1
|
Cao Z, Tan Q, Yang H, Xu C. Shared genetic architecture between leukocyte telomere length and Alzheimer's disease. Alzheimers Res Ther 2025; 17:108. [PMID: 40382655 PMCID: PMC12085009 DOI: 10.1186/s13195-025-01757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Epidemiological and clinical studies have reported an association between leukocyte telomere length (LTL) and Alzheimer's disease (AD). However, genetic association between the two phenotypes remains largely unknown. We aimed to elucidate the potential shared genetic architecture between LTL and AD. METHODS Summary statistics from genome-wide association studies were obtained from large-scale biobank in European-ancestry populations for LTL (N = 472,174) and AD (71,880 cases, 383,378 controls). We examined the global and local genetic correlation between LTL and AD using linkage-disequilibrium score regression and ρ-HESS. We applied the bivariate causal mixture model (MiXeR) to calculate the number of shared genetic causal variants, and the conditional/conjunctional false discovery rate (condFDR/conjFDR) framework to identify specific shared loci between LTL and AD. Bidirectional two-sample Mendelian randomization (MR) were used to explore the causal associations between LTL and AD. RESULTS We detected a significant genetic correlation between LTL and AD (rg = -0.168). Partitioning the whole genome into 1703 almost independent regions, we observed a significant local genetic correlation for LTL and AD at 19q13.32. MiXeR estimated a total of 360 variants affecting LTL, of which 16 was estimated to influence AD. The condFDR revealed an essential genetic enrichment in LTL conditional on associations with AD, and vice versa. We next identified 8 shared genomic loci between LTL and AD using conjFDR method, of which 4 are novel loci for both the phenotypes. Moreover, 3 shared loci were identified as eQTLs (rs3098168, rs4780338 and rs2680702). All shared loci mapped a subset of 48 credible genes, including USP8, DEXI and APOE. Gene-set analysis identified 18 putative gene sets enriched with the genes mapped to the shared loci. MR analysis suggested that genetically determined AD was causally associated with LTL. CONCLUSION Our study identified specific shared loci between LTL and AD, providing new insights for polygenic overlap and molecular mechanisms, and highlighting new opportunities for future experimental validation.
Collapse
Affiliation(s)
- Zhi Cao
- Department of Psychiatry, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Public Health, Hangzhou Normal University, NO.2318, Yuhangtang Road, Yuhang District, Hangzhou, 311121, China
| | - Qilong Tan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxi Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chenjie Xu
- School of Public Health, Hangzhou Normal University, NO.2318, Yuhangtang Road, Yuhang District, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Yu J, Zhang Y, Pang CP, Tham CC, Yam JC, Chen LJ. Association between leukocyte telomere length and incident glaucoma: A prospective UK biobank study. Eye (Lond) 2025:10.1038/s41433-025-03838-7. [PMID: 40335681 DOI: 10.1038/s41433-025-03838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Leukocyte telomere length (LTL) has been associated with various diseases, including age-related eye diseases such as cataract and age-related macular degeneration. However, the role of LTL in the longitudinal development of glaucoma is still unknown. Here we prospectively evaluate the association of LTL with glaucoma incidence and related traits, in the UK Biobank cohort. METHODS The study cohort included 419,603 participants with complete baseline data for glaucoma analyses. Multivariable Cox proportional hazards models were used to evaluate the association between LTL and the risk of glaucoma incidence, and multivariable linear regression was employed to test the association between LTL and glaucoma-related traits. RESULTS During a 13.58-year follow-up period, 7385 (1.76%) participants developed glaucoma. No association between LTL and incident glaucoma was found in either Model 1 (adjusted for age, sex, ethnicity and the ancestry components; HR = 1.011, 95% CI: 0.990-1.033; P = 0.311), or Model 2 (additionally adjusted for smoking status, alcohol consumption, body mass index, systolic blood pressure, education level, Townsend Deprivation Index, polygenic risk score for glaucoma, and history of diabetes and cardiovascular diseases; HR = 1.010, 95% CI: 0.988-1.032; P = 0.367). Non-significant associations were also observed for glaucoma-related traits, including the retinal nerve fibre layer, ganglion cell-inner plexiform layer, and intraocular pressure with LTL (all P-values > 0.05), but LTL was associated with a slightly increased vertical cup-to-disc ratio (P = 0.009). CONCLUSIONS This study suggested that LTL is not a major biomarker for incident glaucoma in the UK Biobank population. Further studies in different populations are warranted.
Collapse
Affiliation(s)
- Jun Yu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yuzhou Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, Hong Kong.
- Hong Kong Eye Hospital, Hong Kong, Hong Kong.
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
- Hong Kong Eye Hospital, Hong Kong, Hong Kong.
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Barros AGDA, Soares TO, Lage AFA, Cintra MTG, de Paula JJ, Malheiro OB, Falcão AE, Nogueira CAC, de Carvalho LB, Romano Silva MA, de Miranda DM, Viana BDM, Rosa DVF, Bicalho MAC. Leukocyte telomere attrition in cognitive decline: associations with APOE genotype and cardiovascular risk factors. Front Aging Neurosci 2025; 17:1557016. [PMID: 40303469 PMCID: PMC12037525 DOI: 10.3389/fnagi.2025.1557016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Telomere shortening represents a fundamental mechanism of cellular aging potentially implicated in neurodegenerative processes. This study investigated the complex associations among leukocyte telomere length, cardiovascular risk profiles, and APOE polymorphisms in age-related cognitive decline. Through a cross-sectional analysis of 90 participants stratified by cognitive status into three groups: cognitively unimpaired (CU), mild cognitive impairment (MCI), and Alzheimer's Disease (AD), we quantified relative telomere length using quantitative PCR, performed APOE genotyping and assessed cardiovascular risk factors. Quantitative analysis revealed significantly reduced telomere length in the AD group compared to CU and MCI groups. Multivariate regression analysis identified cognitive status as an independent predictor of telomere length (β = -0.468, p < 0.001). APOE ε4 carrier status showed higher prevalence in AD subjects as expected. Cardiovascular risk factors demonstrated no significant correlation with telomere length across cognitive groups. Our findings establish a robust association between telomere shortening and advanced cognitive impairment in AD, suggesting potential utility as a neurodegenerative biomarker. This relationship appears independent of traditional cardiovascular risk factors, highlighting the complexity of cellular aging mechanisms in neurodegeneration.
Collapse
|
4
|
Wang Q, Liu F, Cai B, Wang X, Deng Y, Chen T. Telomere Length, Brain Imaging-Derived Phenotypes, and Alzheimer's Disease: Mendelian Randomization Analysis. Mol Neurobiol 2025:10.1007/s12035-025-04913-6. [PMID: 40220244 DOI: 10.1007/s12035-025-04913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Previous studies have reported a correlation between telomere length (TL) and Alzheimer's disease (AD); however, the specific biological mechanisms supporting this association remain unclear. We used two-sample Mendelian randomization (MR) to systematically explore the putative causal relationships between TL, brain imaging-derived phenotypes (IDPs), and AD, while further evaluating the mediating role of IDPs using both two-step MR and multivariable MR. In addition, we utilized several independent validation cohorts to repeat the analysis, further strengthening our inferences. The MR analysis showed that a longer TL was causally associated with a lower risk for AD (OR, 0.84; 95% CI, 0.75 to 0.93; P = 0.001). In addition, the subsequent two-step MR results indicate that nine brain IDPs partially mediate the effect of TL on AD. The inverse association of genetically predicted TL with AD was attenuated after adjusting for these IDPs in multivariable MR. Our study provides further evidence for the causal relationship between TL and AD, with IDPs potentially partially mediating this association. Therefore, telomere biology may be a potential pathway involved in AD development, and identifying the important role of telomeres can draw more attention to the development of telomere-related diagnostics, treatments, and AD therapies.
Collapse
Affiliation(s)
- Qitong Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Fang Liu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Benchi Cai
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Xinyu Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Yidong Deng
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
- Hainan Provincial Bureau of Disease Prevention and Control, Haikou, 570100, China.
| |
Collapse
|
5
|
Salberg S, Smith MJ, Lamont R, Chen Z, Beauchamp MH, Craig W, Doan Q, Gravel J, Zemek R, Lannin NA, Yeates KO, Mychasiuk R. Shorter Telomere Length Is Associated With Older Age, Poor Sleep Hygiene, and Orthopedic Injury, but Not Mild Traumatic Brain Injury, in a Cohort of Canadian Children. J Head Trauma Rehabil 2025; 40:E154-E162. [PMID: 39019487 DOI: 10.1097/htr.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
BACKGROUND Predicting recovery following pediatric mild traumatic brain injury (mTBI) remains challenging. The identification of objective biomarkers for prognostic purposes could improve clinical outcomes. Telomere length (TL) has previously been used as a prognostic marker of cellular health in the context of mTBI and other neurobiological conditions. While psychosocial and environmental factors are associated with recovery outcomes following pediatric mTBI, the relationship between these factors and TL has not been investigated. This study sought to examine the relationships between TL and psychosocial and environmental factors, in a cohort of Canadian children with mTBI or orthopedic injury (OI). METHODS Saliva was collected at a postacute (median 7 days) timepoint following injury to assess TL from a prospective longitudinal cohort of children aged 8 to 17 years with either mTBI (n = 202) or OI (n = 90), recruited from 3 Canadian sites. Questionnaires regarding psychosocial and environmental factors were obtained at a postacute follow-up visit and injury outcomes were assessed at a 3-month visit. Univariable associations between TL and psychosocial, environmental, and outcome variables were assessed using Spearman's correlation. Further adjusted analyses of these associations were performed by including injury group, age, sex, and site as covariates in multivariable generalized linear models with a Poisson family, log link function, and robust variance estimates. RESULTS After adjusting for age, sex, and site, TL in participants with OI was 7% shorter than those with mTBI (adjusted mean ratio = 0.93; 95% confidence interval, 0.89-0.98; P = .003). As expected, increasing age was negatively associated with TL (Spearman's r = -0.14, P = .016). Sleep hygiene at 3 months was positively associated with TL (adjusted mean ratio = 1.010; 95% confidence interval, 1.001-1.020; P = .039). CONCLUSION The relationships between TL and psychosocial and environmental factors in pediatric mTBI and OI are complex. TL may provide information regarding sleep quality in children recovering from mTBI or OI; however, further investigation into TL biomarker validity should employ a noninjured comparison group.
Collapse
Affiliation(s)
- S Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia (Drs Salberg, Smith, Lannin, Mychasiuk and Chen); Department of Psychology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada (Dr Lamont); Department of Psychology, Montreal University, Montreal, Quebec, Canada, and Sainte-Justine Hospital Research Center, Montrea, Quebec, Canada (Dr Beauchamp); Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada (Dr Craig); Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada (Dr Doan); Department of Pediatric Emergency Medicine, CHU Sainte-Justine, Montreal, Quebec, Canada, and Université de Montreal, Montreal, Quebec, Canada (Dr Gravel); Department of Pediatrics and Emergency Medicine, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada (Dr Zemek); Alfred Health, Melbourne, Australia (Dr Lannin); and Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada (Dr Yeates)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sánchez-Badajos S, Ortega-Vázquez A, López-López M, Monroy-Jaramillo N. Valproic Acid and Lamotrigine Differentially Modulate the Telomere Length in Epilepsy Patients. J Clin Med 2025; 14:255. [PMID: 39797337 PMCID: PMC11720991 DOI: 10.3390/jcm14010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Antiseizure drugs (ASDs) are the primary therapy for epilepsy, and the choice varies according to seizure type. Epilepsy patients experience chronic mitochondrial oxidative stress and increased levels of pro-inflammatory mediators, recognizable hallmarks of biological aging; however, few studies have explored aging markers in epilepsy. Herein, we addressed for the first time the impact of ASDs on molecular aging by measuring the telomere length (TL) and mtDNA copy number (mtDNA-CN). Methods: We used real-time quantitative PCR (QPCR) in epilepsy patients compared to matched healthy controls (CTs) and assessed the association with plasma levels of ASDs and other clinical variables. The sample comprised 64 epilepsy patients and 64 CTs. Patients were grouped based on monotherapy with lamotrigine (LTG) or valproic acid (VPA), and those treated with a combination therapy (LTG + VPA). Multivariable logistic regression was applied to analyze the obtained data. Results: mtDNA-CN was similar between patients and controls, and none of the comparisons were significant for this marker. TL was shorter in not seizure-free patients than in CTs (1.50 ± 0.35 vs. 1.68 ± 0.34; p < 0.05), regardless of the ASD therapy. These patients exhibited the highest proportion of adverse drug reactions. TL was longer in patients on VPA monotherapy, followed by patients on LTG monotherapy and patients on an LTG + VPA combined scheme (1.77 ± 0.24; 1.50 ± 0.32; 1.36 ± 0.37, respectively; p < 0.05), suggesting that ASD treatment differentially modulates TL. Conclusions: Our findings suggest that clinicians could consider TL measurements to decide the best ASD treatment option (VPA and/or LTG) to help predict ASD responses in epilepsy patients.
Collapse
Affiliation(s)
- Salvador Sánchez-Badajos
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.O.-V.); (M.L.-L.)
| | - Marisol López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.O.-V.); (M.L.-L.)
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| |
Collapse
|
7
|
Tenchov R, Sasso JM, Zhou QA. Alzheimer's Disease: Exploring the Landscape of Cognitive Decline. ACS Chem Neurosci 2024; 15:3800-3827. [PMID: 39392435 PMCID: PMC11587518 DOI: 10.1021/acschemneuro.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. The pathology of AD is marked by the accumulation of amyloid beta plaques and tau protein tangles in the brain, along with neuroinflammation and synaptic dysfunction. Genetic factors, such as mutations in APP, PSEN1, and PSEN2 genes, as well as the APOE ε4 allele, contribute to increased risk of acquiring AD. Currently available treatments provide symptomatic relief but do not halt disease progression. Research efforts are focused on developing disease-modifying therapies that target the underlying pathological mechanisms of AD. Advances in identification and validation of reliable biomarkers for AD hold great promise for enhancing early diagnosis, monitoring disease progression, and assessing treatment response in clinical practice in effort to alleviate the burden of this devastating disease. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in Alzheimer's disease. We examine the publication landscape in effort to provide insights into current knowledge advances and developments. We also review the most discussed and emerging concepts and assess the strategies to combat the disease. We explore the genetic risk factors, pharmacological targets, and comorbid diseases. Finally, we inspect clinical applications of products against AD with their development pipelines and efforts for drug repurposing. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding AD, to outline challenges, and to evaluate growth opportunities to further efforts in combating the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical
Society, Columbus Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical
Society, Columbus Ohio 43210, United States
| | | |
Collapse
|
8
|
Samuel Olajide T, Oyerinde TO, Omotosho OI, Okeowo OM, Olajide OJ, Ijomone OM. Microglial senescence in neurodegeneration: Insights, implications, and therapeutic opportunities. NEUROPROTECTION 2024; 2:182-195. [PMID: 39364217 PMCID: PMC11449118 DOI: 10.1002/nep3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 10/05/2024]
Abstract
The existing literature on neurodegenerative diseases (NDDs) reveals a common pathological feature: the accumulation of misfolded proteins. However, the heterogeneity in disease onset mechanisms and the specific brain regions affected complicates the understanding of the diverse clinical manifestations of individual NDDs. Dementia, a hallmark symptom across various NDDs, serves as a multifaceted denominator, contributing to the clinical manifestations of these disorders. There is a compelling hypothesis that therapeutic strategies capable of mitigating misfolded protein accumulation and disrupting ongoing pathogenic processes may slow or even halt disease progression. Recent research has linked disease-associated microglia to their transition into a senescent state-characterized by irreversible cell cycle arrest-in aging populations and NDDs. Although senescent microglia are consistently observed in NDDs, few studies have utilized animal models to explore their role in disease pathology. Emerging evidence from experimental rat models suggests that disease-associated microglia exhibit characteristics of senescence, indicating that deeper exploration of microglial senescence could enhance our understanding of NDD pathogenesis and reveal novel therapeutic targets. This review underscores the importance of investigating microglial senescence and its potential contributions to the pathophysiology of NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Additionally, it highlights the potential of targeting microglial senescence through iron chelation and senolytic therapies as innovative approaches for treating age-related NDDs.
Collapse
Affiliation(s)
- Tobiloba Samuel Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Toheeb O. Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Omolabake I. Omotosho
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Oritoke M. Okeowo
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Physiology, School of Basic Medical Science, Federal University of Technology, Akure, Ondo, Nigeria
| | - Olayemi J. Olajide
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara, Nigeria
| | - Omamuyouwi M. Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
9
|
Piedrabuena MA, Correale J, Farez MF, Rodríguez Murúa S, Martínez Canyazo C, Fiol M, Marrodan M, Ysrraelit MC. Telomere length as a biomarker in multiple sclerosis. Mult Scler 2024; 30:1258-1267. [PMID: 39246285 DOI: 10.1177/13524585241273054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
BACKGROUND Leukocyte telomere length (LTL) shortens with age and may be related to multiple sclerosis (MS). OBJECTIVE We hypothesize that chronologically young people with MS (pwMS) with short LTL behave similarly to older MS subjects. METHODS Prospective 2-year study including two cohorts of young (18-35 years) and elderly (⩾50 years) pwMS with similar disease duration. Physical and cognitive evaluation, 3 T brain magnetic resonance imaging (MRI) and retinal nerve fiber layer (RNFL) measurement by optical coherence tomography were performed. LTL was measured by quantitative polymerase chain reaction assay. RESULTS Around 105 patients were included, 57 young and 48 elderly. LTL was shorter in older patients (0.61 versus 0.57, p = 0.0081) and in males (female, 0.60; male, 0.59; p = 0.01335). For every 10-year increase in age, LTL was 0.02 U shorter. In elderly, LTL correlated with disease duration (p = 0.05), smoking (p = 0.03), Expanded Disability Status Scale (EDSS; p = 0.004), 9HPT (p = 0.00007), high-efficacy therapies (p = 0.001), brain lesion volume (BLV) (p = 0.011), and number of T2 lesions (p = 0.01). In young patients, LTL did not correlate with clinical or radiological variables. For every 0.1 U shorter LTL, gray matter volume decreased 1.75 cm3 and white matter volume 1.78 cm3. CONCLUSION LTL correlated with disability and BLV in elderly. Besides LTL shortening, other variables should be considered as mechanisms of neurodegeneration that might be involved in aging pwMS.
Collapse
Affiliation(s)
| | - Jorge Correale
- Departamento de Neurologia, Fleni, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB CONICET-UBA), Buenos Aires, Argentina
- CIEN, Fleni, Buenos Aires, Argentina
| | - Mauricio Franco Farez
- Departamento de Neurologia, Fleni, Buenos Aires, Argentina; CIEN, Fleni, Buenos Aires, Argentina
| | | | | | - Marcela Fiol
- Departamento de Neurologia, Fleni, Buenos Aires, Argentina
| | | | | |
Collapse
|
10
|
Salem S, Ashaat E. Association of Relative Telomere Length and LINE-1 Methylation with Autism but not with Severity. J Autism Dev Disord 2024; 54:2266-2273. [PMID: 37014460 PMCID: PMC11142980 DOI: 10.1007/s10803-023-05965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/05/2023]
Abstract
Autism is associated with genomic instability, which is regulated by telomere length (TL) and index of global methylation (LINE-1). This study will determine relative TL (RTL) and LINE-1 methylation percentage for 69 patients and 33 control subjects to evaluate their potential role as biomarkers for autism. The results displayed a significant decrease of both RTL and LINE-1 methylation in autistic cases relative to controls (P < 0.001). Analysis of receiver operating characteristics curve revealed that both of RTL and LINE-1 methylation percentage have the ability to serve as autism biomarkers (area under the curve = 0.817 and 0.889, respectively). The statistical analysis revealed positive correlation between the two biomarkers (correlation coefficient = 0.439 and P < 0.001).
Collapse
Affiliation(s)
- Sohair Salem
- Molecular Genetics & Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Engy Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
11
|
Pereira FSM, Thomasini RL, Pereira DS, Silva TJ, Leite CA, Reis LGO, Câmara VADA, da Costa MBR, Bakir JVS, Xavier LS, Pereira LSM, Parentoni AN, Lacerda ACR. Association Between the Length of Leukocyte Telomeres and Functional Performance of Older Adults: Observational Study. Rejuvenation Res 2024; 27:44-50. [PMID: 38279807 DOI: 10.1089/rej.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024] Open
Abstract
Despite current literature pointing to a link between shortened telomeres and aging, chronic diseases, and geriatric syndromes, the precise implications of this connection remain unclear. The aim of this exploratory, cross-sectional, observational study was to investigate the association between the relative telomere length (RTL) of peripheral blood leukocyte subtypes (mononuclear cells and granulocytes) and physical performance using the Short Physical Performance Battery (SPPB) in older adults. A cohort of 95 participants was recruited, which included men and women aged over 60 years (70.48 ± 5.5 years). It was found that mononuclear cell RTL was significantly lower than that of granulocytes (p < 0.0001). Moreover, individuals with good SPPB performance exhibited lower mononuclear cell RTL compared with those with moderate or poor performance. However, no significant differences were observed in granulocyte RTL between different SPPB performance groups. The global SPPB score showed an inverse correlation with mononuclear cell RTL, but this correlation was not present with granulocyte RTL. Similarly, the SPPB sit-to-stand domain correlated with mononuclear cell RTL, but no such correlation was found with granulocyte RTL. Our findings challenge conventional expectations, suggesting that shorter mononuclear cell RTL may be associated with favorable functional capacity. The variations in RTL between mononuclear cells and granulocytes highlight their distinct biological roles and turnover rates. A history of immune responses may influence mononuclear cell RTL dynamics, while telomerase activity may protect granulocyte RTL from significant shortening. The unexpected associations observed in mononuclear cell RTL emphasize the complex interplay between immune responses, cellular aging, and functional capacity in older adults.
Collapse
Affiliation(s)
- Fabiana Souza Máximo Pereira
- Faculty of Medicine of Diamantina, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- Post-Graduation Program in Health Sciences (PPGCS), Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Ronaldo Luis Thomasini
- Faculty of Medicine of Diamantina, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- Post-Graduation Program in Health Sciences (PPGCS), Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- Multi-Centric Post-Graduation Program in Physiological Sciences (PMPGCF), Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Daniele Sirineu Pereira
- Department of Physiotherapy, Sciences Rehabilitation Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thyago José Silva
- Faculty of Medicine of Diamantina, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- Post-Graduation Program in Health Sciences (PPGCS), Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Cleyde Amaral Leite
- Multi-Centric Post-Graduation Program in Physiological Sciences (PMPGCF), Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | | | | | - João Víctor Santos Bakir
- Faculty of Medicine of Diamantina, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Laise Santos Xavier
- University Center of Lavras, Section of Aesthetics and Cosmetics, Lavras, Brazil
| | - Leani Souza Máximo Pereira
- Department of Physiotherapy, Sciences Rehabilitation Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Master Program Science of Health Faculty of Medical Science Minas Gerais, Belo Horizonte, Brazil
| | - Adriana Netto Parentoni
- Department of Physiotherapy, Post-Graduation Program in Rehabilitation and Functional Capacity, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Post-Graduation Program in Health Sciences (PPGCS), Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- Department of Physiotherapy, Post-Graduation Program in Rehabilitation and Functional Capacity, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| |
Collapse
|
12
|
Shreeya T, Ansari MS, Kumar P, Saifi M, Shati AA, Alfaifi MY, Elbehairi SEI. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. FRONTIERS IN AGING 2024; 4:1292053. [PMID: 38596783 PMCID: PMC11002673 DOI: 10.3389/fragi.2023.1292053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Senescence is a complicated, multi-factorial, irreversible cell cycle halt that has a tumor-suppressing effect in addition to being a significant factor in aging and neurological diseases. Damaged DNA, neuroinflammation, oxidative stress and disrupted proteostasis are a few of the factors that cause senescence. Senescence is triggered by DNA damage which initiates DNA damage response. The DNA damage response, which includes the formation of DNA damage foci containing activated H2AX, which is a key factor in cellular senescence, is provoked by a double strand DNA break. Oxidative stress impairs cognition, inhibits neurogenesis, and has an accelerated aging effect. Senescent cells generate pro-inflammatory mediators known as senescence-associated secretory phenotype (SASP). These pro-inflammatory cytokines and chemokines have an impact on neuroinflammation, neuronal death, and cell proliferation. While it is tempting to think of neurodegenerative diseases as manifestations of accelerated aging and senescence, this review will present information on brain ageing and neurodegeneration as a result of senescence and DNA damage response.
Collapse
Affiliation(s)
- Tejal Shreeya
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Mohd Saifullah Ansari
- Institute of Genetics, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Prabhat Kumar
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | | | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
13
|
Abu Shtaya A, Kedar I, Bazak L, Basel-Salmon L, Barhom SF, Naftali M, Eskin-Schwartz M, Birk OS, Polager-Modan S, Keidar N, Reznick Levi G, Levi Z, Yablonski-Peretz T, Mahamid A, Segol O, Matar R, Bareli Y, Azoulay N, Goldberg Y. A POT1 Founder Variant Associated with Early Onset Recurrent Melanoma and Various Solid Malignancies. Genes (Basel) 2024; 15:355. [PMID: 38540414 PMCID: PMC10970179 DOI: 10.3390/genes15030355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
POT1 (Protection of Telomeres 1) is a key component of the six-membered shelterin complex that plays a critical role in telomere protection and length regulation. Germline variants in the POT1 gene have been implicated in predisposition to cancer, primarily to melanoma and chronic lymphocytic leukemia (CLL). We report the identification of POT1 p.(I78T), previously ranked with conflicting interpretations of pathogenicity, as a founder pathogenic variant among Ashkenazi Jews (AJs) and describe its unique clinical landscape. A directed database search was conducted for individuals referred for genetic counselling from 2018 to 2023. Demographic, clinical, genetic, and pathological data were collected and analyzed. Eleven carriers, 25 to 67 years old, from ten apparently unrelated families were identified. Carriers had a total of 30 primary malignancies (range 1-6); nine carriers (82%) had recurrent melanoma between the ages of 25 and 63 years, three carriers (27%) had desmoid tumors, three (27%) had papillary thyroid cancer (PTC), and five women (63% of female carriers) had breast cancer between the ages of 44 and 67 years. Additional tumors included CLL; sarcomas; endocrine tumors; prostate, urinary, and colorectal cancers; and colonic polyps. A review of a local exome database yielded an allelic frequency of the variant of 0.06% among all ethnicities and of 0.25% in AJs. A shared haplotype was found in all carriers tested. POT1 p.(I78T) is a founder disease-causing variant associated with early-onset melanoma and additional various solid malignancies with a high tumor burden. We advocate testing for this variant in high-risk patients of AJ descent. The inclusion of POT1 in germline panels for various types of cancer is warranted.
Collapse
Affiliation(s)
- Aasem Abu Shtaya
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
- Unit of Gastroenterology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel;
| | - Inbal Kedar
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | - Lily Bazak
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | - Lina Basel-Salmon
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Felsenstein Medical Research Center, Petach Tikva 4920235, Israel
- Pediatric Genetic Unit, Schneider Children’s Medical Center of Israel, Petch Tikva 4920235, Israel;
| | - Sarit Farage Barhom
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | | | - Marina Eskin-Schwartz
- Genetics Institute, Soroka University Medical Center, Beer Sheva 8410101, Israel; (M.E.-S.); (O.S.B.)
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410101, Israel
| | - Ohad S. Birk
- Genetics Institute, Soroka University Medical Center, Beer Sheva 8410101, Israel; (M.E.-S.); (O.S.B.)
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410101, Israel
| | | | - Nitzan Keidar
- Pediatric Genetic Unit, Schneider Children’s Medical Center of Israel, Petch Tikva 4920235, Israel;
| | - Gili Reznick Levi
- Genetics Institute, Rambam Health Care Campus, Haifa 3525408, Israel;
| | - Zohar Levi
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Division of Gastroenterology, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel
| | - Tamar Yablonski-Peretz
- Oncology Institute, Hadassah Medical Center, Jerusalem 9112001, Israel;
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Ahmad Mahamid
- Department of Surgery B, Carmel Medical Center, Haifa 3436212, Israel;
| | - Ori Segol
- Unit of Gastroenterology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel;
| | - Reut Matar
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | - Yifat Bareli
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | - Noy Azoulay
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
| | - Yael Goldberg
- Recanati Genetics Institute, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel; (A.A.S.); (I.K.); (L.B.); (L.B.-S.); (S.F.B.); (R.M.); (Y.B.); (N.A.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
14
|
Liu M, Lan Y, Zhang H, Zhang X, Wu M, Yang L, Zhou J, Tong M, Leng L, Zheng H, Li J, Mi X. Telomere length is associated with increased risk of cutaneous melanoma: a Mendelian randomization study. Melanoma Res 2023; 33:475-481. [PMID: 37650705 DOI: 10.1097/cmr.0000000000000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
RESULTS The MR analysis using two TL GWAS datasets revealed strong and consistent evidence that long TL is causally associated with an increased risk of CM. The analysis of the Codd et al. dataset found that long TL significantly predicted an elevated risk of CM (IVW OR = 2.411, 95% CI 2.092-2.780, P = 8.05E-34). Similarly, the analysis of the Li et al. dataset yielded consistent positive results across all MR methods, providing further robustness to the causal relationship (IVW OR = 2.324, 95% CI 1.516-3.565, P = 1.11E-04). The study provides evidence for a causal association between TL and CM susceptibility, indicating that longer TL increases the risk of developing CM and providing insight into the unique telomere biology in melanoma pathogenesis. Telomere maintenance pathways may be a potential target for preventing and treating CM.
Collapse
Affiliation(s)
- Mingjuan Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- 4 + 4 M.D. Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yining Lan
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Hanlin Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xinyi Zhang
- Departments of Internal Medicine
- Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mengyin Wu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Leyan Yang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Jia Zhou
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Meiyi Tong
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Ling Leng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Jun Li
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xia Mi
- Department of Dermatology, Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
15
|
Jones JD, Martinez S, Gonzalez I, Odom GJ, Comer SD. No evidence of accelerated epigenetic aging among black heroin users: A case vs control analysis. ADDICTION NEUROSCIENCE 2023; 7:100096. [PMID: 37388854 PMCID: PMC10305791 DOI: 10.1016/j.addicn.2023.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
This study sought to assess the association between illicit opioid use and accelerated epigenetic aging (A.K.A. DNAm Age) among people of African ancestry who use heroin. DNA was obtained from participants with opioid use disorder (OUD) who confirmed heroin as their primary drug of choice. Clinical inventories of drug use included: the Addiction Severity Index (ASI) Drug-Composite Score (range: 0-1), and Drug Abuse Screening Test (DAST-10; range: 0-10). A control group of participants of African ancestry who did not use heroin was recruited and matched to heroin users on sex, age, socioeconomic level, and smoking status. Methylation data were assessed in an epigenetic clock to determined and compare Epigenetic Age to Chronological Age (i.e., age acceleration or deceleration). Data were obtained from 32 controls [mean age 36.3 (±7.5) years] and 64 heroin users [mean age 48.1 (±6.6) years]. The experimental group used heroin for an average of 18.1 (±10.6) years, reported use of 6.4 (±6.1) bags of heroin/day, with a mean DAST-10 score of 7.0 (±2.6) and ASI Score of 0.33 (±0.19). Mean age acceleration for heroin users [+0.56 (± 9.5) years] was significantly (p< 0.05) lower than controls [+5.19 (± 9.1) years]. This study did not find evidence that heroin use causes epigenetic age acceleration.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Suky Martinez
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Ingrid Gonzalez
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 1200 SW 8th St, Miami, FL 33174, USA
| | - Gabriel J. Odom
- Department of Biostatistics, Robert Stempel College of Public Health, Florida International University, 1200 SW 8th St, Miami, FL 33174, USA
| | - Sandra D. Comer
- Department of Psychiatry, Division on Substance Use Disorders, New York State Psychiatric Institute, and Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
16
|
You F, Harakawa Y, Yoshikawa T, Inufusa H. Why Does the Antioxidant Complex Twendee X ® Prevent Dementia? Int J Mol Sci 2023; 24:13018. [PMID: 37629197 PMCID: PMC10455760 DOI: 10.3390/ijms241613018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease characterized by cognitive and short-term memory impairments. The disease involves multiple pathological factors such as amyloid plaque formation, mitochondrial dysfunction, and telomere shortening; however, oxidative stress and diabetes mellitus are significant risk factors. The onset of AD begins approximately 20 years before clinical symptoms manifest; therefore, treating AD after symptoms become evident is possibly too late to have a significant effect. As such, preventing AD or using an effective treatment at an early stage is important. Twendee X® (TwX) is an antioxidant formulation consisting of eight ingredients. TwX has been proven to prevent the progression to dementia in patients with mild cognitive impairment (MCI) in a multicenter, randomized, double-blind, placebo-controlled, prospective intervention trial. As well, positive data has already been obtained in several studies using AD model mice. Since both diabetes and aging are risk factors for AD, we examined the mechanisms behind the effects of TwX on AD using the spontaneous hyperglycemia model and the senescence model of aged C57BL/6 mice in this study. TwX was administered daily, and its effects on diabetes, autophagy in the brain, neurogenesis, and telomere length were examined. We observed that TwX protected the mitochondria from oxidative stress better than a single antioxidant. TwX not only lowered blood glucose levels but also suppressed brain neurogenesis and autophagy. Telomeres in TWX-treated mice were significantly longer than those in non-treated mice. There are many factors that can be implicated in the development and progression of dementia; however, multiple studies on TwX suggest that it may offer protection against dementia, not only through the effects of its antioxidants but also by targeting multiple mechanisms involved in its development and progression, such as diabetes, brain neurogenesis, telomere deficiency, and energy production.
Collapse
Affiliation(s)
- Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
| | - Yoshiaki Harakawa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan;
- School of Medicine, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (F.Y.); (Y.H.)
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
| |
Collapse
|
17
|
Kuan XY, Fauzi NSA, Ng KY, Bakhtiar A. Exploring the Causal Relationship Between Telomere Biology and Alzheimer's Disease. Mol Neurobiol 2023; 60:4169-4183. [PMID: 37046137 PMCID: PMC10293431 DOI: 10.1007/s12035-023-03337-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Telomeres, also known as the "protective caps" of our chromosomes, shorten with each cell cycle due to the end replication problem. This process, termed telomere attrition, is associated with many age-related disorders, such as Alzheimer's disease (AD). Despite the numerous studies conducted in this field, the role of telomere attrition in the onset of the disease remains unclear. To investigate the causal relationship between short telomeres and AD, this review aims to highlight the primary factors that regulate telomere length and maintain its integrity, with an additional outlook on the role of oxidative stress, which is commonly associated with aging and molecular damage. Although some findings thus far might be contradictory, telomere attrition likely plays a crucial role in the progression of AD due to its close association with oxidative stress. The currently available treatments for AD are only symptomatic without affecting the progression of the disease. The components of telomere biology discussed in this paper have previously been studied as an alternative treatment option for several diseases and have exhibited promising in vitro and in vivo results. Hence, this should provide a basis for future research to develop a potential therapeutic strategy for AD. (Created with BioRender.com).
Collapse
Affiliation(s)
- Xi-Yuen Kuan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Nurul Syahira Ahmad Fauzi
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
18
|
Schreglmann SR, Goncalves T, Grant‐Peters M, Kia DA, Soreq L, Ryten M, Wood NW, Bhatia KP, Tomita K. Age-related telomere attrition in the human putamen. Aging Cell 2023; 22:e13861. [PMID: 37129365 PMCID: PMC10352551 DOI: 10.1111/acel.13861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Age is a major risk factor for neurodegenerative diseases. Shortening of leucocyte telomeres with advancing age, arguably a measure of "biological" age, is a known phenomenon and epidemiologically correlated with age-related disease. The main mechanism of telomere shortening is cell division, rendering telomere length in post-mitotic cells presumably stable. Longitudinal measurement of human brain telomere length is not feasible, and cross-sectional cortical brain samples so far indicated no attrition with age. Hence, age-related changes in telomere length in the brain and the association between telomere length and neurodegenerative diseases remain unknown. Here, we demonstrate that mean telomere length in the putamen, a part of the basal ganglia, physiologically shortens with age, like leukocyte telomeres. This was achieved by using matched brain and leukocyte-rich spleen samples from 98 post-mortem healthy human donors. Using spleen telomeres as a reference, we further found that mean telomere length was brain region-specific, as telomeres in the putamen were significantly shorter than in the cerebellum. Expression analyses of genes involved in telomere length regulation and oxidative phosphorylation revealed that both region- and age-dependent expression pattern corresponded with region-dependent telomere length dynamics. Collectively, our results indicate that mean telomere length in the human putamen physiologically shortens with advancing age and that both local and temporal gene expression dynamics correlate with this, pointing at a potential mechanism for the selective, age-related vulnerability of the nigro-striatal network.
Collapse
Affiliation(s)
- Sebastian R. Schreglmann
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| | - Tomas Goncalves
- Chromosome Maintenance Group, UCL Cancer InstituteUniversity College LondonLondonUK
- Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life SciencesBrunel University LondonLondonUK
| | - Melissa Grant‐Peters
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Demis A. Kia
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Lilach Soreq
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- NIHR Great Ormond Street Hospital Biomedical Research CentreUniversity College LondonLondonUK
| | - Nicholas W. Wood
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Kailash P. Bhatia
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer InstituteUniversity College LondonLondonUK
- Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life SciencesBrunel University LondonLondonUK
| |
Collapse
|
19
|
Martha SR, Tolentino EJ, Bugajski AA, Thompson HJ. Telomere Length Associates With Symptom Severity After Mild Traumatic Brain Injury in Older Adults. Neurotrauma Rep 2023; 4:350-358. [PMID: 37284700 PMCID: PMC10240314 DOI: 10.1089/neur.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The objectives were to compare differences in telomere length (TL) among younger (21-54 years) and older adults (≥55) with mild traumatic brain injury (mTBI) to non-injured controls and to examine the association between TL and the severity of post-concussive symptoms over time. We performed a quantitative polymerase chain reaction to determine the TL (Kb/genome) of peripheral blood mononuclear cell samples (day 0, 3 months, and 6 months) from 31 subjects. The Rivermead Post-Concussion Symptoms Questionnaire was used to assess symptoms. Group-by-time comparisons of TL and symptom severity were evaluated with repeated-measures analysis of variance. Multiple linear regression examined the relationship between TL, group (mTBI and non-injured controls), and symptom severity total and subscale scores. Significant aging-related differences in TL were found within mTBI groups by time (day 0, 3 months, and 6 months; p = 0.025). Older adults with mTBI experienced significant worsening of changes in total symptom severity scores over time (day 0, 3 months, and 6 months; p = 0.016). Shorter TLs were associated with higher total symptom burden among each of the four groups at day 0 (baseline; p = 0.035) and 3 months (p = 0.038). Shorter TL was also associated with higher cognitive symptom burden among the four groups at day 0 (p = 0.008) and 3 months (p = 0.008). Shorter TL was associated with higher post-injury symptom burden to 3 months in both older and younger persons with mTBI. Large-scale, longitudinal studies of factors associated with TL may be useful to delineate the mechanistic underpinnings of higher symptom burden in adults with mTBI.
Collapse
Affiliation(s)
- Sarah R. Martha
- Biobehavioral Nursing Science Department, College of Nursing, University of Illinois at Chicago, Chicago, Illinois, USA University of Washington, Seattle, Washington, USA
| | | | - Andrew A. Bugajski
- Department of Research and Sponsored Studies, Lakeland Regional Health Medical Center, Lakeland, Florida, USA
| | - Hilaire J. Thompson
- Biobehavioral Nursing and Health Informatics Department, School of Nursing, University of Washington, Seattle, Washington, USA
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Lai KY, Webster C, Kumari S, Gallacher JEJ, Sarkar C. The associations of socioeconomic status with incident dementia and Alzheimer's disease are modified by leucocyte telomere length: a population-based cohort study. Sci Rep 2023; 13:6163. [PMID: 37061546 PMCID: PMC10105714 DOI: 10.1038/s41598-023-32974-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/05/2023] [Indexed: 04/17/2023] Open
Abstract
Socio-economic status (SES) and biological aging are risk factors for dementia, including Alzheimer's disease, however, it is less clear if the associations with SES vary sufficiently across different biological age strata. We used data from 331,066 UK Biobank participants aged 38-73 with mean follow-up of 12 years to examine if associations between SES (assessed by educational attainment, employment status and household income) and dementia and Alzheimer's disease are modified by biological age (assessed by leucocyte telomere length: LTL). Diagnosis of events was ascertained through hospital admissions data. Cox regressions were used to estimate hazard ratios [HRs]. A consistent dose-response relationship was found, with participants in low SES and shorter LTL strata (double-exposed group) reporting 3.28 (95% confidence interval [CI] 2.57-4.20) and 3.44 (95% CI 2.35-5.04) times higher risks of incident dementia and Alzheimer's disease respectively, compared to those of high SES and longer LTL (least-exposed group). Of interest is a synergistic interaction between SES and LTL to increase risk of dementia (RERI 0.57, 95% CI 0.07-1.06) and Alzheimer's disease (RERI 0.79, 95% CI 0.02-1.56). Our findings that SES and biological age (LTL) are synergistic risk factors of dementia and Alzheimer's disease may suggest the need to target interventions among vulnerable sub-groups.
Collapse
Affiliation(s)
- Ka Yan Lai
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Hong Kong Special Administrative Region, China
- Department of Urban Planning and Design, The University of Hong Kong, Knowles Building, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Chris Webster
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Hong Kong Special Administrative Region, China
- Department of Urban Planning and Design, The University of Hong Kong, Knowles Building, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Sarika Kumari
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - John E J Gallacher
- Dementias Platform UK, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Chinmoy Sarkar
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Hong Kong Special Administrative Region, China.
- Department of Urban Planning and Design, The University of Hong Kong, Knowles Building, Pokfulam Road, Hong Kong Special Administrative Region, China.
- Dementias Platform UK, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
| |
Collapse
|
21
|
Mormone E, Iorio EL, Abate L, Rodolfo C. Sirtuins and redox signaling interplay in neurogenesis, neurodegenerative diseases, and neural cell reprogramming. Front Neurosci 2023; 17:1073689. [PMID: 36816109 PMCID: PMC9929468 DOI: 10.3389/fnins.2023.1073689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of Neural Stem Cells (NSCs) there are still mechanism to be clarified, such as the role of mitochondrial metabolism in the regulation of endogenous adult neurogenesis and its implication in neurodegeneration. Although stem cells require glycolysis to maintain their stemness, they can perform oxidative phosphorylation and it is becoming more and more evident that mitochondria are central players, not only for ATP production but also for neuronal differentiation's steps regulation, through their ability to handle cellular redox state, intracellular signaling, epigenetic state of the cell, as well as the gut microbiota-brain axis, upon dietary influences. In this scenario, the 8-oxoguanine DNA glycosylase (OGG1) repair system would link mitochondrial DNA integrity to the modulation of neural differentiation. On the other side, there is an increasing interest in NSCs generation, from induced pluripotent stem cells, as a clinical model for neurodegenerative diseases (NDs), although this methodology still presents several drawbacks, mainly related to the reprogramming process. Indeed, high levels of reactive oxygen species (ROS), associated with telomere shortening, genomic instability, and defective mitochondrial dynamics, lead to pluripotency limitation and reprogramming efficiency's reduction. Moreover, while a physiological or moderate ROS increase serves as a signaling mechanism, to activate differentiation and suppress self-renewal, excessive oxidative stress is a common feature of NDs and aging. This ROS-dependent regulatory effect might be modulated by newly identified ROS suppressors, including the NAD+-dependent deacetylase enzymes family called Sirtuins (SIRTs). Recently, the importance of subcellular localization of NAD synthesis has been coupled to different roles for NAD in chromatin stability, DNA repair, circadian rhythms, and longevity. SIRTs have been described as involved in the control of both telomere's chromatin state and expression of nuclear gene involved in the regulation of mitochondrial gene expression, as well as in several NDs and aging. SIRTs are ubiquitously expressed in the mammalian brain, where they play important roles. In this review we summarize the current knowledge on how SIRTs-dependent modulation of mitochondrial metabolism could impact on neurogenesis and neurodegeneration, focusing mainly on ROS function and their role in SIRTs-mediated cell reprogramming and telomere protection.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Unitá Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,*Correspondence: Elisabetta Mormone, ;
| | | | - Lucrezia Abate
- Unitá Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy,Department of Paediatric Onco-Haematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy,Carlo Rodolfo,
| |
Collapse
|
22
|
Fossel M, Bean J, Khera N, Kolonin MG. A Unified Model of Age-Related Cardiovascular Disease. BIOLOGY 2022; 11:1768. [PMID: 36552277 PMCID: PMC9775230 DOI: 10.3390/biology11121768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis. We propose a model unifying the fundamental processes underlying most age-associated cardiovascular pathologies. According to this model, cell aging, leading to cell senescence, is responsible for tissue changes leading to age-related cardiovascular disease. This process, occurring due to telomerase inactivation and telomere attrition, affects all components of the cardiovascular system, including cardiomyocytes, vascular endothelial cells, smooth muscle cells, cardiac fibroblasts, and immune cells. The unified model offers insights into the relationship between upstream risk factors and downstream clinical outcomes and explains why interventions aimed at either of these components have limited success. Potential therapeutic approaches are considered based on this model. Because telomerase activity can prevent and reverse cell senescence, telomerase gene therapy is discussed as a promising intervention. Telomerase gene therapy and similar systems interventions based on the unified model are expected to be transformational in cardiovascular medicine.
Collapse
Affiliation(s)
| | - Joe Bean
- University of Missouri School of Medicine, Kansas City, MO 65211, USA
| | - Nina Khera
- Buckingham Browne and Nichols School, Wellesley, MA 02138, USA
| | - Mikhail G. Kolonin
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
23
|
A review of molecular and genetic factors for determining mild traumatic brain injury severity and recovery. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
Rodríguez-Fernández B, Gispert JD, Guigo R, Navarro A, Vilor-Tejedor N, Crous-Bou M. Genetically predicted telomere length and its relationship with neurodegenerative diseases and life expectancy. Comput Struct Biotechnol J 2022; 20:4251-4256. [PMID: 36051868 PMCID: PMC9399257 DOI: 10.1016/j.csbj.2022.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/03/2022] Open
Abstract
Telomere length (TL) is a biomarker of biological aging. Shorter telomeres have been associated with mortality and increased rates of age-related diseases. However, observational studies are unable to conclude whether TL is causally associated with those outcomes. Mendelian randomization (MR) was developed for assessing causality using genetic variants in epidemiological research. The objective of this study was to test the potential causal role of TL in neurodegenerative disorders and life expectancy through MR analysis. Summary level data were extracted from the most recent genome-wide association studies for TL, Alzheimer's disease (AD), Parkinson's disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, Progressive Supranuclear Palsy and life expectancy. MR estimates revealed that longer telomeres inferred a protective effect on risk of AD (OR = 0.964; adjusted p-value = 0.039). Moreover, longer telomeres were significantly associated with increased life expectancy (βIVW = 0.011; adjusted p-value = 0.039). Sensitivity analyses suggested evidence for directional pleiotropy in AD analyses. Our results showed that genetically predicted longer TL may increase life expectancy and play a protective causal effect on AD. We did not observe significant causal relationships between longer TL and other neurodegenerative diseases. This suggests that the involvement of TL on specific biological mechanisms might differ between AD and life expectancy, with respect to that in other neurodegenerative diseases. Moreover, the presence of pleiotropy may reflect the complex interplay between TL homeostasis and AD pathophysiology. Further observational studies are needed to confirm these results.
Collapse
Key Words
- AD, Alzheimer’s disease
- ALS, Amyotrophic lateral sclerosis
- Alzheimer’s disease
- CI, Confidence Interval
- FTD, Frontotemporal dementia
- GWAS, Genome-wide association study
- IV, Instrumental Variable
- IVW, Inverse-Variance Weighted
- LRRC34, Leucine Rich Repeat Containing 34
- Life expectancy
- MR, Mendelian Randomization
- MR-PRESSO, MR-Pleiotropy RESidual Sum and Outlier
- Mendelian randomization
- Neurodegenerative diseases
- OR, Odds ratio
- PD, Parkinson’s disease
- PSP, Progressive Supranuclear Palsy
- SE, Standard Error
- SNP, Single Nucleotide Polymorphism
- TL, Telomere length
- Telomere length
Collapse
Affiliation(s)
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center – Pasqual Maragall Foundation, Barcelona, Spain
- IMIM – Hospital del Mar Medical Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Arcadi Navarro
- Barcelonaβeta Brain Research Center – Pasqual Maragall Foundation, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Institute of Evolutionary Biology (CSIC-UPF), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Spain
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center – Pasqual Maragall Foundation, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Erasmus University Medical Center, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Marta Crous-Bou
- Barcelonaβeta Brain Research Center – Pasqual Maragall Foundation, Barcelona, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO)-Bellvitge Biomedical Research Center (IDIBELL), Hospitalet del Llobregat, Spain
| |
Collapse
|
25
|
Salsbury A, Michel HM, Lemkul JA. Ion-Dependent Conformational Plasticity of Telomeric G-Hairpins and G-Quadruplexes. ACS OMEGA 2022; 7:23368-23379. [PMID: 35847338 PMCID: PMC9280957 DOI: 10.1021/acsomega.2c01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Telomeric DNA is guanine-rich and can adopt structures such as G-quadruplexes (GQs) and G-hairpins. Telomeric GQs influence genome stability and telomerase activity, making understanding of enzyme-GQ interactions and dynamics important for potential drug design. GQs have a characteristic tetrad core, which is connected by loop regions. Within this architecture are G-hairpins, fold-back motifs that are thought to represent the first intermediate in GQ folding. To better understand the relationship between G-hairpin motifs and GQs, we performed polarizable simulations of a two-tetrad telomeric GQ and an isolated SC11 telomeric G-hairpin. The telomeric GQ contains a G-triad, which functions as part of the tetrad core or linker regions, depending on local conformational change. This triad and another motif below the tetrad core frequently bound ions and may represent druggable sites. Further, we observed the unbiased formation of a G-triad and a G-tetrad in simulations of the SC11 G-hairpin and found that cations can be partially hydrated while facilitating the formation of these motifs. Finally, we demonstrated that K+ ions form specific interactions with guanine bases, while Na+ ions interact nonspecifically with bases in the structure. Together, these simulations provide new insights into the influence of ions on GQs, G-hairpins, and G-triad motifs.
Collapse
Affiliation(s)
- Alexa
M. Salsbury
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Haley M. Michel
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin A. Lemkul
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center
for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
26
|
Magnano San Lio R, Maugeri A, La Rosa MC, Giunta G, Panella M, Cianci A, Caruso MAT, Agodi A, Barchitta M. Nutrient intakes and telomere length of cell-free circulating DNA from amniotic fluid: findings from the Mamma & Bambino cohort. Sci Rep 2022; 12:11671. [PMID: 35804173 PMCID: PMC9270384 DOI: 10.1038/s41598-022-15370-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Pregnancy represents a crucial period in which several exposures—and especially maternal diet—might shape children’s health. Thus, identifying how maternal dietary intakes early affect biological aging in children represents a public health mission. We aimed to assess the relationship between maternal intake of nutrients in early pregnancy and telomere length of cell-free circulating DNA (cfDNA) from amniotic fluid. We used data and samples from the ongoing prospective “Mamma & Bambino” study, which recruits mother–child pairs from Catania at the first prenatal visit. Maternal nutrient intakes were assessed using a Food Frequency Questionnaire, while relative telomere length of cfDNA was assessed by real-time polymerase chain reaction. Our analysis included 174 mother–child pairs. The intakes of iron, vitamin B1, and magnesium were positively correlated with relative telomere length (p-values < 0.05). However, only the intake of magnesium was positively associated with relative telomere length, after applying a linear regression model (β = 0.002; SE = 0.001; p = 0.024). Magnesium deficiency was negatively associated with relative telomere length after adjusting for the same covariates (β = −0.467; SE = 0.176; p = 0.009). To our knowledge, this is the first evidence of a positive relationship between maternal nutrient intake and telomere length of cfDNA. Further efforts are needed for deeply investigating the effect of maternal dietary intakes on telomere length, in order to develop effective public health strategies.
Collapse
Affiliation(s)
- Roberta Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| | - Maria Clara La Rosa
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| | - Giuliana Giunta
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Via S.Sofia, 78, 95123, Catania, Italy
| | - Marco Panella
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Via S.Sofia, 78, 95123, Catania, Italy
| | - Antonio Cianci
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Via S.Sofia, 78, 95123, Catania, Italy
| | - Maria Anna Teresa Caruso
- Cytogenetic Laboratory, Azienda Ospedaliero Universitaria Policlinico "G.Rodolico - San Marco", Via S.Sofia, 78, 95123, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S.Sofia, 87, 95123, Catania, Italy.
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| |
Collapse
|
27
|
Zakharova N, Bravve L, Mamedova G, Kaydan M, Ershova E, Martynov A, Veiko N, Kostyuk S. Telomere Length as a Marker of Suicidal Risk in Schizophrenia. CONSORTIUM PSYCHIATRICUM 2022; 3:37-47. [PMID: 39045115 PMCID: PMC11262099 DOI: 10.17816/cp171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Schizophrenia and suicidal behavior are associated with shortening in the length of telomeres. The aim of the study was to compare the content (pg/mcg) of telomeric repeat in DNA isolated from peripheral blood cells in three groups of subjects: patients with schizophrenia and a history of suicide attempts, patients with schizophrenia without suicidal tendencies, and healthy control volunteers. METHODS Relapses according to gender and age were examined in 47 patients with schizophrenia with suicidal behavior, 47 patients without self-destructive conditions, and 47 volunteers with healthy control and maintenance for the content of telomeric and the number of copies of mitochondrial DNA (mtDNA) in peripheral blood leukocytes. RESULTS Analysis of determining the content of telomeric repeat (TR) in the DNA of massive weight gain in the series: patients with schizophrenia and suicidal attempts - patients with schizophrenia without suicidal observations - healthy controls (225±28.4 (227 [190; 250]) vs. 243±21 (245 [228; 260]) vs. 255±17.9 (255 [242; 266]), p <0.005. The same trend is observed for the number of mtDNA copies (257±101.5 (250 [194; 297])) vs. 262.3±59.3 (254 [217; 312]) vs. 272±79.9 (274 [213; 304]); p=0.012), but no significant differences were recorded. CONCLUSIONS For the first time, the phenomenon of telomere shortening was discovered in schizophrenics with suicidal risk. The length of the telomere corresponds to the parameter of a biological marker - an objectively measured indicator of normal or pathological processes, but gaining an idea of its reliability is still necessary for verification with an assessment of its sensitivity, specificity, and positive and negative predictive value. The telomere may be considered a putative predictive indicator of suicidal risk.
Collapse
|
28
|
Polho GB, Cardillo GM, Kerr DS, Chile T, Gattaz WF, Forlenza OV, Brentani HP, De-Paula VJ. Antipsychotics preserve telomere length in peripheral blood mononuclear cells after acute oxidative stress injury. Neural Regen Res 2022; 17:1156-1160. [PMID: 34558545 PMCID: PMC8552857 DOI: 10.4103/1673-5374.324852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 05/12/2021] [Indexed: 11/04/2022] Open
Abstract
Antipsychotics may prolong or retain telomere length, affect mitochondrial function, and then affect the metabolism of nerve cells. To validate the hypothesis that antipsychotics can prolong telomere length after oxidative stress injury, leukocytes from healthy volunteers were extracted using Ficoll-Histopaque density gradient. The mononuclear cells layer was resuspended in cell culture medium. Oxidative stress was induced with hydrogen peroxide in cultured leukocytes. Four days later, leukocytes were treated with aripiprazole, haloperidol or clozapine for 7 days. Real-time PCR revealed that treatments with aripiprazole and haloperidol increased the telomere length by 23% and 20% in peripheral blood mononuclear cells after acute oxidative stress injury. These results suggest that haloperidol and aripiprazole can reduce the damage to telomeres induced by oxidative stress. The experiment procedure was approved by the Ethics Committee of Faculty of Medicine of the University of São Paulo (FMUSP/CAAE approval No. 52622616.8.0000.0065).
Collapse
Affiliation(s)
- Gabriel B. Polho
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Giancarlo M. Cardillo
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Daniel S. Kerr
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Thais Chile
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Wagner F. Gattaz
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Orestes V. Forlenza
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Helena P. Brentani
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Vanessa J. De-Paula
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| |
Collapse
|
29
|
Pham C, Vryer R, O’Hely M, Mansell T, Burgner D, Collier F, Symeonides C, Tang MLK, Vuillermin P, Gray L, Saffery R, Ponsonby AL, on behalf of the Barwon Infant Study Investigator Group. Shortened Infant Telomere Length Is Associated with Attention Deficit/Hyperactivity Disorder Symptoms in Children at Age Two Years: A Birth Cohort Study. Int J Mol Sci 2022; 23:ijms23094601. [PMID: 35562991 PMCID: PMC9104809 DOI: 10.3390/ijms23094601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Environmental factors can accelerate telomere length (TL) attrition. Shortened TL is linked to attention deficit/hyperactivity disorder (ADHD) symptoms in school-aged children. The onset of ADHD occurs as early as preschool-age, but the TL-ADHD association in younger children is unknown. We investigated associations between infant TL and ADHD symptoms in children and assessed environmental factors as potential confounders and/or mediators of this association. Relative TL was measured by quantitative polymerase chain reaction in cord and 12-month blood in the birth cohort study, the Barwon Infant Study. Early life environmental factors collected antenatally to two years were used to measure confounding. ADHD symptoms at age two years were evaluated by the Child Behavior Checklist Attention Problems (AP) and the Attention Deficit/Hyperactivity Problems (ADHP). Associations between early life environmental factors on TL or ADHD symptoms were assessed using multivariable regression models adjusted for relevant factors. Telomere length at 12 months (TL12), but not at birth, was inversely associated with AP (β = −0.56; 95% CI (−1.13, 0.006); p = 0.05) and ADHP (β = −0.66; 95% CI (−1.11, −0.21); p = 0.004). Infant secondhand smoke exposure at one month was independently associated with shorter TL12 and also higher ADHD symptoms. Further work is needed to elucidate the mechanisms that influence TL attrition and early neurodevelopment.
Collapse
Affiliation(s)
- Cindy Pham
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3052, Australia
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
| | - Regan Vryer
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Martin O’Hely
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Toby Mansell
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David Burgner
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Fiona Collier
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Christos Symeonides
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Mimi L. K. Tang
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter Vuillermin
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Lawrence Gray
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Richard Saffery
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.P.); (R.V.); (M.O.); (T.M.); (D.B.); (C.S.); (M.L.K.T.); (P.V.); (R.S.)
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3052, Australia
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia; (F.C.); (L.G.)
- Correspondence:
| | | |
Collapse
|
30
|
Zamani A, Walker AK, Rollo B, Ayers KL, Farah R, O'Brien TJ, Wright DK. Impaired glymphatic function in the early stages of disease in a TDP-43 mouse model of amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:17. [PMID: 35287738 PMCID: PMC8922788 DOI: 10.1186/s40035-022-00291-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multiple lines of evidence suggest possible impairment of the glymphatic system in amyotrophic lateral sclerosis (ALS). To investigate this, we used in vivo magnetic resonance imaging (MRI) to assess glymphatic function early in the course of disease in a transgenic mouse with doxycycline (Dox)-controlled expression of cytoplasmic human TDP-43 (hTDP-43ΔNLS), mimicking the key pathology implicated in ALS. METHODS Adult TDP-43 transgenic and littermate monogenic control mice underwent longitudinal multimodal MRI one and three weeks after the cessation of Dox feed, together with weekly rotarod assessments of motor performance. Glymphatic function was assessed using dynamic contrast-enhanced MRI to track the clearance of an MR contrast agent injected into the cisterna magna. RESULTS Compared to their littermate controls, TDP-43 mice exhibited progressive neurodegeneration including that within the primary motor cortex, primary somatosensory cortex and corticospinal tract, significant weight loss including gastrocnemius atrophy, and shortened telomere length. Furthermore, in the presence of this ALS-like phenotype, these mice have significantly disrupted glymphatic function. CONCLUSIONS Although the relationship between glymphatic clearance and ALS disease progression remains to be elucidated, these changes occurred very early in the disease course. This provides initial evidence to suggest that the glymphatic system might be a potential therapeutic target in the treatment of ALS.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Adam K Walker
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Katie L Ayers
- The Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Raysha Farah
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
31
|
Schneider CV, Schneider KM, Teumer A, Rudolph KL, Hartmann D, Rader DJ, Strnad P. Association of Telomere Length With Risk of Disease and Mortality. JAMA Intern Med 2022; 182:291-300. [PMID: 35040871 PMCID: PMC8767489 DOI: 10.1001/jamainternmed.2021.7804] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IMPORTANCE Telomeres protect DNA from damage. Because they shorten with each mitotic cycle, leukocyte telomere length (LTL) serves as a mitotic clock. Reduced LTL has been associated with multiple human disorders. OBJECTIVE To determine the association between LTL and overall as well as disease-specific mortality and morbidity. DESIGN, SETTING, AND PARTICIPANTS This multicenter, community-based cohort study conducted from March 2006 to December 2010 included longitudinal follow-up (mean [SD], 12 [2] years) for 472 432 English participants from the United Kingdom Biobank (UK Biobank) and analyzed morbidity and mortality. The data were analyzed in 2021. MAIN OUTCOMES AND MEASURES Hazard ratios (HRs) and odds ratios for mortality and morbidity associated with a standard deviation change in LTL, adjusted for age, sex, body mass index (calculated as weight in kilograms divided by height in meters squared), and ethnicity. RESULTS This study included a total of 472 432 English participants, of whom 54% were women (mean age, 57 years). Reduced LTL was associated with increased overall (HR, 1.08; 95% CI, 1.07-1.09), cardiovascular (HR, 1.09; 95% CI, 1.06-1.12), respiratory (HR, 1.40; 95% CI, 1.34-1.45), digestive (HR, 1.26; 95% CI, 1.19-1.33), musculoskeletal (HR, 1.51; 95% CI, 1.35-1.92), and COVID-19 (HR, 1.15; 95% CI, 1.07-1.23) mortality, but not cancer-related mortality. A total of 214 disorders were significantly overrepresented and 37 underrepresented in participants with shorter LTL. Respiratory (11%), digestive/liver-related (14%), circulatory (18%), and musculoskeletal conditions (6%), together with infections (5%), accounted for most positive associations, whereas (benign) neoplasms and endocrinologic/metabolic disorders were the most underrepresented entities. Malignant tumors, esophageal cancer, and lymphoid and myeloid leukemia were significantly more common in participants with shorter LTL, whereas brain cancer and melanoma were less prevalent. While smoking and alcohol consumption were associated with shorter LTL, additional adjustment for both factors, as well as cognitive function/major comorbid conditions, did not significantly alter the results. CONCLUSIONS AND RELEVANCE This cohort study found that shorter LTL was associated with a small risk increase of overall mortality, but a higher risk of mortality was associated with specific organs and diseases.
Collapse
Affiliation(s)
- Carolin V Schneider
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kai Markus Schneider
- Perelman School of Medicine, Department of Microbiology, University of Pennsylvania, Philadelphia
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany.,Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | | | - Daniel Hartmann
- Department of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel J Rader
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
32
|
Sexual Dimorphism in Telomere Length in Childhood Autism. J Autism Dev Disord 2022; 53:2050-2061. [PMID: 35220523 DOI: 10.1007/s10803-022-05486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Autism spectrum disorders (ASD) are strikingly more prevalent in males, but the molecular mechanisms responsible for ASD sex-differential risk are poorly understood. Abnormally shorter telomeres have been associated with autism. Examination of relative telomere lengths (RTL) among non-syndromic male (N = 14) and female (N = 10) children with autism revealed that only autistic male children had significantly shorter RTL than typically-developing controls (N = 24) and paired siblings (N = 10). While average RTL of autistic girls did not differ significantly from controls, it was substantially longer than autistic boys. Our findings indicate a sexually-dimorphic pattern of RTL in childhood autism and could have important implications for RTL as a potential biomarker and the role/s of telomeres in the molecular mechanisms responsible for ASD sex-biased prevalence and etiology.
Collapse
|
33
|
Machan M, Tabor JB, Wang M, Sutter B, Wiley JP, Mychasiuk R, Debert CT. The Impact of Concussion, Sport, and Time in Season on Saliva Telomere Length in Healthy Athletes. Front Sports Act Living 2022; 4:816607. [PMID: 35243342 PMCID: PMC8886719 DOI: 10.3389/fspor.2022.816607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
To date, sport-related concussion diagnosis and management is primarily based on subjective clinical tests in the absence of validated biomarkers. A major obstacle to clinical validation and application is a lack of studies exploring potential biomarkers in non-injured populations. This cross-sectional study examined the associations between saliva telomere length (TL) and multiple confounding variables in a healthy university athlete population. One hundred eighty-three (108 male and 75 female) uninjured varsity athletes were recruited to the study and provided saliva samples at either pre- or mid-season, for TL analysis. Multiple linear regression was used to determine the associations between saliva TL and history of concussion, sport contact type, time in season (pre vs. mid-season collection), age, and sex. Results showed no significant associations between TL and history of concussion, age, or sport contact type. However, TL from samples collected mid-season were longer than those collected pre-season [β = 231.4, 95% CI (61.9, 401.0), p = 0.008], and males had longer TL than females [β = 284.8, 95% CI (111.5, 458.2), p = 0.001] when adjusting for all other variables in the model. These findings population suggest that multiple variables may influence TL. Future studies should consider these confounders when evaluating saliva TL as a plausible fluid biomarker for SRC.
Collapse
Affiliation(s)
- Matthew Machan
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Jason B. Tabor
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Meng Wang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Bonnie Sutter
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - J. Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- University of Calgary Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Chantel T. Debert
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- *Correspondence: Chantel T. Debert
| |
Collapse
|
34
|
Abstract
Klotho gene was originally recognized as a putative aging-suppressor and its prominent age-regulating effects are mostly attributed to the modulation of mineral homeostasis in the kidney. However, recent studies link alterations in hippocampal Klotho expression with cognitive impairment and neurodegenerative diseases. This suggests that hippocampal neurons require Klotho for health and proper functionality. Klotho protects against neuronal dysfunction and regulates several intracellular signaling pathways including oxidative stress response, inflammation, DNA damage, autophagy, endoplasmic reticulum stress response, and multiple types of cell death. Specifically, this chapter covers the current knowledge as to how Klotho protein affects the hippocampal neuronal cells, with special attention paid to underlying molecular mechanisms, and thus influences hippocampal development, hippocampal-dependent cognition, behavior, and motor skills as well as mediates neurodegenerative processes.
Collapse
Affiliation(s)
- Jennifer Mytych
- Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Werynia, Poland.
| |
Collapse
|
35
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
36
|
Bazaz MR, Balasubramanian R, Monroy-Jaramillo N, Dandekar MP. Linking the Triad of Telomere Length, Inflammation, and Gut Dysbiosis in the Manifestation of Depression. ACS Chem Neurosci 2021; 12:3516-3526. [PMID: 34547897 DOI: 10.1021/acschemneuro.1c00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Telomere length is an indispensable marker for cellular and biological aging, and it also represents an individual's physical and mental health status. Telomere shortening has been observed in chronic inflammatory conditions, which in turn accelerates aging and risk for psychiatric disorders, including depression. Considering the influence of inflammation and telomere shortening on the gut-brain axis, herein we describe a plausible interplay between telomere attrition, inflammation, and gut dysbiosis in the neurobiology of depression. Telomere shortening and hyperinflammation are well reported in depression. A negative impact of augmented inflammation has been noted on the intestinal permeability and microbial consortia and their byproducts in depressive patients. Moreover, gut dysbiosis provokes host-immune responses. As the gut microbiome is gaining importance in the manifestation and management of depression, herein we discuss whether telomere attrition is connected with the perturbation of commensal microflora. We also describe a pathological connection of cortisol with hyperinflammation, telomere shortening, and gut dysbiosis occurring in depression. This review summarizes how the triad of telomere attrition, inflammation, and gut dysbiosis is interconnected and modulates the risk for depression by regulating the systemic cortisol levels.
Collapse
Affiliation(s)
- Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Ramya Balasubramanian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez (NINN), Mexico City, Mexico, 14269
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India, 500037
| |
Collapse
|
37
|
Symons GF, Clough M, Fielding J, O'Brien WT, Shepherd CE, Wright DK, Shultz SR. The Neurological Consequences of Engaging in Australian Collision Sports. J Neurotrauma 2021; 37:792-809. [PMID: 32056505 DOI: 10.1089/neu.2019.6884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Collision sports are an integral part of Australian culture. The most common collision sports in Australia are Australian rules football, rugby union, and rugby league. Each of these sports often results in participants sustaining mild brain traumas, such as concussive and subconcussive injuries. However, the majority of previous studies and reviews pertaining to the neurological implications of sustaining mild brain traumas, while engaging in collision sports, have focused on those popular in North America and Europe. As part of this 2020 International Neurotrauma Symposium special issue, which highlights Australian neurotrauma research, this article will therefore review the burden of mild brain traumas in Australian collision sports athletes. Specifically, this review will first provide an overview of the consequences of mild brain trauma in Australian collision sports, followed by a summary of the previous studies that have investigated neurocognition, ocular motor function, neuroimaging, and fluid biomarkers, as well as neuropathological outcomes in Australian collision sports athletes. A review of the literature indicates that although Australians have contributed to the field, several knowledge gaps and limitations currently exist. These include important questions related to sex differences, the identification and implementation of blood and imaging biomarkers, the need for consistent study designs and common data elements, as well as more multi-modal studies. We conclude that although Australia has had an active history of investigating the neurological impact of collision sports participation, further research is clearly needed to better understand these consequences in Australian athletes and how they can be mitigated.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Claire E Shepherd
- Neuroscience Research Australia, The University of New South Wales, Sydney, New South Wales, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Bühring J, Hecker M, Fitzner B, Zettl UK. Systematic Review of Studies on Telomere Length in Patients with Multiple Sclerosis. Aging Dis 2021; 12:1272-1286. [PMID: 34341708 PMCID: PMC8279528 DOI: 10.14336/ad.2021.0106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Telomeres are protective cap structures at the end of chromosomes that are essential for maintaining genomic stability. Accelerated telomere shortening is related to premature cellular senescence. Shortened telomere lengths (TL) have been implicated in the pathogenesis of various chronic immune-mediated and neurological diseases. We aimed to systematically review the current literature on the association of TL as a measure of biological age and multiple sclerosis (MS). A comprehensive literature search was conducted to identify original studies that presented data on TL in samples from persons with MS. Quantitative and qualitative information was extracted from the articles to summarize and compare the studies. A total of 51 articles were screened, and 7 of them were included in this review. In 6 studies, average TL were analyzed in peripheral blood cells, whereas in one study, bone marrow-derived cells were used. Four of the studies reported significantly shorter leukocyte TL in at least one MS subtype in comparison to healthy controls (p=0.003 in meta-analysis). Shorter telomeres in patients with MS were found to be associated, independently of age, with greater disability, lower brain volume, increased relapse rate and more rapid conversion from relapsing to progressive MS. However, it remains unclear how telomere attrition in MS may be linked to oxidative stress, inflammation and age-related disease processes. Despite few studies in this field, there is substantial evidence on the association of TL and MS. Variability in TL appears to reflect heterogeneity in clinical presentation and course. Further investigations in large and well-characterized cohorts are warranted. More detailed studies on TL of individual chromosomes in specific cell types may help to gain new insights into the pathomechanisms of MS.
Collapse
Affiliation(s)
| | - Michael Hecker
- Correspondence should be addressed to: Dr. Michael Hecker, Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany. .
| | - Brit Fitzner
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Uwe Klaus Zettl
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| |
Collapse
|
39
|
Wu C, Bendriem RM, Freed WJ, Lee CT. Transcriptome analysis of human dorsal striatum implicates attenuated canonical WNT signaling in neuroinflammation and in age-related impairment of striatal neurogenesis and synaptic plasticity. Restor Neurol Neurosci 2021; 39:247-266. [PMID: 34275915 DOI: 10.3233/rnn-211161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Motor and cognitive decline as part of the normal aging process is linked to alterations in synaptic plasticity and reduction of adult neurogenesis in the dorsal striatum. Neuroinflammation, particularly in the form of microglial activation, is suggested to contribute to these age-associated changes. OBJECTIVE AND METHODS To explore the molecular basis of alterations in striatal function during aging we analyzed RNA-Seq data for 117 postmortem human dorsal caudate samples and 97 putamen samples acquired through GTEx. RESULTS Increased expression of neuroinflammatory transcripts including TREM2, MHC II molecules HLA-DMB, HLA-DQA2, HLA-DPA1, HLA-DPB1, HLA-DMA and HLA-DRA, complement genes C1QA, C1QB, CIQC and C3AR1, and MHCI molecules HLA-B and HLA-F was identified. We also identified down-regulation of transcripts involved in neurogenesis, synaptogenesis, and synaptic pruning, including DCX, CX3CL1, and CD200, and the canonical WNTs WNT7A, WNT7B, and WNT8A. The canonical WNT signaling pathway has previously been shown to mediate adult neurogenesis and synapse formation and growth. Recent findings also highlight the link between WNT/β-catenin signaling and inflammation pathways. CONCLUSIONS These findings suggest that age-dependent attenuation of canonical WNT signaling plays a pivotal role in regulating striatal plasticity during aging. Dysregulation of WNT/β-catenin signaling via astrocyte-microglial interactions is suggested to be a novel mechanism that drives the decline of striatal neurogenesis and altered synaptic connectivity and plasticity, leading to a subsequent decrease in motor and cognitive performance with age. These findings may aid in the development of therapies targeting WNT/β-catenin signaling to combat cognitive and motor impairments associated with aging.
Collapse
Affiliation(s)
- Chun Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Raphael M Bendriem
- Brain and Mind Research Institute, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William J Freed
- Department of Biology, Lebanon Valley College, Annville, PA, USA
| | - Chun-Ting Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
40
|
Kim EJ, Koh SH, Ha J, Na DL, Seo SW, Kim HJ, Park KW, Lee JH, Roh JH, Kwon JC, Yoon SJ, Jung NY, Jeong JH, Jang JW, Kim HJ, Park KH, Choi SH, Kim S, Park YH, Kim BC, Kim YE, Kwon HS, Park HH, Jin JH. Increased telomere length in patients with frontotemporal dementia syndrome. J Neurol Sci 2021; 428:117565. [PMID: 34311139 DOI: 10.1016/j.jns.2021.117565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Telomeres are repetitive DNA sequences of TTAGGG at the ends of chromosomes. Many studies have shown that telomere shortening is associated with aging-related diseases, such as cardiovascular diseases, hypertension, diabetes, cancer, and various neurodegenerative diseases, including Alzheimer's disease, vascular dementia, Parkinson's disease, and dementia with Lewy bodies. However, changes in telomere length (TL) in patients with frontotemporal dementia (FTD) syndrome are unclear. Accordingly, in this study, we assessed TL in blood samples from patients with FTD syndrome. METHODS Absolute TL was measured in peripheral blood leukocytes from 53 patients with FTD syndromes (25 with behavioral variant FTD, 19 with semantic variant primary progressive aphasia [PPA], six with nonfluent/agrammatic variant PPA, and three with amyotrophic lateral sclerosis [ALS] plus) and 28 cognitively unimpaired (CU) controls using terminal restriction fragment analysis. RESULTS TL was significantly longer in the FTD group than in the CU group. All FTD subtypes had significantly longer TL than controls. There were no significant differences in TL among FTD syndromes. No significant correlations were found between TL and demographic factors in the FTD group. CONCLUSIONS Longer telomeres were associated with FTD syndrome, consistent with a recent report demonstrating that longer telomeres are related to ALS. Therefore, our results may support a shared biology between FTD and ALS. More studies with larger sample sizes are needed.
Collapse
Affiliation(s)
- Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea.
| | - Jungsoon Ha
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea; GemVax & Kael Co., Ltd, Gyeonggi-do, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A Medical Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jee Hoon Roh
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jay C Kwon
- Department of Neurology, Changwon Fatima Hospital, Changwon, Republic of Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulgi University Hospital, Daejeon, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Busan, Republic of Korea
| | - Jee H Jeong
- Department of Neurology, Ewha Womans University Hospital, Seoul, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Incheon, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Jeong-Hwa Jin
- Department of Neurology, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
41
|
Franke K, Bublak P, Hoyer D, Billiet T, Gaser C, Witte OW, Schwab M. In vivo biomarkers of structural and functional brain development and aging in humans. Neurosci Biobehav Rev 2021; 117:142-164. [PMID: 33308708 DOI: 10.1016/j.neubiorev.2017.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022]
Abstract
Brain aging is a major determinant of aging. Along with the aging population, prevalence of neurodegenerative diseases is increasing, therewith placing economic and social burden on individuals and society. Individual rates of brain aging are shaped by genetics, epigenetics, and prenatal environmental. Biomarkers of biological brain aging are needed to predict individual trajectories of aging and the risk for age-associated neurological impairments for developing early preventive and interventional measures. We review current advances of in vivo biomarkers predicting individual brain age. Telomere length and epigenetic clock, two important biomarkers that are closely related to the mechanistic aging process, have only poor deterministic and predictive accuracy regarding individual brain aging due to their high intra- and interindividual variability. Phenotype-related biomarkers of global cognitive function and brain structure provide a much closer correlation to age at the individual level. During fetal and perinatal life, autonomic activity is a unique functional marker of brain development. The cognitive and structural biomarkers also boast high diagnostic specificity for determining individual risks for neurodegenerative diseases.
Collapse
Affiliation(s)
- K Franke
- Department of Neurology, Jena University Hospital, Jena, Germany.
| | - P Bublak
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - D Hoyer
- Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - C Gaser
- Department of Neurology, Jena University Hospital, Jena, Germany; Department of Psychiatry, Jena University Hospital, Jena, Germany
| | - O W Witte
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - M Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
42
|
Pousa PA, Souza RM, Melo PHM, Correa BHM, Mendonça TSC, Simões-e-Silva AC, Miranda DM. Telomere Shortening and Psychiatric Disorders: A Systematic Review. Cells 2021; 10:1423. [PMID: 34200513 PMCID: PMC8227190 DOI: 10.3390/cells10061423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Telomeres are aging biomarkers, as they shorten while cells undergo mitosis. The aim of this study was to evaluate whether psychiatric disorders marked by psychological distress lead to alterations to telomere length (TL), corroborating the hypothesis that mental disorders might have a deeper impact on our physiology and aging than it was previously thought. A systematic search of the literature using MeSH descriptors of psychological distress ("Traumatic Stress Disorder" or "Anxiety Disorder" or "depression") and telomere length ("cellular senescence", "oxidative stress" and "telomere") was conducted on PubMed, Cochrane Library and ScienceDirect databases. A total of 56 studies (113,699 patients) measured the TL from individuals diagnosed with anxiety, depression and posttraumatic disorders and compared them with those from healthy subjects. Overall, TL negatively associates with distress-related mental disorders. The possible underlying molecular mechanisms that underly psychiatric diseases to telomere shortening include oxidative stress, inflammation and mitochondrial dysfunction linking. It is still unclear whether psychological distress is either a cause or a consequence of telomere shortening.
Collapse
Affiliation(s)
- Pedro A. Pousa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Raquel M. Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Paulo Henrique M. Melo
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Bernardo H. M. Correa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Tamires S. C. Mendonça
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Ana Cristina Simões-e-Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Débora M. Miranda
- Department of Pediatrics, Laboratory of Molecular Medicine, UFMG, Belo Horizonte, Minas Gerais 30130-100, Brazil
| |
Collapse
|
43
|
Sindi S, Solomon A, Kåreholt I, Hovatta I, Antikainen R, Hänninen T, Levälahti E, Laatikainen T, Lehtisalo J, Lindström J, Paajanen T, Peltonen M, Singh Khalsa D, Wolozin B, Strandberg T, Tuomilehto J, Soininen H, Ngandu T, Kivipelto M. Telomere Length Change in a Multidomain Lifestyle Intervention to Prevent Cognitive Decline: A Randomized Clinical Trial. J Gerontol A Biol Sci Med Sci 2021; 76:491-498. [PMID: 33175128 PMCID: PMC7907495 DOI: 10.1093/gerona/glaa279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 11/22/2022] Open
Abstract
Background Shorter leukocyte telomere length (LTL) is associated with aging and dementia. Impact of lifestyle changes on LTL, and relation to cognition and genetic susceptibility for dementia, has not been investigated in randomized controlled trials (RCTs). Methods Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability is a 2-year RCT enrolling 1260 participants at risk for dementia from the general population, aged 60–77 years, randomly assigned (1:1) to multidomain lifestyle intervention or control group. The primary outcome was cognitive change (Neuropsychological Test Battery z-score). Relative LTL was measured using quantitative real-time polymerase chain reaction (trial registration: NCT01041989). Results This exploratory LTL substudy included 756 participants (377 intervention, 379 control) with baseline and 24-month LTL measurements. The mean annual LTL change (SD) was −0.016 (0.19) in the intervention group and −0.023 (0.17) in the control group. Between-group difference was nonsignificant (unstandardized β-coefficient 0.007, 95% CI −0.015 to 0.030). Interaction analyses indicated better LTL maintenance among apolipoprotein E (APOE)-ε4 carriers versus noncarriers: 0.054 (95% CI 0.007 to 0.102); younger versus older participants: −0.005 (95% CI −0.010 to −0.001); and those with more versus less healthy lifestyle changes: 0.047 (95% CI 0.005 to 0.089). Cognitive intervention benefits were more pronounced among participants with better LTL maintenance for executive functioning (0.227, 95% CI 0.057 to 0.396) and long-term memory (0.257, 95% CI 0.024 to 0.489), with a similar trend for Neuropsychological Test Battery total score (0.127, 95% CI −0.011 to 0.264). Conclusions This is the first large RCT showing that a multidomain lifestyle intervention facilitated LTL maintenance among subgroups of older people at risk for dementia, including APOE-ε4 carriers. LTL maintenance was associated with more pronounced cognitive intervention benefits. Clinical Trials Registration Number NCT01041989
Collapse
Affiliation(s)
- Shireen Sindi
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Alina Solomon
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Ingemar Kåreholt
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Institute of Gerontology, School of Health and Welfare, Aging Research Network-Jönköping (ARN-J), Jönköping University, Jönköping, Sweden
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, Medicum, University of Helsinki, Helsinki, Finland
| | - Riitta Antikainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Tuomo Hänninen
- Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Esko Levälahti
- Public Health and Welfare Department, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tiina Laatikainen
- Public Health and Welfare Department, Finnish Institute for Health and Welfare, Helsinki, Finland.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jenni Lehtisalo
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Public Health and Welfare Department, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jaana Lindström
- Public Health and Welfare Department, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Paajanen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Markku Peltonen
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Public Health and Welfare Department, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Benjamin Wolozin
- Department of Pharmacology and Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Timo Strandberg
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,University of Helsinki, Clinicum, and Helsinki University Hospital, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health, University of Helsinki, Helsinki, Finland.,South Ostrobothnia Central Hospital, Seinäjoki, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tiia Ngandu
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Public Health and Welfare Department, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | | |
Collapse
|
44
|
Yu G, Lu L, Ma Z, Wu S. Genetically Predicted Telomere Length and Its Relationship With Alzheimer's Disease. Front Genet 2021; 12:595864. [PMID: 33679878 PMCID: PMC7934420 DOI: 10.3389/fgene.2021.595864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Are shorter telomeres causal risk factors for Alzheimer’s disease (AD)? This study aimed to examine if shorter telomeres were causally associated with a higher risk of AD using Mendelian randomization (MR) analysis. Two-sample MR methods were applied to the summary effect sizes and standard errors from a genome-wide association study for AD. Twenty single nucleotide polymorphisms of genome-wide significance were selected as instrumental variables for leukocyte telomere length. The main analyses were performed primarily using the random-effects inverse-variance weighted method and complemented with the other three methods: weighted median approaches, MR-Egger regression, and weighted mode approach. The intercept of MR-Egger regression was used to assess horizontal pleiotropy. We found that longer telomeres were associated with lower risks of AD (odds ratio = 0.79, 95% confidence interval: 0.67, 0.93, P = 0.004). Comparable results were obtained using weighted median approaches, MR-Egger regression, and weighted mode approaches. The intercept of the MR-Egger regression was close to zero. This may show that there was not suggestive of horizontal pleiotropy. Our findings provided additional evidence regarding the putative causal association between shorter telomere length and the higher risk of AD.
Collapse
Affiliation(s)
- Guangping Yu
- Wuqing Center for Disease Control and Prevention, Tianjin, China
| | | | - Zaihong Ma
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shouhai Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
45
|
Si Z, Sun L, Wang X. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed Pharmacother 2021; 137:111327. [PMID: 33545662 DOI: 10.1016/j.biopha.2021.111327] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancies have significantly increased the number of individuals suffering from geriatric neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The financial cost for current and future patients with these diseases is overwhelming, resulting in substantial economic and societal costs. Unfortunately, most recent high-profile clinical trials for neurodegenerative diseases have failed to obtain efficacious results, indicating that novel approaches are desperately needed to treat these pathologies. Cell senescence, characterized by permanent cell cycle arrest, resistance to apoptosis, mitochondrial alterations, and secretion of senescence-associated secretory phenotype (SASP) components, has been extensively studied in mitotic cells such as fibroblasts, which is considered a hallmark of aging. Furthermore, multiple cell types in the senescent state in the brain, including neurons, microglia, astrocytes, and neural stem cells, have recently been observed in the context of neurodegenerative diseases, suggesting that these senescent cells may play an essential role in the pathological processes of neurodegenerative diseases. Therefore, this review begins by outlining key aspects of cell senescence constitution followed by examining the evidence implicating senescent cells in neurodegenerative diseases. In the final section, we review how cell senescence may be targeted as novel therapeutics to treat pathologies associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, PR China
| | - Linlin Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
46
|
Lee EH, Han MH, Ha J, Park HH, Koh SH, Choi SH, Lee JH. Relationship between telomere shortening and age in Korean individuals with mild cognitive impairment and Alzheimer's disease compared to that in healthy controls. Aging (Albany NY) 2020; 13:2089-2100. [PMID: 33323554 PMCID: PMC7880372 DOI: 10.18632/aging.202206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/22/2020] [Indexed: 12/02/2022]
Abstract
Although telomere length (TL) is highly variable, a shorter TL indicate increased biological age. This multicenter study was conducted to identify the overall correlation between age and TL in Koreans and investigate the associations between age and TL in healthy individuals and patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). TL was measured in peripheral leukocyte DNA. MCI and AD were diagnosed based on clinical examinations and amyloid deposition on positron emission tomography. This study enrolled 437 individuals. Multivariable linear analysis showed an overall approximate TL decrease of 37 bp per 1-year increase in age in all individuals (B=-0.037; P=0.002). There was no significant difference in the mean TL between healthy individuals and individuals with AD. Multivariable linear regression analysis showed that the mean rate of telomere shortening was 60 bp per year in individuals with AD (B=-0.060; P=0.006). There was a negative association between age and TL in our study. Our study results showed more significant telomere shortening per year in women than that in men. In addition, individuals with AD had greater telomere shortening every year than healthy individuals and individuals with MCI.
Collapse
Affiliation(s)
- Eun-Hye Lee
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Jungsoon Ha
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea.,GemVax & Kael Co., Ltd, Seongnam 13461, South Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, South Korea.,Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, South Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon 22332, South Korea
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| |
Collapse
|
47
|
Mahady LJ, He B, Malek-Ahmadi M, Mufson EJ. Telomeric alterations in the default mode network during the progression of Alzheimer's disease: Selective vulnerability of the precuneus. Neuropathol Appl Neurobiol 2020; 47:428-440. [PMID: 33107640 DOI: 10.1111/nan.12672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
AIMS Although telomere length (TL) and telomere maintenance proteins (shelterins) are markers of cellular senescence and peripheral blood biomarkers of Alzheimer's disease (AD), little information is available on telomeric alterations during the prodromal stage (MCI) of AD. We investigated TL in the default mode network (DMN), which underlies episodic memory deficits in AD, as well as shelterin protein and mRNA levels in the precuneus (PreC). METHODS Telomere length was evaluated in DMN hubs and visual cortex using quantitative PCR (qPCR). In the PreC, western blotting and NanoString nCounter expression analyses evaluated shelterin protein and mRNA levels, respectively, in cases with an antemortem clinical diagnosis of no cognitive impairment (NCI), MCI and AD. RESULTS TL was significantly reduced in the PreC in MCI and AD compared to NCI, but stable in frontal, inferior temporal, posterior cingulate and visual cortex. PreC TL correlated significantly with performance on cognitive tests. NCI cases with high vs low Braak scores displayed significantly shorter TL in posterior cingulate and frontal cortex, which correlated significantly with neuritic and diffuse amyloid-β plaque counts. Shelterin protein levels (TIN2, TRF1, TRF2 and POT1) declined in MCI and AD compared to NCI. The PreC displayed stable expression of shelterins TERF1, TERF2, POT1, RAP1 and TPP1, while TINF2 mRNA significantly increased in AD compared to NCI. CONCLUSIONS These findings indicate a selective vulnerability to telomere attrition within different nodes of the DMN in prodromal AD and in aged NCI individuals with high Braak scores highlighting a putative role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Laura J Mahady
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Bin He
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.,Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
48
|
Symons GF, Clough M, O’Brien WT, Ernest J, Salberg S, Costello D, Sun M, Brady RD, McDonald SJ, Wright DK, White O, Abel L, O’Brien TJ, Mccullough J, Aniceto R, Lin IH, Agoston DV, Fielding J, Mychasiuk R, Shultz SR. Shortened telomeres and serum protein biomarker abnormalities in collision sport athletes regardless of concussion history and sex. JOURNAL OF CONCUSSION 2020. [DOI: 10.1177/2059700220975609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mild brain injuries are frequent in athletes engaging in collision sports and have been linked to a range of long-term neurological abnormalities. There is a need to identify how these potential abnormalities manifest using objective measures; determine whether changes are due to concussive and/or sub-concussive injuries; and examine how biological sex affects outcomes. This study investigated cognitive, cellular, and molecular biomarkers in male and female amateur Australian footballers (i.e. Australia’s most participated collision sport). 95 Australian footballers (69 males, 26 females), both with and without a history of concussion, as well as 49 control athletes (28 males, 21 females) with no history of brain trauma or participation in collision sports were recruited to the study. Ocular motor assessment was used to examine cognitive function. Telomere length, a biomarker of cellular senescence and neurological health, was examined in saliva. Serum levels of tau, phosphorylated tau, neurofilament light chain, and 4-hydroxynonenal were used as markers to assess axonal injury and oxidative stress. Australian footballers had reduced telomere length (p = 0.031) and increased serum protein levels of 4-hydroxynonenal (p = 0.001), tau (p = 0.007), and phosphorylated tau (p = 0.036). These findings were independent of concussion history and sex. No significant ocular motor differences were found. Taken together, these findings suggest that engagement in collision sports, regardless of sex or a history of concussion, is associated with shortened telomeres, axonal injury, and oxidative stress. These saliva- and serum-based biomarkers may be useful to monitor neurological injury in collision sport athletes.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Meaghan Clough
- Department of Neuroscience, Monash University, Melbourne, Australia
| | | | - Joel Ernest
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Daniel Costello
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | | | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Owen White
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Larry Abel
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Terence J O’Brien
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jesse Mccullough
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - I-Hsuan Lin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Joanne Fielding
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
49
|
Potential roles of telomeres and telomerase in neurodegenerative diseases. Int J Biol Macromol 2020; 163:1060-1078. [DOI: 10.1016/j.ijbiomac.2020.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
|
50
|
Abou-Elela DH, El-Edel RH, Shalaby AS, Fouaad MA, Sonbol AA. Telomere length and 8-hydroxy-2-deoxyguanosine as markers for early prediction of Alzheimer disease. Indian J Psychiatry 2020; 62:678-683. [PMID: 33896973 PMCID: PMC8052885 DOI: 10.4103/psychiatry.indianjpsychiatry_783_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/30/2020] [Accepted: 06/17/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Becoming shorter by each cell division, telomere length (TL) is regarded as a marker of cellular aging. Relative TL (T/S) depends on the quantitation of telomere hexamer repeat copy number normalized to autosomal single-copy gene copy number. TL is influenced by several factors, including oxidative stress (OS) and inflammation. This study aimed to investigate the possible role of TL and OS as markers for Alzheimer's disease (AD). MATERIALS AND METHODS One hundred and eighty participants were categorized into three groups. Group 1: Included 60 patients with AD. Group II: included 60 age-matched nondemented subjects. Group III (pregeriatric group): included 60 healthy controls with their ages ranging between 30 and 60 years. TL was determined by the quantitative Real time-PCR method, plasma levels of 8-OHdG by enzyme-linked immunosorbent assay, and total antioxidant capacity (TAC) by colorimetery. RESULTS In comparison to the other two groups, patients with AD showed shortened TL, increased plasma 8-OHdG concentration, and decreased TAC. The sensitivity of T/S ratio to predict AD was 86.67%, whereas the specificity was 96.67%. The sensitivity of 8-OHdG to predict AD was 96.67%, whereas the specificity was 86.67%. CONCLUSION AD is associated with shortened TL and increased OS as manifested by decreased TAC and increased serum 8-OHdG. T/S and 8-OHdG could be used as early predictors for AD.
Collapse
Affiliation(s)
- Dalia H. Abou-Elela
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Rawhia H. El-Edel
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Amr S. Shalaby
- Department of Neuro-Psychiatry, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Mariam A. Fouaad
- Department of Clinical Pathology, Shebein El Kom Teaching Hospital, Shebin El Kom, Menoufia, Egypt
| | - Ahmed A. Sonbol
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| |
Collapse
|