1
|
Grigoletti-Lima GB, Boer PA, Rocha Gontijo JA. An enriched environment restored hippocampal cell patterns and enhanced short-term memory in gestational and breastfeeding protein-restricted male offspring. Brain Res 2025; 1858:149598. [PMID: 40189078 DOI: 10.1016/j.brainres.2025.149598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/15/2024] [Accepted: 03/22/2025] [Indexed: 04/15/2025]
Abstract
Maternal undernutrition impacts neuron proliferation and differentiation, non-neuron onset, and cell migration, leading to changes in long-term offspring's brain morphology and functionality. This study evaluated the effect of maternal protein intake restriction and enriched environment on the structural hippocampus and behavioral tests in 42-day-old male (low-protein) LP compared to NP (control) offspring. The study supports the selfish brain theory, which suggests that the brain maintains its mass despite significant changes in body weight. The hippocampus cellularity pattern was profoundly altered by reduced neuron numbers in the LP compared to the age-matched NP progeny, as revealed by the isotropic fractionation technique. Detailed data analysis revealed a discrepancy between behavioral tests and reduced hippocampal stem cells and neuron number, accompanied by increased non-neuronal cells, linked to a significant decrease in fear-reflecting behavior. However, the enriched environment (EE) was found to restore the altered neuronal hippocampi cellularity significantly and modify the discrimination ratio, enhancing the ability of both progenies to discriminate between novel and familiar objects in a short time, potentially associated with reversing abnormal hippocampus cell patterns. Immunohistochemistry further validated these findings, showing reduced progenitor cells, neurons, and total cells in mitosis in the LP offspring. At the same time, the enriched environment significantly increased hippocampal cell proliferation, a promising result that could lead to the recovery of neuronal stem cell numbers. The present data underscore the detrimental impact of gestational protein restriction on brain development and highlight EE's potential to restore altered neuronal hippocampi cellularity, offering a hopeful outlook for future research and interventions.
Collapse
Affiliation(s)
- Gabriel Boer Grigoletti-Lima
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Medicine and Experimental Surgery Center, Internal Medicine Department, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil.
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Medicine and Experimental Surgery Center, Internal Medicine Department, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil.
| | - José Antonio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Medicine and Experimental Surgery Center, Internal Medicine Department, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Parambath SK, Krishna N, Krishnamurthy RG. Environmental enrichment: a neurostimulatory approach to aging and ischemic stroke recovery and rehabilitation. Biogerontology 2025; 26:92. [PMID: 40237879 DOI: 10.1007/s10522-025-10232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Environmental enrichment (EE) represents a robust experimental framework exploring the intricate interplay between genes and the environment in shaping brain development and function. EE is recognized as a non-invasive intervention, easily translatable to elderly human cohorts, and extrapolated from research on animal aging models. Age is the most important risk factor for ischemic stroke. Research indicates that EE, characterized by increased sensory, cognitive, and social stimulation, leads to structural changes in the brain, such as enhanced dendritic complexity and synaptic density, particularly in the hippocampus and cortex. Tailored EE interventions for elderly stroke survivors include cognitively stimulating activities and participation in social groups. These interventions enhance cognitive function and support recovery by promoting neural repair. Additionally, EE helps to mitigate sensory deficits commonly observed in older adults, ultimately improving mental performance and quality of life. EE has shown promise in preventing relapse, enhancing attention, reducing anxiety, forestalling age-related DNA methylation alterations, and amplifying neurogenesis through heightened neural progenitor cell (NPC) populations. Aligning preclinical studies with clinical trials can enhance neurorehabilitation conditions for stroke patients, thereby optimizing the environments in which they recover. This can be achieved through the concerted efforts of multidisciplinary teams working collaboratively. This review explores how EE specifically impacts the aging brain and ischemic stroke, a major age-related neurological disorder with global health implications. The potential of enviro-mimetics and relevant clinical studies on EE's effects on ischemic stroke survivors are discussed. This review enhances our understanding of the effects of EE on aging and ischemic stroke, motivating further research aimed at refining strategies for stroke management and recovery.
Collapse
Affiliation(s)
| | - Navami Krishna
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | | |
Collapse
|
3
|
Sun Y, An P, Cai Y, Yang W, Fang Y, Liu H, Zhang G, Shan Y, Wang J, Zhang Y, Zhou X. Environmental enrichment reverses noise induced impairments in learning and memory associated with the hippocampus in female rats. Sci Rep 2025; 15:11509. [PMID: 40181175 PMCID: PMC11968901 DOI: 10.1038/s41598-025-96119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Environmental enrichment (EE) has positive effects on brain function and behavior in both healthy and behaviorally impaired animals. In earlier studies, we showed that rats exposed to noise during early development exhibited deficits in learning and memory associated with the hippocampus. In this study, we investigated whether EE provided during adulthood can reverse such noise-induced impairments. We found that four weeks of EE substantially improved learning and memory in adult female rats exposed to noise during early development. The behavioral changes observed after EE were accompanied by the restoration of parvalbumin-positive (PV+) inhibitory interneurons in the hippocampal subregions. EE also reversed noise-induced reductions in hippocampal long-term potentiation (LTP) of synaptic connections, a mechanism essential for learning and memory processing. However, an enriched environment that lacked social interaction had little effect on restoring LTP in noise-exposed rats. These findings suggest that EE effectively mitigates hippocampal impairments that stem from early noise exposure, with social interaction playing a crucial role in this recovery process.
Collapse
Affiliation(s)
- Yutian Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Pengying An
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Yongjian Cai
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Wenjing Yang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Yue Fang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Hui Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Guimin Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Wuhu Hospital, East China Normal University, Wuhu, 241000, China
| | - Yifan Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China.
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China.
| |
Collapse
|
4
|
Xia Y, Vieira VM. The association between neighborhood environment, prenatal exposure to alcohol and tobacco, and structural brain development. Front Hum Neurosci 2025; 19:1531803. [PMID: 40041111 PMCID: PMC11876420 DOI: 10.3389/fnhum.2025.1531803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Prenatal alcohol and tobacco exposure affects child brain development. Less is known about how neighborhood environment (built, institutional, and social) may be associated with structural brain development and whether prenatal exposure to alcohol or tobacco may modify this relationship. The current study aimed to examine whether neighborhood environment is associated with brain volume at age 9-11, and whether prenatal exposure to alcohol or tobacco modifies this relationship. Baseline data from Adolescent Brain and Cognitive Development (ABCD) study was analyzed (N = 7,887). Neighborhood environment was characterized by 10 variables from the linked external dataset. Prenatal alcohol and tobacco exposures were dichotomized based on the developmental history questionnaire. Bilateral volumes of three regions of interests (hippocampal, parahippocampal, and entorhinal) were examined as outcomes. High residential area deprivation was associated with smaller right hippocampal volume. Prenatal alcohol exposure was associated with larger volume in left parahippocampal and hippocampal regions, while prenatal tobacco exposure was associated with smaller volumes in bilateral parahippocampal, right entorhinal, and right hippocampal regions. In children without prenatal tobacco exposure, high residential area deprivation was associated with smaller right hippocampal volumes. In contrast, neighborhood environment was not significantly associated with brain volumes in children with prenatal tobacco exposure. In summary, neighborhood environment plays a role in child brain development. This relationship may differ by prenatal tobacco exposure. Future studies on prenatal tobacco exposure may need to consider how postnatal neighborhood environment interacts with the teratogenic effect.
Collapse
Affiliation(s)
- Yingjing Xia
- Joe C. Wen School of Population and Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
5
|
Oppici L, Bērziņa G, Hestetun-Mandrup AM, Løvstad M, Opheim A, Pacheco MM, Rafsten L, Sunnerhagen KS, Rudd JR. A Scoping Review of Preclinical Environmental Enrichment Protocols in Models of Poststroke to Set the Foundations for Translating the Paradigm to Clinical Settings. Transl Stroke Res 2025:10.1007/s12975-025-01335-3. [PMID: 39913056 DOI: 10.1007/s12975-025-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
The translation of the highly effective Environmental Enrichment (EE) paradigm from preclinical animal models to human clinical settings has been slow and showed inconsistent results. The primary translational challenge lies in defining what constitutes an EE for humans. To tackle this challenge, this study conducted a scoping review of preclinical EE protocols to explore what constitutes EE for animal models of stroke, laying the foundation for the translation of EE to human application. A systematic search was conducted in the MEDLINE, PsycINFO, and Web of Science databases to identify studies that conducted an EE intervention in the post-stroke animal model. A total of 116 studies were included in the review. A critical reflection of the characteristics of the included studies revealed that EE for post-stroke is a strategy that frequently modifies the animals' daily environment to create a richness of spatial, structural, and/or social opportunities to engage in a variety of daily life-related motor, cognitive, and social exploratory activities. These activities are relevant to the inhabiting individual and involve the activation of the body function(s) affected by the stroke. This review also identified six principles that underpinned the EE protocols: complexity (spatial and social), variety, novelty, targeting needs, scaffolding, and integration of rehabilitation tasks. These findings can be used as steppingstones to define what constitutes EE in human clinical applications and to develop a set of principles that can inform the design of EE protocols for patients after a stroke.
Collapse
Affiliation(s)
- Luca Oppici
- Department of Teacher Education and Outdoor Studies, Norwegian School of Sport Sciences, 0863, Oslo, Norway.
| | - Guna Bērziņa
- Department of Rehabilitation, Faculty of Health and Sport Sciences, Riga Stradiņš University, Riga, Latvia
- Clinic of Rehabilitation, Riga East University Hospital, Riga, Latvia
| | - Ann Marie Hestetun-Mandrup
- Sunnaas Rehabilitation Hospital, 1450, Nesoddtangen, Norway
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, Oslo, Norway
| | - Marianne Løvstad
- Sunnaas Rehabilitation Hospital, 1450, Nesoddtangen, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Arve Opheim
- Sunnaas Rehabilitation Hospital, 1450, Nesoddtangen, Norway
- Institute of Neuroscience and Physiology, Dept of Clinical Neuroscience and Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Lena Rafsten
- Institute of Neuroscience and Physiology, Dept of Clinical Neuroscience and Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Occupational Therapy and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Katharina S Sunnerhagen
- Institute of Neuroscience and Physiology, Dept of Clinical Neuroscience and Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - James R Rudd
- Department of Teacher Education and Outdoor Studies, Norwegian School of Sport Sciences, 0863, Oslo, Norway.
- Department of Sport, Food and Natural Sciences, Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, 6856, Sogndal, Norway.
| |
Collapse
|
6
|
Chen L, Jiao J, Lei F, Zhou B, Li H, Liao P, Li X, Kang Y, Liu J, Jiang R. Ezrin-mediated astrocyte-synapse signaling regulates cognitive function via astrocyte morphological changes in fine processes in male mice. Brain Behav Immun 2025; 124:177-191. [PMID: 39580057 DOI: 10.1016/j.bbi.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
Astrocytes, which actively participate in cognitive processes, have a complex spongiform morphology, highlighted by extensive ramified fine processes that closely enwrap the pre- and post-synaptic compartments, forming tripartite synapses. However, the role of astrocyte morphology in cognitive processes remains incompletely understood and even controversial. The actin-binding protein Ezrin is highly expressed in astrocytes and is a key structural determinant of astrocyte morphology. Here, we found that Ezrin expression and astrocyte fine process volume in the hippocampus of male mice increased after learning but decreased after lipopolysaccharide injection and in a mouse model of postoperative cognitive dysfunction, both of which involved models with impaired cognitive function. Additionally, astrocytic Ezrin knock-out led to significantly decreased astrocytic fine process volumes, decreased astrocyte-neuron proximity, and induced anxiety-like behaviors and cognitive dysfunction. Astrocytic Ezrin deficiency in the hippocampus was achieved by using a microRNA silencing technique delivered by adeno-associated viruses. Down-regulation of Ezrin in hippocampal astrocytes led to disrupted astrocyte-synapse interactions and impaired synaptic functions, including synaptic transmission and synaptic plasticity, which could be rescued by exogenous administration of D-serine. Remarkably, decreased Ezrin expression and reduced astrocyte fine processes volumes were also observed in aged mice with decreased cognitive function. Moreover, overexpression of astrocytic Ezrin increased astrocyte fine process volumes and improved cognitive function in aged mice. Overall, our results indicate Ezrin-mediated astrocyte fine processes integrity shapes astrocyte-synapse signaling contributing to cognitive function.
Collapse
Affiliation(s)
- Lingmin Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiao Jiao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fan Lei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Kang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Cai Y, Zhao R, Huang Y, Yang H, Liu Y, Yang R, Zhang X, Liu Y, Yan S, Liu X, Liu X, Yin X, Yu Y, Gao S, Li Y, Zhao Y, Shi H. Environmental enrichment attenuates maternal separation-induced excessive hoarding behavior in adult female mice. Pharmacol Biochem Behav 2024; 245:173913. [PMID: 39581387 DOI: 10.1016/j.pbb.2024.173913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Previous studies have demonstrated that early life stress (ELS) impacts hoarding behavior in adult humans. This study aimed to assess the potential mitigation by environmental enrichment on hoarding behavior in rodents caused by maternal separation, thereby providing insights into therapeutic strategies for hoarding disorder. METHODS Newborn mice were randomly divided into four groups. The control group was allowed to grow naturally. The maternal separation group underwent two weeks of maternal separation. The short-term environmental enrichment group received two weeks of environmental enrichment intervention after the two weeks of maternal separation. The long-term environmental enrichment group received five weeks of environmental enrichment intervention after the two weeks of maternal separation. Hoarding behavior was assessed during adolescence and adulthood. Hippocampal tissue from adult female mice was analyzed using LC-MS/MS-based metabolomics. Spearman correlation analysis was then performed to assess the relationship between differentially expressed metabolites and hoarding behavior. RESULTS Environmental enrichment attenuates maternal separation-induced excessive hoarding behavior in adult female mice. The untargeted metabolomics of the hippocampal region in female mice showed that long-term environmental enrichment reversed multiple differential metabolites, including Substance P, which were mainly concentrated in metabolic pathways such as cancer choline metabolism, glycolipid metabolism, and linoleic acid metabolism. CONCLUSIONS Our findings indicate that ELS and long-term environmental enrichment have sex-dependent effects on adult hoarding behavior, potentially related to altered hippocampal metabolism. This study highlights the importance of environmental enrichment in mitigating the long-term effects of early maternal separation on hoarding behavior.
Collapse
Affiliation(s)
- Yiming Cai
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Ruofan Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuxuan Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Huiping Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Ye Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiangyu Zhang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiran Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Shu Yan
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoyu Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yang Yu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Shuai Gao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China
| | - Yating Li
- Nursing School, Hebei Medical University, Shijiazhuang 050031, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
8
|
Mao F, Yin A, Zhao S, Fang Q. Effects of football training on cognitive performance in children and adolescents: a meta-analytic review. Front Psychol 2024; 15:1449612. [PMID: 39600599 PMCID: PMC11588498 DOI: 10.3389/fpsyg.2024.1449612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background The cognitive development of children and adolescents is crucial for their academic success and overall well-being. Physical activity has been linked to improved cognitive performance, but the specific effects of football training on cognitive function in this population remain unclear. This meta-analytic review aimed to comprehensively evaluate the impact of football training on cognitive performance in children and adolescents. Methods Literature was searched through PubMed, PsycINFO, SPORTDiscus, Embase, and Web of Science. Eligible studies were randomized controlled trials (RCTs) or crossover designs assessing cognitive performance following football training interventions. Outcome measures included attention, inhibitory control, and working memory. Data synthesis and meta-analysis were performed to determine the overall effect sizes. Results Twelve studies were included in the meta-analysis, comprising 1,574 children and 94 adolescents. Football training demonstrated moderate, statistically significant effects on attention (Hedges' g = -0.77, p = 0.01), inhibitory control (Hedges' g = -0.67, p = 0.02), and working memory (Hedges' g = -0.44, p = 0.03). The findings suggest that football training positively influences cognitive performance in children and adolescents. Conclusion Football training holds promise for enhancing cognitive function in children and adolescents, particularly in attention, inhibitory control, and working memory. Theoretical frameworks emphasizing environmental enrichment, cardiovascular fitness, and cognitive component skills help elucidate the underlying mechanisms. Future research should explore how football training compares to other sports and assess whether integrative drills that combine cognitive elements with skill practice offer greater cognitive benefits than skill training alone. These insights support the inclusion of football in educational programs to foster cognitive development.
Collapse
Affiliation(s)
- Fan Mao
- School of Physical Education, Qingdao University, Qingdao, China
- Research Center for Youth Football, Qingdao University, Qingdao, China
| | - An Yin
- Lintong Rehabilitation and Recuperation Center, Lintong, China
| | - Shan Zhao
- School of Physical Education, Qingdao University, Qingdao, China
| | - Qun Fang
- School of Physical Education, Qingdao University, Qingdao, China
- Research Center for Youth Football, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Trevino CO, Lai JS, Tang X, LeWinn KZ, Nozadi SS, Wosu A, Leve LD, Towe-Goodman NR, Ni Y, Graff JC, Karr CJ, Collett BR. Using ECHO program data to develop a brief measure of caregiver support and cognitive stimulation using the home observation for measurement of the environment-infant/toddler (HOME-IT). Child Dev 2024; 95:2241-2251. [PMID: 39080971 PMCID: PMC11581929 DOI: 10.1111/cdev.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Data from three NIH Environmental influences on Child Health Outcomes (ECHO) Program cohorts that collected the HOME-Infant-Toddler (HOME-IT age 0-3 years) version were used to examine the reliability of a brief scale of caregiver support and cognitive stimulation. Participants with HOME-IT data (N = 2518) were included in this analysis. Mean child age at HOME-IT assessment was 1.51 years, 48% of children were female, and 43% of children identified as Black. A four-stage analysis plan was used to evaluate item response theory assumptions, item response theory model fit, monotonicity, scalability, item fit, and differential item functioning. Results indicate the feasibility of developing a reliable 10-item scale (reliability >0.7) with particularly high precision for children with lower levels of cognitive stimulation.
Collapse
Affiliation(s)
- Cindy O Trevino
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Jin-Shei Lai
- Department of Medical and Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xiaodan Tang
- Department of Medical and Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA
| | - Sara S Nozadi
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Adaeze Wosu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leslie D Leve
- College of Education, University of Oregon, Eugene, Oregon, USA
| | - Nissa R Towe-Goodman
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yu Ni
- School of Public Health, College of Health and Human Services, San Diego State University, San Diego, California, USA
| | - Joyce Carolyn Graff
- College of Nursing and Center on Developmental Disabilities, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Catherine J Karr
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Brent R Collett
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Perinelli MG, Abbott M, Balagura G, Riva A, Amadori E, Verrotti A, Demarest S, Striano P. Prevalence of cerebral visual impairment in developmental and Epileptic Encephalopathies: a systematic review protocol. Syst Rev 2024; 13:223. [PMID: 39217383 PMCID: PMC11365209 DOI: 10.1186/s13643-024-02638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Developmental and Epileptic Encephalopathies (DEEs) are defined by drug-resistant seizures and neurodevelopmental disorders. Over 50% of patients have a genetic cause. Studies have shown that patients with DEEs, regardless of genetic diagnosis, experience a central visual function disorder known as Cerebral (cortical) Visual Impairment (CVI). The prevalence of CVI in DEE patients is currently unknown. A quantitative synthesis of existing data on the prevalence rates of this condition would aid in understanding the magnitude of the problem, outlining future research, and suggesting the need for therapeutic strategies for early identification and prevention of the disorder. METHODS The protocol followed the PRISMA-P statement for systematic review and meta-analysis protocols. The review will adhere to the JBI Manual for Evidence Synthesis (Systematic Reviews of Prevalence and Incidence) and use the CoCoPop framework to establish eligibility criteria. We will conduct a comprehensive search of several databases, including MEDLINE, EMBASE, Science Direct, Scopus, PsychINFO, Wiley, Highwire Press, and Cochrane Library of Systematic Reviews. Our primary focus will be determining the prevalence of cerebral visual impairments (Condition) in patients with developmental and epileptic encephalopathy (Population). To ensure clarity, we will provide a narrative summary of the risk of bias in the studies we include. The Cochrane Q statistic will be used to assess heterogeneity between studies. If the quantitative synthesis includes more than 10 studies, potential sources of heterogeneity will be investigated through subgroup and meta-regression analyses. Meta(bias)es analysis will also be performed. The quality of evidence for all outcomes will be evaluated using the Grading of Recommendations Assessment Development and Evaluation (GRADE) working group methodology. DISCUSSION This protocol outlines a systematic review and meta-analysis to identify, collect, evaluate, and integrate epidemiological knowledge related to the prevalence of CVI in patients with DEEs. To the best of our knowledge, no other systematic review and meta-analysis has addressed this specific issue. The results will provide useful information for understanding the extent of the problem, outlining future research, and suggesting the need for early identification strategies. SYSTEMATIC REVIEW REGISTRATIONS This Systematic Review Protocol was registered in PROSPERO (CRD42023448910).
Collapse
Affiliation(s)
- Martina Giorgia Perinelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, IRCCS Istituto "G. Gaslini", Via Gaslini 5, 16148, Genova, Italy
| | - Megan Abbott
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, IRCCS Istituto "G. Gaslini", Via Gaslini 5, 16148, Genova, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, IRCCS Istituto "G. Gaslini", Via Gaslini 5, 16148, Genova, Italy
| | | | - Alberto Verrotti
- Department of Medical and Surgical Sciences, Pediatric Clinic, University of Perugia, Perugia, Italy
| | - Scott Demarest
- Department of Neurology, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado at Denver, Aurora, CO, USA
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, IRCCS Istituto "G. Gaslini", Via Gaslini 5, 16148, Genova, Italy.
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
11
|
Šabanović M, Lazari A, Blanco-Pozo M, Tisca C, Tachrount M, Martins-Bach AB, Lerch JP, Walton ME, Bannerman DM. Lasting dynamic effects of the psychedelic 2,5-dimethoxy-4-iodoamphetamine ((±)-DOI) on cognitive flexibility. Mol Psychiatry 2024; 29:1810-1823. [PMID: 38321122 PMCID: PMC11371652 DOI: 10.1038/s41380-024-02439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Psychedelic drugs can aid fast and lasting remission from various neuropsychiatric disorders, though the underlying mechanisms remain unclear. Preclinical studies suggest serotonergic psychedelics enhance neuronal plasticity, but whether neuroplastic changes can also be seen at cognitive and behavioural levels is unexplored. Here we show that a single dose of the psychedelic 2,5-dimethoxy-4-iodoamphetamine ((±)-DOI) affects structural brain plasticity and cognitive flexibility in young adult mice beyond the acute drug experience. Using ex vivo magnetic resonance imaging, we show increased volumes of several sensory and association areas one day after systemic administration of 2 mgkg-1 (±)-DOI. We then demonstrate lasting effects of (±)-DOI on cognitive flexibility in a two-step probabilistic reversal learning task where 2 mgkg-1 (±)-DOI improved the rate of adaptation to a novel reversal in task structure occurring one-week post-treatment. Strikingly, (±)-DOI-treated mice started learning from reward omissions, a unique strategy not typically seen in mice in this task, suggesting heightened sensitivity to previously overlooked cues. Crucially, further experiments revealed that (±)-DOI's effects on cognitive flexibility were contingent on the timing between drug treatment and the novel reversal, as well as on the nature of the intervening experience. (±)-DOI's facilitation of both cognitive adaptation and novel thinking strategies may contribute to the clinical benefits of psychedelic-assisted therapy, particularly in cases of perseverative behaviours and a resistance to change seen in depression, anxiety, or addiction. Furthermore, our findings highlight the crucial role of time-dependent neuroplasticity and the influence of experiential factors in shaping the therapeutic potential of psychedelic interventions for impaired cognitive flexibility.
Collapse
Affiliation(s)
- Merima Šabanović
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Marta Blanco-Pozo
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Cristiana Tisca
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Mohamed Tachrount
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Aurea B Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, OX1 3SR, Oxford, UK.
| |
Collapse
|
12
|
van Ingelgom T, Didone V, Godefroid L, Quertemont É. Effects of social housing conditions on ethanol-induced behavioral sensitization in Swiss mice. Psychopharmacology (Berl) 2024; 241:987-1000. [PMID: 38206359 DOI: 10.1007/s00213-024-06527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
RATIONALE In previous animal model studies, it was shown that drug sensitization is dependent upon physical environmental conditions. However, the effects of social housing conditions on drug sensitization is much less known. OBJECTIVE The aim of the present study was to investigate the effects of social conditions, through the size of housing groups, on ethanol stimulant effects and ethanol-induced behavioral sensitization in mice. MATERIALS AND METHODS Male and female Swiss mice were housed in groups of different sizes (isolated mice, two mice per cage, four mice per cage and eight mice per cage) during a six-week period. A standard paradigm of ethanol-induced locomotor sensitization was then started with one daily injection of 2.5 g/kg ethanol for 8 consecutive days. RESULTS The results show that social housing conditions affect the acute stimulant effects of ethanol. The highest stimulant effects were observed in socially isolated mice and then gradually decreased as the size of the group increased. Although the rate of ethanol sensitization did not differ between groups, the ultimate sensitized levels of ethanol-induced stimulant effects were significantly reduced in mice housed in groups of eight. CONCLUSIONS These results are consistent with the idea that higher levels of acute and sensitized ethanol stimulant effects are observed in mice housed in stressful housing conditions, such as social isolation.
Collapse
Affiliation(s)
- Théo van Ingelgom
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Vincent Didone
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Leeloo Godefroid
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Étienne Quertemont
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium.
| |
Collapse
|
13
|
Birgersson L, Odenlund S, Sturve J. Effects of Environmental Enrichment on Exposure to Human-Relevant Mixtures of Endocrine Disrupting Chemicals in Zebrafish. Animals (Basel) 2024; 14:1296. [PMID: 38731300 PMCID: PMC11083384 DOI: 10.3390/ani14091296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Fish models used for chemical exposure in toxicological studies are normally kept in barren tanks without any structural environmental enrichment. Here, we tested the combined effects of environmental enrichment and exposure to two mixtures of endocrine disrupting chemicals (EDCs) in zebrafish. Firstly, we assessed whether developmental exposure to an EDC mixture (MIX G1) combined with rearing the fish in an enriched environment influenced behaviour later in life. This was evaluated using locomotion tracking one month after exposure, showing a significant interaction effect between enrichment and the MIX G1 exposure on the measured locomotion parameters. After three months, we assessed behaviour using custom-made behaviour tanks, and found that enrichment influenced swimming activity. Control fish from the enriched environment were more active than control fish from the barren environment. Secondly, we exposed adult zebrafish to a separate EDC mixture (MIX G0) after rearing them in a barren or enriched environment. Behaviour and hepatic mRNA expression for thyroid-related genes were assessed. There was a significant interaction effect between exposure and enrichment on swimming activity and an effect of environment on latency to approach the group of conspecifics, where enriched fish took more time to approach the group, possibly indicating that they were less anxious. Hepatic gene expression of a thyroid-related gene (thrb) was significantly affected by EDC exposure, while enrichment had no discernible impact on the expression of the measured genes. In conclusion, environmental enrichment is important to consider when studying the effects of EDCs in fish.
Collapse
Affiliation(s)
| | | | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden; (L.B.); (S.O.)
| |
Collapse
|
14
|
Iribarne J, Brachetta V, Zenuto R, Kittlein M, Schleich C. Navigational experience affect cognition: Spatial learning capabilities in captive and wild-born tuco-tucos. Behav Processes 2024; 214:104981. [PMID: 38065425 DOI: 10.1016/j.beproc.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
There is a growing recognition of the influence of both genetic and ecological context in shaping different cognitive traits. The hippocampal region is identified as a critical area for memory and learning in mammals, susceptible to modification by environmental influences. Although previous studies have identified the effects of various factors on cognitive parameters during early development, comparatively few research was conducted on wild species to analyze the role of natural environmental stimuli in the formation of spatial learning and memory abilities. Thus, to assess the importance of exposure to a complex and challenging environment during early development, we compared spatial learning performance of captive-born tuco-tucos with previous data obtained in our laboratory from wild-born adult tuco-tucos. The results showed that wild-born individuals learned faster, requiring less time to complete a labyrinth and making fewer errors than those who had no experience in their natural environment. These findings underscore the importance of considering ecological factors in understanding the evolution of brains and cognitive abilities.
Collapse
Affiliation(s)
- J Iribarne
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina.
| | - V Brachetta
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| | - R Zenuto
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| | - M Kittlein
- Grupo de Ecologia y Genetica de poblaciones de Mamiferos, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| | - C Schleich
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| |
Collapse
|
15
|
Kurogi K, Taniguchi F, Matsuo R, Shinozuka M, Suzaki R, Yasuo S. Increased depression-like behaviors with altered brain dopamine metabolisms in male mice housed in large cages are alleviated by bupropion. Eur J Pharmacol 2023; 960:176126. [PMID: 37858834 DOI: 10.1016/j.ejphar.2023.176126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Psycho-environmental stress-based animal models of anxiety and depression are useful for investigating pathological mechanisms and drug development. Although several rodent-based studies have reported the beneficial effects of environmental enrichment (EE) on brain plasticity and anxiety- and depression-like behaviors, other studies have reported inverse effects. Here, we found that housing male mice in EE involving large cages and other EE materials increased anxiety- and depression-like behaviors in open field and tail suspension tests (TST). We further confirmed that housing in large cages was sufficient to induce increased depression-like behaviors in the TST and reduce the saccharine preference percentage, a sign of anhedonia, in male mice. In these experiments, the number of animals per cage was equivalent to that in standard cage housing, suggesting that low density in large cages may be a determining factor for behavioral alteration. In mice housed in large cages, sex-specific dysregulation of brain monoamine systems was observed; dopamine turnover to homovanillic acid or norepinephrine in the prefrontal cortex was elevated in males, while serotonin turnover to 5-hydroxyindoleacetic acid in the amygdala was increased in females. Finally, we demonstrated that daily intraperitoneal injections of bupropion, a dopamine and norepinephrine reuptake inhibitor, counteracted large-cage housing-induced changes in depression- and anhedonia-like behaviors in male mice. Our results suggest that housing in large cages with a low density of mice is a novel paradigm to clarify the mechanisms of environmental stress-induced emotional dysregulation and to identify drugs or food factors to alleviate the dysregulation.
Collapse
Affiliation(s)
- Kaito Kurogi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Fuka Taniguchi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryohei Matsuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Marina Shinozuka
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Raiki Suzaki
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
16
|
Wang G, Hou P, Tu Y, Zheng J, Li P, Liu L. Activation of p38 MAPK hinders the reactivation of visual cortical plasticity in adult amblyopic mice. Exp Eye Res 2023; 236:109651. [PMID: 37748716 DOI: 10.1016/j.exer.2023.109651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE To investigate the impact of p38 mitogen-activated protein kinase (MAPK) signaling on reactivating visual cortical plasticity in adult amblyopic mice. MATERIALS AND METHODS Reverse suture (RS), environment enrichment (EE), and combined with left intracerebroventricular injection of p38 MAPK inhibitor (SB203580, SB) or p38 MAPK agonist (dehydrocorydaline hydrochloride, DHC) were utilized to treat adult amblyopic mice with monocular deprivation (MD). The visual water task, visual cliff test, and Flash visual-evoked potential were used to measure the visual function. Then, Golgi staining and transmission electron microscopy were used to assess the reactivation of structural plasticity in adult amblyopic mice. Western blot and immunohistochemistry detected the expression of ATF2, PSD-95, p38 MAPK, and phospho-p38 MAPK in the left visual cortex. RESULTS No statistically significant difference was observed in the visual function in each pre-intervention group. Compared to pre-intervention, the visual acuity of deprived eyes was improved significantly, the impairment of visual depth perception was alleviated, and the P wave amplitude and C/I ratio were increased in the EE + RS, the EE + RS + SB, and the EE + RS + DMSO groups, but no significant difference was detected in the EE + RS + DHC group. Compared to EE + RS + DHC group, the density of dendritic spines was significantly higher, the synaptic density of the left visual cortex increased significantly, the length of the active synaptic zone increased, and the thickness of post-synaptic density (PSD) thickened in the left visual cortex of EE + RS, EE + RS + SB, and EE + RS + DMSO groups. And that, the protein expression of p-p38 MAPK increased while that of PSD-95 and ATF2 decreased significantly in the left visual cortex of the EE + RS + DHC group mice. CONCLUSION RS and EE intervention improved the visual function and synaptic plasticity of the visual cortex in adult amblyopic mice. However, activating p38 MAPK hinders the recovery of visual function by upregulating the phosphorylation of p38 MAPK and decreasing the ATF2 protein expression.
Collapse
Affiliation(s)
- Guiqu Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China; Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, China
| | - Peixian Hou
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China
| | - Yanqiong Tu
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China
| | - Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China
| | - Pinxiong Li
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Wilson DA, Sullivan RM. Neuroscience: Building better cognition through smell. Curr Biol 2023; 33:R1049-R1051. [PMID: 37875078 DOI: 10.1016/j.cub.2023.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Developmental neural activity organizes sensory system development. New evidence in mice suggests postnatal olfactory bulb activity also modulates development of the structure and function of hippocampal-cortical circuits. Reducing cell-specific olfactory bulb output during an infant sensitive period impairs later-life cognition.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
18
|
Cruz-Magos OE, Herrera-Meza G, García LI, Coria-Avila GA, Herrera-Covarrubias D, Toledo-Cárdenas MR, Hernández-Aguilar ME, Manzo J. Multiunit Recording of Cerebellar Cortex in Autistic Male Rats during Social Interaction in Enriched Environments. NEUROSCI 2023; 4:178-185. [PMID: 39483200 PMCID: PMC11523729 DOI: 10.3390/neurosci4030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 11/03/2024] Open
Abstract
Autism in humans is a lifelong behavioral disorder that typically manifests in early infancy, primarily affecting boys. It arises from neurodevelopmental changes that significantly impact social behavior, with the cerebellum being one of the principal affected regions. In this study, we investigated the cerebellum in an autism animal model, recording the multiunit activity of cerebellar vermis lobules 6 and 7 (L6 and L7) in male rats with autism-like behavior induced by postnatal valproate treatment. Two groups were formed: control (Ctrl) and experimental (VPA) males, which were further divided based on their living conditions into standard (Std) or enriched environments (EE). Social arenas were used for recording purposes. Both groups and lobules showed increased multiunit amplitude during social interaction (SI) and vertical exploration (VE), with higher amplitudes observed in VPA males. Interestingly, the EE significantly reduced the amplitude during SI, suggesting that EE promotes neural plasticity, resulting in improved social responses with fewer activated neurons, meaning improved activity with less energy consumption. Consequently, EE proves to be a valuable strategy for addressing the challenges associated with autism behavior.
Collapse
Affiliation(s)
- Omar E Cruz-Magos
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico
| | - Grecia Herrera-Meza
- Benemérita Escuela Normal Veracruzana "Enríque C. Rébsamen", Xalapa 91190, Veracruz, Mexico
| | - Luis I García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.I.G.); (G.A.C.-A.); (D.H.-C.); (M.R.T.-C.); (M.E.H.-A.)
| | - Genaro A Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.I.G.); (G.A.C.-A.); (D.H.-C.); (M.R.T.-C.); (M.E.H.-A.)
| | - Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.I.G.); (G.A.C.-A.); (D.H.-C.); (M.R.T.-C.); (M.E.H.-A.)
| | - María Rebeca Toledo-Cárdenas
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.I.G.); (G.A.C.-A.); (D.H.-C.); (M.R.T.-C.); (M.E.H.-A.)
| | - María Elena Hernández-Aguilar
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.I.G.); (G.A.C.-A.); (D.H.-C.); (M.R.T.-C.); (M.E.H.-A.)
| | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico; (L.I.G.); (G.A.C.-A.); (D.H.-C.); (M.R.T.-C.); (M.E.H.-A.)
| |
Collapse
|
19
|
Farmer AL, Lewis MH. Reduction of restricted repetitive behavior by environmental enrichment: Potential neurobiological mechanisms. Neurosci Biobehav Rev 2023; 152:105291. [PMID: 37353046 DOI: 10.1016/j.neubiorev.2023.105291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Restricted repetitive behaviors (RRB) are one of two diagnostic criteria for autism spectrum disorder and common in other neurodevelopmental and psychiatric disorders. The term restricted repetitive behavior refers to a wide variety of inflexible patterns of behavior including stereotypy, self-injury, restricted interests, insistence on sameness, and ritualistic and compulsive behavior. However, despite their prevalence in clinical populations, their underlying causes remain poorly understood hampering the development of effective treatments. Intriguingly, numerous animal studies have demonstrated that these behaviors are reduced by rearing in enriched environments (EE). Understanding the processes responsible for the attenuation of repetitive behaviors by EE should offer insights into potential therapeutic approaches, as well as shed light on the underlying neurobiology of repetitive behaviors. This review summarizes the current knowledge of the relationship between EE and RRB and discusses potential mechanisms for EE's attenuation of RRB based on the broader EE literature. Existing gaps in the literature and future directions are also discussed.
Collapse
Affiliation(s)
- Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Grigoryan GA. The systemic effects of the enriched environment on the conditioned fear reaction. Front Behav Neurosci 2023; 17:1227575. [PMID: 37674611 PMCID: PMC10477375 DOI: 10.3389/fnbeh.2023.1227575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
In this review, a hypothesis is proposed to explain the beneficial effect of an enriched environment (EE) on the conditioned fear reaction (CFR) from the perspective of a functional system of behavioral control. According to the hypothesis, the EE affects all behavioral act components, including the processing of sensory information, memory, motivational and reinforcing systems, and motor activities, which weakens the CFR. Animals raised in the EE have effects that are comparable to those of context (CTX) and CS pre-exposures at latent inhibition. An abundance of stimuli in the EE and constant contact with them provide the formation of CS-noUS and CTX-noUS connections that later, during CFR learning, slow down and diminish fear. The EE also contributes to faster processing of information and habituation to it. As a result, many stimuli in the context lose their significance, and subjects simply ignore them. And finally, the EE affects the motivational and reinforcing brain mechanisms, induces an impairment of search activity, and worsens memory consolidation, which leads to a reduction of CFR.
Collapse
Affiliation(s)
- Grigory A. Grigoryan
- The Laboratory of Conditioned Reflexes and Physiology of Emotions, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Liu T, Li J, Li Q, Liang Y, Gao J, Meng Z, Li P, Yao M, Gu J, Tu H, Gan Y. Environmental eustress promotes liver regeneration through the sympathetic regulation of type 1 innate lymphoid cells to increase IL-22 in mice. Hepatology 2023; 78:136-149. [PMID: 36631003 DOI: 10.1097/hep.0000000000000239] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/02/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS The liver has the unique ability of regeneration, which is extremely important for restoring homeostasis after liver injury. Although clinical observations have revealed an association between psychological stress and the liver, whether stress has a causal influence on the liver regeneration remains markedly less defined. APPROACH AND RESULTS Rearing rodents in an enriched environment (EE) can induce eustress or positive psychological stress. Herein, EE-induced eustress was found to significantly enhance the ability of liver regeneration after partial hepatectomy or carbon tetrachloride-induced liver injury based on the more rapid restoration of liver/body weight ratio and the significantly increased number of proliferating hepatocytes in EE mice. Mechanistically, the cytokine array revealed that IL-22 was markedly increased in the regenerating liver in response to EE. Blockade of IL-22 signaling abrogated the enhanced liver regeneration induced by EE. Group 1 innate lymphoid cells (ILCs), including type 1 ILCs (ILC1s), have been identified as the major sources of IL-22 in the regenerating liver. EE housing led to a rapid accumulation of hepatic ILC1s after partial hepatectomy and the EE-induced enhancement of liver regeneration and elevation of IL-22 was nearly eliminated in ILC1-deficient Tbx21-/- mice. Chemical sympathectomy or blockade of β-adrenergic signaling also abolished the effect of EE on ILC1s and attenuated the enhanced liver regeneration of EE-housed mice. CONCLUSION The study findings support the brain-liver axis and suggest that environment-induced eustress promotes liver regeneration through the sympathetic nerve/ILC1/IL-22 axis.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihong Meng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyang Gu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Transplantation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Rubinstein MR, Burgueño AL, Quiroga S, Wald MR, Genaro AM. Current Understanding of the Roles of Gut-Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells 2023; 12:1735. [PMID: 37443769 PMCID: PMC10340286 DOI: 10.3390/cells12131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The term 'perinatal environment' refers to the period surrounding birth, which plays a crucial role in brain development. It has been suggested that dynamic communication between the neuro-immune system and gut microbiota is essential in maintaining adequate brain function. This interaction depends on the mother's status during pregnancy and/or the newborn environment. Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical window in which stress-induced immune activation and altered microbiota compositions produce lasting behavioral consequences, although a clear causative relationship has not yet been established. In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal stress exposure. In this sense, early environmental enrichment exposure (including exercise) and melatonin use in the perinatal period could be valuable in improving the negative consequences of early adversities. The evidence presented in this review encourages the realization of studies investigating the beneficial role of melatonin administration and environmental enrichment exposure in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand, direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this treatment has not been fully demonstrated and should be explored in future studies.
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| | | | | | | | - Ana María Genaro
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| |
Collapse
|
23
|
Gao J, Zhao L, Li D, Li Y, Wang H. Enriched environment ameliorates postsurgery sleep deprivation-induced cognitive impairments through the AMPA receptor GluA1 subunit. Brain Behav 2023; 13:e2992. [PMID: 37095708 PMCID: PMC10275526 DOI: 10.1002/brb3.2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND As a common postsurgery complication, sleep deprivation (SD) can severely deteriorate the cognitive function of patients. Enriched environment (EE) exposure can increase children's cognitive ability, and whether EE exposure could be utilized to alleviate postsurgery SD-induced cognitive impairments is investigated in this study. METHODS Open inguinal hernia repair surgery without skin/muscle retraction was performed on Sprague-Dawley male rats (9-week-old), which were further exposed to EE or standard environment (SE). Elevated plus maze (EPM), novel object recognition (NOR), object location memory (OLM), and Morris Water Maze assays were utilized to monitor cognitive functions. Cresyl violet acetate staining in the Cornusammonis 3 (CA3) region of rat hippocampus was used to detect neuron loss. The relative expression of brain-derived neurotrophic factor (BDNF) and synaptic glutamate receptor 1 (GluA1) subunits in the hippocampus were detected with quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blots, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. RESULTS EE restored normal levels of time spent in the center, time in distal open arms, open/total arms ratio, and total distance traveled in the EPM test; EE restored normal levels of recognition index in the NOR and OLM test; EE restored normal levels of time in the target quadrant, escape latencies, and platform site crossings in the Morris Water Maze test. EE exposure decreased neuron loss in the CA3 region of the hippocampus with increased BDNF and phosphorylated (p)-GluA1 (ser845) expression. CONCLUSION EE ameliorates postsurgery SD-induced cognitive impairments, which may be mediated by the axis of BDNF/GluA1. EE exposure could be considered as an aid in promoting cognitive function in postsurgery SD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
- Department of AnesthesiologyTianjin Haihe HospitalTianjinChina
| | - Lina Zhao
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Dedong Li
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Yun Li
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Haiyun Wang
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| |
Collapse
|
24
|
Coleman ME, Roessler MEH, Peng S, Roth AR, Risacher SL, Saykine AJ, Apostolova LG, Perry BL. Social enrichment on the job: Complex work with people improves episodic memory, promotes brain reserve, and reduces the risk of dementia. Alzheimers Dement 2023; 19:2655-2665. [PMID: 37037592 PMCID: PMC10272079 DOI: 10.1002/alz.13035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 04/12/2023]
Abstract
Individuals with more complex jobs experience better cognitive function in old age and a lower risk of dementia, yet complexity has multiple dimensions. Drawing on the Social Networks in Alzheimer Disease study, we examine the association between occupational complexity and cognition in a sample of older adults (N = 355). A standard deviation (SD) increase in complex work with people is associated with a 9% to 12% reduction in the probability of mild cognitive impairment or dementia, a 0.14-0.19 SD increase in episodic memory, and a 0.18-0.25 SD increase in brain reserve, defined as the gap (residual) between global cognitive function and magnetic resonance imaging (MRI) indicators of brain atrophy. In contrast, complexity with data or things is rarely associated with cognitive outcomes. We discuss the clinical and methodological implications of these findings, including the need to complement data-centered activities (e.g., Sudoku puzzles) with person-centered interventions that increase social complexity.
Collapse
Affiliation(s)
- Max E. Coleman
- Department of Sociology, University of Utah, Salt Lake City, Utah, USA
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| | - Meghan E. H. Roessler
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
- Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
| | - Siyun Peng
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| | - Adam R. Roth
- Department of Sociology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Shannon L. Risacher
- Stark Neurosciences Research Institute, Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J. Saykine
- Stark Neurosciences Research Institute, Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Departments of Neurology, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Liana G. Apostolova
- Stark Neurosciences Research Institute, Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Departments of Neurology, Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brea L. Perry
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
25
|
Murack M, Smith KB, Traynor OH, Pirwani AF, Gostlin SK, Mohamed T, Tata DA, Messier C, Ismail N. Environmental enrichment alters LPS-induced changes in BDNF and PSD-95 expressions during puberty. Brain Res 2023; 1806:148283. [PMID: 36801452 DOI: 10.1016/j.brainres.2023.148283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/21/2023]
Abstract
Puberty is a critical period of cortical reorganization and increased synaptogenesis. Healthy cortical reorganization and synaptic growth require sufficient environmental stimuli and minimalized stress exposure during pubertal development. Exposure to impoverished environments or immune challenges impact cortical reorganization and reduce the expression of proteins associated with neuronal plasticity (BDNF) and synaptogenesis (PSD-95). Environmentally enriched (EE) housing includes improved social-, physical-, and cognitive stimulation. We hypothesized that enriched housing environment would mitigate pubertal stress-induced decreases in BDNF and PSD-95 expressions. Three-week-old male and female CD-1 mice (n = 10 per group) were housed for three weeks in either EE, social or deprived housing conditions. At 6 weeks of age, mice were treated with either lipopolysaccharide (LPS) or saline eight hours prior to tissue collection. Male and female EE mice displayed greater BDNF and PSD-95 expressions in the medial prefrontal cortex and hippocampus compared to socially housed and deprived housed mice. LPS treatment decreased BDNF expression in all the brain regions examined in EE mice, except for the CA3 region of the hippocampus, where EE housing successfully mitigated the pubertal LPS-induced decrease in BDNF expression. Interestingly, LPS-treated mice housed in deprived conditions displayed unexpected increases in BDNF and PSD-95 expressions throughout the medial prefrontal cortex and hippocampus. Both enriched and deprived housing conditions moderate how an immune challenge influences BDNF and PSD-95 expressions in a region-specific manner. These findings also emphasize the vulnerability of brain plasticity during puberty to various environmental factors.
Collapse
Affiliation(s)
- Michael Murack
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Ottawa, Ontario K1N 6N5, Canada
| | - Kevin B Smith
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Ottawa, Ontario K1N 6N5, Canada
| | - Olivia H Traynor
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Ottawa, Ontario K1N 6N5, Canada
| | - Atiqa F Pirwani
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Ottawa, Ontario K1N 6N5, Canada
| | - Sarah K Gostlin
- Department of Psychology, McGill University, 2001 Av. McGill College Montreal, Quebec H3A 1G1, Canada
| | - Taha Mohamed
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Ottawa, Ontario K1N 6N5, Canada
| | - Despoina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Claude Messier
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, University of Ottawa, 136 Jean-Jacques Lussier Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, University of Ottawa, 136 Jean-Jacques Lussier Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
26
|
He Y, Liu C, Luo R. Emotional Warmth and Rejection Parenting Styles of Grandparents/Great Grandparents and the Social-Emotional Development of Grandchildren/Great Grandchildren. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1568. [PMID: 36674323 PMCID: PMC9865010 DOI: 10.3390/ijerph20021568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Parenting styles are crucial in the process of forming social emotions in children. They are also vital for creating effective family policies in order to improve a child's early development. As such, it is important to acknowledge the enduring association of parenting styles across generations, as well as their impact on early child development. In this study, the question as to whether the warm and hostile parenting styles of a parent/grandparent mediate the relationships between the emotional warmth and rejection parenting styles of a grandparent/great grandparent, as well as the subsequent social-emotional development of a grandson/great grandson and/or a granddaughter/great granddaughter, was examined. Cross-sectional assessment data from 194 primary caregivers of children between 6 and 36 months were analyzed using mediation analyses. In addition, moderated mediation models were used to test heterogeneity effects. This study found evidence that the warm and hostile parenting styles of a parent/grandparent mediated the associations between the emotional warmth and rejection parenting styles of a grandparent/great grandparent, as well as the subsequent socio-emotional development of a grandchild/great grandchild. Parents/grandparents tend to use a warm parenting style when the child is a boy, thereby resulting in fewer socio-emotional problems. This study provides empirical evidence for the purposes of preventive services to improve caregivers' parenting styles in the early stages of a child's development. Researchers and family practitioners should continue to support families with intervention or therapeutic techniques in order to mitigate potential lasting consequences.
Collapse
Affiliation(s)
| | | | - Renfu Luo
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Yuan R, Yisen Z, Xiu W, Wei T, Wei W. Effects of enriched environment on the expression of β-amyloid and transport-related proteins LRP1 and RAGE in chronic sleep-deprived mice. Transl Neurosci 2023; 14:20220301. [PMID: 37692085 PMCID: PMC10487385 DOI: 10.1515/tnsci-2022-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Sleep plays an important role in the learning process and memory consolidation, and sleep deprivation (SD) leads to inadequate memory consolidation and plays an important role in brain development and plasticity. SD increases β-amyloid levels while impairing cognitive function. We explored the effect of enriched environment (EE) on β-amyloid and transporter protein LRP1 and receptor for advanced glycosylation end-products (RAGE) expression in chronic sleep deprived mice. We randomly divided mice into four groups (n = 10), the standard environment group (Ctrl group), the sleep deprivation group (SD group), the enriched environment intervention group (EE group), and the sleep deprivation plus environmental enrichment intervention group (SD + EE group). A modified multi-platform SD model was used to sleep deprive the mice for 19 h per day. Five hours of EE intervention was performed daily in the EE group and the SD + EE group, respectively. The behavioral measurements of mice were performed by Y-maze method and new object recognition; the expression levels of Aβ1-42, LRP1, and RAGE in prefrontal cortex and hippocampus of mice were measured by immunofluorescence; the expression levels of LRP1 and RAGE in prefrontal cortex and hippocampus were detected by Western blot. The results showed that EE could effectively ameliorate the effects of SD on cognitive impairment, reduce SD induced Aβ deposition, and decrease the expression of RAGE, while increase the expression of LRP1.
Collapse
Affiliation(s)
- Ren Yuan
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Zhang Yisen
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Wang Xiu
- Department of Clinical Laboratory, Wuhan Children’s Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Tang Wei
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Wang Wei
- Department of Basic Medicine, School of Medicine of Dalian University, Dalian, Liaoning Province, China
| |
Collapse
|
28
|
Mañas‐Padilla MC, Tezanos P, Cintado E, Vicente L, Sánchez‐Salido L, Gil‐Rodríguez S, Trejo JL, Santín LJ, Castilla‐Ortega E. Environmental enrichment alleviates cognitive and psychomotor alterations and increases adult hippocampal neurogenesis in cocaine withdrawn mice. Addict Biol 2023; 28:e13244. [PMID: 36577726 PMCID: PMC9786803 DOI: 10.1111/adb.13244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Cocaine is a widely used psychostimulant drug whose repeated exposure induces persistent cognitive/emotional dysregulation, which could be a predictor of relapse in users. However, there is scarce evidence on effective treatments to alleviate these symptoms. Environmental enrichment (EE) has been shown to be associated with improved synaptic function and cellular plasticity changes related to adult hippocampal neurogenesis (AHN), resulting in cognitive enhancement. Therefore, EE could mitigate the negative impact of chronic administration of cocaine in mice and reduce the emotional and cognitive symptoms present during cocaine abstinence. In this study, mice were chronically administered with cocaine for 14 days, and control mice received saline. After the last cocaine or saline dose, mice were submitted to control or EE housing conditions, and they stayed undisturbed for 28 days. Subsequently, mice were evaluated with a battery of behavioural tests for exploratory activity, emotional behaviour, and cognitive performance. EE attenuated hyperlocomotion, induced anxiolytic-like behaviour and alleviated cognitive impairment in spatial memory in the cocaine-abstinent mice. The EE protocol notably upregulated AHN in both control and cocaine-treated mice, though cocaine slightly reduced the number of immature neurons. Altogether, these results demonstrate that EE could enhance hippocampal neuroplasticity ameliorating the behavioural and cognitive consequences of repeated administration of cocaine. Therefore, environmental stimulation may be a useful strategy in the treatment cocaine addiction.
Collapse
Affiliation(s)
- M. Carmen Mañas‐Padilla
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Psicobiología y Metodología de las Ciencias del ComportamientoUniversidad de MálagaMálagaSpain
| | - Patricia Tezanos
- Department of Translational NeuroscienceCajal Institute, Spanish National Research CouncilMadridSpain
| | - Elisa Cintado
- Department of Translational NeuroscienceCajal Institute, Spanish National Research CouncilMadridSpain
| | - Lucía Vicente
- Centro de Experimentación AnimalUniversidad de MálagaMálagaSpain
- Departamento de PsicologíaUniversidad de DeustoBilbaoSpain
| | - Lourdes Sánchez‐Salido
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Unidad de Gestión Clínica de Salud MentalHospital Regional Universitario de MálagaMálagaSpain
| | - Sara Gil‐Rodríguez
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Psicobiología y Metodología de las Ciencias del ComportamientoUniversidad de MálagaMálagaSpain
| | - José L. Trejo
- Department of Translational NeuroscienceCajal Institute, Spanish National Research CouncilMadridSpain
| | - Luis J. Santín
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Psicobiología y Metodología de las Ciencias del ComportamientoUniversidad de MálagaMálagaSpain
| | - Estela Castilla‐Ortega
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Psicobiología y Metodología de las Ciencias del ComportamientoUniversidad de MálagaMálagaSpain
| |
Collapse
|
29
|
Effect of Physical Exercise in Real-World Settings on Executive Function of Typical Children and Adolescents: A Systematic Review. Brain Sci 2022; 12:brainsci12121734. [PMID: 36552193 PMCID: PMC9775424 DOI: 10.3390/brainsci12121734] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The aim of this paper is to provide a systematic review of research on physical exercise in real-world settings on executive function of typical children and adolescents. METHODS The CNKI, WOS, PubMed, ScienceDirect, and SPORTDiscus databases were searched by computer. Two researchers independently screened the literature, extracted data, and evaluated the risk of bias in the included literature. Statistical analysis was performed using frequency and percentage and the χ2 test. RESULTS A total of 49 articles was included. Acute (moderate intensity lasting 30-50 min) and long-term (interventions of moderate intensity of 30-50 min at least 3 times a week for 17 weeks or more) physical exercises in real-world settings have positive intervention effects on executive function. Furthermore, for acute interventions, closed skills are more efficient for inhibitory control, open skills are more efficient for working memory and cognitive flexibility, and open-continuous and closed-sequential skills are the most efficient; long-term interventions with open skills, sequential skills, and open-sequential skills are more effective. CONCLUSION Physical exercise in real-world settings has a good promotion effect on typical children and adolescents, and motor skills with open and/or sequential attributes are more helpful in improving executive function.
Collapse
|
30
|
Nicholson M, Wood RJ, Gonsalvez DG, Hannan AJ, Fletcher JL, Xiao J, Murray SS. Remodelling of myelinated axons and oligodendrocyte differentiation is stimulated by environmental enrichment in the young adult brain. Eur J Neurosci 2022; 56:6099-6114. [PMID: 36217300 PMCID: PMC10092722 DOI: 10.1111/ejn.15840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022]
Abstract
Oligodendrocyte production and myelination continues lifelong in the central nervous system (CNS), and all stages of this process can be adaptively regulated by neuronal activity. While artificial exogenous stimulation of neuronal circuits greatly enhances oligodendrocyte progenitor cell (OPC) production and increases myelination during development, the extent to which physiological stimuli replicates this is unclear, particularly in the adult CNS when the rate of new myelin addition slows. Here, we used environmental enrichment (EE) to physiologically stimulate neuronal activity for 6 weeks in 9-week-old C57BL/six male and female mice and found no increase in compact myelin in the corpus callosum or somatosensory cortex. Instead, we observed a global increase in callosal axon diameter with thicker myelin sheaths, elongated paranodes and shortened nodes of Ranvier. These findings indicate that EE induced the dynamic structural remodelling of myelinated axons. Additionally, we observed a global increase in the differentiation of OPCs and pre-myelinating oligodendroglia in the corpus callosum and somatosensory cortex. Our findings of structural remodelling of myelinated axons in response to physiological neural stimuli during young adulthood provide important insights in understanding experience-dependent myelin plasticity throughout the lifespan and provide a platform to investigate axon-myelin interactions in a physiologically relevant context.
Collapse
Affiliation(s)
- Madeline Nicholson
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Rhiannon J Wood
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - David G Gonsalvez
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Anthony J Hannan
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Jessica L Fletcher
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia.,Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
| | - Junhua Xiao
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia.,School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
| | - Simon S Murray
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| |
Collapse
|
31
|
Shi P, Feng X. Motor skills and cognitive benefits in children and adolescents: Relationship, mechanism and perspectives. Front Psychol 2022; 13:1017825. [PMID: 36478944 PMCID: PMC9721199 DOI: 10.3389/fpsyg.2022.1017825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE There is a strong interaction between motor skills and cognitive benefits for children and young people. The aim of this paper is to explore the relationship between motor skill types and their development and the cognitive benefits of children and adolescents. In turn, on this basis, it proposes pathways and mechanisms by which motor skills improve cognition, and provide a basis for subsequent teaching of skills that follow the laws of brain cognitive development. METHODS This paper summarizes the research on the relationship between different types of motor skills and their development and cognitive benefits of children and adolescents. Based on these relationships, pathways, and mechanisms for motor skills to improve cognition are tentatively proposed. RESULTS There is an overall pattern of "open > closed, strategy > interception, sequence > continuous" between motor skill types and the cognitive benefits of children and adolescents. Long-term motor skill learning practice is accompanied by increased cognitive benefits as skill proficiency increases. The dynamic interaction between motor skills and physical activity exposes children and adolescents to environmental stimuli and interpersonal interactions of varying complexity, promoting the development of agility, coordination and cardiorespiratory fitness, enhancing their motor experience, which in turn improves brain structure and functional activity. CONCLUSION Motor skills training promote cognitive efficiency in children and adolescents. Motor skill interventions that are open-ended, strategic and sequential in nature are more effective. Environmental stimuli, interpersonal interaction, agility, coordination, and cardiorespiratory fitness can be considered as skill attribute moderators of motor skills to improve cognition.
Collapse
Affiliation(s)
- Peng Shi
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Xiaosu Feng
- Physical Education College, Liaoning Normal University, Dalian, China
| |
Collapse
|
32
|
Manosso LM, Broseghini LDR, Campos JMB, Padilha APZ, Botelho MEM, da Costa MA, Abelaira HM, Gonçalves CL, Réus GZ. Beneficial effects and neurobiological aspects of environmental enrichment associated to major depressive disorder and autism spectrum disorder. Brain Res Bull 2022; 190:152-167. [PMID: 36191730 DOI: 10.1016/j.brainresbull.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022]
Abstract
A suitable enriched environment favors development but can also influence behavior and neuronal circuits throughout development. Studies have shown that environmental enrichment (EE) can be used as an essential tool or combined with conventional treatments to improve psychiatric and neurological symptoms, including major depressive disorder (MDD) and autism spectrum disorder (ASD). Both disorders affect a significant percentage of the world's population and have complex pathophysiology. Moreover, the available treatments for MDD and ASD are still inadequate for many affected individuals. Experimental models demonstrate that EE has significant positive effects on behavioral modulation. In addition, EE has effects on neurobiology, including improvement in synaptic connections and neuroplasticity, modulation of neurotransmissions, a decrease in inflammation and oxidative stress, and other neurobiology effects that can be involved in the pathophysiology of MDD and ASD. Thus, this review aims to describe the leading behavioral and neurobiological effects associated with EE in MDD and ASD.
Collapse
Affiliation(s)
- Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Lia D R Broseghini
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - José Marcelo B Campos
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Alex Paulo Z Padilha
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maria Eduarda M Botelho
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara A da Costa
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Helena M Abelaira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
33
|
Fusco A, Tieri G. Challenges and Perspectives for Clinical Applications of Immersive and Non-Immersive Virtual Reality. J Clin Med 2022; 11:4540. [PMID: 35956157 PMCID: PMC9369665 DOI: 10.3390/jcm11154540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The development of rehabilitative technologies able to increase the intensity and the amount of time for daily treatment as well as the patients' motivation and interest is a high-priority area of scientific research [...].
Collapse
Affiliation(s)
- Augusto Fusco
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Tieri
- Virtual Reality Lab, University of Rome Unitelma Sapienza, Piazza Sassari, 4, 00161 Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
34
|
Lamberti G, Sesenna G, Marina M, Ricci E, Ciardi G. Robot Assisted Gait Training in a Patient with Ataxia. Neurol Int 2022; 14:561-573. [PMID: 35893280 PMCID: PMC9326713 DOI: 10.3390/neurolint14030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Ataxia is a neurological sign characterized by motor coordination during gait/voluntary limb movements impairment. Ataxic gait leads to disability and worsening of quality of life; physiotherapy intervention is recommended to improve motor function. Recent studies showed benefits due to repetitive robotized assisted gait training using a static exoskeleton in patients affected by acquired ataxias. The aim of the study was to perform a preliminary evaluation of the short-term effects of overground UAN.GO®-assisted gait training in an adult patient with ataxia but with no clear genetic pattern. Methods: This case report study was conducted on a single male adult patient, who presented ataxic spastic gait, posterior chain tightness, pes cavus, and unstable standing position. The patient underwent two preliminary sessions to take part in the study. Treatment protocol planned 10 sessions and each one lasted 80 min, 60 of which were spent in gait training using the mobile overground exoskeleton UAN.GO®. At T1 (start of the study) and T10 (final evaluation) assessments using the Scale for the Assessment and Rating of Ataxia, Berg Balance Scale, 6-Minute Walking Test, and Likert Scale were administered. Space-time parameters of gait cycle were also evaluated: left and right step length, stance and swing percentages. Results: improvements on the Scale for the Assessment and Rating of Ataxia, Berg Balance Scale, and in the distance travelled at 6-Minute Walking Test emerged. The patient gave a positive opinion towards the treatment, showed by Likert Scale results. Kinematic gait analysis showed more physiological step length, stance and swing percentages, joint angles. The patient completed the training program with an excellent compliance. Discussion: Since these encouraging outcomes were obtained, it is possible to consider robot-assisted gait training performed with UAN.GO® as a therapeutic option to improve motor and functional performance in patients with ataxic gait.
Collapse
Affiliation(s)
- Gianfranco Lamberti
- Spinal Unit, Azienda Usl, 29121 Piacenza, Italy; (G.L.); (E.R.)
- Degree Course of Physiotherapy, University of Parma-Piacenza Training Center, Viale Abruzzo 12, 29017 Fiorenzuola d’Arda, Italy
| | | | - Martina Marina
- Degree Course of Physiotherapy Student, University of Parma-Piacenza Training Center, Viale Abruzzo 12, 29017 Fiorenzuola d’Arda, Italy;
| | - Emanuela Ricci
- Spinal Unit, Azienda Usl, 29121 Piacenza, Italy; (G.L.); (E.R.)
- Degree Course of Physiotherapy, University of Parma-Piacenza Training Center, Viale Abruzzo 12, 29017 Fiorenzuola d’Arda, Italy
| | - Gianluca Ciardi
- Spinal Unit, Azienda Usl, 29121 Piacenza, Italy; (G.L.); (E.R.)
- Degree Course of Physiotherapy, University of Parma-Piacenza Training Center, Viale Abruzzo 12, 29017 Fiorenzuola d’Arda, Italy
- Correspondence:
| |
Collapse
|
35
|
Perry BL, McConnell WR, Coleman ME, Roth AR, Peng S, Apostolova LG. Why the cognitive "fountain of youth" may be upstream: Pathways to dementia risk and resilience through social connectedness. Alzheimers Dement 2022; 18:934-941. [PMID: 34482619 PMCID: PMC8897512 DOI: 10.1002/alz.12443] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Research suggests social connectedness may help older adults with dementia maintain cognitive functionality and quality of life. However, little is known about its specific social and biological mechanisms. This paper proposes two pathways through social bridging (i.e., cognitive enrichment through expansive social networks) and bonding (i.e., neuroendocrine benefits of integration in cohesive social networks). We provide preliminary evidence for these pathways using neuroimaging, cognitive, and egocentric social network data from the Social Networks and Alzheimer's Disease (SNAD) study (N = 280). We found that network size, density, and presence of weak ties (i.e., social bridging) moderated the association between brain atrophy and cognitive function, while marriage/cohabitation (i.e., social bonding) moderated the association between perceived stress and cognitive function. We argue that social connectedness may have downstream implications for multiple pathophysiological processes in cognitive aging, even negating existing structural damage to the brain, making it a strong candidate for clinical or policy intervention.
Collapse
Affiliation(s)
- Brea L Perry
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| | - Will R McConnell
- Department of Sociology, Florida Atlantic University, Boca Raton, Florida, USA
| | - Max E Coleman
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| | - Adam R Roth
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| | - Siyun Peng
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| | - Liana G Apostolova
- Departments of Neurology, Radiology and Medical and Molecular Genetics, Indiana University School of Medicine, IU Health Neuroscience Center, Indianapolis, Indiana, USA
| |
Collapse
|
36
|
Maffei M, Giordano A. Leptin, the brain and energy homeostasis: From an apparently simple to a highly complex neuronal system. Rev Endocr Metab Disord 2022; 23:87-101. [PMID: 33822303 DOI: 10.1007/s11154-021-09636-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Leptin, produced and secreted by white adipose tissue in tight relationship with adipose mass, informs the brain about the status of the energy stores serving as the main peripheral signal for energy balance regulation through interaction with a multitude of highly interconnected neuronal populations. Most obese patients display resistance to the anorectic effect of the hormone. The present review unravels the multiple levels of complexity that trigger hypothalamic response to leptin with the objective of highlighting those critical hubs that, mainly in the hypothalamic arcuate nucleus, may undergo obesity-induced alterations and create an obstacle to leptin action. Several mechanisms underlying leptin resistance have been proposed, possibly representing useful targets to empower leptin effects. Among these, a special focus is herein dedicated to detail how leptin gains access into the brain and how neuronal plasticity may interfere with leptin function.
Collapse
Affiliation(s)
- Margherita Maffei
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy.
- Obesity and Lipodystrophy Center, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020, Ancona, Italy.
| |
Collapse
|
37
|
Abstract
Sleep homeostasis is a complex neurobiologic phenomenon involving a number of molecular pathways, neurotransmitter release, synaptic activity, and factors modulating neural networks. Sleep plasticity allows for homeostatic optimization of neural networks and the replay-based consolidation of specific circuits, especially important for cognition, behavior, and information processing. Furthermore, research is currently moving from an essentially brain-focused to a more comprehensive view involving other systems, such as the immune system, hormonal status, and metabolic pathways. When dysfunctional, these systems contribute to sleep loss and fragmentation as well as to sleep need. In this chapter, the implications of neural plasticity and sleep homeostasis for the diagnosis and treatment of some major sleep disorders, such as insomnia and sleep deprivation, obstructive sleep apnea syndrome, restless legs syndrome, REM sleep behavior disorder, and narcolepsy are discussed in detail with their therapeutical implications. This chapter highlights that sleep is necessary for the maintenance of an optimal brain function and is sensitive to both genetic background and environmental enrichment. Even in pathologic conditions, sleep acts as a resilient plastic state that consolidates prior information and prioritizes network activity for efficient brain functioning.
Collapse
|
38
|
Skirzewski M, Molotchnikoff S, Hernandez LF, Maya-Vetencourt JF. Multisensory Integration: Is Medial Prefrontal Cortex Signaling Relevant for the Treatment of Higher-Order Visual Dysfunctions? Front Mol Neurosci 2022; 14:806376. [PMID: 35110996 PMCID: PMC8801884 DOI: 10.3389/fnmol.2021.806376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
In the mammalian brain, information processing in sensory modalities and global mechanisms of multisensory integration facilitate perception. Emerging experimental evidence suggests that the contribution of multisensory integration to sensory perception is far more complex than previously expected. Here we revise how associative areas such as the prefrontal cortex, which receive and integrate inputs from diverse sensory modalities, can affect information processing in unisensory systems via processes of down-stream signaling. We focus our attention on the influence of the medial prefrontal cortex on the processing of information in the visual system and whether this phenomenon can be clinically used to treat higher-order visual dysfunctions. We propose that non-invasive and multisensory stimulation strategies such as environmental enrichment and/or attention-related tasks could be of clinical relevance to fight cerebral visual impairment.
Collapse
Affiliation(s)
- Miguel Skirzewski
- Rodent Cognition Research and Innovation Core, University of Western Ontario, London, ON, Canada
| | - Stéphane Molotchnikoff
- Département de Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Génie Electrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luis F. Hernandez
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - José Fernando Maya-Vetencourt
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Synaptic Neuroscience, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- *Correspondence: José Fernando Maya-Vetencourt
| |
Collapse
|
39
|
Min J, Lai Z, Wang H, Zuo Z. Preoperative environment enrichment preserved neuroligin 1 expression possibly via epigenetic regulation to reduce postoperative cognitive dysfunction in mice. CNS Neurosci Ther 2021; 28:619-629. [PMID: 34882968 PMCID: PMC8928916 DOI: 10.1111/cns.13777] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Postoperative cognitive dysfunction (POCD) is a common and significant syndrome. Our previous studies have shown that surgery reduces dendritic arborization and spine density and that environment enrichment (EE) reduces POCD. Neuroligin 1 is a postsynaptic protein involved in the formation of postsynaptic protein complex. This study was designed to determine the role of neuroligin 1 in the protection of EE against POCD and the mechanisms for EE to affect neuroligin 1 expression. METHODS Eight-week-old C57BL/6J male mice with or without EE for 3, 7, or 14 days had right carotid artery exposure under isoflurane anesthesia. An anti-neuroligin 1 antibody at 1.5 µg/mouse was injected intracerebroventricularly at one and two weeks before the surgery. Mice were subjected to the Barnes maze and fear conditioning tests from one week after the surgery. Cerebral cortex and hippocampus were harvested after surgery. RESULTS Mice with surgery had poorer performance in the Barnes maze and fear conditioning tests than control mice. EE for 2 weeks, but not EE for 3 or 7 days, improved the performance of surgery mice in these tests. Surgery reduced neuroligin 1 in the hippocampus. Preoperative EE for 2 weeks attenuated this reduction. The anti-neuroligin 1 antibody worsened the performance of mice with surgery plus EE in the Barnes maze and fear conditioning tests. Surgery increased histone deacetylase activity and decreased the acetylated histone in the hippocampus. EE attenuated these surgery effects. CONCLUSION Our results suggest that preoperative EE for 2 weeks reduces POCD. This effect may be mediated by preserving neuroligin 1 expression via attenuating surgery-induced epigenetic dysregulation in the brain.
Collapse
Affiliation(s)
- Jia Min
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anesthesiology, First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zhongmeng Lai
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui Wang
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
40
|
Arabin B, Hellmeyer L, Maul J, Metz GAS. Awareness of maternal stress, consequences for the offspring and the need for early interventions to increase stress resilience. J Perinat Med 2021; 49:979-989. [PMID: 34478615 DOI: 10.1515/jpm-2021-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
Experimental and clinical studies suggest that prenatal experiences may influence health trajectories up to adulthood and high age. According to the hypothesis of developmental origins of health and disease exposure of pregnant women to stress, nutritional challenges, infection, violence, or war may "program" risks for diseases in later life. Stress and anxieties can exist or be provoked in parents after fertility treatment, after information or diagnosis of fetal abnormalities and demand simultaneous caring concepts to support the parents. In vulnerable groups, it is therefore important to increase the stress resilience to avoid harmful consequences for the growing child. "Enriched environment" defines a key paradigm to decipher how interactions between genes and environment change the structure and function of the brain. The regulation of the fetal hippocampal neurogenesis and morphology during pregnancy is one example of this complex interaction. Animal experiments have demonstrated that an enriched environment can revert consequences of stress in the offspring during critical periods of brain plasticity. Epigenetic markers of stress or wellbeing during pregnancy might even be diagnosed by fragments of placental DNA in the maternal circulation that show characteristic methylation patterns. The development of fetal senses further illustrates how external stimulation may impact individual preferences. Here, we therefore not only discuss how maternal stress influences cognitive development and resilience, but also design possibilities of non-invasive interventions for both mothers and children summarized and evaluated in the light of their potential to improve the health of future generations.
Collapse
Affiliation(s)
- Birgit Arabin
- Clara Angela Foundation, Berlin, Germany.,Department of Obstetrics, Charité, Humboldt University Berlin, Berlin, Germany
| | - Lars Hellmeyer
- Clara Angela Foundation, Berlin, Germany.,Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | | | - Gerlinde A S Metz
- Clara Angela Foundation, Berlin, Germany.,Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
41
|
Yang S, Zhang S, Tang W, Fang S, Zhang H, Zheng J, Liu X, Zhang Y, Zhao L, Huang L, Li B. Enriched Environment Prevents Surgery-Induced Persistent Neural Inhibition and Cognitive Dysfunction. Front Aging Neurosci 2021; 13:744719. [PMID: 34658844 PMCID: PMC8517535 DOI: 10.3389/fnagi.2021.744719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
Perioperative neurocognitive disorders (PND) encompass short-term delirium and long-term cognitive dysfunction. Aging increases the susceptibility to PND, yet the neural mechanism is not known. In this study, we monitored the dynamic changes of neuronal activity in the prelimbic cortex before and after surgery. We found that anesthesia combined with surgery, but not anesthesia alone, induced a prolonged decrease in neuronal activity during the post-operation period in the aged mice, but not in the adult mice. The prolonged decrease in neuronal activity was accompanied by surgery-induced microglial activation and proinflammatory cytokines expression. Importantly, we found that the enriched environment (EE) completely prevented both the prolonged neural inhibition and neuroinflammation, and improved cognitive function in the aged mice. These results indicate that the prolonged neural inhibition correlated to PND and that EE before the surgery could effectively alleviate the surgery- induced cognitive dysfunction.
Collapse
Affiliation(s)
- Shana Yang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenting Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shunchang Fang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyang Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieyan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Liu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhang
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang Zhao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lianyan Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Khurana S, Rao BK, Lewis LE, Kumaran SD, Kamath A, Einspieler C, Dusing SC. Neonatal PT Improves Neurobehavior and General Movements in Moderate to Late Preterm Infants Born in India: An RCT. Pediatr Phys Ther 2021; 33:208-216. [PMID: 34618744 DOI: 10.1097/pep.0000000000000824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To examine whether a structured neonatal physical therapy program (SNP) improves neurobehavior and general movements in moderate to late preterm (MLP) infants. METHODS Sixty MLP infants participated in this clinical trial. After baseline assessment using the Neurobehavioral Assessment of Preterm Infant (NAPI) and Prechtl General Movements (GMs) Assessment, infants were randomly allocated to a usual care (n = 30) or an SNP group (n = 30) and continued receiving usual care. The SNP group received intervention for 90 minutes/day, 6 days/week until discharge. Changes in neurobehavior and GMs were assessed at hospital discharge. RESULTS Changes in scores on scarf sign and motor development and vigor clusters of NAPI document an improvement in the SNP group. The proportion of infants with poor repertoire GMs also decreased more in the SNP group than in the usual care group. CONCLUSION The SNP may be effective in improving some aspects of neurobehavior and quality of GMs in MLP infants. WHAT THIS ADDS TO THE EVIDENCE The addition of a structured neonatal physical therapy program to usual care can promote neurobehavioral organization and improve the quality of general movements in moderate and late preterm infants in India.
Collapse
Affiliation(s)
- Sonia Khurana
- Department of Physical Therapy (Dr Khurana), Motor Development Lab, Virginia Commonwealth University, Richmond, Virginia; Department of Physiotherapy (Drs Rao and Kumaran), Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India; Department of Paediatrics (Drs Lewis), Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India; Department of Data Science (Dr Kamath), Manipal Academy of Higher Education, Manipal, Karnataka, India; Division of Phoniatrics (Dr Einspieler), Medical University of Graz, Graz, Austria; Division of Biokinesiology and Physical Therapy (Dr Dusing), University of Southern California, Los Angeles, California
| | | | | | | | | | | | | |
Collapse
|
43
|
Fazzi E, Micheletti S, Calza S, Merabet L, Rossi A, Galli J, Early Visual Intervention Study Group. Early visual training and environmental adaptation for infants with visual impairment. Dev Med Child Neurol 2021; 63:1180-1193. [PMID: 34813110 PMCID: PMC8518055 DOI: 10.1111/dmcn.14865] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/04/2022]
Abstract
AIM To evaluate the effectiveness of early visual training and environmental adaptation on visual function and neurological development in infants with visual impairment. METHOD This was a pilot intervention clinical trial study. Thirty infants (mean age 5.9mo, SD 2.1mo, range 4-11mo; 16 males, 14 females) with peripheral visual impairment (PVI, n=15) or cerebral visual impairment (CVI, n=15) participated in a 6-month visual intervention programme. Thirty matched infants (mean age 6mo, SD 1.4mo, range 4-9mo; 18 males, 12 females) served as a comparison group. Primary outcome measures were visual acuity, contrast sensitivity, and qualitative ocular motor functions. Secondary outcomes were scores on the Griffiths Mental Developmental Scales (GMDS). RESULTS The treatment group showed a significant improvement in all the primary outcomes (p<0.01). The comparison group improved only in visual acuity and contrast sensitivity (p<0.01). The treatment group showed greater improvement than the comparison group in visual fixation (p=0.033) and smooth pursuit (p<0.01). The CVI subgroup showed greater improvement in visual acuity than the PVI subgroup (p<0.01). GMDS subscales of hand-eye coordination (p=0.01) and performance (p<0.01) increased in the treatment group, while the total score of the comparison group decreased, driven by language (p=0.039) and hand-eye coordination (p=0.025) subscales. INTERPRETATION Results suggest that, in infants with visual impairment, visual function and certain developmental outcomes improve in response to early visual training and environmental adaptation, in an interactive context. What this paper adds Early visual training and environmental adaptation are associated with enhanced visual acuity and smooth pursuit. Early visual training and environmental adaptation are associated with an improvement of neurological developmental outcome. Performance, hand-eye coordination, and language scores in Griffiths Mental Developmental Scales increase after visual training. After training, visual acuity improves more in infants with cerebral rather than anterior visual impairment. Type and complexity of visual impairment contribute to determine infants' response to training.
Collapse
Affiliation(s)
- Elisa Fazzi
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly,Unit of Child Neurology and PsychiatryASST Spedali Civili of BresciaBresciaItaly
| | - Serena Micheletti
- Unit of Child Neurology and PsychiatryASST Spedali Civili of BresciaBresciaItaly
| | - Stefano Calza
- Unit of Biostatistics and BioinformaticsDepartment of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Lotfi Merabet
- The Laboratory for Visual NeuroplasticityDepartment of OphthalmologyMassachusetts Eye and EarHarvard Medical SchoolBostonMAUSA
| | - Andrea Rossi
- Unit of Child Neurology and PsychiatryASST Spedali Civili of BresciaBresciaItaly
| | - Jessica Galli
- Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly,Unit of Child Neurology and PsychiatryASST Spedali Civili of BresciaBresciaItaly
| | | |
Collapse
|
44
|
Bonfanti L, Seki T. The PSA-NCAM-Positive "Immature" Neurons: An Old Discovery Providing New Vistas on Brain Structural Plasticity. Cells 2021; 10:2542. [PMID: 34685522 PMCID: PMC8534119 DOI: 10.3390/cells10102542] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Studies on brain plasticity have undertaken different roads, tackling a wide range of biological processes: from small synaptic changes affecting the contacts among neurons at the very tip of their processes, to birth, differentiation, and integration of new neurons (adult neurogenesis). Stem cell-driven adult neurogenesis is an exception in the substantially static mammalian brain, yet, it has dominated the research in neurodevelopmental biology during the last thirty years. Studies of comparative neuroplasticity have revealed that neurogenic processes are reduced in large-brained mammals, including humans. On the other hand, large-brained mammals, with respect to rodents, host large populations of special "immature" neurons that are generated prenatally but express immature markers in adulthood. The history of these "immature" neurons started from studies on adhesion molecules carried out at the beginning of the nineties. The identity of these neurons as "stand by" cells "frozen" in a state of immaturity remained un-detected for long time, because of their ill-defined features and because clouded by research ef-forts focused on adult neurogenesis. In this review article, the history of these cells will be reconstructed, and a series of nuances and confounding factors that have hindered the distinction between newly generated and "immature" neurons will be addressed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 160-8402, Japan
| |
Collapse
|
45
|
Bonfanti L, Charvet CJ. Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. Int J Mol Sci 2021; 22:9358. [PMID: 34502267 PMCID: PMC8431131 DOI: 10.3390/ijms22179358] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | | |
Collapse
|
46
|
Zocher S, Overall RW, Lesche M, Dahl A, Kempermann G. Environmental enrichment preserves a young DNA methylation landscape in the aged mouse hippocampus. Nat Commun 2021; 12:3892. [PMID: 34162876 PMCID: PMC8222384 DOI: 10.1038/s41467-021-23993-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
The decline of brain function during aging is associated with epigenetic changes, including DNA methylation. Lifestyle interventions can improve brain function during aging, but their influence on age-related epigenetic changes is unknown. Using genome-wide DNA methylation sequencing, we here show that experiencing a stimulus-rich environment counteracts age-related DNA methylation changes in the hippocampal dentate gyrus of mice. Specifically, environmental enrichment prevented the aging-induced CpG hypomethylation at target sites of the methyl-CpG-binding protein Mecp2, which is critical to neuronal function. The genes at which environmental enrichment counteracted aging effects have described roles in neuronal plasticity, neuronal cell communication and adult hippocampal neurogenesis and are dysregulated with age-related cognitive decline in the human brain. Our results highlight the stimulating effects of environmental enrichment on hippocampal plasticity at the level of DNA methylation and give molecular insights into the specific aspects of brain aging that can be counteracted by lifestyle interventions.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Mathias Lesche
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- DRESDEN-concept Genome Center c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- DRESDEN-concept Genome Center c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
47
|
Zhang J, Li SJ, Miao W, Zhang X, Zheng JJ, Wang C, Yu X. Oxytocin Regulates Synaptic Transmission in the Sensory Cortices in a Developmentally Dynamic Manner. Front Cell Neurosci 2021; 15:673439. [PMID: 34177467 PMCID: PMC8221398 DOI: 10.3389/fncel.2021.673439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
The development and stabilization of neuronal circuits are critical to proper brain function. Synapses are the building blocks of neural circuits. Here we examine the effects of the neuropeptide oxytocin on synaptic transmission in L2/3 pyramidal neurons of the barrel field of the primary somatosensory cortex (S1BF). We find that perfusion of oxytocin onto acute brain slices significantly increases the frequency of miniature excitatory postsynaptic currents (mEPSC) of S1BF L2/3 pyramidal neurons at P10 and P14, but reduces it at the later ages of P22 and P28; the transition occurs at around P18. Since oxytocin expression is itself regulated by sensory experience, we also examine whether the effects of oxytocin on excitatory synaptic transmission correlate with that of sensory experience. We find that, indeed, the effects of sensory experience and oxytocin on excitatory synaptic transmission of L2/3 pyramidal neurons both peak at around P14 and plateau around P18, suggesting that they regulate a specific form of synaptic plasticity in L2/3 pyramidal neurons, with a sensitive/critical period ending around P18. Consistently, oxytocin receptor (Oxtr) expression in glutamatergic neurons of the upper layers of the cerebral cortex peaks around P14. By P28, however, Oxtr expression becomes more prominent in GABAergic neurons, especially somatostatin (SST) neurons. At P28, oxytocin perfusion increases inhibitory synaptic transmission and reduces excitatory synaptic transmission, effects that result in a net reduction of neuronal excitation, in contrast to increased excitation at P14. Using oxytocin knockout mice and Oxtr conditional knockout mice, we show that loss-of-function of oxytocin affects baseline excitatory synaptic transmission, while Oxtr is required for oxytocin-induced changes in excitatory synaptic transmission, at both P14 and P28. Together, these results demonstrate that oxytocin has complex and dynamic functions in regulating synaptic transmission in cortical L2/3 pyramidal neurons. These findings add to existing knowledge of the function of oxytocin in regulating neural circuit development and plasticity.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | - Shu-Jing Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wanying Miao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaodi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Jing Zheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, China
| |
Collapse
|
48
|
Buchs G, Haimler B, Kerem M, Maidenbaum S, Braun L, Amedi A. A self-training program for sensory substitution devices. PLoS One 2021; 16:e0250281. [PMID: 33905446 PMCID: PMC8078811 DOI: 10.1371/journal.pone.0250281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Sensory Substitution Devices (SSDs) convey visual information through audition or touch, targeting blind and visually impaired individuals. One bottleneck towards adopting SSDs in everyday life by blind users, is the constant dependency on sighted instructors throughout the learning process. Here, we present a proof-of-concept for the efficacy of an online self-training program developed for learning the basics of the EyeMusic visual-to-auditory SSD tested on sighted blindfolded participants. Additionally, aiming to identify the best training strategy to be later re-adapted for the blind, we compared multisensory vs. unisensory as well as perceptual vs. descriptive feedback approaches. To these aims, sighted participants performed identical SSD-stimuli identification tests before and after ~75 minutes of self-training on the EyeMusic algorithm. Participants were divided into five groups, differing by the feedback delivered during training: auditory-descriptive, audio-visual textual description, audio-visual perceptual simultaneous and interleaved, and a control group which had no training. At baseline, before any EyeMusic training, participants SSD objects’ identification was significantly above chance, highlighting the algorithm’s intuitiveness. Furthermore, self-training led to a significant improvement in accuracy between pre- and post-training tests in each of the four feedback groups versus control, though no significant difference emerged among those groups. Nonetheless, significant correlations between individual post-training success rates and various learning measures acquired during training, suggest a trend for an advantage of multisensory vs. unisensory feedback strategies, while no trend emerged for perceptual vs. descriptive strategies. The success at baseline strengthens the conclusion that cross-modal correspondences facilitate learning, given SSD algorithms are based on such correspondences. Additionally, and crucially, the results highlight the feasibility of self-training for the first stages of SSD learning, and suggest that for these initial stages, unisensory training, easily implemented also for blind and visually impaired individuals, may suffice. Together, these findings will potentially boost the use of SSDs for rehabilitation.
Collapse
Affiliation(s)
- Galit Buchs
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Department of Cognitive Science, Faculty of Humanities, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (AA); (GB)
| | - Benedetta Haimler
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Center of Advanced Technologies in Rehabilitation (CATR), The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Menachem Kerem
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
| | - Shachar Maidenbaum
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Department of Biomedical Engineering, Ben Gurion University, Beersheba, Israel
| | - Liraz Braun
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel
- * E-mail: (AA); (GB)
| |
Collapse
|
49
|
Goldstein EZ, Pertsovskaya V, Forbes TA, Dupree JL, Gallo V. Prolonged Environmental Enrichment Promotes Developmental Myelination. Front Cell Dev Biol 2021; 9:665409. [PMID: 33981706 PMCID: PMC8107367 DOI: 10.3389/fcell.2021.665409] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 01/19/2023] Open
Abstract
Postnatal neurodevelopment is profoundly influenced by environmental experiences. Environmental enrichment is a commonly used experimental paradigm that has uncovered numerous examples of experience-dependent plasticity in health and disease. However, the role of environmental enrichment in normal development, especially glial development, is largely unexplored. Oligodendrocytes, the myelin-forming glia in the central nervous system, provide metabolic support to axons and establish efficient saltatory conduction by producing myelin. Indeed, alterations in myelin are strongly correlated with sensory, cognitive, and motor function. The timing of developmental myelination is uniquely positioned to be influenced by environmental stimuli, as peak myelination occurs postnatally and continues into adulthood. To determine if developmental myelination is impacted by environmental experience, mice were housed in an enriched environment during peak myelination through early adulthood. Using translating ribosome affinity purification, oligodendrocyte-specific RNAs were isolated from subcortical white matter at various postnatal ages. RNA-sequencing revealed that differences in the oligodendrocyte translatome were predominantly evident after prolonged and continuous environmental enrichment. These translational changes corresponded with altered oligodendrocyte lineage cell dynamics and enhanced myelination. Furthermore, consistent with increased developmental myelination, enriched mice displayed enhanced motor coordination on a beam walking task. These findings indicate that protracted environmental stimulation is sufficient to modulate developmental myelination and to promote behavioral function.
Collapse
Affiliation(s)
- Evan Z Goldstein
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, United States
| | - Vera Pertsovskaya
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Thomas A Forbes
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, United States
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, United States
| |
Collapse
|
50
|
Reiser S, Pohlmann DM, Blancke T, Koops U, Trautner J. Environmental enrichment during early rearing provokes epigenetic changes in the brain of a salmonid fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100838. [PMID: 33930773 DOI: 10.1016/j.cbd.2021.100838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Environmental enrichment is used to increase structural complexity of captive rearing systems and has been shown to provoke a wide range of effects in the kept animals. Here we studied the effects of enrichment on DNA methylation patterns at the whole-genome level in the brain of rainbow trout reared in an aquaculture setting. We investigated the epigenetic effects between different types of enrichment (natural substrate vs. artificial substrate vs. barren) in three developmental stages (egg vs. alevin vs. fry) and as enrichment was discontinued at the fingerling stage by means of the Methylation-Sensitive Amplified Polymorphism (MSAP) technique. While enrichment did not affect growth in body size, we found enrichment to affected global DNA methylation in the brain at the egg and alevin stage, i.e., the period during development where the animals are in close physical contact with the substrate. At these stages, trout reared on the two substrates differed more from the control than the substrates differed from each other. Only minor differences between rearing environments were detected following emergence at the fry stage. When enrichment was discontinued during the rearing of fingerlings, no differences in DNA methylation patterns were observed between the rearing environments. Our results provide further evidence on the effects of enrichment in the captive rearing of fish and show that enrichment can even modulate epigenetic patterns. The effect on the epigenome may be causal for the previously reported effects of enrichment on gene expression, behaviour and brain development.
Collapse
Affiliation(s)
- Stefan Reiser
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany.
| | | | - Tina Blancke
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| | - Udo Koops
- Thünen Institute of Fisheries Ecology, Wulfsdorfer Weg 204, 22926 Ahrensburg, Germany
| | - Jochen Trautner
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| |
Collapse
|