1
|
Tian P, Lu X, Jin N, Shi J. Knockdown of ghrelin-O-acyltransferase attenuates colitis through the modulation of inflammatory factors and tight junction proteins in the intestinal epithelium. Cell Biol Int 2020; 44:1681-1690. [PMID: 32281710 DOI: 10.1002/cbin.11362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022]
Abstract
Ghrelin-O-acyltransferase (GOAT) is a membrane-bound enzyme that attaches eight-carbon octanoate to a serine residue in ghrelin and thereby acylates inactive ghrelin to produce active ghrelin. In this study, we investigated the function of GOAT in the intestinal mucosal barrier. The intestinal mucosal barrier prevents harmful substances such as bacteria and endotoxin from entering the other tissues, organs, and blood circulation through the intestinal mucosa. Here, we established 5% dextran sodium sulfate (DSS)-induced colitis in mice and found that the body weight and colon weight were significantly decreased in these mice. Furthermore, increased inflammation and apoptosis were observed in the tissues of DSS-induced colitis mice, with increased expression of tumor necrosis factor-α, interleukin-6, phosphorylation of nuclear factor kappa B-p65 (p-NF-κB-p65), and cleaved caspase-3, and decreased expression of tight junction (TJ) proteins such as zonula occluden-1 and occludin. The knockdown of GOAT significantly attenuated colitis-induced inflammation responses and apoptosis, while GOAT overexpression significantly enhanced the induction of colitis. These results suggest that knockdown of GOAT may attenuate colitis-induced inflammation, ulcers, and fecal occult blood by decreasing the intestinal mucosal permeability via the modulation of inflammatory factors and TJ proteins.
Collapse
Affiliation(s)
- Peiying Tian
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| | - Xiaolan Lu
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| | - Nuyun Jin
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| | - Jianping Shi
- Department of Digestion, Shanghai Pudong Hospital, Shanghai, China
| |
Collapse
|
2
|
Dallak MA. Acylated ghrelin induces but deacylated ghrelin prevents hepatic steatosis and insulin resistance in lean rats: Effects on DAG/ PKC/JNK pathway. Biomed Pharmacother 2018; 105:299-311. [PMID: 29860222 DOI: 10.1016/j.biopha.2018.05.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
This study investigated the molecular effects of acylated (AG) and unacylated ghrelin (UAG) or their combination on hepatic lipogenesis pathways and DAG/PKC/JNK signaling in the livers of lean rats fed standard diet. Male rats (n = 10) were classified as control + vehicle (saline, 200 μl), AG, UAG, and AG + UAG-treated groups. All treatments were given at final doses of 200 ng/kg of for 14 days (twice/day, S.C). Administration of AG significantly enhanced circulatory levels of AG and UAG turning the normal ratio of AG/UAG from 1:2.5 to 1:1.2. However, while UAG didn't affect circulatory levels of AG, administration of UAG alone or in combination with AG resulted in AG/UAG ratios of 1:7 and 1:3, respectively. Independent of food intake nor the development of peripheral IR, AG increased hepatic DAG, TGs and CHOL contents and induced hepatic IR. Mechanism of action include 1) upregulation of mRNA and protein levels of DGAT-2 and mtGPAT-1, SREBP-1 and SCD-1, and 2) inhibition of fatty acids (FAs) oxidation mediated by inhibition of AMPK/ PPAR-α/CPT-1 axis. Consequently, AG induced membranous translocation of PKCδ and PKCε leading to activation of JNK and significant inhibition of insulin signaling under basal and insulin stimulation as evident by decreases in the phosphorylation levels of IRS (Tyr612) and Akt (Thr318) and increased phosphorylation of IRS (Ser307). However, while UAG only activated FAs oxidation in control rats, it reversed all alterations in all measured biochemical endpoints seen in the AG-treated group, when administered in combination with AG, leading to significant decreases in hepatic fat accumulation and prevention of hepatic IR. In conclusion, while exogenous administration of AG is at high risk of developing steatohepatitis and hepatic IR, co-administration of a balanced dose of UAG reduces this risk and inhibits hepatic lipid accumulation and enhance hepatic insulin signaling.
Collapse
Affiliation(s)
- Mohammad A Dallak
- Department of Physiology, College of Medicine, King's Khalid University, Abha, 61241, Saudi Arabia.
| |
Collapse
|
3
|
Zhang S, Mao Y, Fan X. Inhibition of ghrelin o-acyltransferase attenuated lipotoxicity by inducing autophagy via AMPK-mTOR pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:873-885. [PMID: 29713145 PMCID: PMC5912383 DOI: 10.2147/dddt.s158985] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has been considered the most commonly occurring chronic hepatopathy in the world. Ghrelin o-acyltransferase (GOAT) is an acylation enzyme which has an acylated position 3 serine on ghrelin. Recent investigation revealed that activated autophagy could attenuate liver steatosis. The aim of this study was to explore therapeutic roles that inhibit GOAT exerted in NAFLD, and its potential association with autophagy. Materials and methods Human LO2 cells were pretreated with siRNA-GOAT to induce liver steatosis using free fatty acids (FFAs). A chronic NAFLD model was established by feeding male mice C57bl/6 with high-fat diet (HFD) for 56 days with GO-CoA-Tat administrated subcutaneously. Lipid droplets were identified by Oil Red O stains. Body weight (BW) of mice was measured every week. Autophagy, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), serum biochemical indicators (glucose [Glu], total cholesterol [TC], triglyceride [TG], aspartate aminotransferase [AST], alanine aminotransferase [ALT]) and signaling pathway proteins of phosphorylated AMPK–mTOR were measured. Results The TG contents of the FFA and HFD groups were decreased by the inhibition of GOAT. Among mice treated with GO-CoA-Tat and siRNA-GOAT, IL-6 and TNF-α concentrations were remarkably decreased. Indicators of liver injury such as ALT and AST were also remarkably decreased among mice treated with GO-CoA-Tat. Likewise, GO-CoA-Tat significantly reduced the BW of mice and serum TG, TC and Glu. Autophagy was induced along with reduced lipids in the cells of the FFA and HFD groups. The inhibition of GOAT upregulated autophagy via AMPK–mTOR restoration. Conclusion These results indicate that the inhibition of GOAT attenuates lipotoxicity by autophagy stimulation via AMPK–mTOR restoration and offers innovative evidence for using GO-CoA-Tat or siRNA-GOAT in NAFLD clinically.
Collapse
Affiliation(s)
- Shaoren Zhang
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yuqing Mao
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiaoming Fan
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Wang Q, Tang W, Rao WS, Song X, Shan CX, Zhang W. Changes of Ghrelin/GOAT axis and mTOR pathway in the hypothalamus after sleeve gastrectomy in obese type-2 diabetes rats. World J Gastroenterol 2017; 23:6231-6241. [PMID: 28974889 PMCID: PMC5603489 DOI: 10.3748/wjg.v23.i34.6231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/02/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the changes of the ghrelin/ghrelin O-acyltransferase (GOAT) axis and the mammalian target of rapamycin (mTOR) pathway in the hypothalamus after sleeve gastrectomy. METHODS A total of 30 obese type-2 diabetes Sprague-Dawley (SD) rats, 6 wk of age, fed with high-sugar and high-fat fodder for 2 mo plus intraperitoneal injection of streptozotocin were randomly divided into three groups: non-operation group (S0 group, n = 10), sham operation group (Sh group, n = 10) and sleeve gastrectomy group (SG group, n = 10). Data of body mass, food intake, oral glucose tolerance test (OGTT), acylated ghrelin (AG) and total ghrelin (TG) were collected and measured at the first day (when the rats were 6 wk old), preoperative day 3 and postoperative week 8. The mRNA expression of preproghrelin, GOAT and neuropeptide Y (NPY), and protein expression of ghrelin, GOAT, GHSR and the mTOR pathway (p-Akt, p-mTOR and p-S6) were measured in the hypothalamus. RESULTS SG can significantly improve metabolic symptoms by reducing body mass and food intake. The obese rats showed lower serum TG levels and no change in AG, but the ratio of AG/TG was increased. When compared with the S0 and Sh groups, the SG group showed decreased TG (1482.03 ± 26.55, 1481.49 ± 23.30 and 1206.63 ± 52.02 ng/L, respectively, P < 0.05), but unchanged AG (153.06 ± 13.74, 155.37 ± 19.30 and 144.44 ± 16.689 ng/L, respectively, P > 0.05). As a result, the ratio of AG/TG further increased in the SG group (0.103 ± 0.009, 0.105 ± 0.013 and 0.12 ± 0.016, respectively, P < 0.05). When compared with the S0 group, SG suppressed mRNA and protein levels of preproghrelin (0.63 ± 0.12 vs 0.5 ± 0.11, P < 0.05) and GOAT (0.96 ± 0.09 vs 0.87 ± 0.08, P < 0.05), but did not change NPY mRNA expression (0.61 ± 0.04 vs 0.65 ± 0.07, P > 0.05) in the hypothalamus. The protein levels of p-Akt, p-mTOR and p-S6 were higher in the SG group, which indicated that the hypothalamic mTOR pathway was activated after SG at the postoperative week 8. CONCLUSION The reduction of ghrelin expression and activation of the mTOR pathway might have opposite effects on food intake, as SG improves obesity and T2DM.
Collapse
MESH Headings
- Acylation
- Acyltransferases/metabolism
- Animals
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/surgery
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/surgery
- Eating
- Gastrectomy/methods
- Gastroplasty/methods
- Ghrelin/metabolism
- Glucose Tolerance Test
- Humans
- Hypothalamus/metabolism
- Male
- Obesity/blood
- Obesity/complications
- Obesity/metabolism
- Obesity/surgery
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Weight Loss
Collapse
Affiliation(s)
- Qiang Wang
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wei Tang
- Department of Surgery, University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Wen-Sheng Rao
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin Song
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Cheng-Xiang Shan
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wei Zhang
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
5
|
Yu CH, Chu SC, Chen PN, Hsieh YS, Kuo DY. Participation of ghrelin signalling in the reciprocal regulation of hypothalamic NPY/POMC-mediated appetite control in amphetamine-treated rats. Appetite 2017; 113:30-40. [DOI: 10.1016/j.appet.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/31/2017] [Accepted: 02/05/2017] [Indexed: 12/18/2022]
|
6
|
Hormaechea-Agulla D, Gómez-Gómez E, Ibáñez-Costa A, Carrasco-Valiente J, Rivero-Cortés E, L-López F, Pedraza-Arevalo S, Valero-Rosa J, Sánchez-Sánchez R, Ortega-Salas R, Moreno MM, Gahete MD, López-Miranda J, Requena MJ, Castaño JP, Luque RM. Ghrelin O-acyltransferase (GOAT) enzyme is overexpressed in prostate cancer, and its levels are associated with patient's metabolic status: Potential value as a non-invasive biomarker. Cancer Lett 2016; 383:125-134. [PMID: 27693462 DOI: 10.1016/j.canlet.2016.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022]
Abstract
Ghrelin-O-acyltransferase (GOAT) is the key enzyme regulating ghrelin activity, and has been proposed as a potential therapeutic target for obesity/diabetes and as a biomarker in some endocrine-related cancers. However, GOAT presence and putative role in prostate-cancer (PCa) is largely unknown. Here, we demonstrate, for the first time, that GOAT is overexpressed (mRNA/protein-level) in prostatic tissues (n = 52) and plasma/urine-samples (n = 85) of PCa-patients, compared with matched controls [healthy prostate tissues (n = 12) and plasma/urine-samples from BMI-matched controls (n = 28), respectively]. Interestingly, GOAT levels in PCa-patients correlated with aggressiveness and metabolic conditions (i.e. diabetes). Actually, GOAT expression was regulated by metabolic inputs (i.e. In1-ghrelin, insulin/IGF-I) in cultured normal prostate cells and PCa-cell lines. Importantly, ROC-curve analysis unveiled a valuable diagnostic potential for GOAT to discriminate PCa at the tissue/plasma/urine-level with high sensitivity/specificity, particularly in non-diabetic individuals. Moreover, we discovered that GOAT is secreted by PCa-cells, and that its levels are higher in urine samples from a stimulated post-massage vs. pre-massage prostate-test. In conclusion, plasmatic GOAT levels exhibit high specificity/sensitivity to predict PCa-presence compared with other PCa-biomarkers, especially in non-diabetic individuals, suggesting that GOAT holds potential as a novel non-invasive PCa-biomarker.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS, Córdoba, Spain
| | - Esther Rivero-Cortés
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - Fernando L-López
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - José Valero-Rosa
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - María M Moreno
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - José López-Miranda
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; CIBERobn, Córdoba, Spain; Lipids and Atherosclerosis Unit, HURS, Córdoba, Spain
| | - María J Requena
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain.
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain.
| |
Collapse
|
7
|
Yu CH, Chu SC, Chen PN, Hsieh YS, Kuo DY. Mediation of oxidative stress in hypothalamic ghrelin-associated appetite control in rats treated with phenylpropanolamine. GENES BRAIN AND BEHAVIOR 2016; 16:439-448. [PMID: 27862969 DOI: 10.1111/gbb.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 11/05/2016] [Indexed: 12/19/2022]
Abstract
Phenylpropanolamine (PPA)-induced appetite control is associated with oxidative stress in the hypothalamus. This study explored whether hypothalamic antioxidants participated in hypothalamic ghrelin system-associated appetite control in PPA-treated rats. Rats were given PPA daily for 4 days, and changes in food intake and the expression of neuropeptide Y (NPY), the cocaine- and amphetamine-regulated transcript (CART), superoxide dismutase, catalase, ghrelin, acyl ghrelin (AG), ghrelin O-acyltransferase (GOAT) and the ghrelin receptor (GHSR1a) were examined and compared. Results showed that both food intake and the expression of NPY and ghrelin/AG/GOAT/GHSR1a decreased in response to PPA treatment with maximum decrease on Day 2 of the treatment. In contrast, the expression of antioxidants and CART increased, with the maximum increase on Day 2, with the expression opposite to that of NPY and ghrelin. A cerebral infusion of either a GHSR1a antagonist or reactive oxygen species scavenger modulated feeding behavior and NPY, CART, antioxidants and ghrelin system expression, showing the involvement of ghrelin signaling and oxidative stress in regulating PPA-mediated appetite control. We suggest that hypothalamic ghrelin signaling system, with the help of antioxidants, may participate in NPY/CART-mediated appetite control in PPA-treated rats.
Collapse
Affiliation(s)
- C-H Yu
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - S-C Chu
- Department of Food Science, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| | - P-N Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Y-S Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - D-Y Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
8
|
Martin KA, Mani MV, Mani A. New targets to treat obesity and the metabolic syndrome. Eur J Pharmacol 2015; 763:64-74. [PMID: 26001373 DOI: 10.1016/j.ejphar.2015.03.093] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/19/2015] [Accepted: 03/30/2015] [Indexed: 01/12/2023]
Abstract
Metabolic syndrome (MetS) is a cluster ofassociated metabolic traits that collectively confer unsurpassed risk for development of cardiovascular disease (CVD) and type 2 diabetes compared to any single CVD risk factor. Truncal obesity plays an exceptionally critical role among all metabolic traits of the MetS. Consequently, the prevalence of the MetS has steadily increased with the growing epidemic of obesity. Pharmacotherapy has been available for obesity for more than one decade, but with little success in improving the metabolic profiles. The serotonergic drugs and inhibitors of pancreatic lipases were among the few drugs that were initially approved to treat obesity. At the present time, only the pancreatic lipase inhibitor orlistat is approved for long-term treatment of obesity. New classes of anti-diabetic drugs, including glucagon-like peptide 1 receptor (GLP-1R) agonists and Dipeptidyl-peptidase IV (DPP-IV) inhibitors, are currently being evaluated for their effects on obesity and metabolic traits. The genetic studies of obesity and metabolic syndrome have identified novel molecules acting on the hunger and satiety peptidergic signaling of the gut-hypothalamus axis or the melanocortin system of the brain and are promising targets for future drug development. The goal is to develop drugs that not only treat obesity, but also favorably impact its associated traits.
Collapse
Affiliation(s)
- Kathleen A Martin
- Department of Internal Medicine, Yale University School of Medicine, USA
| | | | - Arya Mani
- Department of Internal Medicine, Yale University School of Medicine, USA; Department of Genetics, Yale University School of Medicine, USA.
| |
Collapse
|
9
|
Zhang SR, Fan XM. Ghrelin-ghrelin O-acyltransferase system in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2015; 21:3214-3222. [PMID: 25805927 PMCID: PMC4363750 DOI: 10.3748/wjg.v21.i11.3214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/29/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently considered as the most common liver disease in Western countries, and is rapidly becoming a serious threat to public health worldwide. However, the underlying mechanisms leading to the development of NAFLD are still not fully understood. The ghrelin-ghrelin O-acyltransferase (GOAT) system has recently been found to play a crucial role in both the development of steatosis and its progression to nonalcoholic steatohepatitis. Ghrelin, the natural ligand of the growth hormone secretagogue receptor, is a 28-amino acid peptide possessing a unique acylation on the serine in position 3 catalyzed by GOAT. The ghrelin-GOAT system is involved in insulin resistance, lipid metabolism dysfunction, and inflammation, all of which play important roles in the pathogenesis of NAFLD. A better understanding of ghrelin-GOAT system biology led to the identification of its potential roles in NAFLD. Molecular targets modulating ghrelin-GOAT levels and the biologic effects are being studied, which provide a new insight into the pathogenesis of NAFLD. This review probes into the possible relationship between the ghrelin-GOAT system and NAFLD, and considers the potential mechanisms by which the ghrelin-GOAT system brings about insulin resistance and other aspects concerning NAFLD.
Collapse
|
10
|
Wellman MK, Patterson ZR, MacKay H, Darling JE, Mani BK, Zigman JM, Hougland JL, Abizaid A. Novel Regulator of Acylated Ghrelin, CF801, Reduces Weight Gain, Rebound Feeding after a Fast, and Adiposity in Mice. Front Endocrinol (Lausanne) 2015; 6:144. [PMID: 26441834 PMCID: PMC4585333 DOI: 10.3389/fendo.2015.00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/01/2015] [Indexed: 01/04/2023] Open
Abstract
Ghrelin is a 28 amino acid hormonal peptide that is intimately related to the regulation of food intake and body weight. Once secreted, ghrelin binds to the growth hormone secretagogue receptor-1a, the only known receptor for ghrelin and is capable of activating a number of signaling cascades, ultimately resulting in an increase in food intake and adiposity. Because ghrelin has been linked to overeating and the development of obesity, a number of pharmacological interventions have been generated in order to interfere with either the activation of ghrelin or interrupting ghrelin signaling as a means to reducing appetite and decrease weight gain. Here, we present a novel peptide, CF801, capable of reducing circulating acylated ghrelin levels and subsequent body weight gain and adiposity. To this end, we show that IP administration of CF801 is sufficient to reduce circulating plasma acylated ghrelin levels. Acutely, intraperitoneal injections of CF801 resulted in decreased rebound feeding after an overnight fast. When delivered chronically, they decreased weight gain and adiposity without affecting caloric intake. CF801, however, did cause a change in diet preference, decreasing preference for a high-fat diet and increasing preference for regular chow diet. Given the complexity of ghrelin receptor function, we propose that CF801, along with other compounds that regulate ghrelin secretion, may prove to be a beneficial tool in the study of the ghrelin system, and potential targets for ghrelin-based obesity treatments without altering the function of ghrelin receptors.
Collapse
Affiliation(s)
| | | | - Harry MacKay
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | - Bharath K. Mani
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M. Zigman
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- *Correspondence: Alfonso Abizaid, Department of Neuroscience, Carleton University, 1125 Colonel By Drive, 329 Life Science Research Building, Ottawa, ON K1S 5B6, Canada,
| |
Collapse
|
11
|
El Gammal AT, Dupree A, Wolter S, Aberle J, Izbicki JR, Güngör C, Mann O. Obesity research: Status quo and future outlooks. World J Transl Med 2014; 3:119-132. [DOI: 10.5528/wjtm.v3.i3.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/27/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Obesity is a multifactorial disease showing a pandemic increase within the last decades in developing, and developed countries. It is associated with several severe comorbidities such as type II diabetes, hypertension, sleep apnea, non-alcoholic steatosis hepatis and cancer. Due to the increasing number of overweight individuals worldwide, research in the field of obesity has become more vital than ever. Currently, great efforts are spend to understand this complex disease from a biological, psychological and sociological angle. Further insights of obesity research come from bariatric surgery that provides new information regarding hormonal changes during weight loss. The initiation of programs for obesity treatment, both interventional and pharmaceutical, are being pursued with the fullest intensity. Currently, bariatric surgery is the most effective therapy for weight loss and resolution of comorbidities in morbid obese patients. Reasons for weight loss and remission of comorbidities following Roux-en-Y-Gastric Bypass, Sleeve Gastrectomy, and other bariatric procedures are therefore under intense investigation. In this review, however, we will focus on obesity treatment, highlighting new insights and future trends of gut hormone research, the relation of obesity and cancer development via the obesity induced chronic state of inflammation, and new potential concepts of interventional and conservative obesity treatment.
Collapse
|
12
|
Troke RC, Tan TM, Bloom SR. The future role of gut hormones in the treatment of obesity. Ther Adv Chronic Dis 2014; 5:4-14. [PMID: 24381724 PMCID: PMC3871274 DOI: 10.1177/2040622313506730] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The obesity pandemic presents a significant burden, both in terms of healthcare and economic outcomes, and current medical therapies are inadequate to deal with this challenge. Bariatric surgery is currently the only therapy available for obesity which results in long-term, sustained weight loss. The favourable effects of this surgery are thought, at least in part, to be mediated via the changes of gut hormones such as GLP-1, PYY, PP and oxyntomodulin seen following the procedure. These hormones have subsequently become attractive novel targets for the development of obesity therapies. Here, we review the development of these gut peptides as current and emerging therapies in the treatment of obesity.
Collapse
Affiliation(s)
- Rachel C Troke
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Tricia M Tan
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Steve R Bloom
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, 6th Floor, Commonwealth Building, London W12 0HS, UK
| |
Collapse
|
13
|
Gahete MD, Rincón-Fernández D, Villa-Osaba A, Hormaechea-Agulla D, Ibáñez-Costa A, Martínez-Fuentes AJ, Gracia-Navarro F, Castaño JP, Luque RM. Ghrelin gene products, receptors, and GOAT enzyme: biological and pathophysiological insight. J Endocrinol 2014; 220:R1-24. [PMID: 24194510 DOI: 10.1530/joe-13-0391] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin is a 28-amino acid acylated hormone, highly expressed in the stomach, which binds to its cognate receptor (GHSR1a) to regulate a plethora of relevant biological processes, including food intake, energy balance, hormonal secretions, learning, inflammation, etc. However, ghrelin is, in fact, the most notorious component of a complex, intricate regulatory system comprised of a growing number of alternative peptides (e.g. obestatin, unacylated ghrelin, and In1-ghrelin, etc.), known (GHSRs) and, necessarily unknown receptors, as well as modifying enzymes (e.g. ghrelin-O-acyl-transferase), which interact among them as well as with other regulatory systems in order to tightly modulate key (patho)-physiological processes. This multiplicity of functions and versatility of the ghrelin system arise from a dual, genetic and functional, complexity. Importantly, a growing body of evidence suggests that dysregulation in some of the components of the ghrelin system can lead to or influence the development and/or progression of highly concerning pathologies such as endocrine-related tumors, inflammatory/cardiovascular diseases, and neurodegeneration, wherein these altered components could be used as diagnostic, prognostic, or therapeutic targets. In this context, the aim of this review is to integrate and comprehensively analyze the multiple components and functions of the ghrelin system described to date in order to define and understand its biological and (patho)-physiological significance.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, Campus Universitario de Rabanales, Edificio Severo Ochoa (C6), Planta 3, University of Córdoba, 14014-Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba; Reina Sofia University Hospital, Córdoba; and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The prevalence of obesity continues to increase and has reached epidemic proportions. Accumulating data over the past few decades have given us key insights and broadened our understanding of the peripheral and central regulation of energy homeostasis. Despite this, the currently available pharmacological treatments, reducing body weight, remain limited due to poor efficacy and side effects. The gastric peptide ghrelin has been identified as the only orexigenic hormone from the periphery to act in the hypothalamus to stimulate food intake. Recently, a role for ghrelin and its receptor at the interface between homeostatic control of appetite and reward circuitries modulating the hedonic aspects of food has also emerged. Nonhomeostatic factors such as the rewarding and motivational value of food, which increase with food palatability and caloric content, can override homeostatic control of food intake. This nonhomeostatic decision to eat leads to overconsumption beyond nutritional needs and is being recognized as a key component in the underlying causes for the increase in obesity incidence worldwide. In addition, the hedonic feeding behavior has been linked to food addiction and an important role for ghrelin in the development of addiction has been suggested. Moreover, plasma ghrelin levels are responsive to conditions of stress, and recent evidence has implicated ghrelin in stress-induced food-reward behavior. The prominent role of the ghrelinergic system in the regulation of feeding gives rise to it as an effective target for the development of successful antiobesity pharmacotherapies that not only affect satiety but also selectively modulate the rewarding properties of food and reduce the desire to eat.
Collapse
|
15
|
Delporte C. Structure and physiological actions of ghrelin. SCIENTIFICA 2013; 2013:518909. [PMID: 24381790 PMCID: PMC3863518 DOI: 10.1155/2013/518909] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/10/2013] [Indexed: 05/30/2023]
Abstract
Ghrelin is a gastric peptide hormone, discovered as being the endogenous ligand of growth hormone secretagogue receptor. Ghrelin is a 28 amino acid peptide presenting a unique n-octanoylation modification on its serine in position 3, catalyzed by ghrelin O-acyl transferase. Ghrelin is mainly produced by a subset of stomach cells and also by the hypothalamus, the pituitary, and other tissues. Transcriptional, translational, and posttranslational processes generate ghrelin and ghrelin-related peptides. Homo- and heterodimers of growth hormone secretagogue receptor, and as yet unidentified receptors, are assumed to mediate the biological effects of acyl ghrelin and desacyl ghrelin, respectively. Ghrelin exerts wide physiological actions throughout the body, including growth hormone secretion, appetite and food intake, gastric secretion and gastrointestinal motility, glucose homeostasis, cardiovascular functions, anti-inflammatory functions, reproductive functions, and bone formation. This review focuses on presenting the current understanding of ghrelin and growth hormone secretagogue receptor biology, as well as the main physiological effects of ghrelin.
Collapse
Affiliation(s)
- Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 808 Route de Lennik, Bat G/E-CP611, 1070 Brussels, Belgium
| |
Collapse
|
16
|
Gut hormones as therapeutic agents in treatment of diabetes and obesity. Curr Opin Pharmacol 2013; 13:996-1001. [PMID: 24060699 DOI: 10.1016/j.coph.2013.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/19/2013] [Accepted: 09/04/2013] [Indexed: 12/24/2022]
Abstract
Obesity and Type 2 Diabetes Mellitus (T2DM) present an ever-increasing threat to global health. Although bariatric surgery is an effective treatment, it cannot be applied to the vast majority of patients. The beneficial effects of bariatric surgery are related to complex alterations in the secretion of gut hormones. By recapitulation of the changes of gut hormone secretion after bariatric surgery, drugs based on gut hormones represent an exciting possibility for the treatment of T2DM and obesity. We review the rapidly emerging role of GLP-1 based treatments as well as the future for new drugs based on other gut hormones such as GIP, ghrelin, oxyntomodulin and peptide YY.
Collapse
|
17
|
Schellekens H, Finger BC, Dinan TG, Cryan JF. Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacol Ther 2012; 135:316-26. [PMID: 22749794 DOI: 10.1016/j.pharmthera.2012.06.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 12/14/2022]
Abstract
The neuronal circuitry underlying the complex relationship between stress, mood and food intake are slowly being unravelled and several studies suggest a key role herein for the peripherally derived hormone, ghrelin. Evidence is accumulating linking obesity as an environmental risk factor to psychiatric disorders such as stress, anxiety and depression. Ghrelin is the only known orexigenic hormone from the periphery to stimulate food intake. Plasma ghrelin levels are enhanced under conditions of physiological stress and ghrelin has recently been suggested to play an important role in stress-induced food reward behaviour. In addition, chronic stress or atypical depression has often demonstrated to correlate with an increase in ingestion of caloric dense 'comfort foods' and have been implicated as one of the major contributor to the increased prevalence of obesity. Recent evidence suggests ghrelin as a critical factor at the interface of homeostatic control of appetite and reward circuitries, modulating the hedonic aspects of food intake. Therefore, the reward-related feeding of ghrelin may reveal itself as an important factor in the development of addiction to certain foods, similar to its involvement in the dependence to drugs of abuse, including alcohol. This review will highlight the accumulating evidence demonstrating the close interaction between food, mood and stress and the development of obesity. We consider the ghrelinergic system as an effective target for the development of successful anti-obesity pharmacotherapies, which not only affects appetite but also selectively modulates the rewarding properties of food and impact on psychological well-being in conditions of stress, anxiety and depression.
Collapse
|
18
|
Rucinski M, Ziolkowska A, Szyszka M, Hochol A, Malendowicz LK. Evidence suggesting that ghrelin O-acyl transferase inhibitor acts at the hypothalamus to inhibit hypothalamo-pituitary-adrenocortical axis function in the rat. Peptides 2012; 35:149-59. [PMID: 22543218 DOI: 10.1016/j.peptides.2012.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Production of n-octanoyl-modified ghrelin (GHREL), an active form of the peptide requires prohormone processing protease and GHREL O-acyltransferase (GOAT), as well as n-octanoic acid. Recently a selective GOAT antagonist (GO-CoA-Tat) was invented and this tool was used to study the possible role of endogenous GHREL in regulating HPA axis function in the rat. Administration of GOAT inhibitor (GOATi) resulted in a notable decrease in plasma ACTH, aldosterone and corticosterone concentrations at min 60 of experiment. Octanoic acid (OA) administration had no effect on levels of studied hormones. Plasma levels of unacylated and acylated GHREL remained unchanged for 60min after either GOATi or OA administration. Under experimental conditions applied, no significant changes were observed in the levels of GOAT mRNA in hypothalamus, pituitary, adrenal and stomach fundus. After GOATi injection hypothalamic CRH mRNA levels were elevated at 30 min and pituitary POMC mRNA levels at 60 min. Both GOATi and OA lowered basal, but not K(+)-stimulated CRH release by hypothalamic explants and had no effect on basal or CRH-stimulated ACTH release by pituitary slices. Neither GOATi nor OA affected corticosterone secretion by freshly isolated or cultured rat adrenocortical cells. Thus, results of our study suggest that in the rat endogenous GHREL exerts tonic stimulating effect on hypothalamic CRH release. This effect could be demonstrated by administering rats with selected inhibitor of ghrelin O-acyltransferase, the enzyme responsible for GHREL acylation, a process which is absolutely required for both GHSR-1a binding and its central endocrine activities.
Collapse
Affiliation(s)
- Marcin Rucinski
- Department of Histology and Embryology, Medical University, Poznan, Poland
| | | | | | | | | |
Collapse
|
19
|
Cardona Cano S, Merkestein M, Skibicka KP, Dickson SL, Adan RAH. Role of ghrelin in the pathophysiology of eating disorders: implications for pharmacotherapy. CNS Drugs 2012; 26:281-96. [PMID: 22452525 DOI: 10.2165/11599890-000000000-00000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ghrelin is the only known circulating orexigenic hormone. It increases food intake by interacting with hypothalamic and brainstem circuits involved in energy balance, as well as reward-related brain areas. A heightened gut-brain ghrelin axis is an emerging feature of certain eating disorders such as anorexia nervosa and Prader-Willi syndrome. In common obesity, ghrelin levels are lowered, whereas post-meal ghrelin levels remain higher than in lean individuals. Agents that interfere with ghrelin signalling have therapeutic potential for eating disorders, including obesity. However, most of these drugs are only in the preclinical phase of development. Data obtained so far suggest that ghrelin agonists may have potential in the treatment of anorexia nervosa, while ghrelin antagonists seem promising for other eating disorders such as obesity and Prader-Willi syndrome. However, large clinical trials are needed to evaluate the efficacy and safety of these drugs.
Collapse
|
20
|
Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. Br J Nutr 2012; 108:778-93. [PMID: 22409929 DOI: 10.1017/s0007114512000529] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal peptides are classically known as short-term signals, primarily inducing satiation and/or satiety. However, accumulating evidence has broadened this view, and their role in long-term energy homeostasis and the development of obesity has been increasingly recognised. In the present review, the recent research involving the role of satiation signals, especially ghrelin, cholecystokinin, glucagon-like peptide 1 and peptide YY, in the development and treatment of obesity will be discussed. Their activity, interactions and release profile vary constantly with changes in dietary and energy influences, intestinal luminal environment, body weight and metabolic status. Manipulation of gut peptides and nutrient sensors in the oral and postoral compartments through diet and/or changes in gut microflora or using multi-hormone 'cocktail' therapy are among promising approaches aimed at reducing excess food consumption and body-weight gain.
Collapse
|
21
|
Bellone S, Prodam F, Savastio S, De Rienzo F, Demarchi I, Trovato L, Petri A, Rapa A, Aimaretti G, Bona G. Acylated and unacylated ghrelin levels in normal weight and obese children: influence of puberty and relationship with insulin, leptin and adiponectin levels. J Endocrinol Invest 2012; 35:191-7. [PMID: 21623149 DOI: 10.3275/7761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ghrelin circulates in blood as acylated (AG) and unacylated (UAG) ghrelin. The physiological role of the two forms is poorly understood, in particular in childhood. Aim of the study was to evaluate the AG and UAG levels in obese and normal weight (NW) children, pre-pubertal and pubertal, and their relationship with insulin, leptin and adiponectin levels. SUBJECTS AND METHODS A population based study in which AG, UAG, leptin, adiponectin, glucose, insulin, testosterone or estradiol levels, insulinemic indexes were evaluated in 82 NW and 58 obese (OB) children. RESULTS Both ghrelin forms in NW were higher (AG, p<0.02; UAG, p<0.0001) than in OB subjects, with similar ratio AG/UAG . While no differences were observed for gender, puberty AG (p<0.01) and UAG (p<0.0001) levels were higher in pre-pubertal than pubertal NW and OB subjects. Adiponectin levels in NW subjects were higher (p<0.001), while leptin and insulin levels were lower (p<0.0001) than in OB subjects. NW children showed homeostasis model assessment (HOMA) and HOMAβ indices lower than OB children (p<0.0001) with a higher a quantitative insulin sensitivity check index (p<0.0001). AG and UAG levels correlated to each other (p<0.0001), each showing a negative correlation to age, height, weight and body mass index. Both forms, but more strongly UAG, correlated with adiponectin, leptin, and insulin. CONCLUSIONS OB children show lower levels of both AG and UAG when compared to NW subjects, with lower levels during puberty. These results demonstrate a peculiar strong relationship between UAG levels and metabolic parameters in the pediatric population, suggesting a role for UAG in metabolic functions.
Collapse
Affiliation(s)
- S Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Beléen C, Martínez-Fuentes AJ, Gracia-Navarro F. Role of SST, CORT and ghrelin and its receptors at the endocrine pancreas. Front Endocrinol (Lausanne) 2012; 3:114. [PMID: 23162532 PMCID: PMC3444847 DOI: 10.3389/fendo.2012.00114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/03/2012] [Indexed: 12/21/2022] Open
Abstract
Somatostatin (SST), cortistatin (CORT), and its receptors (sst1-5), and ghrelin and its receptors (GHS-R) are two highly interrelated neuropeptide systems with a broad range of overlapping biological actions at central, cardiovascular, and immune levels among others. Besides their potent regulatory role on GH release, its endocrine actions are highlighted by SST/CORT and ghrelin influence on insulin secretion, glucose homeostasis, and insulin resistance. Interestingly, most components of these systems are expressed at the endocrine pancreas and are actively involved in the modulation of pancreatic islet function and, consequently influence glucose homeostasis. In addition, some of them also participate in islet survival and regeneration. Furthermore, under severe metabolic condition as well as in endocrine pathologies, their expression profile is severely deregulated. These findings suggest that SST/CORT and ghrelin systems could play a relevant role in pancreatic function under metabolic and endocrine pathologies. Accordingly, these systems have been therapeutically targeted for the prevention or amelioration of certain metabolic conditions (obesity) as well as for tumor growth inhibition and/or hormonal regulation in endocrine pathologies (neuroendocrine tumors). This review focuses on the interrelationship between SST/CORT and ghrelin systems and their role in severe metabolic conditions and some endocrine disorders.
Collapse
Affiliation(s)
- Chanclón Beléen
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
| | - Antonio J. Martínez-Fuentes
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
| | - Francisco Gracia-Navarro
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
- *Correspondence: Francisco Gracia-Navarro, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Edificio Severo-Ochoa, Planta 3, E-14014 Córdoba, Spain. e-mail:
| |
Collapse
|
23
|
Ghrelin, appetite regulation, and food reward: interaction with chronic stress. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2011:898450. [PMID: 21949667 PMCID: PMC3178114 DOI: 10.1155/2011/898450] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/24/2011] [Indexed: 12/21/2022]
Abstract
Obesity has become one of the leading causes of illness and mortality in the developed world. Preclinical and clinical data provide compelling evidence for ghrelin as a relevant regulator of appetite, food intake, and energy homeostasis. In addition, ghrelin has recently emerged as one of the major contributing factors to reward-driven feeding that can override the state of satiation. The corticotropin-releasing-factor system is also directly implicated in the regulation of energy balance and may participate in the pathophysiology of obesity and eating disorders. This paper focuses on the role of ghrelin in the regulation of appetite, on its possible role as a hedonic signal involved in food reward, and on its interaction with the corticotropin-releasing-factor system and chronic stress.
Collapse
|
24
|
Abstract
Ghrelin is a brain-gut peptide that was discovered through reverse pharmacology and was first isolated from extracts of porcine stomach. Ghrelin binds to growth hormone secretagogue receptor (GHS-R) and is acylated on its serine 3 residue by ghrelin O-acyltransferase (GOAT). Several important biological functions of ghrelin have been identified, which include its growth hormone-releasing and appetite-inducing effects. Ghrelin exerts its central orexigenic effect mainly by acting on the hypothalamic arcuate nucleus via the activation of the GHS-R. Peripherally ghrelin has multiple metabolic effects which include promoting gluconeogenesis and fat deposition. These effects together with the increased food intake lead to an overall body weight gain. AMP-activated protein kinase, which is a key enzyme in energy homeostasis, has been shown to mediate the central and peripheral metabolic effects of ghrelin. The hypothalamic fatty acid pathway, hypothalamic mitochondrial respiration and uncoupling protein 2 have all been shown to act as the downstream targets of AMPK in mediating the orexigenic effects of ghrelin. Abnormal levels of ghrelin are associated with several metabolic conditions such as obesity, type 2 diabetes, Prader-Willi syndrome and anorexia nervosa. The ghrelin/GOAT/GHS-R system is now recognised as a potential target for the development of anti-obesity treatment.
Collapse
Affiliation(s)
- Chung Thong Lim
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, UK.
| | | | | |
Collapse
|
25
|
Scerif M, Goldstone AP, Korbonits M. Ghrelin in obesity and endocrine diseases. Mol Cell Endocrinol 2011; 340:15-25. [PMID: 21345363 DOI: 10.1016/j.mce.2011.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 02/14/2011] [Indexed: 01/27/2023]
Abstract
Ghrelin shows orexigenic effect through its action on the hypothalamic appetite-regulating pathways, while in the periphery ghrelin increases adipose tissue accumulation and has a diabetogenic effect on the liver and pancreas. Adenosine monophosphate-activated protein kinase (AMPK) has been suggested as one of the mediators of ghrelin's effects. Plasma ghrelin levels are dependent on body mass index as well as food intake patterns. Ghrelin levels are in general reduced in obese individuals and in subjects with insulin resistance. In contrast to other forms of obesity, patients with Prader-Willi syndrome (PWS) display high levels of ghrelin, reduced visceral adiposity and relative hypoinsulinemia. Relationships between obesity and common genomic variants of GHRL and GHS-R genes have been studied. Ghrelin may have a role in the weight-reducing effect of bariatric surgery; however, this is a much debated issue. Altered ghrelin levels have also been observed in Cushing's syndrome and thyroid disease probably due to the secondary insulin resistance in these subjects.
Collapse
Affiliation(s)
- Miski Scerif
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | |
Collapse
|
26
|
Scerif M, Goldstone AP, Korbonits M. WITHDRAWN: Ghrelin in obesity and endocrine diseases. Mol Cell Endocrinol 2011:S0303-7207(11)00157-2. [PMID: 21489902 DOI: 10.1016/j.mce.2011.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, doi:10.1016/j.mce.2011.02.011. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Miski Scerif
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | |
Collapse
|
27
|
Ataie Z, Golzar MG, Babri S, Ebrahimi H, Mohaddes G. Does ghrelin level change after epileptic seizure in rats? Seizure 2011; 20:347-9. [PMID: 21295498 DOI: 10.1016/j.seizure.2011.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 12/29/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022] Open
Abstract
AIM Epilepsy is one of the most common neurologic problems worldwide. A relationship between epilepsy and hormones has been demonstrated. This study was designed to investigate the effect of seizure on blood ghrelin level. METHODS Twenty male Wistar rats were divided into two groups. The control group received saline and the pentylenetetrazole (PTZ) group received a single convulsive dose (50mg/kg) of PTZ. Thirty minutes later blood samples were collected and acylated and unacylated ghrelin levels in the plasma were assayed. RESULTS Acylated or active form of ghrelin decreased significantly (p<0.05) after a PTZ-induced seizure, but the reduction of unacylated and total blood ghrelin levels failed to reach statistical significance. CONCLUSION These findings may reflect that PTZ-induced epilepsy decreases AG of plasma.
Collapse
Affiliation(s)
- Z Ataie
- Drug Applied Research Centre of Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
28
|
Abstract
Ghrelin is a circulating growth hormone-releasing and appetite-inducing brain-gut peptide. It needs to be acylated on its serine-3 with octanoate for its endocrine actions. The acyl-transferase that catalyses ghrelin octanoylation has recently been identified and named as GOAT (ghrelin O-acyltransferase); GOAT enzyme is coded by the MBOAT4 gene. This study aimed to investigate GOAT expression in the human. The distribution of GOAT mRNA expression was studied in various human tissues using classical and real-time reverse transcription and polymerase chain reaction. GOAT expression was found in all tissues studied (stomach, adrenal cortex, breast, right and left colon, duodenum, jejunum, ileum, fat, Fallopian tube, gallbladder, lymph node, lymphocyte cell line, kidney, liver, lung, muscle, myocardium, pituitary, oesophagus, pancreas, ovary, placenta, prostate, testis, spleen and thyroid). The widespread expression of GOAT corresponds to the widespread distribution of ghrelin expression. GOAT expression was high in stomach and gut, the major ghrelin-secreting tissues, and in the pituitary, in which ghrelin is known to show autocrine and paracrine effects. Identification of GOAT expression in various tissues support the concept that in addition to the important endocrine effect of acylated ghrelin, the paracrine effects of locally synthetised and acylated ghrelin may be important.
Collapse
Affiliation(s)
- Chung Thong Lim
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | | | | | | |
Collapse
|
29
|
Abstract
Exercise, together with a low-energy diet, is the first-line treatment for type 2 diabetes type 2 diabetes . Exercise improves insulin sensitivity insulin sensitivity by increasing the number or function of muscle mitochondria mitochondria and the capacity for aerobic metabolism, all of which are low in many insulin-resistant subjects. Cannabinoid 1-receptor antagonists and β-adrenoceptor agonists improve insulin sensitivity in humans and promote fat oxidation in rodents independently of reduced food intake. Current drugs for the treatment of diabetes are not, however, noted for their ability to increase fat oxidation, although the thiazolidinediones increase the capacity for fat oxidation in skeletal muscle, whilst paradoxically increasing weight gain.There are a number of targets for anti-diabetic drugs that may improve insulin sensitivity insulin sensitivity by increasing the capacity for fat oxidation. Their mechanisms of action are linked, notably through AMP-activated protein kinase, adiponectin, and the sympathetic nervous system. If ligands for these targets have obvious acute thermogenic activity, it is often because they increase sympathetic activity. This promotes fuel mobilisation, as well as fuel oxidation. When thermogenesis thermogenesis is not obvious, researchers often argue that it has occurred by using the inappropriate device of treating animals for days or weeks until there is weight (mainly fat) loss and then expressing energy expenditure energy expenditure relative to body weight. In reality, thermogenesis may have occurred, but it is too small to detect, and this device distracts us from really appreciating why insulin sensitivity has improved. This is that by increasing fatty acid oxidation fatty acid oxidation more than fatty acid supply, drugs lower the concentrations of fatty acid metabolites that cause insulin resistance. Insulin sensitivity improves long before any anti-obesity effect can be detected.
Collapse
Affiliation(s)
- Jonathan R S Arch
- Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| |
Collapse
|
30
|
Barnett BP, Hwang Y, Taylor MS, Kirchner H, Pfluger PT, Bernard V, Lin YY, Bowers EM, Mukherjee C, Song WJ, Longo PA, Leahy DJ, Hussain MA, Tschöp MH, Boeke JD, Cole PA. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 2010; 330:1689-92. [PMID: 21097901 PMCID: PMC3068526 DOI: 10.1126/science.1196154] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ghrelin is a gastric peptide hormone that stimulates weight gain in vertebrates. The biological activities of ghrelin require octanoylation of the peptide on Ser(3), an unusual posttranslational modification that is catalyzed by the enzyme ghrelin O-acyltransferase (GOAT). Here, we describe the design, synthesis, and characterization of GO-CoA-Tat, a peptide-based bisubstrate analog that antagonizes GOAT. GO-CoA-Tat potently inhibits GOAT in vitro, in cultured cells, and in mice. Intraperitoneal administration of GO-CoA-Tat improves glucose tolerance and reduces weight gain in wild-type mice but not in ghrelin-deficient mice, supporting the concept that its beneficial metabolic effects are due specifically to GOAT inhibition. In addition to serving as a research tool for mapping ghrelin actions, GO-CoA-Tat may help pave the way for clinical targeting of GOAT in metabolic diseases.
Collapse
Affiliation(s)
- Brad P. Barnett
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yousang Hwang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin S. Taylor
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Henriette Kirchner
- Obesity Research Center, Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Paul T. Pfluger
- Obesity Research Center, Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Vincent Bernard
- Department of Molecular Biology and Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu-yi Lin
- Department of Molecular Biology and Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Erin M. Bowers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chandrani Mukherjee
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Woo-Jin Song
- Metabolism Division, Departments of Pediatrics and Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Patti A. Longo
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Daniel J. Leahy
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mehboob A. Hussain
- Metabolism Division, Departments of Pediatrics and Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Matthias H. Tschöp
- Obesity Research Center, Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Jef D. Boeke
- Department of Molecular Biology and Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip A. Cole
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW This review summarizes the past year's literature regarding the regulation of gastric exocrine and endocrine secretion at the central, peripheral, and cellular levels. RECENT FINDINGS Gastric acid secretion is an intricate and dynamic process that is regulated by neural (efferent and afferent), hormonal (e.g., gastrin), and paracrine (e.g., histamine, ghrelin, somatostatin) pathways as well as mechanical (e.g., distension) and chemical (e.g., protein, glutamate, coffee, and ethanol) stimuli. Secretion of hydrochloric acid by the parietal cell involves recruitment and fusion of HK-adenosine triphosphatase (HK-ATPase)-containing cytoplasmic tubulovesicles with the apical membrane with subsequent electroneutral transport of hydronium ions in exchange for potassium; the source of the latter is the potassium channel, KCNQ1. Concomitantly, chloride exits via the cystic fibrosis transmembrane regulator. Inhibition of the HK-ATPase by proton pump inhibitors leads to a compensatory hypergastrinemia which, if prolonged, results in parietal and enterochromaffin-like cell hyperplasia. The clinical consequence is rebound acid secretion which may induce dyspeptic symptoms in healthy individuals and exacerbate reflux symptoms in patients with gastroesophageal reflux disease. SUMMARY We continue to make progress in our understanding of the regulation of gastric acid secretion in health and disease. A better understanding of the pathways and mechanisms regulating acid secretion should lead to improved management of patients with acid-induced disorders as well as those who secrete too little acid.
Collapse
|
32
|
Lim CT, Kola B, Korbonits M, Grossman AB. Ghrelin's role as a major regulator of appetite and its other functions in neuroendocrinology. PROGRESS IN BRAIN RESEARCH 2010; 182:189-205. [PMID: 20541666 DOI: 10.1016/s0079-6123(10)82008-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ghrelin is a circulating growth-hormone-releasing and appetite-inducing brain-gut peptide. It is a known natural ligand of the growth hormone secretagogue receptor (GHS-R). Ghrelin is acylated on its serine 3 residue by ghrelin O-acyltransferase (GOAT). The acylation is essential for its orexigenic and adipogenic effects. Ghrelin exerts its central orexigenic effect through activation of various hypothalamic and brain stem neurons. Several new intracellular targets/mediators of the appetite-inducing effect of ghrelin in the hypothalamus have recently been identified, including the AMP-activated protein kinase, its upstream kinase calmodulin kinase kinase 2, components of the fatty acid pathway and the uncoupling protein 2. The ghrelin/GOAT/GHS-R system is now recognised as a potential target for the development of anti-obesity treatment. Ghrelin regulates the function of the anterior pituitary through stimulation of secretion not only of growth hormone, but also of adrenocorticotrophin and prolactin. The implication of ghrelin and its receptor in the pathogenesis of the neuroendocrine tumors will also be discussed in this review.
Collapse
Affiliation(s)
- Chung Thong Lim
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
33
|
Ghrelin in diabetes and metabolic syndrome. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010. [PMID: 20700400 PMCID: PMC2911592 DOI: 10.1155/2010/248948] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/09/2010] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome is a cluster of related risk factors for cardiovascular disease, type 2 diabetes and liver disease. Obesity, which has become a global public health problem, is one of the major risk factors for development of metabolic syndrome and type 2 diabetes. Obesity is a complex disease, caused by the interplay between environmental and genetic factors. Ghrelin is one of the circulating peptides, which stimulates appetite and regulates energy balance, and thus is one of the candidate genes for obesity and T2DM. During the last years both basic research and genetic association studies have revealed association between the ghrelin gene and obesity, metabolic syndrome or type 2 diabetes.
Collapse
|
34
|
Gahete MD, Córdoba-Chacón J, Salvatori R, Castaño JP, Kineman RD, Luque RM. Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach. Mol Cell Endocrinol 2010; 317:154-60. [PMID: 20035826 PMCID: PMC2819060 DOI: 10.1016/j.mce.2009.12.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/16/2009] [Indexed: 01/07/2023]
Abstract
Ghrelin acts as an endocrine link connecting physiological processes regulating food intake, body composition, growth, and energy balance. Ghrelin is the only peptide known to undergo octanoylation. The enzyme mediating this process, ghrelin O-acyltransferase (GOAT), is expressed in the gastrointestinal tract (GI; primary source of circulating ghrelin) as well as other tissues. The present study demonstrates that stomach GOAT mRNA levels correlate with circulating acylated-ghrelin levels in fasted and diet-induced obese mice. In addition, GOAT was found to be expressed in both the pituitary and hypothalamus (two target tissues of ghrelin's actions), and regulated in response to metabolic status. Using primary pituitary cell cultures as a model system to study the regulation of GOAT expression, we found that acylated-ghrelin, but not desacyl-ghrelin, increased GOAT expression. In addition, growth-hormone-releasing hormone (GHRH) and leptin increased, while somatostatin (SST) decreased GOAT expression. The physiologic relevance of these later results is supported by the observation that pituitary GOAT expression in mice lacking GHRH, SST and leptin showed opposite changes to those observed after in vitro treatment with the corresponding peptides. Therefore, it seems plausible that these hormones directly contribute to the regulation of pituitary GOAT. Interestingly, in all the models studied, pituitary GOAT expression paralleled changes in the expression of a dominant spliced-variant of ghrelin (In2-ghrelin) and therefore this transcript may be a primary substrate for pituitary GOAT. Collectively, these observations support the notion that the GI tract is not the only source of acylated-ghrelin, but in fact locally produced des-acylated-ghrelin could be converted to acylated-ghrelin within target tissues by locally active GOAT, to mediate its tissue-specific effects.
Collapse
Affiliation(s)
- Manuel D. Gahete
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición, 14004 Córdoba, Spain
| | - Jose Córdoba-Chacón
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición, 14004 Córdoba, Spain
| | | | - Justo P. Castaño
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición, 14004 Córdoba, Spain
| | - Rhonda D. Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, IL, 60612
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, 60612
| | - Raul M. Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición, 14004 Córdoba, Spain
| |
Collapse
|
35
|
Association of plasma acylated ghrelin with blood pressure and left ventricular mass in patients with metabolic syndrome. J Hypertens 2010; 28:560-7. [DOI: 10.1097/hjh.0b013e328334327c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Chen CY, Asakawa A, Fujimiya M, Lee SD, Inui A. Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol Rev 2009; 61:430-81. [PMID: 20038570 DOI: 10.1124/pr.109.001958] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A breakthrough using "reverse pharmacology" identified and characterized acyl ghrelin from the stomach as the endogenous cognate ligand for the growth hormone (GH) secretagogue receptor (GHS-R) 1a. The unique post-translational modification of O-n-octanoylation at serine 3 is the first in peptide discovery history and is essential for GH-releasing ability. Des-acyl ghrelin, lacking O-n-octanoylation at serine 3, is also produced in the stomach and remains the major molecular form secreted into the circulation. The third ghrelin gene product, obestatin, a novel 23-amino acid peptide identified from rat stomach, was found by comparative genomic analysis. Three ghrelin gene products actively participate in modulating appetite, adipogenesis, gut motility, glucose metabolism, cell proliferation, immune, sleep, memory, anxiety, cognition, and stress. Knockdown or knockout of acyl ghrelin and/or GHS-R1a, and overexpression of des-acyl ghrelin show benefits in the therapy of obesity and metabolic syndrome. By contrast, agonism of acyl ghrelin and/or GHS-R1a could combat human anorexia-cachexia, including anorexia nervosa, chronic heart failure, chronic obstructive pulmonary disease, liver cirrhosis, chronic kidney disease, burn, and postsurgery recovery, as well as restore gut dysmotility, such as diabetic or neurogenic gastroparesis, and postoperative ileus. The ghrelin acyl-modifying enzyme, ghrelin O-Acyltransferase (GOAT), which attaches octanoate to serine-3 of ghrelin, has been identified and characterized also from the stomach. To date, ghrelin is the only protein to be octanylated, and inhibition of GOAT may have effects only on the stomach and is unlikely to affect the synthesis of other proteins. GOAT may provide a critical molecular target in developing novel therapeutics for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Japan
| | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This review summarizes the last year's literature regarding the regulation and measurement of gastric exocrine and endocrine secretion. RECENT FINDINGS Parietal cells, distributed along much of the length of the oxyntic glands, with highest density in the neck and base, secrete HCl as well as transforming growth factor-alpha, amphiregulin, heparin-binding epidermal growth factor-like growth factor, and sonic hedgehog. Acid facilitates the digestion of protein and absorption of iron, calcium, vitamin B(12) as well as prevents bacterial overgrowth, enteric infection, and possibly food allergy. The major stimulants of acid secretion are gastrin, histamine, and acetylcholine. Ghrelin and orexin also stimulate acid secretion. The main inhibitor of acid secretion is somatostatin. Nitric oxide and dopamine also inhibit acid secretion. Although Helicobacter pylori is associated with duodenal ulcer disease, most patients infected with the organism produce less than normal amount of acid. The cytoskeletal proteins ezrin and moesin participate in parietal cell acid and chief cell pepsinogen secretion, respectively. SUMMARY Despite our vast knowledge, the understanding of the regulation of gastric acid secretion in health and disease is far from complete. A better understanding of the pathways and mechanisms regulating acid secretion should lead to improved management of patients with acid-induced disorders as well as those who secrete too little acid.
Collapse
|
38
|
Gómez R, Lago F, Gómez-Reino JJ, Gualillo O. Novel factors as therapeutic targets to treat diabetes. Focus on leptin and ghrelin. Expert Opin Ther Targets 2009; 13:583-91. [PMID: 19397477 DOI: 10.1517/14728220902914834] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity is the major cause of type 2 diabetes. In the mid 1990s interest in adipose tissue was revived by the discovery of leptin. The association of obesity and diabetes emphasizes their shared physiopathological features. At the end of the 1990s, ghrelin, a potent gastric orexigenic factor, was found to be involved in obesity. Leptin and ghrelin have opposite actions in several tissues including the regulation of feeding in the brain. OBJECTIVE/METHODS To survey the role of leptin and ghrelin in glucose metabolism. We summarize the current state of research and discuss the roles of ghrelin and leptin in glucose homeostases and the potential application of drugs targeting leptin and ghrelin signalling to prevent and treat diabetes. RESULTS/CONCLUSIONS A pressing challenge is to determine how leptin, ghrelin and other adipokines or gastric factors are involved in metabolic disorders. Answering these questions will require the development of new pharmacological tools that target specific adipokine systems. Hopefully, new therapeutic targets will be identified.
Collapse
Affiliation(s)
- Rodolfo Gómez
- University Clinical Hospital, (NEIRID LAB: Neuroendocrine Interactions in Rheumatology and Inflammatory Disease), Research Laboratory 9, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
39
|
Schellekens H, Dinan TG, Cryan JF. Lean mean fat reducing "ghrelin" machine: hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity. Neuropharmacology 2009; 58:2-16. [PMID: 19573543 DOI: 10.1016/j.neuropharm.2009.06.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 12/13/2022]
Abstract
Obesity has reached epidemic proportions not only in Western societies but also in the developing world. Current pharmacological treatments for obesity are either lacking in efficacy and/or are burdened with adverse side effects. Thus, novel strategies are required. A better understanding of the intricate molecular pathways controlling energy homeostasis may lead to novel therapeutic intervention. The circulating hormone, ghrelin represents a major target in the molecular signalling regulating food intake, appetite and energy expenditure and its circulating levels often display aberrant signalling in obesity. Ghrelin exerts its central orexigenic action mainly in the hypothalamus and in particular in the arcuate nucleus via activation of specific G-protein coupled receptors (GHS-R). In this review we describe current pharmacological models of how ghrelin regulates food intake and how manipulating ghrelin signalling may give novel insight into developing better and more selective anti-obesity drugs. Accumulating data suggests multiple ghrelin variants and additional receptors exist to play a role in energy metabolism and these may well play an important role in obesity. In addition, the recent findings of hypothalamic GHS-R crosstalk and heterodimerization may add to the understanding of the complexity of bodyweight regulation.
Collapse
|
40
|
Abstract
Ghrelin is a peptide hormone that possesses unique orexigenic properties. By acting on the growth-hormone secretagogue receptor 1a, ghrelin induces a short-term increase in food consumption, which ultimately induces a positive energy balance and increases fat deposition. Reduced ghrelin levels have been observed in obese patients and after bariatric surgery. In particular, bariatric procedures that involve gastric resection or bypass lead to reduced ghrelin levels. Administration of physiological doses of exogenous ghrelin to humans does not significantly alter gastric motility; however, administration of high doses stimulates gastric motility, with increased gastric tone and emptying, and increased activity of migrating motor complexes in the small bowel. The potential of ghrelin agonists to be used as prokinetics is being tested in patients with gastroparesis and postoperative ileus. Ghrelin acts directly on pancreatic islet cells to reduce insulin production. Findings from studies in animals have revealed that small-molecule ghrelin antagonists favorably influence glucose tolerance, appetite suppression and weight loss. Other studies have demonstrated that ghrelin antagonists retard gastric emptying only at very high doses, which suggests that these agents will probably not induce upper gastrointestinal symptoms. The potential of this new class of therapeutic agents to influence appetite and glycemic control strongly indicates that they should be tested in clinical trials.
Collapse
|
41
|
Gómez R, Lago F, Gómez-Reino JJ, Dieguez C, Gualillo O. Expression and modulation of ghrelinO-acyltransferase in cultured chondrocytes. ACTA ACUST UNITED AC 2009; 60:1704-9. [DOI: 10.1002/art.24522] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Lorenzi T, Meli R, Marzioni D, Morroni M, Baragli A, Castellucci M, Gualillo O, Muccioli G. Ghrelin: a metabolic signal affecting the reproductive system. Cytokine Growth Factor Rev 2009; 20:137-52. [DOI: 10.1016/j.cytogfr.2009.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Abstract
Background: Ghrelin is a peptide produced predominantly in the stomach and intestines, and is a natural growth hormone (GH) secretagogue-receptor ligand. It is able to stimulate GH release, but it also exhibits an important role in conditions related to processes regulating nutrition, body composition and growth, and heart, liver, thyroid or kidney dysfunction. Drug discovery efforts initially focused on ghrelin-receptor agonists, known as GH secretagogues, to be used as anabolic agents, but none of them reached the market. Discussion: The latest developments in this field are constituted by the discovery of new nonpeptidic compounds endowed with interesting properties: oxindole agonists are able to exert an increase in the fat-free mass, while ghrelin was reported to increase the fat mass gain, and triazole- and 2,4-diaminopyrimidine-based antagonists were shown to be able to reduce food intake, without inhibition of GH secretion stimulated by an agonist to the ghrelin receptor. Other antagonist compounds (quinazolinones) were discovered as antiobesity/antidiabetic agents. Moreover, inverse agonists have been discovered that are able to reduce weight gain. Conclusions: Taking into account the great number of pathological conditions related to ghrelin, and the discovery of several compounds able to modulate the ghrelin receptor, its importance in the field of medicinal chemistry research is set to increase significantly.
Collapse
|