstalk between neuraminidase-1 (Neu-1) and matrix metalloproteinase-9 (MMP-9) in the activation of glycosylated receptors through the modification of the receptor glycosylation state. The study findings highlighted the role of CB1 agonists AM-404, Aravnil, and Olvanil in significantly inducing Neu-1 sialidase activity in a dose-dependent fashion in RAW-Blue, PANC-1, and SW-620 cells. This approach was further substantiated by findings that the neuromedin B receptor inhibitor, BIM-23127, MMP-9 inhibitor, MMP9i, and Neu-1 inhibitor, oseltamivir phosphate, could specifically block CB1 agonist-induced Neu-1 sialidase activity. Additionally, we found that CB1 receptors exist in a multimeric receptor complex with Neu-1 in naïve, unstimulated RAW-Blue, PANC-1, and SW-620 cells. This complex implies a molecular link that regulates the interaction and signaling mechanism among these molecules present on the cell surface. Moreover, the study results demonstrate that CB1 agonists induce NFκB-dependent secretory alkaline phosphatase (SEAP) activity in influencing the expression of epithelial-mesenchymal markers, E-cadherin, and vimentin in SW-620 cells, albeit the impact on E-cadherin expression is less pronounced compared to vimentin. In essence, this innovative research begins to elucidate an entirely new molecular mechanism involving a GPCR signaling paradigm in which cannabinoids, as epigenetic stimuli, may traverse to influence gene expression and contribute to cancer and cancer metastasis.
Collapse
Affiliation(s)
- David A. Bunsick
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (J.M.); (R.A.); (L.B.)
| | - Jenna Matsukubo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (J.M.); (R.A.); (L.B.)
- Faculty of Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada
| | - Rashelle Aldbai
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (J.M.); (R.A.); (L.B.)
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (J.M.); (R.A.); (L.B.)
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (J.M.); (R.A.); (L.B.)
| |
Collapse
|
6
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk. Cell Rep 2024; 43:113595. [PMID: 38117654 PMCID: PMC10844890 DOI: 10.1016/j.celrep.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and the physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK) TrkB and the G-protein-coupled receptor (GPCR) metabotropic glutamate receptor 5 (mGluR5) together mediate hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode switch that drives BDNF-dependent sustained, oscillatory Ca2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gαq-GTP, released by mGluR5, to enable physiologically relevant RTK/GPCR crosstalk.
Collapse
Affiliation(s)
| | - Guoqing Xiang
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexandra B Fall
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Danielle M Gerhard
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Piia Kohtala
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Daegeon Kim
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joshua Levitz
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA.
| |
Collapse
|
7
|
Kim J, He MJ, Widmann AK, Lee FS. The role of neurotrophic factors in novel, rapid psychiatric treatments. Neuropsychopharmacology 2024; 49:227-245. [PMID: 37673965 PMCID: PMC10700398 DOI: 10.1038/s41386-023-01717-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
Neurotrophic factors are a family of growth factors that modulate cellular growth, survival, and differentiation. For many decades, it has been generally believed that a lack of neurotrophic support led to the decreased neuronal synaptic plasticity, death, and loss of non-neuronal supportive cells seen in neuropsychiatric disorders. Traditional psychiatric medications that lead to immediate increases in neurotransmitter levels at the synapse have been shown also to elevate synaptic neurotrophic levels over weeks, correlating with the time course of the therapeutic effects of these drugs. Recent advances in psychiatric treatments, such as ketamine and psychedelics, have shown a much faster onset of therapeutic effects (within minutes to hours). They have also been shown to lead to a rapid release of neurotrophins into the synapse. This has spurred a significant shift in understanding the role of neurotrophins and how the receptor tyrosine kinases that bind neurotrophins may work in concert with other signaling systems. In this review, this renewed understanding of synaptic receptor signaling interactions and the clinical implications of this mechanistic insight will be discussed within the larger context of the well-established roles of neurotrophic factors in psychiatric disorders and treatments.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Michelle J He
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alina K Widmann
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555210. [PMID: 37693535 PMCID: PMC10491144 DOI: 10.1101/2023.08.28.555210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK), TrkB, and the G protein-coupled receptor (GPCR), metabotropic glutamate receptor 5 (mGluR5), together mediate a novel form of hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode-switch that drives BDNF-dependent sustained, oscillatory Ca 2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gα q -GTP, released by mGluR5, to enable a previously unidentified form of physiologically relevant RTK/GPCR crosstalk.
Collapse
|
9
|
Costa FG, Gomes CC, Adolfi MC, da Cruz Gallo de Carvalho MC, Zanoni MA, Seiva FRF, Borella MI. New approaches concerning the testis of Astyanax lacustris (Characidae): immunohistochemical studies. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:543-556. [PMID: 37140738 DOI: 10.1007/s10695-023-01194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023]
Abstract
Astyanax lacustris, locally known as lambari-do-rabo-amarelo, is a study model for Neotropical fish. Testis of A. lacustris shows deep morphophysiological changes throughout the annual reproductive cycle. This work analyzed the distribution of claudin-1, actin, and cytokeratin as elements of the cytoskeleton in germinal epithelium and interstitium; the distribution of type I collagen, fibronectin, and laminin as extracellular matrix compounds; and the localization of androgen receptor in the testis of this species. Claudin-1, cytokeratin, and actin were present in the Sertoli cells and modified Sertoli cells, and actin was also detected in peritubular myoid cells. Type I collagen were in the interstitial tissue, laminin in the basement membrane of germinal epithelium and endothelium, but fibronectin was additionally detected in the germinal epithelium compartment. The labeling of androgen receptor was higher in peritubular myoid cells and undifferentiated spermatogonia, and weaker labeling was detected in type B spermatogonia. Therefore, the present work highlights new aspects of the biology of the testis of A. lacustris, and contribute to amplify the understanding of this organ.
Collapse
Affiliation(s)
- Fabiano Gonçalves Costa
- Center of Biological Science, State University of North of Paraná (CCB/UENP), Bandeirantes -PR, Brazil.
| | - Chayrra Chehade Gomes
- Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo-SP, Brazil
| | - Mateus Contar Adolfi
- Developmental Biochemistry, University of Wuerzburg, Biocenter, Wuerzburg, Germany
| | | | - Marco Antônio Zanoni
- Center of Biological Science, State University of North of Paraná (CCB/UENP), Bandeirantes -PR, Brazil
| | | | - Maria Inês Borella
- Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo-SP, Brazil
| |
Collapse
|
10
|
Dopamine signaling regulates hematopoietic stem and progenitor cell function. Blood 2021; 138:2051-2065. [PMID: 34370827 DOI: 10.1182/blood.2020010419] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) function in bone marrow (BM) is controlled by stroma-derived signals, but the identity and interplay of these signals remain incompletely understood. Here, we show that sympathetic nerve-derived dopamine directly controls HSPC behavior through D2-subfamily dopamine receptors. Blockade of dopamine synthesis as well as pharmacological or genetic inactivation of D2-subfamily dopamine receptors lead to reduced HSPC frequency, inhibition of proliferation and low BM transplantation efficiency. Conversely, treatment with a D2-type receptor agonist increases BM regeneration and transplantation efficiency. Mechanistically, dopamine controls expression of the kinase Lck, which, in turn, regulates mitogen-activated protein kinase-mediated signaling triggered by stem cell factor in HSPCs. Our work reveals critical functional roles of dopamine in HSPCs, which may open up new therapeutic options for improved BM transplantation and other conditions requiring the rapid expansion of HSPCs.
Collapse
|
11
|
Blood Plasma Metabolic Profile of Newborns with Hypoxic-Ischaemic Encephalopathy by GC-MS. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6677271. [PMID: 34258280 PMCID: PMC8249136 DOI: 10.1155/2021/6677271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Background Early diagnosis of hypoxic-ischaemic encephalopathy (HIE) is crucial in preventing neurodevelopmental disabilities and reducing morbidity and mortality. The study was to investigate the plasma metabolic signatures in the peripheral blood of HIE newborns and explore the potential diagnostic biomarkers. Method In the present study, 24 newborns with HIE and 24 healthy controls were recruited. The plasma metabolites were measured by gas chromatography-mass spectrometry (GC-MS), and the raw data was standardized by the EigenMS method. Significantly differential metabolites were identified by multivariate statistics. Pathway enrichment was performed by bioinformatics analysis. Meanwhile, the diagnostic value of candidate biomarkers was evaluated. Result The multivariate statistical models showed a robust capacity to distinguish the HIE cases from the controls. 52 metabolites were completely annotated. 331 significantly changed pathways were enriched based on seven databases, including 33 overlapped pathways. Most of them were related to amino acid metabolism, energy metabolism, neurotransmitter biosynthesis, pyrimidine metabolism, the regulation of HIF by oxygen, and GPCR downstream signaling. 14 candidate metabolites showed great diagnostic potential on HIE. Among them, alpha-ketoglutaric acid has the potential to assess the severity of HIE in particular. Conclusion The blood plasma metabolic profile could comprehensively reflect the metabolic disorders of the whole body under hypoxia-ischaemic injury. Several candidate metabolites may serve as promising biomarkers for the early diagnosis of HIE. Further validation based on large clinical samples and the establishment of guidelines for the clinical application of mass spectrometry data standardization methods are imperative in the future.
Collapse
|
12
|
Cionin, a vertebrate cholecystokinin/gastrin homolog, induces ovulation in the ascidian Ciona intestinalis type A. Sci Rep 2021; 11:10911. [PMID: 34035343 PMCID: PMC8149874 DOI: 10.1038/s41598-021-90295-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Cionin is a homolog of vertebrate cholecystokinin/gastrin that has been identified in the ascidian Ciona intestinalis type A. The phylogenetic position of ascidians as the closest living relatives of vertebrates suggests that cionin can provide clues to the evolution of endocrine/neuroendocrine systems throughout chordates. Here, we show the biological role of cionin in the regulation of ovulation. In situ hybridization demonstrated that the mRNA of the cionin receptor, Cior2, was expressed specifically in the inner follicular cells of pre-ovulatory follicles in the Ciona ovary. Cionin was found to significantly stimulate ovulation after 24-h incubation. Transcriptome and subsequent Real-time PCR analyses confirmed that the expression levels of receptor tyrosine kinase (RTK) signaling genes and a matrix metalloproteinase (MMP) gene were significantly elevated in the cionin-treated follicles. Of particular interest is that an RTK inhibitor and MMP inhibitor markedly suppressed the stimulatory effect of cionin on ovulation. Furthermore, inhibition of RTK signaling reduced the MMP gene expression in the cionin-treated follicles. These results provide evidence that cionin induces ovulation by stimulating MMP gene expression via the RTK signaling pathway. This is the first report on the endogenous roles of cionin and the induction of ovulation by cholecystokinin/gastrin family peptides in an organism.
Collapse
|
13
|
Patt J, Alenfelder J, Pfeil EM, Voss JH, Merten N, Eryilmaz F, Heycke N, Rick U, Inoue A, Kehraus S, Deupi X, Müller CE, König GM, Crüsemann M, Kostenis E. An experimental strategy to probe Gq contribution to signal transduction in living cells. J Biol Chem 2021; 296:100472. [PMID: 33639168 PMCID: PMC8024710 DOI: 10.1016/j.jbc.2021.100472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR–Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity.
Collapse
Affiliation(s)
- Julian Patt
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Jan Hendrik Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Funda Eryilmaz
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Uli Rick
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
14
|
Receptor tyrosine kinases activate heterotrimeric G proteins via phosphorylation within the interdomain cleft of Gαi. Proc Natl Acad Sci U S A 2020; 117:28763-28774. [PMID: 33139573 DOI: 10.1073/pnas.2004699117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The molecular mechanisms by which receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major signaling hubs in eukaryotes, independently relay signals across the plasma membrane have been extensively characterized. How these hubs cross-talk has been a long-standing question, but answers remain elusive. Using linear ion-trap mass spectrometry in combination with biochemical, cellular, and computational approaches, we unravel a mechanism of activation of heterotrimeric G proteins by RTKs and chart the key steps that mediate such activation. Upon growth factor stimulation, the guanine-nucleotide exchange modulator dissociates Gαi•βγ trimers, scaffolds monomeric Gαi with RTKs, and facilitates the phosphorylation on two tyrosines located within the interdomain cleft of Gαi. Phosphorylation triggers the activation of Gαi and inhibits second messengers (cAMP). Tumor-associated mutants reveal how constitutive activation of this pathway impacts cell's decision to "go" vs. "grow." These insights define a tyrosine-based G protein signaling paradigm and reveal its importance in eukaryotes.
Collapse
|
15
|
Puig S, Barker KE, Szott SR, Kann PT, Morris JS, Gutstein HB. Spinal Opioid Tolerance Depends upon Platelet-Derived Growth Factor Receptor- β Signaling, Not μ-Opioid Receptor Internalization. Mol Pharmacol 2020; 98:487-496. [PMID: 32723769 PMCID: PMC7562976 DOI: 10.1124/mol.120.119552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022] Open
Abstract
Opioids are some of the most potent analgesics available. However, their effectiveness is limited by the development of analgesic tolerance. Traditionally, tolerance was thought to occur by termination of μ-opioid receptor (MOR) signaling via desensitization and internalization. Contradictory findings led to a more recent proposal that sustained MOR signaling caused analgesic tolerance. However, this view has also been called into question. We recently discovered that the platelet-derived growth factor receptor(PDGFR)-β signaling system is both necessary and sufficient to cause opioid tolerance. We therefore propose a completely new hypothesis: that opioid tolerance is mediated by selective cellular signals and is independent of MOR internalization. To test this hypothesis, we developed an automated software-based method to perform unbiased analyses of opioid-induced MOR internalization in the rat substantia gelatinosa. We induced tolerance with either morphine, which did not cause MOR internalization, or fentanyl, which did. We also blocked tolerance by administering morphine or fentanyl with the PDGFR-β inhibitor imatinib. We found that imatinib blocked tolerance without altering receptor internalization induced by either morphine or fentanyl. We also showed that imatinib blocked tolerance to other clinically used opioids. Our findings indicate that opioid tolerance is not dependent upon MOR internalization and support the novel hypothesis that opioid tolerance is mediated by intracellular signaling that can be selectively targeted. This suggests the exciting possibility that undesirable opioid side effects can be selectively eliminated, dramatically improving the safety and efficacy of opioids. SIGNIFICANCE STATEMENT: Classically, it was thought that analgesic tolerance to opioids was caused by desensitization and internalization of μ-opioid receptors (MORs). More recently, it was proposed that sustained, rather than reduced, MOR signaling caused tolerance. Here, we present conclusive evidence that opioid tolerance occurs independently of MOR internalization and that it is selectively mediated by platelet-derived growth factor receptor signaling. This novel hypothesis suggests that dangerous opioid side effects can be selectively targeted and blocked, improving the safety and efficacy of opioids.
Collapse
Affiliation(s)
- S Puig
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| | - K E Barker
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| | - S R Szott
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| | - P T Kann
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| | - J S Morris
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| | - H B Gutstein
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, Pennsylvania (H.B.G.); University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (S.P., S.R.S., P.T.K.); MD Anderson Cancer Center, Houston, Texas (K.E.B.); and Biostatistics Division, Perelman School of Medicine, Philadelphia, Pennsylvania (J.S.M.)
| |
Collapse
|
16
|
Specific activation of mGlu2 induced IGF-1R transactivation in vitro through FAK phosphorylation. Acta Pharmacol Sin 2019; 40:460-467. [PMID: 29946167 DOI: 10.1038/s41401-018-0033-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/20/2018] [Indexed: 01/17/2023]
Abstract
Metabotropic glutamate receptor 2 (mGlu2) belongs to the group-II metabotropic glutamate (mGlu) receptors and is a neurotransmitter G protein-coupled receptor. The group-II mGlu receptors are promising antipsychotic targets, but the specific role of mGlu2 signaling remains unclear. Receptor tyrosine kinases (RTKs) are also believed to participate in brain pathogenesis. To investigate whether there is any communication between mGlu2 and RTKs, we generated a CHO-mGlu2 cell line that stably expresses mGlu2 and showed that activation of mGlu2 by LY379268, a group II mGlu agonist, was able to transactivate insulin-like growth factor 1 receptor (IGF-1R). We further determined that the Gi/o protein, Gβγ subunits, phospholipase C, and focal adhesion kinase (FAK) were involved in the IGF-1R transactivation signaling axis, which further induced the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and cAMP response element-binding protein. In primary mouse cortical neurons, similar signaling pathways were observed when mGlu2 were stimulated by LY487379, an mGlu2 positive allosteric modulator. Transactivation of IGF-1R through FAK in response to mGlu2 should provide a better understanding of the association of mGlu2 with brain disease.
Collapse
|
17
|
Di Liberto V, Mudò G, Belluardo N. Crosstalk between receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCR) in the brain: Focus on heteroreceptor complexes and related functional neurotrophic effects. Neuropharmacology 2018; 152:67-77. [PMID: 30445101 DOI: 10.1016/j.neuropharm.2018.11.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 01/11/2023]
Abstract
Neuronal events are regulated by the integration of several complex signaling networks in which G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) are considered key players of an intense bidirectional cross-communication in the cell, generating signaling mechanisms that, at the same time, connect and diversify the traditional signal transduction pathways activated by the single receptor. For this receptor-receptor crosstalk, the two classes of receptors form heteroreceptor complexes resulting in RTKs transactivation and in growth-promoting signals. In this review, we describe heteroreceptor complexes between GPCR and RTKs in the central nervous system (CNS) and their functional effects in controlling a variety of neuronal effects, ranging from development, proliferation, differentiation and migration, to survival, repair, synaptic transmission and plasticity. In this interaction, RTKs can also recruit components of the G protein signaling cascade, creating a bidirectional intricate interplay that provides complex control over multiple cellular events. These heteroreceptor complexes, by the integration of different signals, have recently attracted a growing interest as novel molecular target for depressive disorders. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
18
|
Activation of Pyk2 by CaM kinase II in cultured hypothalamic neurons and gonadotroph cells. J Cell Physiol 2018; 234:6865-6875. [DOI: 10.1002/jcp.27443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/27/2018] [Indexed: 11/07/2022]
|
19
|
Wang Y, Appiah-Kubi K, Lan T, Wu M, Pang J, Qian H, Tao Y, Jiang L, Wu Y, Chen Y. PKG II inhibits PDGF-BB triggered biological activities by phosphorylating PDGFRβ in gastric cancer cells. Cell Biol Int 2018; 42:1358-1369. [PMID: 29935031 DOI: 10.1002/cbin.11020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
Previous studies revealed that type II cGMP-dependent protein kinase G (PKG II) could inhibit the activation of epidermal growth factor receptor (EGFR) which is a widely investigated RTK. PDGFR belongs to family of receptor tyrosine kinases (RTKs) too. However, the effect of PKG II on PDGFR activation is not clear yet. This study investigated potential regulatory effect of PKG II on activation of PDGFRβ and the downstream signaling transductions in gastric cancer. The results from CCK8 assay and Transwell assay indicated that PDGF-BB induced cell proliferation and migration. Activated PKG II reversed the above variations caused by PDGF-BB. Immunoprecipitation and Western blotting results showed that PKG II combined with PDGFRβ and phosphorylated this receptor, and thereby inhibited PDGF-BB induced activation of PDGFRβ, and MAPK/ERK and PI3K/Akt mediated signal transduction pathways. Based on the prediction by phosphorylation site software, Ser643 and Ser712 were mutated to alanine respectively which prevented phosphorylation at these sites. Mutation at Ser712 abolished the inhibitory function of PKG II on PDGFRβ activation but mutation of Ser643 had no such an effect, indicating that Ser712 was PKG II-specific phosphorylating site of PDGFRβ. In conclusion, PKG II inhibited PDGFRβ activation in gastric cancer via phosphorylating Ser712 of this RTK.
Collapse
Affiliation(s)
- Ying Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Kwaku Appiah-Kubi
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
- Department of Applied Biology, University for Development Studies, Navrongo, Ghana
| | - Ting Lan
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Min Wu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Ji Pang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Hai Qian
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Yan Tao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Lu Jiang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Yan Wu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Yongchang Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
20
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Shioda N, Yabuki Y, Wang Y, Uchigashima M, Hikida T, Sasaoka T, Mori H, Watanabe M, Sasahara M, Fukunaga K. Endocytosis following dopamine D 2 receptor activation is critical for neuronal activity and dendritic spine formation via Rabex-5/PDGFRβ signaling in striatopallidal medium spiny neurons. Mol Psychiatry 2017; 22:1205-1222. [PMID: 27922607 DOI: 10.1038/mp.2016.200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
Aberrant dopamine D2 receptor (D2R) activity is associated with neuropsychiatric disorders, making those receptors targets for antipsychotic drugs. Here, we report that novel signaling through the intracellularly localized D2R long isoform (D2LR) elicits extracellular signal-regulated kinase (ERK) activation and dendritic spine formation through Rabex-5/platelet-derived growth factor receptor-β (PDGFRβ)-mediated endocytosis in mouse striatum. We found that D2LR directly binds to and activates Rabex-5, promoting early-endosome formation. Endosomes containing D2LR and PDGFRβ are then transported to the Golgi apparatus, where those complexes trigger Gαi3-mediated ERK signaling. Loss of intracellular D2LR-mediated ERK activation decreased neuronal activity and dendritic spine density in striatopallidal medium spiny neurons (MSNs). In addition, dendritic spine density in striatopallidal MSNs significantly increased following treatment of striatal slices from wild-type mice with quinpirole, a D2R agonist, but those changes were lacking in D2LR knockout mice. Moreover, intracellular D2LR signaling mediated effects of a typical antipsychotic drug, haloperidol, in inducing catalepsy behavior. Taken together, intracellular D2LR signaling through Rabex-5/PDGFRβ is critical for ERK activation, dendritic spine formation and neuronal activity in striatopallidal MSNs of mice.
Collapse
Affiliation(s)
- N Shioda
- Department of Biofunctional Analysis Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu, Japan
| | - Y Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Y Wang
- Department of Pharmacology, Beckman Institute, University of Illinois, Urbana, IL, USA
| | - M Uchigashima
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Hikida
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - T Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
| | - H Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - M Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| | - K Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Parthasarathy G, Philipp MT. Receptor tyrosine kinases play a significant role in human oligodendrocyte inflammation and cell death associated with the Lyme disease bacterium Borrelia burgdorferi. J Neuroinflammation 2017; 14:110. [PMID: 28558791 PMCID: PMC5450372 DOI: 10.1186/s12974-017-0883-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022] Open
Abstract
Background In previous studies, human oligodendrocytes were demonstrated to undergo apoptosis in the presence of Borrelia burgdorferi under an inflammatory milieu. Subsequently, we determined that the MEK/ERK pathway played a significant role in triggering downstream inflammation as well as apoptosis. However, the identity of receptors triggered by exposure to B. burgdorferi and initiating signaling events was unknown. Methods In this study, we explored the role of several TLR and EGFR/FGFR/PDGFR tyrosine kinase pathways in inducing inflammation in the presence of B. burgdorferi, using siRNA and/or inhibitors, in MO3.13 human oligodendrocytes. Cell death and apoptosis assays were also carried out in the presence or absence of specific receptor inhibitors along with the bacteria to determine the role of these receptors in apoptosis induction. The expression pattern of specific receptors with or without B. burgdorferi was also determined. Results TLRs 2 and 5 had a minimal role in inducing inflammation, particularly IL-6 production. Rather, their effect was mostly inhibitory, with TLR2 downregulation significantly upregulating CXCL8, and CXCL (1,2,3) levels, and TLR5 likely having a similar role in CXCL8, CXCL(1,2,3), and CCL5 levels. TLR4 contributed mostly towards CCL5 production. On the other hand, inhibition of all three EGF/FGF/PDGF receptors significantly downregulated all five of the inflammatory mediators tested even in the presence of B. burgdorferi. Their inhibition also downregulated overall cell death and apoptosis levels. The expression pattern of these receptors, as assessed by immunohistochemistry indicated that the PDGFRβ receptor was the most predominantly expressed receptor, followed by FGFR, although no significant differences were discernible between presence and absence of bacteria. Interestingly, inhibition of individual EGFR, FGFR, or PDGFR receptors did not indicate an individual role for any of these receptors in the overall downregulation of pathogenesis. Contrarily, suppression of FGFR signaling alone in the presence of bacteria significantly upregulated inflammatory mediator levels indicating that it might control an inhibitory pathway when triggered individually. Conclusions Unlike TLRs, EGF/FGF/PDGF receptors collectively play a significant role in the inflammation and apoptosis of human oligodendrocytes as mediated by B. burgdorferi. It is likely that these three receptors need to be triggered simultaneously to achieve this effect.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| | - Mario T Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
23
|
Kuzumaki N, Narita M, Ikegami D, Narita M. Molecular Understanding of the Acquisition of Resistance to Anti-cancer Drugs Associated with the Exacerbation of Cancer. YAKUGAKU ZASSHI 2017; 136:699-703. [PMID: 27150922 DOI: 10.1248/yakushi.15-00262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gefitinib and erlotinib target the ATP cleft in the tyrosine kinase EGFR, which is overexpressed in 40-80 percent of non-small-cell lung cancer (NSCLC) and many other epithelial cancers. However, the application of gefitinib is ultimately limited by the emergence of mutations and other molecular mechanisms conferring drug resistance. Furthermore, it has been considered that acquired resistance to gefitinib is associated with a clinically significant risk of accelerated disease progression. We previously established a new gefitinib-resistant NSCLC cell line, HCC827GR, which harbors the T790M mutation. Using HCC827GR, we found that the inhibition of adenosine A2a receptors of NSCLC regulated cancer proliferation and exacerbation, indicating that adenosine A2a receptors may be new targets for a novel strategy in NSCLC therapy. These findings suggest that multilayered crosstalk between G-protein coupled receptors (GPCRs) and EGFR may play an important role in regulating downstream signaling molecules that are implicated in the development of gefitinib-resistant NSCLC.
Collapse
Affiliation(s)
- Naoko Kuzumaki
- Department of Pharmacology, Hoshi University, School of Pharmacy and Pharmaceuteutical Sciences
| | | | | | | |
Collapse
|
24
|
Omoto Y, Higa-Nakamine S, Higa A, Yamamoto H. ErbB4 cleavage by gonadotropin-releasing hormone receptor stimulation in cultured gonadotroph cells. Eur J Pharmacol 2017; 799:171-179. [DOI: 10.1016/j.ejphar.2017.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/29/2022]
|
25
|
Heckman PRA, Blokland A, Prickaerts J. From Age-Related Cognitive Decline to Alzheimer's Disease: A Translational Overview of the Potential Role for Phosphodiesterases. ADVANCES IN NEUROBIOLOGY 2017; 17:135-168. [PMID: 28956332 DOI: 10.1007/978-3-319-58811-7_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphodiesterase inhibitors (PDE-Is) are pharmacological compounds enhancing cAMP and/or cGMP signaling. Both these substrates affect neural communication by influencing presynaptic neurotransmitter release and postsynaptic intracellular pathways after neurotransmitter binding to its receptor. Both cAMP and cGMP play an important role in a variety of cellular functions including neuroplasticity and neuroprotection. This chapter provides a translational overview of the effects of different classes of PDE-Is on cognition enhancement in age-related cognitive decline and Alzheimer's disease (AD). The most effective PDE-Is in preclinical models of aging and AD appear to be PDE2-Is, PDE4-Is and PDE5-Is. Clinical studies are relatively sparse and so far PDE1-Is and PDE4-Is showed some promising results. In the future, the demonstration of clinical proof of concept and the generation of isoform selective PDE-Is are the hurdles to overcome in developing safe and efficacious novel PDE-Is for the treatment of age-related cognitive decline and cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
26
|
May V, Parsons RL. G Protein-Coupled Receptor Endosomal Signaling and Regulation of Neuronal Excitability and Stress Responses: Signaling Options and Lessons From the PAC1 Receptor. J Cell Physiol 2016; 232:698-706. [DOI: 10.1002/jcp.25615] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Victor May
- Department of Neurological Sciences; University of Vermont College of Medicine; Burlington Vermont
| | - Rodney L. Parsons
- Department of Neurological Sciences; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
27
|
de Munnik SM, van der Lee R, Velders DM, van Offenbeek J, Smits-de Vries L, Leurs R, Smit MJ, Vischer HF. The viral G protein-coupled receptor ORF74 unmasks phospholipase C signaling of the receptor tyrosine kinase IGF-1R. Cell Signal 2016; 28:595-605. [DOI: 10.1016/j.cellsig.2016.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 11/16/2022]
|
28
|
Takaki M, Goto K, Kawahara I, Nabekura J. Activation of 5-HT4 receptors facilitates neurogenesis of injured enteric neurons at an anastomosis in the lower gut. J Smooth Muscle Res 2016; 51:82-94. [PMID: 26658112 PMCID: PMC5137308 DOI: 10.1540/jsmr.51.82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Two-photon microscopy (2PM) can enable high-resolution deep imaging of thick tissue by
exciting a fluorescent dye and protein at anastomotic sites in the mouse small intestine
in vivo. We performed gut surgery and transplanted neural stem cells
(NSC) from the embryonic central nervous system after marking them with the fluorescent
cell linker, PKH26. We found that neurons differentiated from transplanted NSC (PKH [+])
and newborn enteric neurons differentiated from mobilized (host) NSC (YFP [+]) could be
localized within the granulation tissue of anastomoses. A 5-HT4-receptor
agonist, mosapride citrate (MOS), significantly increased the number of PKH (+) and YFP
(+) neurons by 2.5-fold (P<0.005). The distribution patterns of PKH
(+) neurons were similar to those of YFP (+) neurons. On the other hand, the
5-HT4-receptor antagonist, SB-207266 abolished these effects of MOS. These
results indicate that neurogenesis from transplanted NSC is facilitated by activation of
5-HT4-receptors. Thus, a combination of drug administration and cell
transplantation could be more beneficial than exclusive cell transplantation in treating
Hirschsprung's disease and related disorders including post rectal cancer surgery. The
underlying mechanisms for its action were explored using immunohistochemistry of the
longitudinal mouse ileum and rat rectal preparations including an anastomosis. MOS
significantly increased the number of new neurons, but not when co-administered with
either of a protein tyrosine kinase receptor, c-RET two inhibitors. The c-RET signaling
pathway contributes to enteric neurogenesis facilitated by MOS. In the future, we would
perform functional studies of new neurons over the thick granulation tissue at
anastomoses, using in vivo imaging with 2PM and double transgenic mice
expressing a calcium indicator such as GCaMP6 and channelrhodopsin.
Collapse
Affiliation(s)
- Miyako Takaki
- Department of Physiology II, Nara Medical University, School of Medicine, Kashihara, Nara, Japan
| | | | | | | |
Collapse
|
29
|
Vo U, Vajpai N, Flavell L, Bobby R, Breeze AL, Embrey KJ, Golovanov AP. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence. J Biol Chem 2015; 291:1703-1718. [PMID: 26565026 PMCID: PMC4722452 DOI: 10.1074/jbc.m115.691238] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 01/07/2023] Open
Abstract
The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions.
Collapse
Affiliation(s)
- Uybach Vo
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom and
| | - Navratna Vajpai
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom
| | - Liz Flavell
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom
| | - Romel Bobby
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom
| | - Alexander L Breeze
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom
| | - Kevin J Embrey
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom.
| | - Alexander P Golovanov
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom and.
| |
Collapse
|
30
|
Higa-Nakamine S, Maeda N, Toku S, Yamamoto H. Involvement of Protein Kinase D1 in Signal Transduction from the Protein Kinase C Pathway to the Tyrosine Kinase Pathway in Response to Gonadotropin-releasing Hormone. J Biol Chem 2015; 290:25974-85. [PMID: 26338704 DOI: 10.1074/jbc.m115.681700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 11/06/2022] Open
Abstract
The receptor for gonadotropin-releasing hormone (GnRH) belongs to the G protein-coupled receptors (GPCRs), and its stimulation activates extracellular signal-regulated protein kinase (ERK). We found that the transactivation of ErbB4 was involved in GnRH-induced ERK activation in immortalized GnRH neurons (GT1-7 cells). We found also that GnRH induced the cleavage of ErbB4. In the present study, we examined signal transduction for the activation of ERK and the cleavage of ErbB4 after GnRH treatment. Both ERK activation and ErbB4 cleavage were completely inhibited by YM-254890, an inhibitor of Gq/11 proteins. Down-regulation of protein kinase C (PKC) markedly decreased both ERK activation and ErbB4 cleavage. Experiments with two types of PKC inhibitors, Gö 6976 and bisindolylmaleimide I, indicated that novel PKC isoforms but not conventional PKC isoforms were involved in ERK activation and ErbB4 cleavage. Our experiments indicated that the novel PKC isoforms activated protein kinase D (PKD) after GnRH treatment. Knockdown and inhibitor experiments suggested that PKD1 stimulated the phosphorylation of Pyk2 by constitutively activated Src and Fyn for ERK activation. Taken together, it is highly possible that PKD1 plays a critical role in signal transduction from the PKC pathway to the tyrosine kinase pathway. Activation of the tyrosine kinase pathway may be involved in the progression of cancer.
Collapse
Affiliation(s)
- Sayomi Higa-Nakamine
- From the Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Noriko Maeda
- From the Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Seikichi Toku
- From the Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hideyuki Yamamoto
- From the Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
31
|
Goto K, Kawahara I, Kuniyasu H, Takaki M. A protein tyrosine kinase receptor, c-RET signaling pathway contributes to the enteric neurogenesis induced by a 5-HT4 receptor agonist at an anastomosis after transection of the gut in rodents. J Physiol Sci 2015; 65:377-83. [PMID: 25850922 PMCID: PMC10717718 DOI: 10.1007/s12576-015-0377-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
We previously reported that a serotonin 4 (5-HT4) receptor agonist, mosapride citrate (MOS), increased the number of c-RET-positive cells and levels of c-RET mRNA in gel sponge implanted in the necks of rats. The 5-HT4 receptor is a G protein coupled receptor (GPCR) coupled to G protein Gs-cAMP cascades. We investigated the possibility that 5-HT4 receptor activation induced c-RET activation and/or PKA activation by elevating cAMP levels. Rodents were orally administered MOS by adding it to drinking water for 2 weeks after enteric nerve circuit insult via gut transection and anastomosis, together with the RET inhibitors withaferin A (WA) and RPI-1 or the PKA inhibitor H89. We then examined PGP9.5-positive cells in the newly formed granulation tissue at the anastomotic site. MOS significantly increased the number of new neurons, but not when co-administered with WA or RPI-1. Co-administration of H89 failed to alter MOS-induced increases in neurogenesis. In conclusion, the c-RET signaling pathway contributes to enteric neurogenesis facilitated by MOS, though the contribution of PKA activation seems unlikely.
Collapse
Affiliation(s)
- Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 Japan
| | - Miyako Takaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 Japan
| |
Collapse
|
32
|
Paeoniflorin ameliorates ischemic neuronal damage in vitro via adenosine A1 receptor-mediated transactivation of epidermal growth factor receptor. Acta Pharmacol Sin 2015; 36:298-310. [PMID: 25661317 DOI: 10.1038/aps.2014.154] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/25/2014] [Indexed: 02/08/2023]
Abstract
AIM Paeoniflorin from Chinese herb Paeoniae Radix has been shown to ameliorate middle cerebral artery occlusion-induced ischemia in rats. The aim of this study was to investigate the mechanisms underlying the neuroprotective action of PF in cultured rat cortical neurons. METHODS Primary cultured cortical neurons of rats were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) insult. Cell survival was determined using MTT assay. HEK293 cells stably transfected with A1R (HEK293/A1R) were used for detailed analysis. Phosphorylation of the signaling proteins was evaluated by Western blot or immunoprecipitation. Receptor interactions were identified using co-immunoprecipitation and immunofluorescence staining. RESULTS Paeoniflorin (10 nmol/L to 1 μmol/L) increased the survival of neurons subjected to OGD/R. Furthermore, paeoniflorin increased the phosphorylation of Akt and ERK1/2 in these neurons. These effects were blocked by PI3K inhibitor wortmannin or MEK inhibitor U0126. Paeoniflorin also increased the phosphorylation of Akt and ERK1/2 in HEK293/A1R cells. Both A1R antagonist DPCPX and EGFR inhibitor AG1478 not only blocked paeoniflorin-induced phosphorylation of ERK1/2 and Akt in HEK293/A1R cells, but also paeoniflorin-increased survival of neurons subjected to OGD/R. In addition, paeoniflorin increased the phosphorylation of Src kinase and activation of MMP-2 in HEK293/A1R cells. Both Src inhibitor PP2 and MMP-2/MMP-9 inhibitor BiPs not only blocked paeoniflorin-induced phosphorylation of ERK1/2 (and Akt) in HEK293/A1R cells, but also paeoniflorin-increased survival of neurons subjected to OGD/R. CONCLUSION Paeoniflorin promotes the survival of cultured cortical neurons by increasing Akt and ERK1/2 phosphorylation via A1R-mediated transactivation of EGFR.
Collapse
|
33
|
Borroto-Escuela DO, Narvaez M, Pérez-Alea M, Tarakanov AO, Jiménez-Beristain A, Mudó G, Agnati LF, Ciruela F, Belluardo N, Fuxe K. Evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system. Biochem Biophys Res Commun 2014; 456:489-93. [PMID: 25485703 DOI: 10.1016/j.bbrc.2014.11.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/28/2014] [Indexed: 11/25/2022]
Abstract
The ascending midbrain 5-HT neurons known to contain 5-HT1A autoreceptors may be dysregulated in depression due to a reduced trophic support. With in situ proximity ligation assay (PLA) and supported by co-location of the FGFR1 and 5-HT1A immunoreactivities in midbrain raphe 5-HT cells, evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes were obtained in the dorsal and median raphe nuclei of the Sprague-Dawley rat. Their existence in the rat medullary raphe RN33B cell cultures was also established. After combined FGF-2 and 8-OH-DPAT treatment, a marked and significant increase in PLA positive clusters was found in the RN33B cells. Similar results were reached upon coactivation by agonists in HEK293T cells using the Fluorescent Resonance Energy Transfer (FRET) technique resulting in increased FRETmax and reduced FRET50 values. The heteroreceptor complex formation was dependent on TMV of the 5-HT1A receptor since it was blocked by incubation with TMV but not with TMII. Taken together, the 5-HT1A autoreceptors by being recruited into a FGFR1-5-HT1A heteroreceptor complex in the midbrain raphe 5-HT nerve cells may develop a novel function, namely a trophic role in many midbrain 5-HT neuron systems originating from the dorsal and medianus raphe nuclei.
Collapse
Affiliation(s)
| | - Manuel Narvaez
- Department of Physiology, School of Medicine, University of Málaga, Spain.
| | - Mileidys Pérez-Alea
- Lab Animal Models and Cancer Laboratory Anatomy Pathology Program, Institut de Recerca Vall d'Hebron, 08035 Barcelona, Spain.
| | - Alexander O Tarakanov
- Russian Academy of Sciences, St. Petersburg Institute for Informatics and Automation, Saint Petersburg, Russia.
| | | | - Giuseppa Mudó
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Molecular Neurobiology, University of Palermo, Palermo, Italy.
| | - Luigi F Agnati
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Universitat de Barcelona, Spain.
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Molecular Neurobiology, University of Palermo, Palermo, Italy.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Wang Q, Terauchi A, Yee CH, Umemori H, Traynor JR. 5-HT1A receptor-mediated phosphorylation of extracellular signal-regulated kinases (ERK1/2) is modulated by regulator of G protein signaling protein 19. Cell Signal 2014; 26:1846-52. [PMID: 24793302 PMCID: PMC8019269 DOI: 10.1016/j.cellsig.2014.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
Abstract
The 5-HT1A receptor is a G protein coupled receptor (GPCR) that activates G proteins of the Gαi/o family. 5-HT1A receptors expressed in the raphe, hippocampus and prefrontal cortex are implicated in the control of mood and are targets for anti-depressant drugs. Regulators of G protein signaling (RGS) proteins are members of a large family that play important roles in signal transduction downstream of G protein coupled receptors (GPCRs). The main role of RGS proteins is to act as GTPase accelerating proteins (GAPs) to dampen or negatively regulate GPCR-mediated signaling. We have shown that a mouse expressing Gαi2 that is insensitive to all RGS protein GAP activity has an anti-depressant-like phenotype due to increased signaling of postsynaptic 5-HT1A receptors, thus implicating the 5-HT1A receptor-Gαi2 complex as an important target. Here we confirm that RGS proteins act as GAPs to regulate signaling to adenylate cyclase and the mitogen-activated protein kinase (MAPK) pathway downstream of the 5-HT1A receptor, using RGS-insensitive Gαi2 protein expressed in C6 cells. We go on to use short hairpin RNA (shRNA) to show that RGS19 is responsible for the GAP activity in C6 cells and also that RGS19 acts as a GAP for 5-HT1A receptor signaling in human neuroblastoma SH-SY5Y cells and primary hippocampal neurons. In addition, in both cell types the synergy between 5-HT1A receptor and the fibroblast growth factor receptor 1 in stimulating the MAPK pathway is enhanced following shRNA reduction of RGS19 expression. Thus RGS19 may be a viable new target for anti-depressant medications.
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Akiko Terauchi
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Christopher H Yee
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hisashi Umemori
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - John R Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Abstract
Mammalian sperm acquire fertilization capacity after residing in the female reproductive tract for a few hours in a process called capacitation. Only capacitated sperm can bind the zona pellucida (ZP) of the egg and undergo the acrosome reaction, a process that allows penetration and fertilization. Extracellular signal regulated kinase (ERK1/2) mediates signalling in many cell types, however its role in sperm function is largely unknown. Here we show that ERK1/2 is highly phosphorylated/activated after a short incubation of mouse sperm under capacitation conditions and that this phosphorylation is reduced after longer incubation. Further phosphorylation was observed upon addition of crude extract of egg ZP or epidermal growth factor (EGF). The mitogen-activated ERK-kinase (MEK) inhibitor U0126 abolished ERK1/2 phosphorylation, in vitro fertilization rate and the acrosome reaction induced by ZP or EGF but not by the Ca2+-ionophore A23187. Moreover, inhibition of ERK1/2 along the capacitation process diminished almost completely the sperm's ability to go through the acrosome reaction, while inhibition at the end of capacitation attenuated the acrosome reaction rate by only 45%. The fact that the acrosome reaction, induced by the Ca2+ -ionophore A23187, was not inhibited by U0126 suggests that ERK1/2 mediates the acrosome reaction by activating Ca2+ transport into the cell. Direct determination of intracellular [Ca2+] revealed that Ca2+ influx induced by EGF or ZP was completely blocked by U0126. Thus, it has been established that the increase in ERK1/2 phosphorylation/activation in response to ZP or by activation of the EGF receptor (EGFR) by EGF, is a key event for intracellular Ca2+ elevation and the subsequent occurrence of the acrosome reaction.
Collapse
|
36
|
Abstract
Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype requires the activation of pro-survival transcription factor like the signal transducers and activators of transcription-3 (STAT3). Using multidisciplinary and translational approaches, we and others have demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the modulation of the expression of several proteins already known as implicated in PAH pathogenesis, as well as for signal transduction to other transcription factors. Furthermore, recent data demonstrated that STAT3 could be therapeutically targeted in different animal models and some molecules are actually in clinical trials for cancer or PAH treatment.
Collapse
Affiliation(s)
- Roxane Paulin
- Vascular Biology Research Group; Department of Medicine; University of Alberta; Edmonton, AB Canada
| | | | | |
Collapse
|
37
|
Yamamoto H, Higa-Nakamine S, Noguchi N, Maeda N, Kondo Y, Toku S, Kukita I, Sugahara K. Desensitization by different strategies of epidermal growth factor receptor and ErbB4. J Pharmacol Sci 2014; 124:287-93. [PMID: 24553453 DOI: 10.1254/jphs.13r11cp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Four transmembrane tyrosine kinases constitute the ErbB protein family: epidermal growth factor receptor (EGFR) or ErbB1, ErbB2, ErbB3, and ErbB4. In general, the structure and mechanism of the activation of these members are similar. However, significant differences in homologous desensitization are known between EGFR and ErbB4. Desensitization of ligand-occupied EGFR occurs by endocytosis, while that of ErbB4 occurs by selective cleavage at the cell surface. Because ErbB4 is abundantly expressed in neurons from fetal to adult brains, elucidation of the desensitization mechanism is important to understand neuronal development and synaptic functions. Recently, it has become clear that heterologous desensitization of EGFR and ErbB4 are induced by endocytosis and cleavage, respectively, similar to homologous desensitization. It has been reported that heterologous desensitization of EGFR is induced by serine phosphorylation of EGFR via the p38 mitogen-activated protein kinase (p38 MAP kinase) pathway in various cell lines, including alveolar epithelial cells. In contrast, the protein kinase C pathway is involved in ErbB4 cleavage. In this review, we will describe recent advances in the desensitization mechanisms of EGFR and ErbB4, mainly in alveolar epithelial cells and hypothalamic neurons, respectively.
Collapse
Affiliation(s)
- Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu C, Zhang W, Rondard P, Pin JP, Liu J. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor. Front Pharmacol 2014; 5:12. [PMID: 24575041 PMCID: PMC3920572 DOI: 10.3389/fphar.2014.00012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/22/2014] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, cell-surface expression and localization, crosstalk with other receptors, or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.
Collapse
Affiliation(s)
- Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Wenhua Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
39
|
Takaki M, Goto K, Kawahara I. The 5-hydroxytryptamine 4 Receptor Agonist-induced Actions and Enteric Neurogenesis in the Gut. J Neurogastroenterol Motil 2014; 20:17-30. [PMID: 24466442 PMCID: PMC3895605 DOI: 10.5056/jnm.2014.20.1.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/15/2013] [Accepted: 10/19/2013] [Indexed: 12/13/2022] Open
Abstract
We explored a novel effect of 5-hydroxytryptamine 4 receptor (5-HT4R) agonists in vivo to reconstruct the enteric neural circuitry that mediates a fundamental distal gut reflex. The neural circuit insult was performed in guinea pigs and rats by rectal transection and anastomosis. A 5-HT4R-agonist, mosapride citrate (MOS) applied orally and locally at the anastomotic site for 2 weeks promoted the regeneration of the impaired neural circuit or the recovery of the distal gut reflex. MOS generated neurofilament-, 5-HT4R- and 5-bromo-2'-deoxyuridine-positive cells and formed neural network in the granulation tissue at the anastomosis. Possible neural stem cell markers increased during the same time period. These novel actions by MOS were inhibited by specific 5-HT4R-antagonist such as GR113808 (GR) or SB-207266. The activation of enteric neural 5-HT4R promotes reconstruction of an enteric neural circuit that involves possibly neural stem cells. We also succeeded in forming dense enteric neural networks by MOS in a gut differentiated from mouse embryonic stem cells. GR abolished the formation of enteric neural networks. MOS up-regulated the expression of mRNA of 5-HT4R, and GR abolished this upregulation, suggesting MOS differentiated enteric neural networks, mediated via activation of 5-HT4R. In the small intestine in H-line: Thy1 promoter green fluorescent protein (GFP) mice, we obtained clear 3-dimensional imaging of enteric neurons that were newly generated by oral application of MOS after gut transection and anastomosis. All findings indicate that treatment with 5-HT4R-agonists could be a novel therapy for generating new enteric neurons to rescue aganglionic disorders in the whole gut.
Collapse
Affiliation(s)
- Miyako Takaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| |
Collapse
|
40
|
Sciaccaluga M, D’Alessandro G, Pagani F, Ferrara G, Lopez N, Warr T, Gorello P, Porzia A, Mainiero F, Santoro A, Esposito V, Cantore G, Castigli E, Limatola C. Functional cross talk between CXCR4 and PDGFR on glioblastoma cells is essential for migration. PLoS One 2013; 8:e73426. [PMID: 24023874 PMCID: PMC3759384 DOI: 10.1371/journal.pone.0073426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/19/2013] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive form of brain tumor, characterized by high migratory behavior and infiltration in brain parenchyma which render classic therapeutic approach ineffective. The migratory behaviour of GBM cells could be conditioned by a number of tissue- and glioma-derived cytokines and growth factors. Although the pro-migratory action of CXCL12 on GBM cells in vitro and in vivo is recognized, the molecular mechanisms involved are not clearly identified. In fact the signaling pathways involved in the pro-migratory action of CXCL12 may differ in individual glioblastoma and integrate with those resulting from abnormal expression and activation of growth factor receptors. In this study we investigated whether some of the receptor tyrosine kinases commonly expressed in GBM cells could cooperate with CXCL12/CXCR4 in their migratory behavior. Our results show a functional cross-talk between CXCR4 and PDGFR which appears to be essential for GBM chemotaxis.
Collapse
Affiliation(s)
| | - Giuseppina D’Alessandro
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Fisiologia e Farmacologia Sapienza University of Rome, Rome, Italy
| | - Francesca Pagani
- Centre for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giuseppina Ferrara
- Department of Cellular and Environmental Biology, University of Perugia, Perugia, Italy
| | - Nadia Lopez
- Department of Cellular and Environmental Biology, University of Perugia, Perugia, Italy
| | - Tracy Warr
- Department of Cellular and Environmental Biology, University of Perugia, Perugia, Italy
| | | | - Alessandra Porzia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Mainiero
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Santoro
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | | | | | - Emilia Castigli
- Department of Cellular and Environmental Biology, University of Perugia, Perugia, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Venafro, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Fisiologia e Farmacologia Sapienza University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
41
|
Sphingosine-1-phosphate induces VEGF-C expression through a MMP-2/FGF-1/FGFR-1-dependent pathway in endothelial cells in vitro. Acta Pharmacol Sin 2013; 34:360-6. [PMID: 23377549 DOI: 10.1038/aps.2012.186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM To investigate whether sphingosine-1-phosphate (S1P), a potent angiogenic factor, induced vascular endothelial growth factor-C (VEGF-C) expression in endothelial cells in vitro and to examine its underlying mechanisms. METHODS Human umbilical vein endothelial cells (HUVECs) were examined. VEGF-C mRNA expression in the cells was assessed using real-time PCR. VEGF-C protein and FGFR-1 phosphorylation in the cells were measured with ELISA. RNA interference was used to downregulate the expression of matrix metalloproteinase-2 (MMP-2), fibroblast growth factor-1 (FGF-1) and FGF receptor-1 (FGFR-1). RESULTS Incubation of HUVECs with S1P (1, 5, and 10 μmol/L) significantly increased VEGF-C expression. The effect was blocked by pretreatment with the MMP inhibitor GM6001 or the FGFR inhibitor SU5402, but not the EGFR inhibitor AG1478. The effect was also blocked in HUVECs that were transfected with FGFR-1 or MMP-2 siRNA. Furthermore, incubation of HUVECs with S1P (5 μmol/L) significantly increased FGFR-1 phosphorylation, which was blocked by GM6001. Moreover, knockdown of FGF-1, not FGF-2, in HUVECs with siRNAs, blocked S1P-induced VEGF-C expression. CONCLUSION S1P induces VEGF-C expression through a MMP-2/ FGF-1/FGFR-1-dependent pathway in HUVECs.
Collapse
|
42
|
Bayliss A, Evans PD. Characterisation of AmphiAmR4, an amphioxus (Branchiostoma floridae) α₂-adrenergic-like G-protein-coupled receptor. INVERTEBRATE NEUROSCIENCE 2012. [PMID: 23183848 DOI: 10.1007/s10158-012-0145-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Little is known about the evolutionary relationship between vertebrate adrenergic receptors and invertebrate octopamine and tyramine receptors. The complexity of the adrenergic signalling system is believed to be an innovation of the vertebrate lineage but the presence of noradrenaline has been reported in some invertebrate species. The cephalochordate, amphioxus (Branchiostoma floridae), is an ideal model organism for studying the evolution of vertebrate GPCRs, given its unique position at the base of the chordate lineage. Here, we describe the pharmacological characterisation and second messenger coupling abilities of AmphiAmR4, which clusters with α₂-adrenergic receptors in a phylogenetic tree but also shares a high sequence similarity to invertebrate octopamine/tyramine receptors in both BLAST and Hidden Markov Model analyses. Thus, it was of particular interest to determine if AmphiAmR4 displayed similar functional properties to the vertebrate α₂-adrenergic receptors or to invertebrate octopamine or tyramine receptors. When stably expressed in Chinese hamster ovary (CHO) cells, noradrenaline couples the receptor to both the activation of adenylyl cyclase and to the activation of the MAPKinase pathway. Pharmacological studies with a wide range of agonists and antagonists suggest that AmphiAmR4 functions as an α₂-adrenergic-like receptor when expressed in CHO cells.
Collapse
Affiliation(s)
- Asha Bayliss
- The Inositide Laboratory, The Babraham Institute, The Babraham Research Campus, Cambridge CB22 3AT, UK
| | | |
Collapse
|
43
|
Kuzumaki N, Suzuki A, Narita M, Hosoya T, Nagasawa A, Imai S, Yamamizu K, Morita H, Suzuki T, Okada Y, Okano HJ, Yamashita JK, Okano H, Narita M. Multiple analyses of G-protein coupled receptor (GPCR) expression in the development of gefitinib-resistance in transforming non-small-cell lung cancer. PLoS One 2012; 7:e44368. [PMID: 23144692 PMCID: PMC3483178 DOI: 10.1371/journal.pone.0044368] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 08/02/2012] [Indexed: 01/22/2023] Open
Abstract
There is increasing evidence that functional crosstalk between GPCRs and EGFR contributes to the progression of colon, lung, breast, ovarian, prostate and head and neck tumors. In this study, we performed multiple analyses of GPCR expression in a gefitinib-resistant non-small cell lung cancer (NSCLC) cell line, H1975, which harbors an L858R/T790M mutation. To determine the expression profile of mRNAs encoding 384 GPCRs in normal human lung fibroblast (NHLF) and H1975 cells, a GPCR-specific microarray analysis was performed. A heat-map of the microarray revealed considerable differences in the expression of GPCRs between NHLF and H1975 cells. From the GPCR expression list, we selected some GPCR agonists/antagonist to investigate whether the respective ligands could affect the growth of H1975 cells. Among them, treatment with either a selective antagonist of adenosine A2a receptors, which were highly expressed in H1975 cell and another gefitinib-resistant NSCLC cells, HCC827GR cells or “small interfering RNA” (siRNA) targeting adenosine A2a receptors produced a significant decrease in cell viability of both H1975 and HCC827GR cells. Among up-regulated GPCRs in H1975 cells, Gs-, Gi- and Gq-coupled GPCRs were expressed almost equally. Among down-regulated GPCRs, Gi-coupled GPCRs were dominantly expressed in H1975 cells. The present results suggest that multilayered crosstalk between GPCRs and EGFR may play an important role in orchestrating downstream signaling molecules that are implicated in the development of gefitinib-resistant NSCLC.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists/pharmacology
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/genetics
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gefitinib
- Humans
- Lung/cytology
- Lung/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Oligonucleotide Array Sequence Analysis
- Pyrimidines/pharmacology
- Quinazolines/pharmacology
- RNA Interference
- Receptor, Adenosine A2A/genetics
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcriptome
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Naoko Kuzumaki
- Department of Physiology, Keio University, School of Medicine, Tokyo, Japan
- Department of Pharamacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- * E-mail: (NK); (Minoru Narita)
| | - Atsuo Suzuki
- Department of Pharamacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Michiko Narita
- Department of Pharamacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Takahiro Hosoya
- Biological Systems Control Team, Biomedicinal Information Research Center, Tokyo, Japan
| | - Atsumi Nagasawa
- Department of Pharamacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Satoshi Imai
- Department of Pharamacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Kohei Yamamizu
- Laboratory of Stem Cell Differentiation, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Morita
- Faculty of Pharmaceutical Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Yohei Okada
- Department of Physiology, Keio University, School of Medicine, Tokyo, Japan
| | | | - Jun K. Yamashita
- Laboratory of Stem Cell Differentiation, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University, School of Medicine, Tokyo, Japan
| | - Minoru Narita
- Department of Pharamacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- * E-mail: (NK); (Minoru Narita)
| |
Collapse
|
44
|
Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2012; 304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neuropeptides orexins and their G protein-coupled receptors, OX(1) and OX(2), were discovered in 1998, and since then, their role has been investigated in many functions mediated by the central nervous system, including sleep and wakefulness, appetite/metabolism, stress response, reward/addiction, and analgesia. Orexins also have peripheral actions of less clear physiological significance still. Cellular responses to the orexin receptor activity are highly diverse. The receptors couple to at least three families of heterotrimeric G proteins and other proteins that ultimately regulate entities such as phospholipases and kinases, which impact on neuronal excitation, synaptic plasticity, and cell death. This article is a 10-year update of my previous review on the physiology of the orexinergic/hypocretinergic system. I seek to provide a comprehensive update of orexin physiology that spans from the molecular players in orexin receptor signaling to the systemic responses yet emphasizing the cellular physiological aspects of this system.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Dept. of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
45
|
Yang D, Chen M, Russo-Neustadt A. Antidepressants are neuroprotective against nutrient deprivation stress in rat hippocampal neurons. Eur J Neurosci 2012; 36:2573-87. [DOI: 10.1111/j.1460-9568.2012.08187.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
An activity-based probe reveals dynamic protein-protein interactions mediating IGF-1R transactivation by the GABA(B) receptor. Biochem J 2012; 443:627-34. [PMID: 22394253 DOI: 10.1042/bj20120188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many GPCRs (G-protein-coupled receptors) can activate RTKs (receptor tyrosine kinases) in the absence of RTK ligands, a phenomenon called transactivation. However, the underlying molecular mechanisms remain undefined. In the present study we investigate the molecular basis of GABA(B) (γ-aminobutyric acid B) receptor-mediated transactivation of IGF-1R (insulin-like growth factor type I receptor) in primary neurons. We take a chemical biology approach by developing an activity-based probe targeting the GABA(B) receptor. This probe enables us first to lock the GABA(B) receptor in an inactive state and then activate it with a positive allosteric modulator, thereby permitting monitoring of the dynamic of the protein complex associated with IGF-1R transactivation. We find that activation of the GABA(B) receptor induces a dynamic assembly and disassembly of a protein complex, including both receptors and their downstream effectors. FAK (focal adhesion kinase), a non-RTK, plays a key role in co-ordinating this dynamic process. Importantly, this dynamic of the GABA(B) receptor-associated complex is critical for transactivation and transactivation-dependent neuronal survival. The present study has identified an important mechanism underlying GPCR transactivation of RTKs, which was enabled by a new chemical biology tool generally applicable for dissecting GPCR signalling.
Collapse
|
47
|
Furmaga H, Carreno FR, Frazer A. Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS One 2012; 7:e34844. [PMID: 22563458 PMCID: PMC3341395 DOI: 10.1371/journal.pone.0034844] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Background Vagal nerve stimulation (VNS) has been approved for treatment-resistant depression. Many antidepressants increase expression of brain-derived neurotrophic factor (BDNF) in brain or activate, via phosphorylation, its receptor, TrkB. There have been no studies yet of whether VNS would also cause phosphorylation of TrkB. Methods Western blot analysis was used to evaluate the phosphorylation status of TrkB in the hippocampus of rats administered VNS either acutely or chronically. Acute effects of VNS were compared with those caused by fluoxetine or desipramine (DMI) whereas its chronic effects were compared with those of sertraline or DMI. Results All treatments, given either acutely or chronically, significantly elevated phosphorylation of tyrosines 705 and 816 on TrkB in the hippocampus. However, only VNS increased the phosphorylation of tyrosine 515, with both acute and chronic administration causing this effect. Pretreatment with K252a, a nonspecific tyrosine kinase inhibitor, blocked the phosphorylation caused by acute VNS at all three tyrosines. Downstream effectors of Y515, namely Akt and ERK, were also phosphorylated after acute treatment with VNS, whereas DMI did not cause this effect. Conclusion VNS rapidly activates TrkB phosphorylation and this effect persists over time. VNS-induced phosphorylation of tyrosine 515 is distinct from the effect of standard antidepressant drugs.
Collapse
Affiliation(s)
- Havan Furmaga
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Flavia Regina Carreno
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Alan Frazer
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, United States of America
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Vasefi MS, Kruk JS, Liu H, Heikkila JJ, Beazely MA. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression. Neurosci Lett 2012; 511:65-9. [DOI: 10.1016/j.neulet.2012.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
|
49
|
Higa-Nakamine S, Maeda N, Toku S, Yamamoto T, Yingyuenyong M, Kawahara M, Yamamoto H. Selective cleavage of ErbB4 by G-protein-coupled Gonadotropin-Releasing Hormone Receptor in Cultured Hypothalamic Neurons. J Cell Physiol 2012; 227:2492-501. [DOI: 10.1002/jcp.22988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundström J, Ristamäki R, Osterlund P, Knuutila S. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer 2011; 51:1-9. [PMID: 21922590 DOI: 10.1002/gcc.20925] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/08/2011] [Indexed: 02/06/2023] Open
Abstract
Recent studies have shown the important role of microRNAs (miRNAs) in a variety of biological processes, and in its ability to distinguish tumors according to their prognostic and predictive properties. To identify miRNA signatures associated with colorectal carcinoma (CRC) and with KRAS status, we studied, using Agilent's miRNA microarrays, miRNA expression in primary tumors from 55 metastatic CRC patients, including 15 with mutant and 40 with wild-type KRAS. Comparing these with normal colon tissue, we identified 49 miRNAs--including 19 novel miRNAs--significantly deregulated in tumor tissue. The presence of the KRAS mutation was associated with up-regulation of miR-127-3p, miR-92a, and miR-486-3p and down-regulation of miR-378. Increased expression of miR-127-3p and miR-92a in KRAS mutant tumors was significantly confirmed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) (P < 0.05). We identified some predicted target genes of differentially expressed miRNAs between mutated and wild-type KRAS, such as RSG3 and TOB1, which are involved in apoptosis and proliferation. Target prediction and pathway analysis suggest a possible role for deregulated miRNAs in nicotinamide adenine dinucleotide phosphate (NADPH) regeneration and G protein-coupled receptor signaling pathways.
Collapse
Affiliation(s)
- Neda Mosakhani
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|