1
|
Li Y, Hao P, Duan H, Hao F, Zhao W, Gao Y, Yang Z, So KF, Li X. Activation of adult endogenous neurogenesis by a hyaluronic acid collagen gel containing basic fibroblast growth factor promotes remodeling and functional recovery of the injured cerebral cortex. Neural Regen Res 2025; 20:2923-2937. [PMID: 39610105 PMCID: PMC11826446 DOI: 10.4103/nrr.nrr-d-23-01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/02/2024] [Accepted: 04/20/2024] [Indexed: 11/30/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00024/figure1/v/2024-11-26T163120Z/r/image-tiff The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury. However, whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions, such as the cortex, remains unknown. In this study, we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury. Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells, as well as their differentiation into mature and functionally integrated neurons. Importantly, these new neurons reconstructed the architecture of cortical layers II to VI, integrated into the existing neural circuitry, and ultimately led to improved brain function. These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kwok-Fai So
- Guangdong–HongKong–Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong–HongKong–Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
2
|
Alsina FC, Lupan BM, Lin LJ, Musso CM, Mosti F, Newman CR, Wood LM, Suzuki A, Agostino M, Moore JK, Silver DL. The RNA-binding protein EIF4A3 promotes axon development by direct control of the cytoskeleton. Cell Rep 2024; 43:114666. [PMID: 39182224 PMCID: PMC11488691 DOI: 10.1016/j.celrep.2024.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
The exon junction complex (EJC), nucleated by EIF4A3, is indispensable for mRNA fate and function throughout eukaryotes. We discover that EIF4A3 directly controls microtubules, independent of RNA, which is critical for neural wiring. While neuronal survival in the developing mouse cerebral cortex depends upon an intact EJC, axonal tract development requires only Eif4a3. Using human cortical organoids, we show that EIF4A3 disease mutations also impair neuronal growth, highlighting conserved functions relevant for neurodevelopmental pathology. Live imaging of growing neurons shows that EIF4A3 is essential for microtubule dynamics. Employing biochemistry and competition experiments, we demonstrate that EIF4A3 directly binds to microtubules, mutually exclusive of the EJC. Finally, in vitro reconstitution assays and rescue experiments demonstrate that EIF4A3 is sufficient to promote microtubule polymerization and that EIF4A3-microtubule association is a major contributor to axon growth. This reveals a fundamental mechanism by which neurons re-utilize core gene expression machinery to directly control the cytoskeleton.
Collapse
Affiliation(s)
- Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Bianca M Lupan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lydia J Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carly R Newman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Curtin Medical School, and Curtin Institute for Computation, Curtin University, Bentley, WA 6102, Australia
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Shi W, Li M, Zhang T, Yang C, Zhao D, Bai J. GABA system in the prefrontal cortex involved in psychostimulant addiction. Cereb Cortex 2024; 34:bhae319. [PMID: 39098820 DOI: 10.1093/cercor/bhae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Drug addiction is a chronic and relapse brain disorder. Psychostimulants such as cocaine and amphetamine are highly addictive drugs. Abuse drugs target various brain areas in the nervous system. Recent studies have shown that the prefrontal cortex (PFC) plays a key role in regulating addictive behaviors. The PFC is made up of excitatory glutamatergic cells and gamma-aminobutyric acid (GABAergic) interneurons. Recently, studies showed that GABA level was related with psychostimulant addiction. In this review, we will introduce the role and mechanism of GABA and γ-aminobutyric acid receptors (GABARs) of the PFC in regulating drug addiction, especially in psychostimulant addiction.
Collapse
Affiliation(s)
- Wenjing Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Minyu Li
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Ting Zhang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Chunlong Yang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Dongdong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| |
Collapse
|
4
|
Di Bella DJ, Domínguez-Iturza N, Brown JR, Arlotta P. Making Ramón y Cajal proud: Development of cell identity and diversity in the cerebral cortex. Neuron 2024; 112:2091-2111. [PMID: 38754415 PMCID: PMC11771131 DOI: 10.1016/j.neuron.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Since the beautiful images of Santiago Ramón y Cajal provided a first glimpse into the immense diversity and complexity of cell types found in the cerebral cortex, neuroscience has been challenged and inspired to understand how these diverse cells are generated and how they interact with each other to orchestrate the development of this remarkable tissue. Some fundamental questions drive the field's quest to understand cortical development: what are the mechanistic principles that govern the emergence of neuronal diversity? How do extrinsic and intrinsic signals integrate with physical forces and activity to shape cell identity? How do the diverse populations of neurons and glia influence each other during development to guarantee proper integration and function? The advent of powerful new technologies to profile and perturb cortical development at unprecedented resolution and across a variety of modalities has offered a new opportunity to integrate past knowledge with brand new data. Here, we review some of this progress using cortical excitatory projection neurons as a system to draw out general principles of cell diversification and the role of cell-cell interactions during cortical development.
Collapse
Affiliation(s)
- Daniela J Di Bella
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Nuria Domínguez-Iturza
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Juliana R Brown
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Pal S, Lim JWC, Richards LJ. Diverse axonal morphologies of individual callosal projection neurons reveal new insights into brain connectivity. Curr Opin Neurobiol 2024; 84:102837. [PMID: 38271848 PMCID: PMC11265515 DOI: 10.1016/j.conb.2023.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
In the mature brain, functionally distinct areas connect to specific targets, mediating network activity required for function. New insights are still occurring regarding how specific connectivity occurs in the developing brain. Decades of work have revealed important insights into the molecular and genetic mechanisms regulating cell type specification in the brain. This work classified long-range projection neurons of the cerebral cortex into three major classes based on their primary target (e.g. subcortical, intracortical, and interhemispheric projections). However, painstaking single-cell mapping reveals that long-range projection neurons of the corpus callosum connect to multiple and overlapping ipsilateral and contralateral targets with often highly branched axons. In addition, their scRNA transcriptomes are highly variable, making it difficult to identify meaningful subclasses. This work has prompted us to reexamine how cortical projection neurons that comprise the corpus callosum are currently classified and how this stunning array of variability might be achieved during development.
Collapse
Affiliation(s)
- Suranjana Pal
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA. https://twitter.com/PalSuranjana
| | - Jonathan W C Lim
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Linda J Richards
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
6
|
Shen Z, Yang J, Zhang Q, Wang K, Lv X, Hu X, Ma J, Shi SH. How variable progenitor clones construct a largely invariant neocortex. Natl Sci Rev 2024; 11:nwad247. [PMID: 38274004 PMCID: PMC10810685 DOI: 10.1093/nsr/nwad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 01/27/2024] Open
Abstract
The neocortex contains a vast collection of diverse neurons organized into distinct layers. While nearly all neocortical neurons are generated by radial glial progenitors (RGPs), it remains largely unclear how a complex yet organized neocortex is constructed reliably and robustly. Here, we show that the division behavior and neuronal output of RGPs are highly constrained with patterned variabilities to support the reliable and robust construction of the mouse neocortex. The neurogenic process of RGPs can be well-approximated by a consistent Poisson-like process unfolding over time, producing deep to superficial layer neurons progressively. The exact neuronal outputs regarding layer occupation are variable; yet, this variability is constrained systematically to support all layer formation, largely reflecting the variable intermediate progenitor generation and RGP neurogenic entry and exit timing differences. Together, these results define the fundamental features of neocortical neurogenesis with a balanced reliability and variability for the construction of the complex neocortex.
Collapse
Affiliation(s)
- Zhongfu Shen
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiajun Yang
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangqiang Zhang
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kuiyu Wang
- Department of Computer Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohui Lv
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolin Hu
- Department of Computer Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Ma
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Song-Hai Shi
- New Cornerstone Science Laboratory, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
7
|
Huang Y, Shen C, Zhao W, Shang Y, Wang Y, Zhang HT, Ouyang R, Liu J. Genes Associated with Altered Brain Structure and Function in Obstructive Sleep Apnea. Biomedicines 2023; 12:15. [PMID: 38275376 PMCID: PMC10812994 DOI: 10.3390/biomedicines12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Obstructive sleep apnea (OSA) has been widely reported to cause abnormalities in brain structure and function, but the genetic mechanisms behind these changes remain largely unexplored. Our research aims to investigate the relationship between sleep characteristics, cognitive impairments, genetic factors, and brain structure and function in OSA. Using structural and resting-state functional magnetic resonance imaging data, we compared cortical morphology and spontaneous brain activity between 28 patients with moderate-to-severe OSA and 34 healthy controls (HCs) utilizing voxel-based morphology (VBM) and the amplitude of low-frequency fluctuations (ALFF) analyses. In conjunction with the Allen Human Brain Atlas, we used transcriptome-neuroimaging spatial correlation analyses to investigate gene expression patterns associated with changes in gray matter volume (GMV) and ALFF in OSA. Compared to the HCs, the OSA group exhibited increased ALFF values in the left hippocampus (t = 5.294), amygdala (t = 4.176), caudate (t = 4.659), cerebellum (t = 5.896), and decreased ALFF values in the left precuneus (t = -4.776). VBM analysis revealed increased GMV in the right inferior parietal lobe (t = 5.158) in OSA. Additionally, functional enrichment analysis revealed that genes associated with both ALFF and GMV cross-sampling were enriched in gated channel activity and synaptic transmission, glutamatergic synapse, and neuron.
Collapse
Affiliation(s)
- Yijie Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.H.); (W.Z.); (Y.S.); (Y.W.)
| | - Chong Shen
- Department of Respiratory and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.H.); (W.Z.); (Y.S.); (Y.W.)
- Clinical Research Center for Medical Imaging, Changsha 410011, China
- Department of Radiology Quality Control Center, Changsha 410011, China
| | - Youlan Shang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.H.); (W.Z.); (Y.S.); (Y.W.)
| | - Yisong Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.H.); (W.Z.); (Y.S.); (Y.W.)
| | - Hui-Ting Zhang
- MR Research Collaboration Team, Siemens Healthineers, Wuhan 430000, China;
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.H.); (W.Z.); (Y.S.); (Y.W.)
- Clinical Research Center for Medical Imaging, Changsha 410011, China
- Department of Radiology Quality Control Center, Changsha 410011, China
| |
Collapse
|
8
|
Turovsky EA, Tarabykin VS, Varlamova EG. Deletion of the Neuronal Transcription Factor Satb1 Induced Disturbance of the Kinome and Mechanisms of Hypoxic Preconditioning. BIOLOGY 2023; 12:1207. [PMID: 37759606 PMCID: PMC10667992 DOI: 10.3390/biology12091207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
Genetic disorders affecting the functioning of the brain lead not only to the development of numerous hereditary diseases but also to the development of neurodegenerative and cognitive disorders. The result of this may be the disability of part of the able-bodied population. Almost all pathological states of the brain are characterized by serious defects in the intracellular and intercellular signaling of neurons and glial cells. At the same time, the mechanisms of disruption of these signaling cascades are not well understood due to the large number of molecules, including transcription factors that, when mutated, cause brain malformations. The transcription factor Satb1 is one of the least studied factors in the cerebral cortex, and the effects of its deletion in the postnatal brain are practically not studied. Hyperexcitability of neurons is observed in many genetic diseases of the nervous system (Hirschsprung's disease, Martin-Bell syndrome, Huntington's disease, Alzheimer's, etc.), as well as in ischemic brain phenomena and convulsive and epileptic conditions of the brain. In turn, all these disorders of brain physiology are associated with defects in intracellular and intercellular signaling and are often the result of genetic disorders. Using Satb1 mutant mice and calcium neuroimaging, we show that Satb1 deletion in projection neurons of the neocortex causes downregulation of protein kinases PKC, CaMKII, and AKT/PKB, while a partial deletion does not cause a dramatic disruption of kinome and Ca2+ signaling. As a result, Satb1-null neurons are characterized by increased spontaneous Ca2+ activity and hyperexcitability when modeling epileptiform activity. As a result of the deletion of Satb1, preconditioning mechanisms are disrupted in neurons during episodes of hypoxia. This occurs against the background of increased sensitivity of neurons to a decrease in the partial pressure of oxygen, which may indicate the vulnerability of neuronal networks and be accompanied by impaired expression of the Satb1 transcription factor. Here, we show that Satb1 deletion impaired the expression of a number of key kinases and neuronal hyperexcitation in models of epileptiform activity and hypoxia.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia;
| | - Viktor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia;
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
9
|
Felske T, Tocco C, Péron S, Harb K, Alfano C, Galante C, Berninger B, Studer M. Lmo4 synergizes with Fezf2 to promote direct in vivo reprogramming of upper layer cortical neurons and cortical glia towards deep-layer neuron identities. PLoS Biol 2023; 21:e3002237. [PMID: 37552690 PMCID: PMC10409279 DOI: 10.1371/journal.pbio.3002237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
In vivo direct neuronal reprogramming relies on the implementation of an exogenous transcriptional program allowing to achieve conversion of a particular neuronal or glial cell type towards a new identity. The transcription factor (TF) Fezf2 is known for its role in neuronal subtype specification of deep-layer (DL) subcortical projection neurons. High ectopic Fezf2 expression in mice can convert both upper-layer (UL) and striatal projection neurons into a corticofugal fate, even if at low efficiency. In this study, we show that Fezf2 synergizes with the nuclear co-adaptor Lmo4 to further enhance reprogramming of UL cortical pyramidal neurons into DL corticofugal neurons, at both embryonic and early postnatal stages. Reprogrammed neurons express DL molecular markers and project toward subcerebral targets, including thalamus, cerebral peduncle (CP), and spinal cord (SC). We also show that co-expression of Fezf2 with the reprogramming factors Neurog2 and Bcl2 in early postnatal mouse glia promotes glia-to-neuron conversion with partial hallmarks of DL neurons and with Lmo4 promoting further morphological complexity. These data support a novel role for Lmo4 in synergizing with Fezf2 during direct lineage conversion in vivo.
Collapse
Affiliation(s)
| | - Chiara Tocco
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | - Sophie Péron
- Research Group “Adult Neurogenesis and Cellular Reprogramming”, Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Kawssar Harb
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Chiara Galante
- Research Group “Adult Neurogenesis and Cellular Reprogramming”, Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Benedikt Berninger
- Research Group “Adult Neurogenesis and Cellular Reprogramming”, Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Focus Program Translational Neuroscience, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
10
|
Yin Y, Wang F, Ma Y, Yang J, Li R, Li Y, Wang J, Liu H. Structural and functional changes in drug-naïve benign childhood epilepsy with centrotemporal spikes and their associated gene expression profiles. Cereb Cortex 2023; 33:5774-5782. [PMID: 36444721 PMCID: PMC10183734 DOI: 10.1093/cercor/bhac458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/30/2022] Open
Abstract
Benign epilepsy with centrotemporal spikes (BECTS) is a common pediatric epilepsy syndrome that has been widely reported to show abnormal brain structure and function. However, the genetic mechanisms underlying structural and functional changes remain largely unknown. Based on the structural and resting-state functional magnetic resonance imaging data of 22 drug-naïve children with BECTS and 33 healthy controls, we conducted voxel-based morphology (VBM) and fractional amplitude of low-frequency fluctuation (fALFF) analyses to compare cortical morphology and spontaneous brain activity between the 2 groups. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analyses were applied to explore gene expression profiles associated with gray matter volume (GMV) and fALFF changes in BECTS. VBM analysis demonstrated significantly increased GMV in the right brainstem and right middle cingulate gyrus in BECTS. Moreover, children with BECTS exhibited significantly increased fALFF in left temporal pole, while decreased fALFF in right thalamus and left precuneus. These brain structural and functional alterations were closely related to behavioral and cognitive deficits, and the fALFF-linked gene expression profiles were enriched in voltage-gated ion channel and synaptic activity as well as neuron projection. Our findings suggest that brain morphological and functional abnormalities in children with BECTS involve complex polygenic genetic mechanisms.
Collapse
Affiliation(s)
- Yu Yin
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| | - Fuqin Wang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Rui Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
| | - Yuanyuan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China
| |
Collapse
|
11
|
Raza SS, Azari H, Morris VB, Popa Wagner A. Editorial: Advances and challenges in stroke therapy: A regenerative prospective. Front Neurosci 2022; 16:1102119. [PMID: 36578826 PMCID: PMC9791250 DOI: 10.3389/fnins.2022.1102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India,Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Lucknow, India,*Correspondence: Syed Shadab Raza
| | - Hassan Azari
- School of Podiatric Medicine, Barry University, Miami Shores, FL, United States
| | - Viola B. Morris
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Aurel Popa Wagner
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania,Department of Neurology, Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
12
|
Liu J, Yang M, Su M, Liu B, Zhou K, Sun C, Ba R, Yu B, Zhang B, Zhang Z, Fan W, Wang K, Zhong M, Han J, Zhao C. FOXG1 sequentially orchestrates subtype specification of postmitotic cortical projection neurons. SCIENCE ADVANCES 2022; 8:eabh3568. [PMID: 35613274 PMCID: PMC9132448 DOI: 10.1126/sciadv.abh3568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The mammalian neocortex is a highly organized six-layered structure with four major cortical neuron subtypes: corticothalamic projection neurons (CThPNs), subcerebral projection neurons (SCPNs), deep callosal projection neurons (CPNs), and superficial CPNs. Here, careful examination of multiple conditional knockout model mouse lines showed that the transcription factor FOXG1 functions as a master regulator of postmitotic cortical neuron specification and found that mice lacking functional FOXG1 exhibited projection deficits. Before embryonic day 14.5 (E14.5), FOXG1 enforces deep CPN identity in postmitotic neurons by activating Satb2 but repressing Bcl11b and Tbr1. After E14.5, FOXG1 exerts specification functions in distinct layers via differential regulation of Bcl11b and Tbr1, including specification of superficial versus deep CPNs and enforcement of CThPN identity. FOXG1 controls CThPN versus SCPN fate by fine-tuning Fezf2 levels through diverse interactions with multiple SOX family proteins. Thus, our study supports a developmental model to explain the postmitotic specification of four cortical projection neuron subtypes and sheds light on neuropathogenesis.
Collapse
Affiliation(s)
- Junhua Liu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Mengjie Yang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Mingzhao Su
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Bin Liu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Kaixing Zhou
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Congli Sun
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Baocong Yu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Baoshen Zhang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Zhe Zhang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Wenxin Fan
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Life Science and Technology,
Southeast University, Nanjing 210009, China
| | - Kun Wang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Min Zhong
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Junhai Han
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Life Science and Technology,
Southeast University, Nanjing 210009, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| |
Collapse
|
13
|
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021; 15:776809. [PMID: 34803599 PMCID: PMC8595945 DOI: 10.3389/fnins.2021.776809] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.
Collapse
Affiliation(s)
- Julia Reichard
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Cavalieri D, Angelova A, Islah A, Lopez C, Bocchio M, Bollmann Y, Baude A, Cossart R. CA1 pyramidal cell diversity is rootedin the time of neurogenesis. eLife 2021; 10:69270. [PMID: 34723790 PMCID: PMC8660020 DOI: 10.7554/elife.69270] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
Cellular diversity supports the computational capacity and flexibility of cortical circuits. Accordingly, principal neurons at the CA1 output node of the murine hippocampus are increasingly recognized as a heterogeneous population. Their genes, molecular content, intrinsic morpho-physiology, connectivity, and function seem to segregate along the main anatomical axes of the hippocampus. Since these axes reflect the temporal order of principal cell neurogenesis, we directly examined the relationship between birthdate and CA1 pyramidal neuron diversity, focusing on the ventral hippocampus. We used a genetic fate-mapping approach that allowed tagging three groups of age-matched principal neurons: pioneer, early-, and late-born. Using a combination of neuroanatomy, slice physiology, connectivity tracing, and cFos staining in mice, we show that birthdate is a strong predictor of CA1 principal cell diversity. We unravel a subpopulation of pioneer neurons recruited in familiar environments with remarkable positioning, morpho-physiological features, and connectivity. Therefore, despite the expected plasticity of hippocampal circuits, given their role in learning and memory, the diversity of their main components is also partly determined at the earliest steps of development.
Collapse
Affiliation(s)
| | | | - Anas Islah
- INMED, INSERM Aix-Marseille University, marseille, France
| | | | | | | | - Agnès Baude
- INMED, French Institute of Health and Medical Research, Marseille, France
| | - Rosa Cossart
- INMED, French Institute of Health and Medical Research, Marseille, France
| |
Collapse
|
15
|
Sahni V, Shnider SJ, Jabaudon D, Song JHT, Itoh Y, Greig LC, Macklis JD. Corticospinal neuron subpopulation-specific developmental genes prospectively indicate mature segmentally specific axon projection targeting. Cell Rep 2021; 37:109843. [PMID: 34686320 PMCID: PMC8653526 DOI: 10.1016/j.celrep.2021.109843] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/27/2021] [Accepted: 09/26/2021] [Indexed: 11/11/2022] Open
Abstract
For precise motor control, distinct subpopulations of corticospinal neurons (CSN) must extend axons to distinct spinal segments, from proximal targets in the brainstem and cervical cord to distal targets in thoracic and lumbar spinal segments. We find that developing CSN subpopulations exhibit striking axon targeting specificity in spinal white matter, which establishes the foundation for durable specificity of adult corticospinal circuitry. Employing developmental retrograde and anterograde labeling, and their distinct neocortical locations, we purified developing CSN subpopulations using fluorescence-activated cell sorting to identify genes differentially expressed between bulbar-cervical and thoracolumbar-projecting CSN subpopulations at critical developmental times. These segmentally distinct CSN subpopulations are molecularly distinct from the earliest stages of axon extension, enabling prospective identification even before eventual axon targeting decisions are evident in the spinal cord. This molecular delineation extends beyond simple spatial separation of these subpopulations in the cortex. Together, these results identify candidate molecular controls over segmentally specific corticospinal axon projection targeting.
Collapse
Affiliation(s)
- Vibhu Sahni
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Denis Jabaudon
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Janet H T Song
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Luciano C Greig
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Sahni V, Itoh Y, Shnider SJ, Macklis JD. Crim1 and Kelch-like 14 exert complementary dual-directional developmental control over segmentally specific corticospinal axon projection targeting. Cell Rep 2021; 37:109842. [PMID: 34686337 PMCID: PMC8697027 DOI: 10.1016/j.celrep.2021.109842] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/27/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
The cerebral cortex executes highly skilled movement, necessitating that it connects accurately with specific brainstem and spinal motor circuitry. Corticospinal neurons (CSN) must correctly target specific spinal segments, but the basis for this targeting remains unknown. In the accompanying report, we show that segmentally distinct CSN subpopulations are molecularly distinct from early development, identifying candidate molecular controls over segmentally specific axon targeting. Here, we functionally investigate two of these candidate molecular controls, Crim1 and Kelch-like 14 (Klhl14), identifying their critical roles in directing CSN axons to appropriate spinal segmental levels in the white matter prior to axon collateralization. Crim1 and Klhl14 are specifically expressed by distinct CSN subpopulations and regulate their differental white matter projection targeting-Crim1 directs thoracolumbar axon extension, while Klhl14 limits axon extension to bulbar-cervical segments. These molecular regulators of descending spinal projections constitute the first stages of a dual-directional set of complementary controls over CSN diversity for segmentally and functionally distinct circuitry.
Collapse
Affiliation(s)
- Vibhu Sahni
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
17
|
Li T, Fu TM, Wong KKL, Li H, Xie Q, Luginbuhl DJ, Wagner MJ, Betzig E, Luo L. Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging. Cell 2021; 184:5107-5121.e14. [PMID: 34551316 DOI: 10.1016/j.cell.2021.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.
Collapse
Affiliation(s)
- Tongchao Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Tian-Ming Fu
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20417, USA
| | - Kenneth Kin Lam Wong
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark J Wagner
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Eric Betzig
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20417, USA; Departments of Molecular and Cell Biology and Physics, Howard Hughes Medical Institute, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Abstract
Microglia are the resident immune cells of the central nervous system. Microglial progenitors are generated in the yolk sac during the early embryonic stage. Once microglia enter the brain primordium, these cells colonize the structure through migration and proliferation during brain development. Microglia account for a minor population among the total cells that constitute the developing cortex, but they can associate with many surrounding neural lineage cells by extending their filopodia and through their broad migration capacity. Of note, microglia change their distribution in a stage-dependent manner in the developing brain: microglia are homogenously distributed in the pallium in the early and late embryonic stages, whereas these cells are transiently absent from the cortical plate (CP) from embryonic day (E) 15 to E16 and colonize the ventricular zone (VZ), subventricular zone (SVZ), and intermediate zone (IZ). Previous studies have reported that microglia positioned in the VZ/SVZ/IZ play multiple roles in neural lineage cells, such as regulating neurogenesis, cell survival and neuronal circuit formation. In addition to microglial functions in the zones in which microglia are replenished, these cells indirectly contribute to the proper maturation of post-migratory neurons by exiting the CP during the mid-embryonic stage. Overall, microglial time-dependent distributional changes are necessary to provide particular functions that are required in specific regions. This review summarizes recent advances in the understanding of microglial colonization and multifaceted functions in the developing brain, especially focusing on the embryonic stage, and discuss the molecular mechanisms underlying microglial behaviors.
Collapse
|
19
|
Zuccaro E, Piol D, Basso M, Pennuto M. Motor Neuron Diseases and Neuroprotective Peptides: A Closer Look to Neurons. Front Aging Neurosci 2021; 13:723871. [PMID: 34603008 PMCID: PMC8484953 DOI: 10.3389/fnagi.2021.723871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Motor neurons (MNs) are specialized neurons responsible for muscle contraction that specifically degenerate in motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), spinal and bulbar muscular atrophy (SBMA), and spinal muscular atrophy (SMA). Distinct classes of MNs degenerate at different rates in disease, with a particular class named fast-fatigable MNs (FF-MNs) degenerating first. The etiology behind the selective vulnerability of FF-MNs is still largely under investigation. Among the different strategies to target MNs, the administration of protective neuropeptides is one of the potential therapeutic interventions. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with beneficial effects in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and more recently SBMA. Another neuropeptide that has a neurotrophic effect on MNs is insulin-like growth factor 1 (IGF-1), also known as somatomedin C. These two peptides are implicated in the activation of neuroprotective pathways exploitable in the amelioration of pathological outcomes related to MNDs.
Collapse
Affiliation(s)
- Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padua, Italy
| | - Diana Piol
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padua, Italy
| |
Collapse
|
20
|
Brémond Martin C, Simon Chane C, Clouchoux C, Histace A. Recent Trends and Perspectives in Cerebral Organoids Imaging and Analysis. Front Neurosci 2021; 15:629067. [PMID: 34276279 PMCID: PMC8283195 DOI: 10.3389/fnins.2021.629067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose: Since their first generation in 2013, the use of cerebral organoids has spread exponentially. Today, the amount of generated data is becoming challenging to analyze manually. This review aims to overview the current image acquisition methods and to subsequently identify the needs in image analysis tools for cerebral organoids. Methods: To address this question, we went through all recent articles published on the subject and annotated the protocols, acquisition methods, and algorithms used. Results: Over the investigated period of time, confocal microscopy and bright-field microscopy were the most used acquisition techniques. Cell counting, the most common task, is performed in 20% of the articles and area; around 12% of articles calculate morphological parameters. Image analysis on cerebral organoids is performed in majority using ImageJ software (around 52%) and Matlab language (4%). Treatments remain mostly semi-automatic. We highlight the limitations encountered in image analysis in the cerebral organoid field and suggest possible solutions and implementations to develop. Conclusions: In addition to providing an overview of cerebral organoids cultures and imaging, this work highlights the need to improve the existing image analysis methods for such images and the need for specific analysis tools. These solutions could specifically help to monitor the growth of future standardized cerebral organoids.
Collapse
Affiliation(s)
- Clara Brémond Martin
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
- WITSEE, Paris, France
| | - Camille Simon Chane
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| | | | - Aymeric Histace
- ETIS Laboratory UMR 8051, CY Cergy Paris Université, ENSEA, CNRS, Cergy, France
| |
Collapse
|
21
|
Yin J, Chen H, Li S, Zhang S, Guo X. Blockage of miR-485-5p on Cortical Neuronal Apoptosis Induced by Oxygen and Glucose Deprivation/Reoxygenation Through Inactivating MAPK Pathway. Neuromolecular Med 2021; 23:256-266. [PMID: 32719988 DOI: 10.1007/s12017-020-08605-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
This study is designed to explore the role of miR-485-5p in hypoxia/reoxygenation-induced neuronal injury in primary rat cortical neurons. Hypoxia/reoxygenation model was established through oxygen and glucose deprivation/reoxygenation (OGD/R). RN-c cells were transfected with miR-485-5p mimics, miR-485-5p inhibitors, si-SOX6, pCNDA3.1-SOX6 or miR-485-5p + pCDNA3.1-SOX6, in which cell viability, apoptosis, lactate dehydrogenase (LDH) release rate were assessed. Western blot detected the protein expressions of apoptotic-related proteins (caspase3, Bcl-2, Bax) and the phosphorylated level of ERK1/2. The potential binding sites between miR-485-5p and SOX6 were predicted by STARBASE and identified using dual luciferase reporter gene assay. OGD/R-treated RN-c cell presented increases in apoptosis and LDH release rate as well as a decrease in cell viability. miR-485-5p was downregulated while SOX6 was upregulated in OGD/R-treated RN-c cells. Overexpression of miR-485-5p or SOX6 knockdown rescued cell viability and Bcl-2 expression, while attenuated apoptosis, LDH release rate, expression of SOX6 and the phosphorylated level of ERK1/2. Consistently, miR-485-5p inhibition led to the reverse pattern. Co-transfection of miR-485-5p and SOX6 reversed the protective effect of miR-485-5p on OGD/R-induced neuronal apoptosis. miR-485-5p can directly target SOX6. Together, miR-485-5p inhibited SOX6 to alleviate OGD/R-induced apoptosis. Collectively, miR-485-5p protects primary cortical neurons against hypoxia injury through downregulating SOX6 and inhibiting MAPK pathway.
Collapse
Affiliation(s)
- Jiangliu Yin
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Huan Chen
- Hunan Provincial Center for Disease Prevent and Control, Changsha, 410006, Hunan, People's Republic of China
| | - Suonan Li
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Shuai Zhang
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Xieli Guo
- Department of Neurosurgery, Jinjiang Municipal Hospital of Quanzhou Medical College, No. 392, Xinhua Road, Meiling Street, Quanzhou, 362200, Fujian, People's Republic of China.
| |
Collapse
|
22
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
23
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
de Agustín-Durán D, Mateos-White I, Fabra-Beser J, Gil-Sanz C. Stick around: Cell-Cell Adhesion Molecules during Neocortical Development. Cells 2021; 10:118. [PMID: 33435191 PMCID: PMC7826847 DOI: 10.3390/cells10010118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.
Collapse
Affiliation(s)
| | | | | | - Cristina Gil-Sanz
- Neural Development Laboratory, Instituto Universitario de Biomedicina y Biotecnología (BIOTECMED) and Departamento de Biología Celular, Facultat de Biología, Universidad de Valencia, 46100 Burjassot, Spain; (D.d.A.-D.); (I.M.-W.); (J.F.-B.)
| |
Collapse
|
25
|
Evidence that corticofugal propagation of ALS pathology is not mediated by prion-like mechanism. Prog Neurobiol 2020; 200:101972. [PMID: 33309802 DOI: 10.1016/j.pneurobio.2020.101972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/27/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) arises from the combined degeneration of motor neurons (MN) and corticospinal neurons (CSN). Recent clinical and pathological studies suggest that ALS might start in the motor cortex and spread along the corticofugal axonal projections (including the CSN), either via altered cortical excitability and activity or via prion-like propagation of misfolded proteins. Using mouse genetics, we recently provided the first experimental arguments in favour of the corticofugal hypothesis, but the mechanism of propagation remained an open question. To gain insight into this matter, we tested here the possibility that the toxicity of the corticofugal projection neurons (CFuPN) to their targets could be mediated by their cell autonomous-expression of an ALS causing transgene and possible diffusion of toxic misfolded proteins to their spinal targets. We generated a Crym-CreERT2 mouse line to ablate the SOD1G37R transgene selectively in CFuPN. This was sufficient to fully rescue the CSN and to limit spasticity, but had no effect on the burden of misfolded SOD1 protein in the spinal cord, MN survival, disease onset and progression. The data thus indicate that in ALS corticofugal propagation is likely not mediated by prion-like mechanisms, but could possibly rather rely on cortical hyperexcitability.
Collapse
|
26
|
Save L, Baude A, Cossart R. Temporal Embryonic Origin Critically Determines Cellular Physiology in the Dentate Gyrus. Cereb Cortex 2020; 29:2639-2652. [PMID: 29878074 DOI: 10.1093/cercor/bhy132] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/12/2018] [Indexed: 01/19/2023] Open
Abstract
The dentate gyrus, the entry gate to the hippocampus, comprises 3 types of glutamatergic cells, the granule, the mossy and the semilunar granule cells. Whereas accumulating evidence indicates that specification of subclasses of neocortical neurons starts at the time of their final mitotic divisions, when cellular diversity is specified in the Dentate Gyrus remains largely unknown. Here we show that semilunar cells, like mossy cells, originate from the earliest stages of developmental neurogenesis and that early born neurons form age-matched circuits with each other. Besides morphology, adult semilunar cells display characteristic electrophysiological features that differ from most neurons but are shared among early born granule cells. Therefore, an early birthdate specifies adult granule cell physiology and connectivity whereas additional factors may combine to produce morphological identity.
Collapse
Affiliation(s)
- Laurène Save
- Inserm, Marseille, France.,Aix-Marseille University, UMR, Marseille, France.,INMED, Marseille, France
| | - Agnès Baude
- Inserm, Marseille, France.,Aix-Marseille University, UMR, Marseille, France.,INMED, Marseille, France
| | - Rosa Cossart
- Inserm, Marseille, France.,Aix-Marseille University, UMR, Marseille, France.,INMED, Marseille, France
| |
Collapse
|
27
|
Jungas T, Joseph M, Fawal MA, Davy A. Population Dynamics and Neuronal Polyploidy in the Developing Neocortex. Cereb Cortex Commun 2020; 1:tgaa063. [PMID: 34296126 PMCID: PMC8152829 DOI: 10.1093/texcom/tgaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022] Open
Abstract
The mammalian neocortex is composed of different subtypes of projection neurons that are generated sequentially during embryogenesis by differentiation of neural progenitors. While molecular mechanisms that control neuronal production in the developing neocortex have been extensively studied, the dynamics and absolute numbers of the different progenitor and neuronal populations are still poorly characterized. Here, we describe a medium throughput approach based on flow cytometry and well-known identity markers of cortical subpopulations to collect quantitative data over the course of mouse neocortex development. We collected a complete dataset in a physiological developmental context on two progenitor and two neuron populations, including relative proportions and absolute numbers. Our study reveals unexpected total numbers of Tbr2+ progenitors. In addition, we show that polyploid neurons are present throughout neocortex development.
Collapse
Affiliation(s)
- Thomas Jungas
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Mathieu Joseph
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
28
|
Long-range inputome of cortical neurons containing corticotropin-releasing hormone. Sci Rep 2020; 10:12209. [PMID: 32699360 PMCID: PMC7376058 DOI: 10.1038/s41598-020-68115-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022] Open
Abstract
Dissection of the neural circuits of the cerebral cortex is essential for studying mechanisms underlying brain function. Herein, combining a retrograde rabies tracing system with fluorescent micro-optical sectional tomography, we investigated long-range input neurons of corticotropin-releasing hormone containing neurons in the six main cortical areas, including the prefrontal, somatosensory, motor, auditory, and visual cortices. The whole brain distribution of input neurons showed similar patterns to input neurons distributed mainly in the adjacent cortical areas, thalamus, and basal forebrain. Reconstruction of continuous three-dimensional datasets showed the anterior and middle thalamus projected mainly to the rostral cortex whereas the posterior and lateral projected to the caudal cortex. In the basal forebrain, immunohistochemical staining showed these cortical areas received afferent information from cholinergic neurons in the substantia innominata and lateral globus pallidus, whereas cholinergic neurons in the diagonal band nucleus projected strongly to the prefrontal and visual cortex. Additionally, dense neurons in the zona incerta and ventral hippocampus were found to project to the prefrontal cortex. These results showed general patterns of cortical input circuits and unique connection patterns of each individual area, allowing for valuable comparisons among the organisation of different cortical areas and new insight into cortical functions.
Collapse
|
29
|
Dopamine D2-Like Receptors Modulate Intrinsic Properties and Synaptic Transmission of Parvalbumin Interneurons in the Mouse Primary Motor Cortex. eNeuro 2020; 7:ENEURO.0081-20.2020. [PMID: 32321772 PMCID: PMC7240291 DOI: 10.1523/eneuro.0081-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Dopamine (DA) plays a crucial role in the control of motor and higher cognitive functions such as learning, working memory, and decision making. The primary motor cortex (M1), which is essential for motor control and the acquisition of motor skills, receives dopaminergic inputs in its superficial and deep layers from the midbrain. However, the precise action of DA and DA receptor subtypes on the cortical microcircuits of M1 remains poorly understood. The aim of this work was to investigate in mice how DA, through the activation of D2-like receptors (D2Rs), modulates the cellular and synaptic activity of M1 parvalbumin-expressing interneurons (PVINs) which are crucial to regulate the spike output of pyramidal neurons (PNs). By combining immunofluorescence, ex vivo electrophysiology, pharmacology and optogenetics approaches, we show that D2R activation increases neuronal excitability of PVINs and GABAergic synaptic transmission between PVINs and PNs in Layer V of M1. Our data reveal how cortical DA modulates M1 microcircuitry, which could be important in the acquisition of motor skills.
Collapse
|
30
|
Kischel A, Audouard C, Fawal MA, Davy A. Ephrin-B2 paces neuronal production in the developing neocortex. BMC DEVELOPMENTAL BIOLOGY 2020; 20:12. [PMID: 32404061 PMCID: PMC7222552 DOI: 10.1186/s12861-020-00215-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/19/2020] [Indexed: 01/19/2023]
Abstract
Background During mammalian cerebral cortex development, different types of projection neurons are produced in a precise temporal order and in stereotypical numbers. The mechanisms regulating timely generation of neocortex projection neurons and ensuring production in sufficient numbers of each neuronal identity are only partially understood. Results Here, we show that ephrin-B2, a member of the Eph:ephrin cell-to-cell communication pathway, sets the neurogenic tempo in the neocortex. Indeed, conditional mutant embryos for ephrin-B2 exhibit a transient delay in neurogenesis and acute stimulation of Eph signaling by in utero injection of synthetic ephrin-B2 led to a transient increase in neuronal production. Using genetic approaches we show that ephrin-B2 acts on neural progenitors to control their differentiation in a juxtacrine manner. Unexpectedly, we observed that perinatal neuron numbers recovered following both loss and gain of ephrin-B2, highlighting the ability of neural progenitors to adapt their behavior to the state of the system in order to produce stereotypical numbers of neurons. Conclusions Altogether, our data uncover a role for ephrin-B2 in embryonic neurogenesis and emphasize the plasticity of neuronal production in the neocortex.
Collapse
Affiliation(s)
- Anthony Kischel
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Christophe Audouard
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
31
|
Abstract
Binocular vision depends on retinal ganglion cell (RGC) axon projection either to the same side or to the opposite side of the brain. In this article, we review the molecular mechanisms for decussation of RGC axons, with a focus on axon guidance signaling at the optic chiasm and ipsi- and contralateral axon organization in the optic tract prior to and during targeting. The spatial and temporal features of RGC neurogenesis that give rise to ipsilateral and contralateral identity are described. The albino visual system is highlighted as an apt comparative model for understanding RGC decussation, as albinos have a reduced ipsilateral projection and altered RGC neurogenesis associated with perturbed melanogenesis in the retinal pigment epithelium. Understanding the steps for RGC specification into ipsi- and contralateral subtypes will facilitate differentiation of stem cells into RGCs with proper navigational abilities for effective axon regeneration and correct targeting of higher-order visual centers.
Collapse
Affiliation(s)
- Carol Mason
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10027, USA; .,Department of Neuroscience, Columbia University, New York, NY 10027, USA.,Department of Ophthalmology, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Nefeli Slavi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
32
|
De Los Angeles A, Tunbridge EM. Benchmarking pluripotent stem cell-derived organoid models. Exp Neurol 2020; 330:113333. [PMID: 32353463 DOI: 10.1016/j.expneurol.2020.113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 11/18/2022]
Abstract
Cerebral organoids are stem cell-derived, self-organizing three-dimensional cultures. Owing to the remarkable degree to which they recreate the cellular diversity observed in the human brain, they have attracted significant interest as a novel model system for research and drug development, as well as capturing the public imagination. However, many questions remain about the extent to which these cultures recapitulate neurodevelopment and the defining features of the human brain. To clarify the fidelity of human organoid models, Bhaduri and colleagues compared the molecular profile of brain organoid cells with that of primary cells from fetal brain. They observed that, whilst brain organoids broadly recapitulate the cellular profile of human brain, they lack the subtypes of cell classes seen in human brain. In addition, they showed marked expression of cellular stress markers, which could be reversed by transplanting organoid cells into neonatal mouse brain. The authors hypothesise that in vitro culture induces a cellular stress response and that it is this that impairs maturation. Thus, whilst their findings strike a note of caution in the use of organoids as a model for early human brain development, they lay a foundation for improving the accuracy of organoid models in the future.
Collapse
Affiliation(s)
- Alejandro De Los Angeles
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX3 7JX, United Kingdom.
| | - Elizabeth M Tunbridge
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX3 7JX, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, University of Oxford, Oxford OX3 7JX, United Kingdom.
| |
Collapse
|
33
|
Cárdenas A, Borrell V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol Life Sci 2020; 77:1435-1460. [PMID: 31563997 PMCID: PMC11104948 DOI: 10.1007/s00018-019-03315-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The cerebral cortex varies dramatically in size and complexity between amniotes due to differences in neuron number and composition. These differences emerge during embryonic development as a result of variations in neurogenesis, which are thought to recapitulate modifications occurred during evolution that culminated in the human neocortex. Here, we review work from the last few decades leading to our current understanding of the evolution of neurogenesis and size of the cerebral cortex. Focused on specific examples across vertebrate and amniote phylogeny, we discuss developmental mechanisms regulating the emergence, lineage, complexification and fate of cortical germinal layers and progenitor cell types. At the cellular level, we discuss the fundamental impact of basal progenitor cells and the advent of indirect neurogenesis on the increased number and diversity of cortical neurons and layers in mammals, and on cortex folding. Finally, we discuss recent work that unveils genetic and molecular mechanisms underlying this progressive expansion and increased complexity of the amniote cerebral cortex during evolution, with a particular focus on those leading to human-specific features. Whereas new genes important in human brain development emerged the recent hominid lineage, regulation of the patterns and levels of activity of highly conserved signaling pathways are beginning to emerge as mechanisms of central importance in the evolutionary increase in cortical size and complexity across amniotes.
Collapse
Affiliation(s)
- Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
34
|
Hoffmann A, Ziller M, Spengler D. Focus on Causality in ESC/iPSC-Based Modeling of Psychiatric Disorders. Cells 2020; 9:E366. [PMID: 32033412 PMCID: PMC7072492 DOI: 10.3390/cells9020366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified an increasing number of genetic variants that significantly associate with psychiatric disorders. Despite this wealth of information, our knowledge of which variants causally contribute to disease, how they interact, and even more so of the functions they regulate, is still poor. The availability of embryonic stem cells (ESCs) and the advent of patient-specific induced pluripotent stem cells (iPSCs) has opened new opportunities to investigate genetic risk variants in living disease-relevant cells. Here, we analyze how this progress has contributed to the analysis of causal relationships between genetic risk variants and neuronal phenotypes, especially in schizophrenia (SCZ) and bipolar disorder (BD). Studies on rare, highly penetrant risk variants have originally led the field, until more recently when the development of (epi-) genetic editing techniques spurred studies on cause-effect relationships between common low risk variants and their associated neuronal phenotypes. This reorientation not only offers new insights, but also raises issues on interpretability. Concluding, we consider potential caveats and upcoming developments in the field of ESC/iPSC-based modeling of causality in psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany; (A.H.); (M.Z.)
| |
Collapse
|
35
|
De León Reyes NS, Mederos S, Varela I, Weiss LA, Perea G, Galazo MJ, Nieto M. Transient callosal projections of L4 neurons are eliminated for the acquisition of local connectivity. Nat Commun 2019; 10:4549. [PMID: 31591398 PMCID: PMC6779895 DOI: 10.1038/s41467-019-12495-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
Interhemispheric axons of the corpus callosum (CC) facilitate the higher order functions of the cerebral cortex. According to current views, callosal and non-callosal fates are determined early after a neuron's birth, and certain populations, such as cortical layer (L) 4 excitatory neurons of the primary somatosensory (S1) barrel, project only ipsilaterally. Using a novel axonal-retrotracing strategy and GFP-targeted visualization of Rorb+ neurons, we instead demonstrate that L4 neurons develop transient interhemispheric axons. Locally restricted L4 connectivity emerges when exuberant contralateral axons are refined in an area- and layer-specific manner during postnatal development. Surgical and genetic interventions of sensory circuits demonstrate that refinement rates depend on distinct inputs from sensory-specific thalamic nuclei. Reductions in input-dependent refinement result in mature functional interhemispheric hyperconnectivity, demonstrating the plasticity and bona fide callosal potential of L4 neurons. Thus, L4 neurons discard alternative interhemispheric circuits as instructed by thalamic input. This may ensure optimal wiring.
Collapse
Affiliation(s)
- N S De León Reyes
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - S Mederos
- Instituto Cajal, CSIC. Av. Doctor Arce, 37, 28002, Madrid, Spain
| | - I Varela
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - L A Weiss
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - G Perea
- Instituto Cajal, CSIC. Av. Doctor Arce, 37, 28002, Madrid, Spain
| | - M J Galazo
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, 6400 Freret Street, Percival Stern Hall suite 2000, New Orleans, LA, 70118, USA
| | - M Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
36
|
Yabut OR, Pleasure SJ. Sonic Hedgehog Signaling Rises to the Surface: Emerging Roles in Neocortical Development. Brain Plast 2018; 3:119-128. [PMID: 30151337 PMCID: PMC6091060 DOI: 10.3233/bpl-180064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian neocortex is composed of a diverse population of neuronal and glial cells that are crucial for cognition and consciousness. Orchestration of molecular events that lead to the production of distinct cell lineages is now a major research focus. Recent studies in mammalian animal models reveal that Sonic Hedgehog (Shh) signaling plays crucial roles in this process. In this review, we will evaluate these studies and provide insights on how Shh signaling specifically influence cortical development, beyond its established roles in telencephalic patterning, by specifically focusing on its impact on cells derived from the cortical radial glial (RG) cells. We will also assess how these findings further advance our knowledge of neurological diseases and discuss potential roles of targeting Shh signaling in therapies.
Collapse
Affiliation(s)
- Odessa R Yabut
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samuel J Pleasure
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.,Programs in Neuroscience and Developmental Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, CA, USA
| |
Collapse
|
37
|
Furlanis E, Scheiffele P. Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing. Annu Rev Cell Dev Biol 2018; 34:451-469. [PMID: 30028642 DOI: 10.1146/annurev-cellbio-100617-062826] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Posttranscriptional mechanisms provide powerful means to expand the coding power of genomes. In nervous systems, alternative splicing has emerged as a fundamental mechanism not only for the diversification of protein isoforms but also for the spatiotemporal control of transcripts. Thus, alternative splicing programs play instructive roles in the development of neuronal cell type-specific properties, neuronal growth, self-recognition, synapse specification, and neuronal network function. Here we discuss the most recent genome-wide efforts on mapping RNA codes and RNA-binding proteins for neuronal alternative splicing regulation. We illustrate how alternative splicing shapes key steps of neuronal development, neuronal maturation, and synaptic properties. Finally, we highlight efforts to dissect the spatiotemporal dynamics of alternative splicing and their potential contribution to neuronal plasticity and the mature nervous system.
Collapse
|
38
|
Abstract
We employ the language of Bayesian networks to systematically construct gene-regulation topologies from deep-sequencing single-nucleus RNA-Seq data for human neurons. From the perspective of the cell-state potential landscape, we identify attractors that correspond closely to different neuron subtypes. Attractors are also recovered for cell states from an independent data set confirming our models accurate description of global genetic regulations across differing cell types of the neocortex (not included in the training data). Our model recovers experimentally confirmed genetic regulations and community analysis reveals genetic associations in common pathways. Via a comprehensive scan of all theoretical three-gene perturbations of gene knockout and overexpression, we discover novel neuronal trans-differrentiation recipes (including perturbations of SATB2, GAD1, POU6F2 and ADARB2) for excitatory projection neuron and inhibitory interneuron subtypes.
Collapse
|
39
|
Uzquiano A, Gladwyn-Ng I, Nguyen L, Reiner O, Götz M, Matsuzaki F, Francis F. Cortical progenitor biology: key features mediating proliferation versus differentiation. J Neurochem 2018; 146:500-525. [PMID: 29570795 DOI: 10.1111/jnc.14338] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivan Gladwyn-Ng
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, Planegg/Munich, Germany
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, Kobe, Hyogo, Japan
| | - Fiona Francis
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
40
|
Ozair MZ, Kirst C, van den Berg BL, Ruzo A, Rito T, Brivanlou AH. hPSC Modeling Reveals that Fate Selection of Cortical Deep Projection Neurons Occurs in the Subplate. Cell Stem Cell 2018; 23:60-73.e6. [PMID: 29937203 DOI: 10.1016/j.stem.2018.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023]
Abstract
Cortical deep projection neurons (DPNs) are implicated in neurodevelopmental disorders. Although recent findings emphasize post-mitotic programs in projection neuron fate selection, the establishment of primate DPN identity during layer formation is not well understood. The subplate lies underneath the developing cortex and is a post-mitotic compartment that is transiently and disproportionately enlarged in primates in the second trimester. The evolutionary significance of subplate expansion, the molecular identity of its neurons, and its contribution to primate corticogenesis remain open questions. By modeling subplate formation with human pluripotent stem cells (hPSCs), we show that all classes of cortical DPNs can be specified from subplate neurons (SPNs). Post-mitotic WNT signaling regulates DPN class selection, and DPNs in the caudal fetal cortex appear to exclusively derive from SPNs. Our findings indicate that SPNs have evolved in primates as an important source of DPNs that contribute to cortical lamination prior to their known role in circuit formation.
Collapse
Affiliation(s)
- M Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Christoph Kirst
- Center for Studies in Physics and Biology and Kavli Neural Systems Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bastiaan L van den Berg
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098XH Amsterdam, the Netherlands
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tiago Rito
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
41
|
Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences. J Neurosci 2018; 38:5441-5455. [PMID: 29798890 DOI: 10.1523/jneurosci.0150-18.2018] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Abstract
Neocortical pyramidal neurons with somata in layers 5 and 6 are among the most visually striking and enigmatic neurons in the brain. These deep-layer pyramidal neurons (DLPNs) integrate a plethora of cortical and extracortical synaptic inputs along their impressive dendritic arbors. The pattern of cortical output to both local and long-distance targets is sculpted by the unique physiological properties of specific DLPN subpopulations. Here we revisit two broad DLPN subpopulations: those that send their axons within the telencephalon (intratelencephalic neurons) and those that project to additional target areas outside the telencephalon (extratelencephalic neurons). While neuroscientists across many subdisciplines have characterized the intrinsic and synaptic physiological properties of DLPN subpopulations, our increasing ability to selectively target and manipulate these output neuron subtypes advances our understanding of their distinct functional contributions. This Viewpoints article summarizes our current knowledge about DLPNs and highlights recent work elucidating the functional differences between DLPN subpopulations.
Collapse
|
42
|
Abstract
Cux1 and Cux2 are the vertebrate members of a family of homeodomain transcription factors (TF) containing Cut repeat DNA-binding sequences. Perturbation of their expression has been implicated in a wide variety of diseases and disorders, ranging from cancer to autism spectrum disorder (ASD). Within the nervous system, both genes are expressed during neurogenesis and in specific neuronal subpopulations. Their role during development and circuit specification is discussed here, with a particular focus on the cortex where their restricted expression in pyramidal neurons of the upper layers appears to be responsible for many of the specialized functions of these cells, and where their functions have been extensively investigated. Finally, we discuss how Cux TF represent a promising avenue for manipulating neuronal function and for reprogramming.
Collapse
|
43
|
Beattie R, Hippenmeyer S. Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett 2017; 591:3993-4008. [PMID: 29121403 PMCID: PMC5765500 DOI: 10.1002/1873-3468.12906] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
The mammalian cerebral cortex is responsible for higher cognitive functions such as perception, consciousness, and acquiring and processing information. The neocortex is organized into six distinct laminae, each composed of a rich diversity of cell types which assemble into highly complex cortical circuits. Radial glia progenitors (RGPs) are responsible for producing all neocortical neurons and certain glia lineages. Here, we discuss recent discoveries emerging from clonal lineage analysis at the single RGP cell level that provide us with an inaugural quantitative framework of RGP lineage progression. We further discuss the importance of the relative contribution of intrinsic gene functions and non‐cell‐autonomous or community effects in regulating RGP proliferation behavior and lineage progression.
Collapse
Affiliation(s)
- Robert Beattie
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
44
|
Lin MY, Wang YL, Wu WL, Wolseley V, Tsai MT, Radic V, Thornton ME, Grubbs BH, Chow RH, Huang IC. Zika Virus Infects Intermediate Progenitor Cells and Post-mitotic Committed Neurons in Human Fetal Brain Tissues. Sci Rep 2017; 7:14883. [PMID: 29093521 PMCID: PMC5665882 DOI: 10.1038/s41598-017-13980-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) infection is associated with microcephaly in fetuses, but the pathogenesis of ZIKV-related microcephaly is not well understood. Here we show that ZIKV infects the subventricular zone in human fetal brain tissues and that the tissue tropism broadens with the progression of gestation. Our research demonstrates also that intermediate progenitor cells (IPCs) are the main target cells for ZIKV. Post-mitotic committed neurons become susceptible to ZIKV infection as well at later stages of gestation. Furthermore, activation of microglial cells, DNA fragmentation, and apoptosis of infected or uninfected cells could be found in ZIKV-infected brain tissues. Our studies identify IPCs as the main target cells for ZIKV. They also suggest that immune activation after ZIKV infection may play an important role in the pathogenesis of ZIKV-related microcephaly.
Collapse
Affiliation(s)
- Ming-Yi Lin
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yi-Ling Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wan-Lin Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victoria Wolseley
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ming-Ting Tsai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vladimir Radic
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert H Chow
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - I-Chueh Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Three-Dimensional Organoid System Transplantation Technologies in Future Treatment of Central Nervous System Diseases. Stem Cells Int 2017; 2017:5682354. [PMID: 28904534 PMCID: PMC5585580 DOI: 10.1155/2017/5682354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/24/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, scientists have made great achievements in understanding the development of human brain and elucidating critical elements of stepwise spatiotemporal control strategies in neural stem cell specification lineage, which facilitates successful induction of neural organoid in vitro including the cerebral cortex, cerebellar, neural tube, hippocampus cortex, pituitary, and optic cup. Besides, emerging researches on neural organogenesis promote the application of 3D organoid system transplantation in treating central nervous system (CNS) diseases. Present review will categorize current researches on organogenesis into three approaches: (a) stepwise, direct organization of region-specific or population-enriched neural organoid; (b) assemble and direct distinct organ-specific progenitor cells or stem cells to form specific morphogenesis organoid; and (c) assemble embryoid bodies for induction of multilayer organoid. However, the majority of these researches focus on elucidating cellular and molecular mechanisms involving in brain organogenesis or disease development and only a few of them conducted for treating diseases. In this work, we will compare three approaches and also analyze their possible indications for diseases in future treatment on the basis of their distinct characteristics.
Collapse
|
46
|
Li H, Chen G. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron 2017; 91:728-738. [PMID: 27537482 DOI: 10.1016/j.neuron.2016.08.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair.
Collapse
Affiliation(s)
- Hedong Li
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
47
|
Olsen LC, O'Reilly KC, Liabakk NB, Witter MP, Sætrom P. MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex. Brain Struct Funct 2017; 222:3107-3126. [PMID: 28260163 PMCID: PMC5585308 DOI: 10.1007/s00429-017-1389-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/13/2017] [Indexed: 01/23/2023]
Abstract
The medial entorhinal cortex (MEC) is important in spatial navigation and memory formation and its layers have distinct neuronal subtypes, connectivity, spatial properties, and disease susceptibility. As little is known about the molecular basis for the development of these laminar differences, we analyzed microRNA (miRNA) and messenger RNA (mRNA) expression differences between rat MEC layer II and layers III–VI during postnatal development. We identified layer and age-specific regulation of gene expression by miRNAs, which included processes related to neuron specialization and locomotor behavior. Further analyses by retrograde labeling and expression profiling of layer II stellate neurons and in situ hybridization revealed that the miRNA most up-regulated in layer II, miR-143, was enriched in stellate neurons, whereas the miRNA most up-regulated in deep layers, miR-219-5p, was expressed in ependymal cells, oligodendrocytes and glia. Bioinformatics analyses of predicted mRNA targets with negatively correlated expression patterns to miR-143 found that miR-143 likely regulates the Lmo4 gene, which is known to influence hippocampal-based spatial learning.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Nina B Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Computer and Information Science, Norwegian University for Science and Technology, Trondheim, Norway. .,Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
48
|
Law HCH, Szeto SSW, Quan Q, Zhao Y, Zhang Z, Krakovska O, Lui LT, Zheng C, Lee SMY, Siu KWM, Wang Y, Chu IK. Characterization of the Molecular Mechanisms Underlying the Chronic Phase of Stroke in a Cynomolgus Monkey Model of Induced Cerebral Ischemia. J Proteome Res 2017; 16:1150-1166. [PMID: 28102082 DOI: 10.1021/acs.jproteome.6b00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stroke is one of the main causes of mortality and long-term disability worldwide. The pathophysiological mechanisms underlying this disease are not well understood, particularly in the chronic phase after the initial ischemic episode. In this study, a Macaca fascicularis stroke model consisting of two sample groups, as determined by MRI-quantified infarct volumes as a measure of the stroke severity 28 days after the ischemic episode, was evaluated using qualitative and quantitative proteomics analyses. By using multiple online multidimensional liquid chromatography platforms, 8790 nonredundant proteins were identified that condensed to 5223 protein groups at 1% global false discovery rate (FDR). After the application of a conservative criterion (5% local FDR), 4906 protein groups were identified from the analysis of cerebral cortex. Of the 2068 quantified proteins, differential proteomic analyses revealed that 31 and 23 were dysregulated in the elevated- and low-infarct-volume groups, respectively. Neurogenesis, synaptogenesis, and inflammation featured prominently as the cellular processes associated with these dysregulated proteins. Protein interaction network analysis revealed that the dysregulated proteins for inflammation and neurogenesis were highly connected, suggesting potential cross-talk between these processes in modulating the cytoskeletal structure and dynamics in the chronic phase poststroke. Elucidating the long-term consequences of brain tissue injuries from a cellular prospective, as well as the molecular mechanisms that are involved, would provide a basis for the development of new potentially neurorestorative therapies.
Collapse
Affiliation(s)
- Henry C H Law
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Samuel S W Szeto
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Yun Zhao
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Olga Krakovska
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University , Toronto, Ontario M3J 1P3, Canada
| | - Leong Ting Lui
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Chengyou Zheng
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Simon M-Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Avenue Padre Tomás Pereira S.J., Taipa, Macau 999078, China
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University , Toronto, Ontario M3J 1P3, Canada.,Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada
| | - Yuqiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| |
Collapse
|
49
|
Çağlayan ES. Generation of improved human cerebral organoids from single copy DYRK1A knockout induced pluripotent stem cells in trisomy 21: hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome. Cell Biol Int 2016; 40:1256-1270. [PMID: 27743462 DOI: 10.1002/cbin.10694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/12/2016] [Indexed: 01/02/2023]
Abstract
Dual-specificity thyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a strong therapeutic target to ameliorate cognitive functions of Down Syndrome (DS). Genetic normalization of Dyrk1a is sufficient to normalize early cortical developmental phenotypes in DS mouse models. Gyrencephalic human neocortical development is more complex than that in lissencephalic mice; hence, cerebral organoids (COs) can be used to model early neurodevelopmental defects of DS. Single copy DYRK1A knockout COs (scDYRK1AKO-COs) can be generated from manipulated DS derived (DS-) induced pluripotent stem cells (iPSCs) and genetic normalization of DYRK1A is expected to result in corrected neurodevelopmental phenotypes that can be reminiscent of normal COs. DYRK1A knock-in (DYRK1AKI) COs can be derived after genetic manipulations of normal iPSCs and would be valuable to evaluate impaired neocortical development as can be seen in DS-COs. DYRK1A mutations cause severe human primary microcephaly; hence, dose optimization studies of DYRK1A inhibitors will be critical for prenatal therapeutic applications in DS. Several doses of DYRK1A inhibitors can be tested in the neurodevelopment process of DS-COs and DS-scDYRK1AKO-COs would be used as optimum models for evaluating phenotypic ameliorations. Overdose drug exposure in DS-COs can be explained by similar defects present in DS-baDYRK1AKO-COs and DYRK1AKO-COs. There are several limitations in the current CO technology, which can be reduced by the generation of vascularized brain-like organoids giving opportunities to mimic late-stage corticogenesis and complete hippocampal development. In the future, improved DS-DYRK1AKO-COs can be efficient in studies that aim to generate efficiently transplantable and implantable neurons for tissue regeneration alternatives in DS individuals.
Collapse
Affiliation(s)
- E Sacide Çağlayan
- Faculty of Health Science, Department of Nutrition and Dietetics, Ankara Yıldırım Beyazıt University, Ankara, 06010, Turkey
| |
Collapse
|
50
|
Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat Neurosci 2016; 19:1733-1742. [PMID: 27749828 PMCID: PMC5127741 DOI: 10.1038/nn.4417] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Abstract
Long-range projections from the frontal cortex are known to modulate sensory processing in multiple modalities. Although the mouse has become an increasingly important animal model for studying the circuit basis of behavior, the functional organization of its frontal cortical long-range connectivity remains poorly characterized. Here we used virus-assisted circuit mapping to identify the brain networks for top-down modulation of visual, somatosensory and auditory processing. The visual cortex is reciprocally connected to the anterior cingulate area, whereas the somatosensory and auditory cortices are connected to the primary and secondary motor cortices. Anterograde and retrograde tracing identified the cortical and subcortical structures belonging to each network. Furthermore, using new viral techniques to target subpopulations of frontal neurons projecting to the visual cortex versus the superior colliculus, we identified two distinct subnetworks within the visual network. These findings provide an anatomical foundation for understanding the brain mechanisms underlying top-down control of behavior.
Collapse
|