1
|
Franco-García A, Gómez-Murcia V, Fernández-Gómez FJ, González-Andreu R, Hidalgo JM, Victoria Milanés M, Núñez C. Morphine-withdrawal aversive memories and their extinction modulate H4K5 acetylation and Brd4 activation in the rat hippocampus and basolateral amygdala. Biomed Pharmacother 2023; 165:115055. [PMID: 37356373 DOI: 10.1016/j.biopha.2023.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023] Open
Abstract
Chromatin modification is a crucial mechanism in several important phenomena in the brain, including drug addiction. Persistence of drug craving and risk of relapse could be attributed to drug-induced epigenetic mechanisms that seem to be candidates explaining long-lasting drug-induced behaviour and molecular alterations. Histone acetylation has been proposed to regulate drug-seeking behaviours and the extinction of rewarding memory of drug taking. In this work, we studied the epigenetic regulation during conditioned place aversion and after extinction of aversive memory of opiate withdrawal. Through immunofluorescence assays, we assessed some epigenetic marks (H4K5ac and p-Brd4) in crucial areas related to memory retrieval -basolateral amygdala (BLA) and hippocampus-. Additionally, to test the degree of transcriptional activation, we evaluated the immediate early genes (IEGs) response (Arc, Bdnf, Creb, Egr-1, Fos and Nfkb) and Smarcc1 (chromatin remodeler) through RT-qPCR in these nuclei. Our results showed increased p-Brd4 and H4K5ac levels during aversive memory retrieval, suggesting a more open chromatin state. However, transcriptional activation of these IEGs was not found, therefore suggesting that other secondary response may already be happening. Additionally, Smarcc1 levels were reduced due to morphine chronic administration in BLA and dentate gyrus. The activation markers returned to control levels after the retrieval of aversive memories, revealing a more repressed chromatin state. Taken together, our results show a major role of the tandem H4K5ac/p-Brd4 during the retrieval of aversive memories. These results might be useful to elucidate new molecular targets to improve and develop pharmacological treatments to address addiction and to avoid drug relapse.
Collapse
Affiliation(s)
- Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Victoria Gómez-Murcia
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Francisco José Fernández-Gómez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Raúl González-Andreu
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain
| | - Juana M Hidalgo
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - M Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain.
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain.
| |
Collapse
|
2
|
Das S, Ramanan N. Region-specific heterogeneity in neuronal nuclear morphology in young, aged and in Alzheimer's disease mouse brains. Front Cell Dev Biol 2023; 11:1032504. [PMID: 36819109 PMCID: PMC9929567 DOI: 10.3389/fcell.2023.1032504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Neurons in the mammalian brain exhibit enormous structural and functional diversity across different brain regions. Compared to our understanding of the morphological diversity of neurons, very little is known about the heterogeneity of neuronal nuclear morphology and how nuclear size changes in aging and diseased brains. Here, we report that the neuronal cell nucleus displays differences in area, perimeter, and circularity across different anatomical regions in the mouse brain. The pyramidal neurons of the hippocampal CA3 region exhibited the largest area whereas the striatal neuronal nuclei were the smallest. These nuclear size parameters also exhibited dichotomous changes with age across brain regions-while the neocortical and striatal neurons showed a decrease in nuclear area and perimeter, the CA3 neurons showed an increase with age. The nucleus of parvalbumin- and calbindin-positive interneurons had comparable morphological features but exhibited differences between brain regions. In the context of activity-dependent transcription in response to a novel environment, there was a decrease in nuclear size and circularity in c-Fos expressing neurons in the somatosensory cortex and hippocampal CA1 and CA3. In an APP/PS1 mutant mouse model of Alzheimer's disease (AD), the neuronal nuclear morphology varies with plaque size and with increasing distance from the plaque. The neuronal nuclear morphology in the immediate vicinity of the plaque was independent of the plaque size and the morphology tends to change away from the plaque. These changes in the neuronal nuclear size and shape at different ages and in AD may be attributed to changes in transcriptional activity. This study provides a detailed report on the differences that exist between neurons in nuclear morphology and can serve as a basis for future studies.
Collapse
|
3
|
Fujita Y, Pather SR, Ming GL, Song H. 3D spatial genome organization in the nervous system: From development and plasticity to disease. Neuron 2022; 110:2902-2915. [PMID: 35777365 PMCID: PMC9509413 DOI: 10.1016/j.neuron.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 01/03/2023]
Abstract
Chromatin is organized into multiscale three-dimensional structures, including chromosome territories, A/B compartments, topologically associating domains, and chromatin loops. This hierarchically organized genomic architecture regulates gene transcription, which, in turn, is essential for various biological processes during brain development and adult plasticity. Here, we review different aspects of spatial genome organization and their functions in regulating gene expression in the nervous system, as well as their dysregulation in brain disorders. We also highlight new technologies to probe and manipulate chromatin architecture and discuss how investigating spatial genome organization can lead to a better understanding of the nervous system and associated disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo City, Shimane 693-8501, Japan.
| | - Sarshan R Pather
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
A Nuclear Belt Fastens on Neural Cell Fate. Cells 2022; 11:cells11111761. [PMID: 35681456 PMCID: PMC9179901 DOI: 10.3390/cells11111761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/22/2022] Open
Abstract
Successful embryonic and adult neurogenesis require proliferating neural stem and progenitor cells that are intrinsically and extrinsically guided into a neuronal fate. In turn, migration of new-born neurons underlies the complex cytoarchitecture of the brain. Proliferation and migration are therefore essential for brain development, homeostasis and function in adulthood. Among several tightly regulated processes involved in brain formation and function, recent evidence points to the nuclear envelope (NE) and NE-associated components as critical new contributors. Classically, the NE was thought to merely represent a barrier mediating selective exchange between the cytoplasm and nucleoplasm. However, research over the past two decades has highlighted more sophisticated and diverse roles for NE components in progenitor fate choice and migration of their progeny by tuning gene expression via interactions with chromatin, transcription factors and epigenetic factors. Defects in NE components lead to neurodevelopmental impairments, whereas age-related changes in NE components are proposed to influence neurodegenerative diseases. Thus, understanding the roles of NE components in brain development, maintenance and aging is likely to reveal new pathophysiological mechanisms for intervention. Here, we review recent findings for the previously underrepresented contribution of the NE in neuronal commitment and migration, and envision future avenues for investigation.
Collapse
|
5
|
Targeting the A 3 adenosine receptor to prevent and reverse chemotherapy-induced neurotoxicities in mice. Acta Neuropathol Commun 2022; 10:11. [PMID: 35093182 PMCID: PMC8800287 DOI: 10.1186/s40478-022-01315-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is used to combat solid tumors. However, patients treated with cisplatin often develop cognitive impairments, sensorimotor deficits, and peripheral neuropathy. There is no FDA-approved treatment for these neurotoxicities. We investigated the capacity of a highly selective A3 adenosine receptor (AR) subtype (A3AR) agonist, MRS5980, to prevent and reverse cisplatin-induced neurotoxicities. MRS5980 prevented cisplatin-induced cognitive impairment (decreased executive function and impaired spatial and working memory), sensorimotor deficits, and neuropathic pain (mechanical allodynia and spontaneous pain) in both sexes. At the structural level, MRS5980 prevented the cisplatin-induced reduction in markers of synaptic integrity. In-situ hybridization detected Adora3 mRNA in neurons, microglia, astrocytes and oligodendrocytes. RNAseq analysis identified 164 genes, including genes related to mitochondrial function, of which expression was changed by cisplatin and normalized by MRS5980. Consistently, MRS5980 prevented cisplatin-induced mitochondrial dysfunction and decreased signs of oxidative stress. Transcriptomic analysis showed that the A3AR agonist upregulates genes related to repair pathways including NOTCH1 signaling and chromatin modification in the cortex of cisplatin-treated mice. Importantly, A3AR agonist administration after completion of cisplatin treatment resolved cognitive impairment, neuropathy and sensorimotor deficits. Our results highlight the efficacy of a selective A3AR agonist to prevent and reverse cisplatin-induced neurotoxicities via preventing brain mitochondrial damage and activating repair pathways. An A3AR agonist is already in cancer, clinical trials and our results demonstrate management of neurotoxic side effects of chemotherapy as an additional therapeutic benefit.
Collapse
|
6
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System. Results Probl Cell Differ 2022; 70:419-442. [PMID: 36348117 DOI: 10.1007/978-3-031-06573-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurons and glial cells in the nervous system exhibit different gene expression programs for neural development and function. These programs are controlled by the epigenetic regulatory layers in the nucleus. The nucleus is a well-organized subcellular organelle that includes chromatin, the nuclear lamina, and nuclear bodies. These subnuclear components operate together as epigenetic regulators of neural development and function and are collectively called the nuclear architecture. In the nervous system, dynamic rearrangement of the nuclear architecture has been observed in each cell type, especially in neurons, allowing for their specialized functions, including learning and memory formation. Although the importance of nuclear architecture has been debated for decades, the paradigm has been changing rapidly, owing to the development of new technologies. Here, we reviewed the latest studies on nuclear geometry, nuclear bodies, and heterochromatin compartments, as well as summarized recent novel insights regarding radial positioning, chromatin condensation, and chromatin interaction between genes and cis-regulatory elements.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania, USA
| | - Takumi Takizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
7
|
Boyan G, Ehrhardt E. Epithelial domains and the primordial antennal nervous system of the embryonic grasshopper Schistocerca gregaria. INVERTEBRATE NEUROSCIENCE 2020; 20:6. [PMID: 32215732 DOI: 10.1007/s10158-020-0240-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/11/2020] [Indexed: 12/26/2022]
Abstract
The antenna is a key sensory organ in insects. Factors which pattern its epithelium and the spacing of sensillae will play an important role in shaping its contribution to adaptive behavior. The antenna of the grasshopper S. gregaria has three major articulations: scape, pedicel, and flagellum. During postembryonic development, the flagellum lengthens as segments (so-called meristal annuli) are added at each molt. However, the five most apical annuli do not subdivide; thus, their epithelial domains must already be defined during embryogenesis. We investigated epithelial compartmentalization and its relationship to the developing primordial nervous system of the antenna by simultaneous immunolabeling against the epithelial cell surface molecule Lachesin, against neuron-specific horseradish peroxidase, and against the mitosis marker phospho-histone 3. We found that Lachesin is initially expressed in a highly ordered pattern of "rings" and a "sock" in the apical antennal epithelium of the early embryo. These expression domains appear in a stereotypic order and prefigure later articulations. Proliferative cells segregate into these developing domains and pioneer- and sensory-cell precursors were molecularly identified. Our study allows pioneer neurons, guidepost cells, and the earliest sensory cell clusters of the primordial nervous system to be allocated to their respective epithelial domain. As the apical-most five domains remain stable through subsequent development, lengthening of the flagellum must originate from more basal regions and is likely to be under the control of factors homologous to those which regulate boundary and joint formation in the antenna of Drosophila.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany.
| | - Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
- Institute of Zoology, Universität Köln, Zülpicher Str 47b, 50674, Cologne, Germany
| |
Collapse
|
8
|
Barros L, Eichwald T, Solano AF, Scheffer D, da Silva RA, Gaspar JM, Latini A. Epigenetic modifications induced by exercise: Drug-free intervention to improve cognitive deficits associated with obesity. Physiol Behav 2019; 204:309-323. [PMID: 30876771 DOI: 10.1016/j.physbeh.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Obesity and metabolic disorders are increasing worldwide and are associated with brain atrophy and dysfunction, which are risk factors for late-onset dementia and Alzheimer's disease. Epidemiological studies demonstrated that changes in lifestyle, including the frequent practice of physical exercise are able to prevent and treat not only obesity/metabolic disorders, but also to improve cognitive function and dementia. Several biochemical pathways and epigenetic mechanisms have been proposed to understand the beneficial effects of physical exercise on cognition. This manuscript revised central ongoing research on epigenetic mechanisms induced by exercise and the beneficial effects on obesity-associated cognitive decline, highlighting potential mechanistic mediators.
Collapse
Affiliation(s)
- Leonardo Barros
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alexandre Francisco Solano
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Débora Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rodrigo Augusto da Silva
- Departamento de Química e Bioquímica, Laboratório de Bioensaios e Dinâmica Celular, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Botucatu, Botucatu, Brazil
| | - Joana M Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Programa de Pós-Graduação em Bioquímica, UFSC, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
9
|
Zada D, Bronshtein I, Lerer-Goldshtein T, Garini Y, Appelbaum L. Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat Commun 2019; 10:895. [PMID: 30837464 PMCID: PMC6401120 DOI: 10.1038/s41467-019-08806-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/30/2019] [Indexed: 11/09/2022] Open
Abstract
Sleep is essential to all animals with a nervous system. Nevertheless, the core cellular function of sleep is unknown, and there is no conserved molecular marker to define sleep across phylogeny. Time-lapse imaging of chromosomal markers in single cells of live zebrafish revealed that sleep increases chromosome dynamics in individual neurons but not in two other cell types. Manipulation of sleep, chromosome dynamics, neuronal activity, and DNA double-strand breaks (DSBs) showed that chromosome dynamics are low and the number of DSBs accumulates during wakefulness. In turn, sleep increases chromosome dynamics, which are necessary to reduce the amount of DSBs. These results establish chromosome dynamics as a potential marker to define single sleeping cells, and propose that the restorative function of sleep is nuclear maintenance.
Collapse
Affiliation(s)
- D Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - I Bronshtein
- Department of Physics and the Institute for Nanotechnology, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - T Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Y Garini
- Department of Physics and the Institute for Nanotechnology, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - L Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
10
|
García-Cabezas MÁ, Barbas H, Zikopoulos B. Parallel Development of Chromatin Patterns, Neuron Morphology, and Connections: Potential for Disruption in Autism. Front Neuroanat 2018; 12:70. [PMID: 30174592 PMCID: PMC6107687 DOI: 10.3389/fnana.2018.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
The phenotype of neurons and their connections depend on complex genetic and epigenetic processes that regulate the expression of genes in the nucleus during development and throughout life. Here we examined the distribution of nuclear chromatin patters in relation to the epigenetic landscape, phenotype and connections of neurons with a focus on the primate cerebral cortex. We show that nuclear patterns of chromatin in cortical neurons are related to neuron size and cortical connections. Moreover, we point to evidence that reveals an orderly sequence of events during development, linking chromatin and gene expression patterns, neuron morphology, function, and connections across cortical areas and layers. Based on this synthesis, we posit that systematic studies of changes in chromatin patterns and epigenetic marks across cortical areas will provide novel insights on the development and evolution of cortical networks, and their disruption in connectivity disorders of developmental origin, like autism. Achieving this requires embedding and interpreting genetic, transcriptional, and epigenetic studies within a framework that takes into consideration distinct types of neurons, local circuit interactions, and interareal pathways. These features vary systematically across cortical areas in parallel with laminar structure and are differentially affected in disorders. Finally, based on evidence that autism-associated genetic polymorphisms are especially prominent in excitatory neurons and connectivity disruption affects mostly limbic cortices, we employ this systematic approach to propose novel, targeted studies of projection neurons in limbic areas to elucidate the emergence and time-course of developmental disruptions in autism.
Collapse
Affiliation(s)
- Miguel Á García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States.,Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
11
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System: Development, Function, and Neurodevelopmental Diseases. Front Genet 2018; 9:308. [PMID: 30127803 PMCID: PMC6087739 DOI: 10.3389/fgene.2018.00308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Decades of study have shown that epigenetic regulation plays an important role in neural development and function. Several layers of epigenetic mechanisms control functions of the eukaryotic cell nucleus, a well-organized subcellular organelle with distinct compartments: chromatin, its related architectural proteins, and nuclear bodies. As these components function together in the epigenetic regulation of cellular development and functions, they are collectively termed nuclear architecture. In the nervous system, dynamic rearrangement of nuclear architecture correlates with alteration of transcription programs. During maturation and upon depolarization, neurons undergo a reorganization of nuclear architecture that alters gene expression programs. As such changes allow for specialized functions, including learning and memory, nuclear architecture is distinct among cell types. Studying nuclear architecture of neurons may uncover cell-division-independent mechanisms of global and local changes to nuclear architecture. We herein review recent research concerning nuclear architecture in the nervous system and will discuss its importance to the development, maturation, function, and diseases of the nervous system.
Collapse
Affiliation(s)
- Kenji Ito
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
12
|
Jahn HM, Kasakow CV, Helfer A, Michely J, Verkhratsky A, Maurer HH, Scheller A, Kirchhoff F. Refined protocols of tamoxifen injection for inducible DNA recombination in mouse astroglia. Sci Rep 2018; 8:5913. [PMID: 29651133 PMCID: PMC5897555 DOI: 10.1038/s41598-018-24085-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/27/2018] [Indexed: 01/26/2023] Open
Abstract
Inducible DNA recombination of floxed alleles in vivo by liver metabolites of tamoxifen (TAM) is an important tool to study gene functions. Here, we describe protocols for optimal DNA recombination in astrocytes, based on the GLAST-CreERT2/loxP system. In addition, we demonstrate that quantification of genomic recombination allows to determine the proportion of cell types in various brain regions. We analyzed the presence and clearance of TAM and its metabolites (N-desmethyl-tamoxifen, 4-hydroxytamoxifen and endoxifen) in brain and serum of mice by liquid chromatographic-high resolution-tandem mass spectrometry (LC-HR-MS/MS) and assessed optimal injection protocols by quantitative RT-PCR of several floxed target genes (p2ry1, gria1, gabbr1 and Rosa26-tdTomato locus). Maximal recombination could be achieved in cortex and cerebellum by single daily injections for five and three consecutive days, respectively. Furthermore, quantifying the loss of floxed alleles predicted the percentage of GLAST-positive cells (astroglia) per brain region. We found that astrocytes contributed 20 to 30% of the total cell number in cortex, hippocampus, brainstem and optic nerve, while in the cerebellum Bergmann glia, velate astrocytes and white matter astrocytes accounted only for 8% of all cells.
Collapse
Affiliation(s)
- Hannah M Jahn
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Carmen V Kasakow
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany
| | - Andreas Helfer
- Department of Experimental and Clinical Toxicology, University of Saarland, 66421, Homburg, Germany
| | - Julian Michely
- Department of Experimental and Clinical Toxicology, University of Saarland, 66421, Homburg, Germany
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, University of Saarland, 66421, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany.
| |
Collapse
|
13
|
Toda T, Hsu JY, Linker SB, Hu L, Schafer ST, Mertens J, Jacinto FV, Hetzer MW, Gage FH. Nup153 Interacts with Sox2 to Enable Bimodal Gene Regulation and Maintenance of Neural Progenitor Cells. Cell Stem Cell 2017; 21:618-634.e7. [PMID: 28919367 DOI: 10.1016/j.stem.2017.08.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/17/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Abstract
Neural progenitor cells (NeuPCs) possess a unique nuclear architecture that changes during differentiation. Nucleoporins are linked with cell-type-specific gene regulation, coupling physical changes in nuclear structure to transcriptional output; but, whether and how they coordinate with key fate-determining transcription factors is unclear. Here we show that the nucleoporin Nup153 interacts with Sox2 in adult NeuPCs, where it is indispensable for their maintenance and controls neuronal differentiation. Genome-wide analyses show that Nup153 and Sox2 bind and co-regulate hundreds of genes. Binding of Nup153 to gene promoters or transcriptional end sites correlates with increased or decreased gene expression, respectively, and inhibiting Nup153 expression alters open chromatin configurations at its target genes, disrupts genomic localization of Sox2, and promotes differentiation in vitro and a gliogenic fate switch in vivo. Together, these findings reveal that nuclear structural proteins may exert bimodal transcriptional effects to control cell fate.
Collapse
Affiliation(s)
- Tomohisa Toda
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jonathan Y Hsu
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sara B Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lauren Hu
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jerome Mertens
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Filipe V Jacinto
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
mPer1 promotes morphine-induced locomotor sensitization and conditioned place preference via histone deacetylase activity. Psychopharmacology (Berl) 2017; 234:1713-1724. [PMID: 28243713 DOI: 10.1007/s00213-017-4574-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Abstract
RATIONALE Previous studies have shown that repeated exposure to drugs of abuse is associated with changes in clock genes expression and that mice strains with various mutations in clock genes show alterations in drug-induced behaviors. OBJECTIVE The objective of this study is to characterize the role of the clock gene mPer1 in the development of morphine-induced behaviors and a possible link to histone deacetylase (HDAC) activity. METHODS In Per1 Brdm1 null mutant mice and wild-type (WT) littermates, we examined whether there were any differences in the development of morphine antinociception, tolerance to antinociception, withdrawal, sensitization to locomotion, and conditioned place preference (CPP). RESULTS Per1 Brdm1 mutant mice did not show any difference in morphine antinociception, tolerance development, nor in physical withdrawal signs precipitated by naloxone administration compared to WT. However, morphine-induced locomotor sensitization and CPP were significantly impaired in Per1 Brdm1 mutant mice. Because a very similar dissociation between tolerance and dependence vs. sensitization and CPP was recently observed after the co-administration of morphine and the HDAC inhibitor sodium butyrate (NaBut), we studied a possible link between mPer1 and HDAC activity. As opposed to WT controls, Per1 Brdm1 mutant mice showed significantly enhanced striatal global HDAC activity within the striatum when exposed to a locomotor-sensitizing morphine administration regimen. Furthermore, the administration of the HDAC inhibitor NaBut restored the ability of morphine to promote locomotor sensitization and reward in Per1 Brdm1 mutant mice. CONCLUSIONS Our results reveal that although the mPer1 gene does not alter morphine-induced antinociception nor withdrawal, it plays a prominent role in the development of morphine-induced behavioral sensitization and reward via inhibitory modulation of striatal HDAC activity. These data suggest that PER1 inhibits deacetylation to promote drug-induced neuroplastic changes.
Collapse
|
15
|
Fujita Y, Masuda K, Bando M, Nakato R, Katou Y, Tanaka T, Nakayama M, Takao K, Miyakawa T, Tanaka T, Ago Y, Hashimoto H, Shirahige K, Yamashita T. Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior. J Exp Med 2017; 214:1431-1452. [PMID: 28408410 PMCID: PMC5413336 DOI: 10.1084/jem.20161517] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/14/2017] [Accepted: 03/03/2017] [Indexed: 11/21/2022] Open
Abstract
Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/- mice. Smc3+/- mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/- mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koji Masuda
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Masashige Bando
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takashi Tanaka
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masahiro Nakayama
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | - Keizo Takao
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Tsuyoshi Miyakawa
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Aichi 470-1192, Japan
| | - Tatsunori Tanaka
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, Osaka 565-0871, Japan
- iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
16
|
RNA activation of haploinsufficient Foxg1 gene in murine neocortex. Sci Rep 2016; 6:39311. [PMID: 27995975 PMCID: PMC5172352 DOI: 10.1038/srep39311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022] Open
Abstract
More than one hundred distinct gene hemizygosities are specifically linked to epilepsy, mental retardation, autism, schizophrenia and neuro-degeneration. Radical repair of these gene deficits via genome engineering is hardly feasible. The same applies to therapeutic stimulation of the spared allele by artificial transactivators. Small activating RNAs (saRNAs) offer an alternative, appealing approach. As a proof-of-principle, here we tested this approach on the Rett syndrome-linked, haploinsufficient, Foxg1 brain patterning gene. We selected a set of artificial small activating RNAs (saRNAs) upregulating it in neocortical precursors and their derivatives. Expression of these effectors achieved a robust biological outcome. saRNA-driven activation (RNAa) was limited to neural cells which normally express Foxg1 and did not hide endogenous gene tuning. saRNAs recognized target chromatin through a ncRNA stemming from it. Gene upregulation required Ago1 and was associated to RNApolII enrichment throughout the Foxg1 locus. Finally, saRNA delivery to murine neonatal brain replicated Foxg1-RNAa in vivo.
Collapse
|
17
|
Medrano-Fernández A, Barco A. Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders. Mol Brain 2016; 9:83. [PMID: 27595843 PMCID: PMC5011999 DOI: 10.1186/s13041-016-0263-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/06/2016] [Indexed: 01/08/2023] Open
Abstract
The current view of neuroplasticity depicts the changes in the strength and number of synaptic connections as the main physical substrate for behavioral adaptation to new experiences in a changing environment. Although transcriptional regulation is known to play a role in these synaptic changes, the specific contribution of activity-induced changes to both the structure of the nucleus and the organization of the genome remains insufficiently characterized. Increasing evidence indicates that plasticity-related genes may work in coordination and share architectural and transcriptional machinery within discrete genomic foci. Here we review the molecular and cellular mechanisms through which neuronal nuclei structurally adapt to stimuli and discuss how the perturbation of these mechanisms can trigger behavioral malfunction.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
18
|
Lee HB, Sundberg BN, Sigafoos AN, Clark KJ. Genome Engineering with TALE and CRISPR Systems in Neuroscience. Front Genet 2016; 7:47. [PMID: 27092173 PMCID: PMC4821859 DOI: 10.3389/fgene.2016.00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.
Collapse
Affiliation(s)
- Han B Lee
- Neurobiology of Disease Graduate Program, Mayo Graduate School Rochester, MN, USA
| | - Brynn N Sundberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Ashley N Sigafoos
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Karl J Clark
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolRochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo ClinicRochester, MN, USA
| |
Collapse
|
19
|
Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models. Stem Cells Int 2015; 2016:9464591. [PMID: 26697081 PMCID: PMC4677257 DOI: 10.1155/2016/9464591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/18/2015] [Indexed: 01/15/2023] Open
Abstract
Epigenetic mechanisms play a role in human disease but their involvement in pathologies from the central nervous system has been hampered by the complexity of the brain together with its unique cellular architecture and diversity. Until recently, disease targeted neural types were only available as postmortem materials after many years of disease evolution. Current in vitro systems of induced pluripotent stem cells (iPSCs) generated by cell reprogramming of somatic cells from patients have provided valuable disease models recapitulating key pathological molecular events. Yet whether cell reprogramming on itself implies a truly epigenetic reprogramming, the epigenetic mechanisms governing this process are only partially understood. Moreover, elucidating epigenetic regulation using patient-specific iPSC-derived neural models is expected to have a great impact to unravel the pathophysiology of neurodegenerative diseases and to hopefully expand future therapeutic possibilities. Here we will critically review current knowledge of epigenetic involvement in neurodegenerative disorders focusing on the potential of iPSCs as a promising tool for epigenetic research of these diseases.
Collapse
|
20
|
Chandel N, Malhotra A, Singhal PC. Vitamin D receptor and epigenetics in HIV infection and drug abuse. Front Microbiol 2015; 6:788. [PMID: 26347716 PMCID: PMC4541325 DOI: 10.3389/fmicb.2015.00788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022] Open
Abstract
Illicit drug abuse is highly prevalent and serves as a powerful co-factor for HIV exacerbation. Epigenetic alterations in drug abuse and HIV infection determine expression of several critical genes such as vitamin D receptor (VDR), which participates in proliferation, differentiation, cell death under both physiological and pathological conditions. On that account, active vitamin D, the ligand of VDR, is used as an adjuvant therapy to control infection, slow down progression of chronic kidney diseases, and cancer chemotherapy. Interestingly, vitamin D may not be able to augment VDR expression optimally in several instances where epigenetic contributes to down regulation of VDR; however, reversal of epigenetic corruption either by demethylating agents (DACs) or histone deacetylase (HDAC) inhibitors would be able to maximize expression of VDR in these instances.
Collapse
Affiliation(s)
- Nirupama Chandel
- Feinstein Institute for Medical Research, Hofstra North Shore LIJ School of Medicine , New York, NY, USA
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research, Hofstra North Shore LIJ School of Medicine , New York, NY, USA
| | - Pravin C Singhal
- Feinstein Institute for Medical Research, Hofstra North Shore LIJ School of Medicine , New York, NY, USA
| |
Collapse
|
21
|
Ehrhardt E, Kleele T, Boyan G. A method for immunolabeling neurons in intact cuticularized insect appendages. Dev Genes Evol 2015; 225:187-94. [PMID: 25868908 DOI: 10.1007/s00427-015-0499-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/30/2015] [Indexed: 12/27/2022]
Abstract
The antennae of the grasshopper Schistocerca gregaria possess a pair of nerve pathways which are established by so-called pioneer neurons early in embryonic development. Subsequently, sensory cell clusters mediating olfaction, flight, optomotor responses, and phase changes differentiate from the antennal epithelium at stereotypic locations and direct their axons onto those of the pioneers to then project to the brain. Early in embryonic development, before the antennae become cuticularized, immunolabeling can be used to follow axogenesis in these pioneers and sensory cells. At later stages, immunolabeling becomes problematical as the cuticle is laid down and masks internal antigen sites. In order to immunolabel the nervous system of cuticularized late embryonic and first instar grasshopper antennae, we modified a procedure known as sonication in which the appendage is exposed to ultrasound thereby rendering it porous to antibodies. Comparisons of the immunolabeled nervous system of sectioned and sonicated antennae show that the cellular organization of sensory clusters and their axon projections is intact. The expression patterns of neuron-specific, microtubule-specific, and proliferative cell-specific labels in treated antennae are consistent with those reported for earlier developmental stages where sonication is not necessary, suggesting that these molecular epitopes are also conserved. The method ensures reliable immunolabeling in intact, cuticularized appendages so that the peripheral nervous system can be reconstructed directly via confocal microscopy throughout development.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
| | | | | |
Collapse
|
22
|
Armelin-Correa LM, Nagai MH, Leme Silva AG, Malnic B. Nuclear architecture and gene silencing in olfactory sensory neurons. BIOARCHITECTURE 2015; 4:160-3. [PMID: 25714005 DOI: 10.4161/19490992.2014.982934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Odorants are discriminated by hundreds of odorant receptor (OR) genes, which are dispersed throughout the mammalian genome. The OR genes are expressed in a highly specialized type of cell, the olfactory sensory neuron. Each one of these neurons expresses one of the 2 alleles from one single OR gene type. The mechanisms underlying OR gene expression are unclear. Here we describe recent work demonstrating that the olfactory sensory neuron shows a particular nuclear architecture, and that the genomic OR loci are colocalized in silencing heterochromatin compartments within the nucleus. These discoveries highlight the important role played by epigenetic modifications and nuclear genome organization in the regulation of OR gene expression.
Collapse
|
23
|
Loss of neuronal 3D chromatin organization causes transcriptional and behavioural deficits related to serotonergic dysfunction. Nat Commun 2014; 5:4450. [PMID: 25034090 DOI: 10.1038/ncomms5450] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/18/2014] [Indexed: 12/20/2022] Open
Abstract
The interior of the neuronal cell nucleus is a highly organized three-dimensional (3D) structure where regions of the genome that are linearly millions of bases apart establish sub-structures with specialized functions. To investigate neuronal chromatin organization and dynamics in vivo, we generated bitransgenic mice expressing GFP-tagged histone H2B in principal neurons of the forebrain. Surprisingly, the expression of this chimeric histone in mature neurons caused chromocenter declustering and disrupted the association of heterochromatin with the nuclear lamina. The loss of these structures did not affect neuronal viability but was associated with specific transcriptional and behavioural deficits related to serotonergic dysfunction. Overall, our results demonstrate that the 3D organization of chromatin within neuronal cells provides an additional level of epigenetic regulation of gene expression that critically impacts neuronal function. This in turn suggests that some loci associated with neuropsychiatric disorders may be particularly sensitive to changes in chromatin architecture.
Collapse
|
24
|
Abstract
Odorants are detected by odorant receptors, which are located on olfactory sensory neurons of the nose. Each olfactory sensory neuron expresses one single odorant receptor gene allele from a large family of odorant receptor genes. To gain insight into the mechanisms underlying this monogenic and monoallelic expression, we examined the 3D nuclear organization of olfactory sensory neurons and determined the positions of homologous odorant receptor gene alleles in relation to different nuclear compartments. Our results show that olfactory neurons exhibit a singular nuclear architecture that is characterized by a large centrally localized constitutive heterochromatin block and by the presence of prominent facultative heterochromatin domains that are localized around this constitutive heterochromatin block. We also found that the two homologous alleles of a given odorant receptor gene are frequently segregated to separate compartments in the nucleus, with one of the alleles localized to the constitutive heterochromatin block and the other one localized to the more plastic facultative heterochromatin, or next to it. Our findings suggest that this nuclear compartmentalization may play a critical role in the expression of odorant receptor genes.
Collapse
|
25
|
Boyan G, Liu Y. Timelines in the insect brain: fates of identified neural stem cells generating the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2014; 224:37-51. [PMID: 24343526 DOI: 10.1007/s00427-013-0462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
This study employs labels for cell proliferation and cell death, as well as classical histology to examine the fates of all eight neural stem cells (neuroblasts) whose progeny generate the central complex of the grasshopper brain during embryogenesis. These neuroblasts delaminate from the neuroectoderm between 25 and 30 % of embryogenesis and form a linear array running from ventral (neuroblasts Z, Y, X, and W) to dorsal (neuroblasts 1-2, 1-3, 1-4, and 1-5) along the medial border of each protocerebral hemisphere. Their stereotypic location within the array, characteristic size, and nuclear morphologies, identify these neuroblasts up to about 70 % of embryogenesis after which cell shrinkage and shape changes render progressively more cells histologically unrecognizable. Molecular labels show all neuroblasts in the array are proliferative up to 70 % of embryogenesis, but subsequently first the more ventral cells (72-75 %), and then the dorsal ones (77-80 %), cease proliferation. By contrast, neuroblasts elsewhere in the brain and optic lobe remain proliferative. Apoptosis markers label the more ventral neuroblasts first (70-72 %), then the dorsal cells (77 %), and the absence of any labeling thereafter confirms that central complex neuroblasts have exited the cell cycle via programmed cell death. Our data reveal appearance, proliferation, and cell death proceeding as successive waves from ventral to dorsal along the array of neuroblasts. The resulting timelines offer a temporal blueprint for building the neuroarchitecture of the various modules of the central complex.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany,
| | | |
Collapse
|
26
|
Förthmann B, van Bergeijk J, Lee YW, Lübben V, Schill Y, Brinkmann H, Ratzka A, Stachowiak MK, Hebert M, Grothe C, Claus P. Regulation of neuronal differentiation by proteins associated with nuclear bodies. PLoS One 2013; 8:e82871. [PMID: 24358231 PMCID: PMC3866168 DOI: 10.1371/journal.pone.0082871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022] Open
Abstract
Nuclear bodies are large sub-nuclear structures composed of RNA and protein molecules. The Survival of Motor Neuron (SMN) protein localizes to Cajal bodies (CBs) and nuclear gems. Diminished cellular concentration of SMN is associated with the neurodegenerative disease Spinal Muscular Atrophy (SMA). How nuclear body architecture and its structural components influence neuronal differentiation remains elusive. In this study, we analyzed the effects of SMN and two of its interaction partners in cellular models of neuronal differentiation. The nuclear 23 kDa isoform of Fibroblast Growth Factor - 2 (FGF-2(23)) is one of these interacting proteins - and was previously observed to influence nuclear bodies by destabilizing nuclear gems and mobilizing SMN from Cajal bodies (CBs). Here we demonstrate that FGF-2(23) blocks SMN-promoted neurite outgrowth, and also show that SMN disrupts FGF-2(23)-dependent transcription. Our results indicate that FGF-2(23) and SMN form an inactive complex that interferes with neuronal differentiation by mutually antagonizing nuclear functions. Coilin is another nuclear SMN binding partner and a marker protein for Cajal bodies (CBs). In addition, coilin is essential for CB function in maturation of small nuclear ribonucleoprotein particles (snRNPs). The role of coilin outside of Cajal bodies and its putative impacts in tissue differentiation are poorly defined. The present study shows that protein levels of nucleoplasmic coilin outside of CBs decrease during neuronal differentiation. Overexpression of coilin has an inhibitory effect on neurite outgrowth. Furthermore, we find that nucleoplasmic coilin inhibits neurite outgrowth independent of SMN binding revealing a new function for coilin in neuronal differentiation.
Collapse
Affiliation(s)
- Benjamin Förthmann
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Yu-Wei Lee
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, New York, United States of America
| | - Verena Lübben
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Yvonne Schill
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Michal K. Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, New York, United States of America
| | - Michael Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
27
|
Shirazi J, Shah S, Sagar D, Nonnemacher MR, Wigdahl B, Khan ZK, Jain P. Epigenetics, drugs of abuse, and the retroviral promoter. J Neuroimmune Pharmacol 2013; 8:1181-96. [PMID: 24218017 PMCID: PMC3878082 DOI: 10.1007/s11481-013-9508-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/10/2013] [Indexed: 01/06/2023]
Abstract
Drug abuse alone has been shown to cause epigenetic changes in brain tissue that have been shown to play roles in addictive behaviors. In conjunction with HIV-1 infection, it can cause epigenetic changes at the viral promoter that can result in altered gene expression, and exacerbate disease progression overall. This review entails an in-depth look at research conducted on the epigenetic effects of three of the most widely abused drugs (cannabinoids, opioids, and cocaine), with a particular focus on the mechanisms through which these drugs interact with HIV-1 infection at the viral promoter. Here we discuss the impact of this interplay on disease progression from the point of view of the nature of gene regulation at the level of chromatin accessibility, chromatin remodeling, and nucleosome repositioning. Given the importance of chromatin remodeling and DNA methylation in controlling the retroviral promoter, and the high susceptibility of the drug abusing population of individuals to HIV infection, it would be beneficial to understand the way in which the host genome is modified and regulated by drugs of abuse.
Collapse
Affiliation(s)
- Jasmine Shirazi
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sonia Shah
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Divya Sagar
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
28
|
Mielcarek M, Seredenina T, Stokes MP, Osborne GF, Landles C, Inuabasi L, Franklin SA, Silva JC, Luthi-Carter R, Beaumont V, Bates GP. HDAC4 does not act as a protein deacetylase in the postnatal murine brain in vivo. PLoS One 2013; 8:e80849. [PMID: 24278330 PMCID: PMC3838388 DOI: 10.1371/journal.pone.0080849] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/09/2013] [Indexed: 11/24/2022] Open
Abstract
Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3. To investigate the influence of HDAC4 on protein acetylation we employed the immunoaffinity-based AcetylScan proteomic method. We identified many proteins known to be modified by acetylation, but found that the absence of HDAC4 had no effect on the acetylation profile of the murine neonate brain. This is consistent with the biochemical data suggesting that HDAC4 may not function as a lysine deacetylase, but these in vivo data do not support the previous report showing that the enzymatic activity of HDAC3 might be modified by its interaction with HDAC4. To complement this work, we used Affymetrix arrays to investigate the effect of HDAC4 knock-out on the transcriptional profile of the postnatal murine brain. There was no effect on global transcription, consistent with the absence of a differential histone acetylation profile. Validation of the array data by Taq-man qPCR indicated that only protamine 1 and Igfbp6 mRNA levels were increased by more than one-fold and only Calml4 was decreased. The lack of a major effect on the transcriptional profile is consistent with the cytoplasmic location of HDAC4 in the P3 murine brain.
Collapse
Affiliation(s)
- Michal Mielcarek
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Tamara Seredenina
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Matthew P. Stokes
- Cell Signaling Technology, Danvers, Massachusetts, United States of America
| | - Georgina F. Osborne
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Christian Landles
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Linda Inuabasi
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Sophie A. Franklin
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Jeffrey C. Silva
- Cell Signaling Technology, Danvers, Massachusetts, United States of America
| | - Ruth Luthi-Carter
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Vahri Beaumont
- CHDI Management Inc./CHDI Foundation Inc., Los Angeles, California, United States of America
| | - Gillian P. Bates
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev 2013; 37:1622-44. [PMID: 23806439 PMCID: PMC3788047 DOI: 10.1016/j.neubiorev.2013.06.011] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/29/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022]
Abstract
Physical activity, and specifically exercise, has been suggested as a potential treatment for drug addiction. In this review, we discuss clinical and preclinical evidence for the efficacy of exercise at different phases of the addiction process. Potential neurobiological mechanisms are also discussed focusing on interactions with dopaminergic and glutamatergic signaling and chromatin remodeling in the reward pathway. While exercise generally produces an efficacious response, certain exercise conditions may be either ineffective or lead to detrimental effects depending on the level/type/timing of exercise exposure, the stage of addiction, the drug involved, and the subject population. During drug use initiation and withdrawal, its efficacy may be related to its ability to facilitate dopaminergic transmission, and once addiction develops, its efficacy may be related to its ability to normalize glutamatergic and dopaminergic signaling and reverse drug-induced changes in chromatin via epigenetic interactions with brain-derived neurotrophic factor (BDNF) in the reward pathway. We conclude with future directions, including the development of exercise-based interventions alone or as an adjunct to other strategies for treating drug addiction.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 1670 Discovery Drive, Charlottesville, VA 22911, USA.
| | | | | | | | | |
Collapse
|
30
|
Jones DTW, Northcott PA, Kool M, Pfister SM. The role of chromatin remodeling in medulloblastoma. Brain Pathol 2013; 23:193-9. [PMID: 23432644 DOI: 10.1111/bpa.12019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 12/19/2022] Open
Abstract
The unexpectedly high frequency and universality of alterations to the chromatin machinery is one of the most striking themes emerging from the current deluge of cancer genomics data. Medulloblastoma (MB), a malignant pediatric brain tumor, is no exception to this trend, with a wealth of recent studies indicating multiple alterations at all levels of chromatin processing. MB is typically now regarded as being composed of four major molecular entities (WNT, SHH, Group 3 and Group 4), which vary in their clinical and biological characteristics. Similarities and differences across these subgroups are also reflected in the specific chromatin modifiers that are found to be altered in each group, and each new cancer genome sequence or microarray profile is adding to this important knowledge base. These data are fundamentally changing our understanding of tumor developmental pathways, not just for MB but also for cancer as a whole. They also provide a new class of targets for the development of rational, personalized therapeutic approaches. The mechanisms by which these chromatin remodelers are dysregulated in MB, and the consequences both for future basic research and for translation to the clinic, will be examined here.
Collapse
Affiliation(s)
- David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | |
Collapse
|
31
|
Gliogenesis in the embryonic brain of the grasshopper Schistocerca gregaria with particular focus on the protocerebrum prior to mid-embryogenesis. Cell Tissue Res 2013; 354:697-705. [PMID: 23917388 DOI: 10.1007/s00441-013-1682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
I investigate the pattern of gliogenesis in the brain of the grasshopper Schistocerca gregaria prior to mid-embryogenesis, with particular focus on the protocerebrum. Using the glia-specific marker Repo and the neuron-specific marker HRP, I identify three types of glia with respect to their respective positions in the brain: surface glia form the outmost cell layer ensheathing the brain; cortex glia are intermingled with neuronal somata forming the brain cortex; and neuropil glia are associated with brain neuropils. The ontogeny of each glial type has also been studied. At 24% of embryogenesis, a few glia are observed in each hemisphere of the proto-, deuto- and tritocerebrum. In each protocerebral hemisphere, such glia form a cluster that expands rapidly during later development. Closer examination reveals proliferative glia in such clusters at ages spanning from 24 to 36% of embryogenesis, indicating that glial proliferation may account for the expansion of the clusters. Data derived from 33-39% of embryogenesis suggest that, in the protocerebrum, each type of glia is likely to be generated by its respective progenitor-forming clusters. Moreover, the glial cluster located at the anterior end of the brain can give rise to both surface glia and cortex glia that populate the protocerebrum via subsequent migration. Proliferation is observed for all three glial types, indicating a possible source for the glia.
Collapse
|
32
|
Bosco R, Alvarado S, Quiroz D, Eblen-Zajjur A. Digital Morphometric Characterization of Lumbar Dorsal Root Ganglion Neurons in Rats. J Histotechnol 2013. [DOI: 10.1179/his.2010.33.3.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Liu Y, Boyan G. Glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 2013; 223:213-23. [PMID: 23494665 DOI: 10.1007/s00427-013-0439-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
We have investigated the pattern of glia associated with central complex lineages in the embryonic brain of the grasshopper Schistocerca gregaria. Using the glia-specific marker Repo, we identified glia associated externally with such lineages, termed lineage-extrinsic glia, and glia located internally within the lineages, termed lineage-intrinsic glia. Populations of both glial types increase up to 60 % of embryogenesis, and thereafter decrease. Extrinsic glia change their locations over time, while intrinsic ones are consistently found in the more apical part of a lineage. Apoptosis is not observed for either glial type, suggesting migration is a likely mechanism accounting for changes in glial number. Proliferative glia are present both within and without individual lineages and two glial clusters associated with the lineages, one apically and the other basally, may represent sources of glia.
Collapse
Affiliation(s)
- Yu Liu
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstr. 2, 82152, Martinsried, Germany.
| | | |
Collapse
|
34
|
Bai X, Saab AS, Huang W, Hoberg IK, Kirchhoff F, Scheller A. Genetic background affects human glial fibrillary acidic protein promoter activity. PLoS One 2013; 8:e66873. [PMID: 23826164 PMCID: PMC3691242 DOI: 10.1371/journal.pone.0066873] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/11/2013] [Indexed: 11/17/2022] Open
Abstract
The human glial fibrillary acidic protein (hGFAP) promoter has been used to generate numerous transgenic mouse lines, which has facilitated the analysis of astrocyte function in health and disease. Here, we evaluated the expression levels of various hGFAP transgenes at different ages in the two most commonly used inbred mouse strains, FVB/N (FVB) and C57BL/6N (B6N). In general, transgenic mice maintained on the B6N background displayed weaker transgene expression compared with transgenic FVB mice. Higher level of transgene expression in B6N mice could be regained by crossbreeding to FVB wild type mice. However, the endogenous murine GFAP expression was equivalent in both strains. In addition, we found that endogenous GFAP expression was increased in transgenic mice in comparison to wild type mice. The activities of the hGFAP transgenes were not age-dependently regulated. Our data highlight the importance of proper expression analysis when non-homologous recombination transgenesis is used.
Collapse
Affiliation(s)
- Xianshu Bai
- Department of Molecular Physiology, University of Saarland, Homburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
LaSalle JM, Powell WT, Yasui DH. Epigenetic layers and players underlying neurodevelopment. Trends Neurosci 2013; 36:460-70. [PMID: 23731492 DOI: 10.1016/j.tins.2013.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/22/2022]
Abstract
Epigenetic mechanisms convey information above and beyond the sequence of DNA, so it is predicted that they are critical in the complex regulation of brain development and explain the long-lived effects of environmental cues on pre- and early post-natal brain development. Neurons have a complex epigenetic landscape that changes dynamically with transcriptional activity in early life. Here, we summarize progress in our understanding of the discrete layers of the dynamic methylome, chromatin proteome, noncoding RNAs, chromatin loops, and long-range interactions in neuronal development and maturation. Many neurodevelopmental disorders have genetic alterations in these epigenetic modifications or regulators, and these human genetics lessons have demonstrated the importance of these epigenetic players and the epigenetic layers that transcriptional events lay down in the early brain.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, CA, USA.
| | | | | |
Collapse
|
36
|
Wilson ME, Sengoku T. Developmental regulation of neuronal genes by DNA methylation: environmental influences. Int J Dev Neurosci 2013; 31:448-51. [PMID: 23501000 DOI: 10.1016/j.ijdevneu.2013.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/27/2022] Open
Abstract
Steroid hormones have wide-ranging organizational, activational and protective actions in the brain. In particular, the organizational effects of early exposure to 17β-estradiol (E2) and glucocorticoids are essential for long-lasting behavioral and cognitive functions. Both steroid hormones mediate many of their actions through intracellular receptors that act as transcription factors. In the rodent cerebral cortex, estrogen receptor mRNA and protein expression are high early in postnatal life and declines dramatically as the animal approaches puberty. An understanding of the molecular mechanisms driving this developmental regulation of gene expression is critical for understanding the complex events that determine lasting brain physiology and prime the plasticity of neurons. Gene expression can be suppressed by the epigenetic modification of the promoter regions by DNA methylation that results in gene silencing. Indeed, the decrease in ERα mRNA expression in the cortex during development is accompanied by an increase in promoter methylation. Numerous environmental stimuli can alter the DNA methylation that occurs for ERα, glucocorticoid receptors, as well as many other critical genes involved in neuronal development. For example, maternal behavior toward pups can alter epigenetic regulation of ERα mRNA expression. Additionally perinatal stress and exposure to environmental estrogens can also have lasting effects on gene expression by modifying DNA methylation of these important genes. Taken together, there appears to be a critical window during development where, outside factors that alter epigenetic programming can have lasting effects on neuronal gene expression.
Collapse
Affiliation(s)
- Melinda E Wilson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, United States.
| | | |
Collapse
|
37
|
Stress-induced epigenetic transcriptional memory of acetylcholinesterase by HDAC4. Proc Natl Acad Sci U S A 2012; 109:E3687-95. [PMID: 23236169 DOI: 10.1073/pnas.1209990110] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Stress induces long-lasting changes in neuronal gene expression and cholinergic neurotransmission, but the underlying mechanism(s) are incompletely understood. Here, we report that chromatin structure and histone modifications are causally involved in this transcriptional memory. Specifically, the AChE gene encoding the acetylcholine-hydrolyzing enzyme acetylcholinesterase is known to undergo long-lasting transcriptional and alternative splicing changes after stress. In mice subjected to stress, we identified two alternative 5' exons that were down-regulated after stress in the hippocampus, accompanied by reduced acetylation and elevated trimethylation of H3K9 at the corresponding promoter. These effects were reversed completely by daily administration of the histone deacetylase (HDAC) inhibitor sodium butyrate for 1 wk after stress. H3K9 hypoacetylation was associated with a selective, sodium butyrate-reversible promoter accumulation of HDAC4. Hippocampal suppression of HDAC4 in vivo completely abolished the long-lasting AChE-related and behavioral stress effects. Our findings demonstrate long-lasting stress-inducible changes in AChE's promoter choices, identify the chromatin changes that support this long-term transcriptional memory, and reveal HDAC4 as a mediator of these effects in the hippocampus.
Collapse
|
38
|
Abel JL, Rissman EF. Running-induced epigenetic and gene expression changes in the adolescent brain. Int J Dev Neurosci 2012. [PMID: 23178748 DOI: 10.1016/j.ijdevneu.2012.11.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Physical exercise is associated with positive neural functioning. Here we examined the gene expression consequences of 1 week of voluntary wheel running in adolescent male mice. We assayed expression levels of genes associated with synaptic plasticity, signaling pathways, and epigenetic modifying enzymes. Two regions were examined: the hippocampus, which is typically examined in exercise studies, and the cerebellum, an area directly involved in motor control and learning. After 1 week of exercise, global acetylation of histone 3 was increased in both brain regions. Interestingly this was correlated with increased brain derived neural growth factor in the hippocampus, as noted in many other studies, but only a trend was found in cerebellum. Differences and similarities between the two areas were noted for genes encoding functional proteins. In contrast, the expression pattern of DNA methyltransferases (Dnmts) and histone deacetylases (Hdacs), genes that influence DNA methylation and histone modifications in general, decreased in both regions with exercise. We hypothesize that epigenetic mechanisms, involving many of the genes assessed here, are essential for the positive affects of exercise on behavior and suspect these data have relevance for adolescent boys.
Collapse
Affiliation(s)
- Jean LeBeau Abel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | | |
Collapse
|
39
|
Iourov IY, Vorsanova SG, Yurov YB. Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics 2012; 13:477-88. [PMID: 23449087 PMCID: PMC3426782 DOI: 10.2174/138920212802510439] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 01/30/2012] [Accepted: 06/12/2012] [Indexed: 12/21/2022] Open
Abstract
Single cell genomics has made increasingly significant contributions to our understanding of the role that somatic genome variations play in human neuronal diversity and brain diseases. Studying intercellular genome and epigenome variations has provided new clues to the delineation of molecular mechanisms that regulate development, function and plasticity of the human central nervous system (CNS). It has been shown that changes of genomic content and epigenetic profiling at single cell level are involved in the pathogenesis of neuropsychiatric diseases (schizophrenia, mental retardation (intellectual/leaning disability), autism, Alzheimer's disease etc.). Additionally, several brain diseases were found to be associated with genome and chromosome instability (copy number variations, aneuploidy) variably affecting cell populations of the human CNS. The present review focuses on the latest advances of single cell genomics, which have led to a better understanding of molecular mechanisms of neuronal diversity and neuropsychiatric diseases, in the light of dynamically developing fields of systems biology and "omics".
Collapse
Affiliation(s)
- Ivan Y Iourov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
- Institute of Pediatrics and Children Surgery, Minzdravsotsrazvitia, Moscow, Russia
| | - Svetlana G Vorsanova
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
- Institute of Pediatrics and Children Surgery, Minzdravsotsrazvitia, Moscow, Russia
- Center for Neurobiological Diagnosis of Genetic Psychiatric Disorders, Moscow City University of Psychology and Education, Russia
| | - Yuri B Yurov
- National Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
- Institute of Pediatrics and Children Surgery, Minzdravsotsrazvitia, Moscow, Russia
- Center for Neurobiological Diagnosis of Genetic Psychiatric Disorders, Moscow City University of Psychology and Education, Russia
| |
Collapse
|
40
|
Casafont I, Palanca A, Lafarga V, Berciano MT, Lafarga M. Effect of ionizing radiation in sensory ganglion neurons: organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle. Acta Neuropathol 2011; 122:481-93. [PMID: 21915754 DOI: 10.1007/s00401-011-0869-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/31/2011] [Accepted: 09/02/2011] [Indexed: 12/18/2022]
Abstract
Neurons are very sensitive to DNA damage induced by endogenous and exogenous genotoxic agents, as defective DNA repair can lead to neurodevelopmental disorders, brain tumors and neurodegenerative diseases with severe clinical manifestations. Understanding the impact of DNA damage/repair mechanisms on the nuclear organization, particularly on the regulation of transcription and cell cycle, is essential to know the pathophysiology of defective DNA repair syndromes. In this work, we study the nuclear architecture and spatiotemporal organization of chromatin compartments involved in the DNA damage response (DDR) in rat sensory ganglion neurons exposed to X-ray irradiation (IR). We demonstrate that the neuronal DDR involves the formation of two categories of DNA-damage processing chromatin compartments: transient, disappearing within the 1 day post-IR, and persistent, where unrepaired DNA is accumulated. Both compartments concentrate components of the DDR pathway, including γH2AX, pATM and 53BP1. Furthermore, DNA damage does not induce neuronal apoptosis but triggers the G0-G1 cell cycle phase transition, which is mediated by the activation of the ATM-p53 pathway and increased protein levels of p21 and cyclin D1. Moreover, the run on transcription assay reveals a severe inhibition of transcription at 0.5 h post-IR, followed by its rapid recovery over the 1 day post-IR in parallel with the progression of DNA repair. Therefore, the response of healthy neurons to DNA damage involves a transcription- and cell cycle-dependent but apoptosis-independent process. Furthermore, we propose that the segregation of unrepaired DNA in a few persistent chromatin compartments preserves genomic stability of undamaged DNA and the global transcription rate in neurons.
Collapse
Affiliation(s)
- Iñigo Casafont
- Departamento de Anatomía y Biología Celular, "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Universidad de Cantabria, IFIMAV, Santander, Spain
| | | | | | | | | |
Collapse
|
41
|
Boyan G, Williams L. Embryonic development of the insect central complex: insights from lineages in the grasshopper and Drosophila. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:334-348. [PMID: 21382507 DOI: 10.1016/j.asd.2011.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 02/16/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
The neurons of the insect brain derive from neuroblasts which delaminate from the neuroectoderm at stereotypic locations during early embryogenesis. In both grasshopper and Drosophila, each developing neuroblast acquires an intrinsic capacity for neuronal proliferation in a cell autonomous manner and generates a specific lineage of neural progeny which is nearly invariant and unique. Maps revealing numbers and distributions of brain neuroblasts now exist for various species, and in both grasshopper and Drosophila four putatively homologous neuroblasts have been identified whose progeny direct axons to the protocerebral bridge and then to the central body via an equivalent set of tracts. Lineage analysis in the grasshopper nervous system reveals that the progeny of a neuroblast maintain their topological position within the lineage throughout embryogenesis. We have taken advantage of this to study the pioneering of the so-called w, x, y, z tracts, to show how fascicle switching generates central body neuroarchitecture, and to evaluate the roles of so-called intermediate progenitors as well as programmed cell death in shaping lineage structure. The novel form of neurogenesis involving intermediate progenitors has been demonstrated in grasshopper, Drosophila and mammalian cortical development and may represent a general strategy for increasing brain size and complexity. An analysis of gap junctional communication involving serotonergic cells reveals an intrinsic cellular organization which may relate to the presence of such transient progenitors in central complex lineages.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, 82152 Martinsried, Germany.
| | | |
Collapse
|
42
|
Baltanás FC, Casafont I, Lafarga V, Weruaga E, Alonso JR, Berciano MT, Lafarga M. Purkinje cell degeneration in pcd mice reveals large scale chromatin reorganization and gene silencing linked to defective DNA repair. J Biol Chem 2011; 286:28287-302. [PMID: 21700704 DOI: 10.1074/jbc.m111.246041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA repair protects neurons against spontaneous or disease-associated DNA damage. Dysfunctions of this mechanism underlie a growing list of neurodegenerative disorders. The Purkinje cell (PC) degeneration mutation causes the loss of nna1 expression and is associated with the postnatal degeneration of PCs. This PC degeneration dramatically affects nuclear architecture and provides an excellent model to elucidate the nuclear mechanisms involved in a whole array of neurodegenerative disorders. We used immunocytochemistry for histone variants and components of the DNA damage response, an in situ transcription assay, and in situ hybridization for telomeres to analyze changes in chromatin architecture and function. We demonstrate that the phosphorylation of H2AX, a DNA damage signal, and the trimethylation of the histone H4K20, a repressive mark, in extensive domains of genome are epigenetic hallmarks of chromatin in degenerating PCs. These histone modifications are associated with a large scale reorganization of chromatin, telomere clustering, and heterochromatin-induced gene silencing, all of them key factors in PC degeneration. Furthermore, ataxia telangiectasia mutated and 53BP1, two components of the DNA repair pathway, fail to be concentrated in the damaged chromatin compartments, even though the expression levels of their coding genes were slightly up-regulated. Although the mechanism by which Nna1 loss of function leads to PC neurodegeneration is undefined, the progressive accumulation of DNA damage in chromosome territories irreversibly compromises global gene transcription and seems to trigger PC degeneration and death.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, E-37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Boyan GS, Reichert H. Mechanisms for complexity in the brain: generating the insect central complex. Trends Neurosci 2011; 34:247-57. [PMID: 21397959 DOI: 10.1016/j.tins.2011.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/04/2011] [Accepted: 02/04/2011] [Indexed: 02/07/2023]
|
44
|
Massirer KB, Carromeu C, Griesi-Oliveira K, Muotri AR. Maintenance and differentiation of neural stem cells. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:107-14. [PMID: 21061307 DOI: 10.1002/wsbm.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The adult mammalian brain contains self-renewable, multipotent neural stem cells (NSCs) that are responsible for neurogenesis and plasticity in specific regions of the adult brain. Extracellular matrix, vasculature, glial cells, and other neurons are components of the niche where NSCs are located. This surrounding environment is the source of extrinsic signals that instruct NSCs to either self-renew or differentiate. Additionally, factors such as the intracellular epigenetics state and retrotransposition events can influence the decision of NSC's fate into neurons or glia. Extrinsic and intrinsic factors form an intricate signaling network, which is not completely understood. These factors altogether reflect a few of the key players characterized so far in the new field of NSC research and are covered in this review.
Collapse
Affiliation(s)
- Katlin B Massirer
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | | | | | | |
Collapse
|
45
|
Iourov IY, Vorsanova SG, Solov’ev IV, Yurov YB. Methods of molecular cytogenetics for studying interphase chromosomes in human brain cells. RUSS J GENET+ 2010. [DOI: 10.1134/s102279541009005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Xin Y, Chanrion B, Liu MM, Galfalvy H, Costa R, Ilievski B, Rosoklija G, Arango V, Dwork AJ, Mann JJ, Tycko B, Haghighi F. Genome-wide divergence of DNA methylation marks in cerebral and cerebellar cortices. PLoS One 2010; 5:e11357. [PMID: 20596539 PMCID: PMC2893206 DOI: 10.1371/journal.pone.0011357] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 06/09/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that DNA methylation plays an expansive role in the central nervous system (CNS). Large-scale whole genome DNA methylation profiling of the normal human brain offers tremendous potential in understanding the role of DNA methylation in brain development and function. METHODOLOGY/SIGNIFICANT FINDINGS Using methylation-sensitive SNP chip analysis (MSNP), we performed whole genome DNA methylation profiling of the prefrontal, occipital, and temporal regions of cerebral cortex, as well as cerebellum. These data provide an unbiased representation of CpG sites comprising 377,509 CpG dinucleotides within both the genic and intergenic euchromatic region of the genome. Our large-scale genome DNA methylation profiling reveals that the prefrontal, occipital, and temporal regions of the cerebral cortex compared to cerebellum have markedly different DNA methylation signatures, with the cerebral cortex being hypermethylated and cerebellum being hypomethylated. Such differences were observed in distinct genomic regions, including genes involved in CNS function. The MSNP data were validated for a subset of these genes, by performing bisulfite cloning and sequencing and confirming that prefrontal, occipital, and temporal cortices are significantly more methylated as compared to the cerebellum. CONCLUSIONS These findings are consistent with known developmental differences in nucleosome repeat lengths in cerebral and cerebellar cortices, with cerebrum exhibiting shorter repeat lengths than cerebellum. Our observed differences in DNA methylation profiles in these regions underscores the potential role of DNA methylation in chromatin structure and organization in CNS, reflecting functional specialization within cortical regions.
Collapse
Affiliation(s)
- Yurong Xin
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, New York, United States of America
| | - Benjamin Chanrion
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, New York, United States of America
| | - Meng-Min Liu
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Taub Institute for Research on the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Hanga Galfalvy
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, New York, United States of America
| | - Ramiro Costa
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, New York, United States of America
| | - Boro Ilievski
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, New York, United States of America
- School Of Medicine, University Ss. Cyril and Methodius, Skopje, Macedonia
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, New York, United States of America
- School Of Medicine, University Ss. Cyril and Methodius, Skopje, Macedonia
- Macedonian Academy of Sciences and Arts, University Ss. Cyril and Methodius, Skopje, Macedonia
| | - Victoria Arango
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, New York, United States of America
| | - Andrew J. Dwork
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- School Of Medicine, University Ss. Cyril and Methodius, Skopje, Macedonia
| | - J. John Mann
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, New York, United States of America
- School Of Medicine, University Ss. Cyril and Methodius, Skopje, Macedonia
| | - Benjamin Tycko
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Taub Institute for Research on the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Fatemeh Haghighi
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Proliferative cell types in embryonic lineages of the central complex of the grasshopper Schistocerca gregaria. Cell Tissue Res 2010; 341:259-77. [PMID: 20571828 DOI: 10.1007/s00441-010-0992-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/04/2010] [Indexed: 12/25/2022]
|
48
|
Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr Opin Cell Biol 2010; 22:334-41. [PMID: 20226651 DOI: 10.1016/j.ceb.2010.02.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/04/2010] [Accepted: 02/10/2010] [Indexed: 12/23/2022]
Abstract
In search of the mechanisms that govern pluripotency and embryonic stem cell (ESC) self-renewal, a growing list of evidence highlights chromatin as a leading factor, controlling ESC maintenance and differentiation. In-depth investigation of chromatin in ESCs revealed distinct features, including DNA methylation, histone modifications, chromatin protein composition and nuclear architecture. Here we review recent literature describing different aspects of chromatin and genome organization in ESCs. The emerging theme seems to support a mechanism maintaining chromatin plasticity in ESCs but without any dramatic changes in the organization and nuclear positioning of chromosomes and gene loci themselves. Plasticity thus seems to be supported more by different mechanisms maintaining an open chromatin state and less by regulating the location of genomic regions.
Collapse
|
49
|
Abstract
The unique human ability of linguistic communication, defined as the ability to produce a practically infinite number of meaningful messages using a finite number of lexical items, is determined by an array of "linguistic" genes, which are expressed in neurons forming domain-specific linguistic centers in the brain. In this review, I discuss the idea that infants' early language experience performs two complementary functions. In addition to allowing infants to assimilate the words and grammar rules of their mother language, early language experience initiates genetic programs underlying language production and comprehension. This hypothesis explains many puzzling characteristics of language acquisition, such as the existence of a critical period for acquiring the first language and the absence of a critical period for the acquisition of additional language(s), a similar timetable for language acquisition in children belonging to families of different social and cultural status, the strikingly similar timetables in the acquisition of oral and sign languages, and the surprisingly small correlation between individuals' final linguistic competence and the intensity of their training. Based on the studies of microcephalic individuals, I argue that genetic factors determine not only the number of neurons and organization of interneural connections within linguistic centers, but also the putative internal properties of neurons that are not limited to their electrophysiological and synaptic properties.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- Institute for Nonlinear Science, University of California San Diego, La Jolla, CA 92093-0402, USA.
| |
Collapse
|
50
|
Thambirajah AA, Eubanks JH, Ausió J. MeCP2 post-translational regulation through PEST domains: two novel hypotheses: potential relevance and implications for Rett syndrome. Bioessays 2009; 31:561-9. [PMID: 19319913 DOI: 10.1002/bies.200800220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mutations in the methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome, a severe neurodevelopmental disease associated with ataxia and other post-natal symptoms similar to autism. Much research interest has focussed on the implications of MeCP2 in disease and neuron physiology. However, little or no attention has been paid to how MeCP2 turnover is regulated. The post-translational control of MeCP2 is of critical importance, especially as subtle increases or decreases in MeCP2 amounts can affect neuron morphology and function. The latter point is of particular importance for gene therapeutic approaches in which exogenous wild-type MeCP2 is being introduced into diseased neurons. Further to this, we propose two hypotheses. The first hypothesis discusses the poly-ubiquitin-mediated post-translational regulation of MeCP2 through its two PEST domains. The second hypothesis explores the use of histone deacetylase inhibitors to modulate the amounts of MeCP2 expressed in conjunction with the aforementioned therapeutic approaches.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | | |
Collapse
|