1
|
Gupta A, Mahto S, Oberley Deegan RE, Coulter DW, Mahato RI. COG133 peptide-conjugated lipid nanoparticles sensitize medulloblastoma to radiation therapy in mice. J Control Release 2025:113902. [PMID: 40449803 DOI: 10.1016/j.jconrel.2025.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/05/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
Medulloblastoma (MB) is a malignant brain tumor that often arises in the cerebellum and has a propensity for spreading to the spinal cord or other parts of the central nervous system (CNS). Craniospinal irradiation (CSI) has long been a cornerstone in the treatment of MB, especially for patients with high-risk or metastatic disease. However, CSI often leads to long-term neurocognitive deficits, including learning disabilities, and growth abnormalities, especially in children. In this study, we aimed to decrease the dose of irradiation and the proliferation of MB by using Volasertib (VSB), a Polo-like kinase 1 (PLK1) specific inhibitor. VSB was highly potent in-vitro with an IC50 of 27.43 nM and 13 nM in HDMB03 and DAOY cells, respectively. However, in the orthotopic MB mouse model, VSB as a free drug did not improve overall survival or decrease tumor burden. Hence, we encapsulated VSB in COG133-conjugated lipid nanoparticles (COG133-LNPs) to circumvent the blood-brain barrier (BBB). We observed that COG-133-LNPs loaded with VSB increased the biodistribution of VSB by three folds than the non-targeted LNPs in the brain. Furthermore, COG133-LNPs along with irradiation decreased tumor burden significantly as compared to VSB or radiation alone. To our observation, COG133-LNPs display high potency in killing MB cells and sensitizing them toward radiation therapy.
Collapse
Affiliation(s)
- Aditya Gupta
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sohan Mahto
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rebecca E Oberley Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Hourfar H, Taklifi P, Razavi M, Khorsand B. Machine Learning-Driven Identification of Molecular Subgroups in Medulloblastoma via Gene Expression Profiling. Clin Oncol (R Coll Radiol) 2025; 40:103789. [PMID: 40020441 DOI: 10.1016/j.clon.2025.103789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/04/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
AIMS Medulloblastoma (MB) is the most prevalent malignant brain tumour in children, characterised by substantial molecular heterogeneity across its subgroups. Accurate classification is pivotal for personalised treatment strategies and prognostic assessments. In this study, we aimed to build machine learning models to classify MB subgroups. MATERIALS AND METHODS This study utilised machine learning (ML) techniques to analyse RNA sequencing data from 70 paediatric MB samples. Five classifiers-K-nearest neighbors (KNN), decision tree (DT), support vector machine (SVM), random forest (RF), and naive Bayes (NB)-were used to predict molecular subgroups based on gene expression profiles. Feature selection identified gene subsets of varying sizes (750, 75, and 25 genes) to optimise classification accuracy. RESULTS Initial analyses with the complete gene set lacked discriminative power. However, reduced feature sets significantly enhanced clustering and classification performance, particularly for group 3 and group 4 subgroups. The RF, KNN, and SVM classifiers consistently outperformed the DT and NB classifiers, achieving classification accuracies exceeding 90% in many scenarios, especially in group 3 and group 4 subgroups. CONCLUSION This study highlights the efficacy of ML algorithms in classifying MB subgroups using gene expression data. The integration of feature selection techniques substantially improves model performance, paving the way for enhanced personalised approaches in MB management.
Collapse
Affiliation(s)
- H Hourfar
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - P Taklifi
- Department of Biotechnology, College of Sciences, University of Tehran, Tehran, Iran
| | - M Razavi
- University Paris-Saclay, Paris, France
| | - B Khorsand
- Department of Neurology, University of California, Irvine, CA, 92612, USA.
| |
Collapse
|
3
|
Ceccarelli M, Rossi S, Bonaventura F, Massari R, D'Elia A, Soluri A, Micheli L, D'Andrea G, Mancini B, Raspa M, Scavizzi F, Alaggio R, Del Bufalo F, Miele E, Carai A, Mastronuzzi A, Tirone F. Intracerebellar administration of the chemokine Cxcl3 reduces the volume of medulloblastoma lesions at an advanced stage by promoting the migration and differentiation of preneoplastic precursor cells. Brain Pathol 2025; 35:e13283. [PMID: 38946128 PMCID: PMC11669415 DOI: 10.1111/bpa.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
The prognosis for many pediatric brain tumors, including cerebellar medulloblastoma (MB), remains dismal but there is promise in new therapies. We have previously generated a mouse model developing spontaneous MB at high frequency, Ptch1+/-/Tis21-/-. In this model, reproducing human tumorigenesis, we identified the decline of the Cxcl3 chemokine in cerebellar granule cell precursors (GCPs) as responsible for a migration defect, which causes GCPs to stay longer in the proliferative area rather than differentiate and migrate internally, making them targets of transforming insults. We demonstrated that 4-week Cxcl3 infusion in cerebella of 1-month-old mice, at the initial stage of MB formation, forces preneoplastic GCPs (pGCPs) to leave lesions and differentiate, with a complete suppression of MB development. In this study, we sought to verify the effect of 4-week Cxcl3 treatment in 3-month-old Ptch1+/-/Tis21-/- mice, when MB lesions are at an advanced, irreversible stage. We found that Cxcl3 treatment reduces tumor volumes by sevenfold and stimulates the migration and differentiation of pGCPs from the lesion to the internal cerebellar layers. We also tested whether the pro-migratory action of Cxcl3 favors metastases formation, by xenografting DAOY human MB cells in the cerebellum of immunosuppressed mice. We showed that DAOY cells express the Cxcl3 receptor, Cxcr2, and that Cxcl3 triggers their migration. However, Cxcl3 did not significantly affect the frequency of metastases or the growth of DAOY-generated MBs. Finally, we mapped the expression of the Cxcr2 receptor in human MBs, by evaluating a well-characterized series of 52 human MBs belonging to different MB molecular subgroups. We found that Cxcr2 was variably expressed in all MB subgroups, suggesting that Cxcl3 could be used for therapy of different MBs.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Sabrina Rossi
- Pathology UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | | | - Roberto Massari
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Annunziata D'Elia
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
- Unit of Molecular NeurosciencesUniversity Campus Bio‐MedicoRomeItaly
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Barbara Mancini
- Pathology UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Marcello Raspa
- Institute of Biochemistry and Cell BiologyNational Research Council of Italy (IBBC‐CNR/EMMA/INFRAFRONTIER/IMPC), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell BiologyNational Research Council of Italy (IBBC‐CNR/EMMA/INFRAFRONTIER/IMPC), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Rita Alaggio
- Pathology UnitBambino Gesù Children's Hospital IRCCSRomeItaly
- Department of Medico‐surgical Sciences and BiotechnologiesSapienza UniversityRomeItaly
| | - Francesca Del Bufalo
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Evelina Miele
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Andrea Carai
- Neurosurgery UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Angela Mastronuzzi
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| |
Collapse
|
4
|
Slika H, Shahani A, Wahi R, Miller J, Groves M, Tyler B. Overcoming Treatment Resistance in Medulloblastoma: Underlying Mechanisms and Potential Strategies. Cancers (Basel) 2024; 16:2249. [PMID: 38927954 PMCID: PMC11202166 DOI: 10.3390/cancers16122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Medulloblastoma is the most frequently encountered malignant brain tumor in the pediatric population. The standard of care currently consists of surgical resection, craniospinal irradiation, and multi-agent chemotherapy. However, despite this combination of multiple aggressive modalities, recurrence of the disease remains a substantial concern, and treatment resistance is a rising issue. The development of this resistance results from the interplay of a myriad of anatomical properties, cellular processes, molecular pathways, and genetic and epigenetic alterations. In fact, several efforts have been directed towards this domain and characterizing the major contributors to this resistance. Herein, this review highlights the different mechanisms that drive relapse and are implicated in the occurrence of treatment resistance and discusses them in the context of the latest molecular-based classification of medulloblastoma. These mechanisms include the impermeability of the blood-brain barrier to drugs, the overactivation of specific molecular pathways, the resistant and multipotent nature of cancer stem cells, intratumoral and intertumoral heterogeneity, and metabolic plasticity. Subsequently, we build on that to explore potential strategies and targeted agents that can abrogate these mechanisms, undermine the development of treatment resistance, and augment medulloblastoma's response to therapeutic modalities.
Collapse
Affiliation(s)
- Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Aanya Shahani
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Riddhpreet Wahi
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Grant Government Medical College and Sir J.J Group of Hospitals, Mumbai 400008, India
| | - Jackson Miller
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Department of English, Rhetoric, and Humanistic Studies, Virginia Military Institute, Lexington, VA 24450, USA
| | - Mari Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Department of Neurosurgery, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| |
Collapse
|
5
|
Ciccone R, Quintarelli C, Camera A, Pezzella M, Caruso S, Manni S, Ottaviani A, Guercio M, Del Bufalo F, Quadraccia MC, Orlando D, Di Cecca S, Sinibaldi M, Aurigemma M, Iaffaldano L, Sarcinelli A, D'Amore ML, Ceccarelli M, Nazio F, Marabitti V, Giorda E, Pezzullo M, De Stefanis C, Carai A, Rossi S, Alaggio R, Del Baldo G, Becilli M, Mastronuzzi A, De Angelis B, Locatelli F. GD2-Targeting CAR T-cell Therapy for Patients with GD2+ Medulloblastoma. Clin Cancer Res 2024; 30:2545-2557. [PMID: 38551501 PMCID: PMC11145172 DOI: 10.1158/1078-0432.ccr-23-1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Medulloblastoma (MB), the most common childhood malignant brain tumor, has a poor prognosis in about 30% of patients. The current standard of care, which includes surgery, radiation, and chemotherapy, is often responsible for cognitive, neurologic, and endocrine side effects. We investigated whether chimeric antigen receptor (CAR) T cells directed toward the disialoganglioside GD2 can represent a potentially more effective treatment with reduced long-term side effects. EXPERIMENTAL DESIGN GD2 expression was evaluated on primary tumor biopsies of MB children by flow cytometry. GD2 expression in MB cells was also evaluated in response to an EZH2 inhibitor (tazemetostat). In in vitro and in vivo models, GD2+ MB cells were targeted by a CAR-GD2.CD28.4-1BBζ (CAR.GD2)-T construct, including the suicide gene inducible caspase-9. RESULTS GD2 was expressed in 82.68% of MB tumors. The SHH and G3-G4 subtypes expressed the highest levels of GD2, whereas the WNT subtype expressed the lowest. In in vitro coculture assays, CAR.GD2 T cells were able to kill GD2+ MB cells. Pretreatment with tazemetostat upregulated GD2 expression, sensitizing GD2dimMB cells to CAR.GD2 T cells cytotoxic activity. In orthotopic mouse models of MB, intravenously injected CAR.GD2 T cells significantly controlled tumor growth, prolonging the overall survival of treated mice. Moreover, the dimerizing drug AP1903 was able to cross the murine blood-brain barrier and to eliminate both blood-circulating and tumor-infiltrating CAR.GD2 T cells. CONCLUSIONS Our experimental data indicate the potential efficacy of CAR.GD2 T-cell therapy. A phase I/II clinical trial is ongoing in our center (NCT05298995) to evaluate the safety and therapeutic efficacy of CAR.GD2 therapy in high-risk MB patients.
Collapse
Affiliation(s)
- Roselia Ciccone
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Antonio Camera
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michele Pezzella
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simona Caruso
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Simona Manni
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessio Ottaviani
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marika Guercio
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cecilia Quadraccia
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Domenico Orlando
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Di Cecca
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matilde Sinibaldi
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mariasole Aurigemma
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Iaffaldano
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Sarcinelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Luisa D'Amore
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuela Ceccarelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Nazio
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Veronica Marabitti
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ezio Giorda
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Pezzullo
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabrina Rossi
- Department of Laboratories, Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Department of Laboratories, Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Becilli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
6
|
Wang S, Zhang D, Wang J, Peng X, Sun H, Ji Y, Yang Z, Bian X, Hou Y, Ge M, Liu Y. PUMC-MB1 is a novel group 3 medulloblastoma preclinical model, sensitive to PI3K/mTOR dual inhibitor. J Neurooncol 2024; 168:139-149. [PMID: 38662151 DOI: 10.1007/s11060-024-04655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Medulloblastoma (MB), a common and heterogeneous posterior fossa tumor in pediatric patients, presents diverse prognostic outcomes. To advance our understanding of MB's intricate biology, the development of novel patient tumor-derived culture MB models with necessary data is still an essential requirement. METHODS We continuously passaged PUMC-MB1 in vitro in order to establish a continuous cell line. We examined the in vitro growth using Cell Counting Kit-8 (CCK-8) and in vivo growth with subcutaneous and intracranial xenograft models. The xenografts were investigated histopathologically with Hematoxylin and Eosin (HE) staining and immunohistochemistry (IHC). Concurrently, we explored its molecular features using Whole Genome Sequencing (WGS), targeted sequencing, and RNA sequecing. Guided by bioinformatics analysis, we validated PUMC-MB1's drug sensitivity in vitro and in vivo. RESULTS PUMC-MB1, derived from a high-risk MB patient, displayed a population doubling time (PDT) of 48.18 h and achieved 100% tumor growth in SCID mice within 20 days. HE and Immunohistochemical examination of the original tumor and xenografts confirmed the classification of PUMC-MB1 as a classic MB. Genomic analysis via WGS revealed concurrent MYC and OTX2 amplifications. The RNA-seq data classified it within the Group 3 MB subgroup, while according to the WHO classification, it fell under the Non-WNT/Non-SHH MB. Comparative analysis with D283 and D341med identified 4065 differentially expressed genes, with notable enrichment in the PI3K-AKT pathway. Cisplatin, 4-hydroperoxy cyclophosphamide/cyclophosphamide, vincristine, and dactolisib (a selective PI3K/mTOR dual inhibitor) significantly inhibited PUMC-MB1 proliferation in vitro and in vivo. CONCLUSIONS PUMC-MB1, a novel Group 3 (Non-WNT/Non-SHH) MB cell line, is comprehensively characterized for its growth, pathology, and molecular characteristics. Notably, dactolisib demonstrated potent anti-proliferative effects with minimal toxicity, promising a potential therapeutic avenue. PUMC-MB1 could serve as a valuable tool for unraveling MB mechanisms and innovative treatment strategies.
Collapse
Affiliation(s)
- Shizun Wang
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS); School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Dan Zhang
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS); School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Jialin Wang
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS); School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Xiaojiao Peng
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hailang Sun
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yuanqi Ji
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhenli Yang
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS); School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Xiaocui Bian
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS); School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Yuhong Hou
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS); School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Yuqin Liu
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS); School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China.
| |
Collapse
|
7
|
Echavidre W, Durivault J, Gotorbe C, Blanchard T, Pagnuzzi M, Vial V, Raes F, Broisat A, Villeneuve R, Amblard R, Garnier N, Ortholan C, Faraggi M, Serrano B, Picco V, Montemagno C. Integrin-αvβ3 is a Therapeutically Targetable Fundamental Factor in Medulloblastoma Tumorigenicity and Radioresistance. CANCER RESEARCH COMMUNICATIONS 2023; 3:2483-2496. [PMID: 38009896 PMCID: PMC10702273 DOI: 10.1158/2767-9764.crc-23-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Medulloblastoma is one of the most prevalent solid tumors found in children, occurring in the brain's posterior fossa. The standard treatment protocol involves maximal resection surgery followed by craniospinal irradiation and chemotherapy. Despite a long-term survival rate of 70%, wide disparities among patients have been observed. The identification of pertinent targets for both initial and recurrent medulloblastoma cases is imperative. Both primary and recurrent medulloblastoma are marked by their aggressive infiltration into surrounding brain tissue, robust angiogenesis, and resistance to radiotherapy. While the significant role of integrin-αvβ3 in driving these characteristics has been extensively documented in glioblastoma, its impact in the context of medulloblastoma remains largely unexplored. Integrin-αvβ3 was found to be expressed in a subset of patients with medulloblastoma. We investigated the role of integrin-αvβ3 using medulloblastoma-derived cell lines with β3-subunit depletion or overexpression both in vitro and in vivo settings. By generating radioresistant medulloblastoma cell lines, we uncovered an increased integrin-αvβ3 expression, which correlated with increased susceptibility to pharmacologic integrin-αvβ3 inhibition with cilengitide, a competitive ligand mimetic. Finally, we conducted single-photon emission computed tomography (SPECT)/MRI studies on orthotopic models using a radiolabeled integrin-αvβ3 ligand (99mTc-RAFT-RGD). This innovative approach presents the potential for a novel predictive imaging technique in the realm of medulloblastoma. Altogether, our findings lay the foundation for employing SPECT/MRI to identify a specific subset of patients with medulloblastoma eligible for integrin-αvβ3-directed therapies. This breakthrough offers a pathway toward more targeted and effective interventions in the treatment of medulloblastoma. SIGNIFICANCE This study demonstrates integrin-αvβ3's fundamental role in medulloblastoma tumorigenicity and radioresistance and the effect of its expression on cilengitide functional activity.
Collapse
Affiliation(s)
- William Echavidre
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Célia Gotorbe
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Thays Blanchard
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Marina Pagnuzzi
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Valérie Vial
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Florian Raes
- Université de Grenoble Alpes, INSERM, LRB, Grenoble, France
| | - Alexis Broisat
- Université de Grenoble Alpes, INSERM, LRB, Grenoble, France
| | - Rémy Villeneuve
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Régis Amblard
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Nicolas Garnier
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Cécile Ortholan
- Radiotherapy Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Benjamin Serrano
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Vincent Picco
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | | |
Collapse
|
8
|
Budassi F, Marchioro C, Canton M, Favaro A, Sturlese M, Urbinati C, Rusnati M, Romagnoli R, Viola G, Mariotto E. Design, synthesis and biological evaluation of novel 2,4-thiazolidinedione derivatives able to target the human BAG3 protein. Eur J Med Chem 2023; 261:115824. [PMID: 37783101 DOI: 10.1016/j.ejmech.2023.115824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023]
Abstract
The Bcl-2-associated athanogene 3 (BAG3) protein plays multiple roles in controlling cellular homeostasis, and it has been reported to be deregulated in many cancers, leading tumor cell apoptosis escape. BAG3 protein is then an emerging target for its oncogenic activities in both leukemia and solid cancers, such as medulloblastoma. In this work a series of forty-four compounds were designed and successfully synthesized by the modification and optimization of a previously reported 2,4-thiazolidinedione derivative 28. Using an efficient cloning and transfection in human embryonic kidney HEK-293T cells, BAG3 was collected and purified by chromatographic techniques such as IMAC and SEC, respectively. Subsequently, through Surface Plasmon Resonance (SPR) all the compounds were evaluated for their binding ability to BAG3, highlighting the compound FB49 as the one having the greatest affinity for the protein (Kd = 45 ± 6 μM) also against the reference compound 28. Further analysis carried out by Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR) spectroscopy further confirmed the highest affinity of FB49 for the protein. In vitro biological investigation showed that compound FB49 is endowed with an antiproliferative activity in the micromolar range in three human tumoral cell lines and more importantly is devoid of toxicity in human peripheral mononuclear cell deriving from healthy donors. Moreover, FB49 was able to block cell cycle in G1 phase and to induce apoptosis as well as autophagy in medulloblastoma HD-MB03 treated cells. In addition, FB49 demonstrated a synergistic effect when combined with a chemotherapy cocktail of Vincristine, Etoposide, Cisplatin, Cyclophosphamide (VECC). In conclusion we have demonstrated that FB49 is a new derivative able to bind human BAG3 with high affinity and could be used as BAG3 modulator in cancers correlated with overexpression of this protein.
Collapse
Affiliation(s)
- Federica Budassi
- Synthetic Chemistry, DDD, Aptuit an Evotec Company, Via Alessandro Fleming 4, 37135, Verona, Italy
| | - Chiara Marchioro
- Laboratory of Pediatric Hematology-Oncology Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| | - Martina Canton
- Laboratory of Pediatric Hematology-Oncology Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| | - Annagiulia Favaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Chiara Urbinati
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa11, 25121, Brescia, Italy
| | - Marco Rusnati
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa11, 25121, Brescia, Italy
| | - Romeo Romagnoli
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie, Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Giampietro Viola
- Laboratory of Pediatric Hematology-Oncology Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy; Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4F, 35127, Padova, Italy.
| | - Elena Mariotto
- Laboratory of Pediatric Hematology-Oncology Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy; Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4F, 35127, Padova, Italy.
| |
Collapse
|
9
|
Manfreda L, Rampazzo E, Persano L, Viola G, Bortolozzi R. Surviving the hunger games: Metabolic reprogramming in medulloblastoma. Biochem Pharmacol 2023; 215:115697. [PMID: 37481140 DOI: 10.1016/j.bcp.2023.115697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments. Although medulloblastoma has been extensively studied from a genomic perspective, leading to the identification of four subgroups and their respective subcategories, the investigation of its metabolic phenotype has remained relatively understudied. This review focus on the available literature, aiming to summarize the current knowledge about the main metabolic pathways that are deregulated in medulloblastoma tumors, while emphasizing the controversial aspects and the progress that is yet to be made. Furthermore, we underscored the insights gained so far regarding the impact of metabolism on the development of drug resistance in medulloblastoma and the therapeutic strategies employed to target specific metabolic pathways.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Elena Rampazzo
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Luca Persano
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Giampietro Viola
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Roberta Bortolozzi
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
10
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Lygina E, Morgacheva D, Khadela A, Postwala H, Shah Y, Dinikina Y. Effectiveness of metronomic chemotherapy in a child with medulloblastoma: A case report. Oncol Lett 2023; 25:194. [PMID: 37113402 PMCID: PMC10126878 DOI: 10.3892/ol.2023.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/28/2023] [Indexed: 04/29/2023] Open
Abstract
Medulloblastoma (MB) is one of the most common pediatric malignant tumors arising from the central nervous system with an unknown etiology and variable prognosis. Relapsed or refractory MB in pediatric patients after intensive anticancer therapy (chemo-, radiotherapy) is associated with treatment resistance and poor survival prognosis. Metronomic chemotherapy in combination with mTOR inhibitors may have advantages due to an alternate mechanism of cytotoxicity and a favourable adverse effects profile. Furthermore, it is considered to be a prospective anticancer regimen regardless of the presence/absence of molecular targets. The present study reported a successful result of this treatment option with optimal tolerability in relapsed MB in a pediatric male patient and highlighted the advantages for a selected group of patients.
Collapse
Affiliation(s)
- Elena Lygina
- Department of Chemotherapy for Hematologic Diseases and Bone Marrow Transplantation for Children, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Daria Morgacheva
- Department of Chemotherapy for Hematologic Diseases and Bone Marrow Transplantation for Children, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Avinash Khadela
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Humzah Postwala
- Pharm D Section, L.M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Yesha Shah
- Pharm D Section, L.M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Yulia Dinikina
- Department of Chemotherapy for Hematologic Diseases and Bone Marrow Transplantation for Children, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Correspondence to: Dr Yulia Dinikina, Department of Chemotherapy for Hematologic Diseases and Bone Marrow Transplantation for Children, Almazov National Medical Research Centre, 2 Akkuratova Street, St. Petersburg 197341, Russia, E-mail:
| |
Collapse
|
12
|
Ademuwagun IA, Oduselu GO, Rotimi SO, Adebiyi E. Pharmacophore-Aided Virtual Screening and Molecular Dynamics Simulation Identifies TrkB Agonists for Treatment of CDKL5-Deficiency Disorders. Bioinform Biol Insights 2023; 17:11779322231158254. [PMID: 36895324 PMCID: PMC9989394 DOI: 10.1177/11779322231158254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Therapeutic intervention in cyclin-dependent kinase-like 5 (CDKL5) deficiency disorders (CDDs) has remained a concern over the years. Recent advances into the mechanistic interplay of signalling pathways has revealed the role of deficient tropomyosin receptor kinase B (TrkB)/phospholipase C γ1 signalling cascade in CDD. Novel findings showed that in vivo administration of a TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), resulted in a remarkable reversal in the molecular pathologic mechanisms underlying CDD. Owing to this discovery, this study aimed to identify more potent TrkB agonists than 7,8-DHF that could serve as alternatives or combinatorial drugs towards effective management of CDD. Using pharmacophore modelling and multiple database screening, we identified 691 compounds with identical pharmacophore features with 7,8-DHF. Virtual screening of these ligands resulted in identification of at least 6 compounds with better binding affinities than 7,8-DHF. The in silico pharmacokinetic and ADMET studies of the compounds also indicated better drug-like qualities than those of 7,8-DHF. Postdocking analyses and molecular dynamics simulations of the best hits, 6-hydroxy-10-(2-oxo-1-azatricyclo[7.3.1.05,13]trideca-3,5(13),6,8-tetraen-3-yl)-8-oxa-13,14,16-triazatetracyclo[7.7.0.02,7.011,15]hexadeca-1,3,6,9,11,15-hexaen-5-one (PubChem: 91637738) and 6-hydroxy-10-(8-methyl-2-oxo-1H-quinolin-3-yl)-8-oxa-13,14,16-triazatetracyclo[7.7.0.02,7.011,15]hexadeca-1,3,6,9,11,15-hexaen-5-one (PubChem ID: 91641310), revealed unique ligand interactions, validating the docking findings. We hereby recommend experimental validation of the best hits in CDKL5 knock out models before consideration as drugs in CDD management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Gbolahan Oladipupo Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Wang G, Zhang Z, Tao M, Wei X, Zhou L. Identification of potential crucial genes and mechanisms associated with metastasis of medulloblastoma based on gene expression profile. Neurol Res 2023; 45:260-267. [PMID: 36215435 DOI: 10.1080/01616412.2022.2132457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Medulloblastoma is the most common malignant brain tumor in childhood. Although metastasis constitutes one of the poorest prognostic indicators in this disease, the mechanisms that drive metastasis have received less attention. The aim of our study is to provide valid biological information for the metastasis mechanism of medulloblastoma. METHODS Gene expression profile of GSE468 was downloaded from GEO database and was analyzed using limma R package. Function and enrichment analyses of DEGs were performed based on PANTHER database. PPI network construction, hub gene selection and module analysis were conducted in Cytoscape software. RESULTS Nine upregulated genes and 34 downregulated genes were selected as DEGs. The upregulated genes were mainly enriched in molecular function and cell component, which mainly included protein binding and nucleus respectively. A total of 120 enriched GO terms and 40 KEGG pathways were identified. The main enriched GO terms were the biological process such as apoptosis and MAPK activity. Besides, the enriched KEGG pathways also included MAPK signaling pathway. A PPI network was obtained, and JUN was identified as a hub gene. Also, we firstly investigated the role and regulatory mechanism of JUN in the metastasis of medulloblastoma. CONCLUSIONS Through the bioinformatics analysis of the gene microarray in GEO, we found some crucial genes and pathways associated with the metastasis of medulloblastoma.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Mengying Tao
- Department of Ophthalmology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Xin Wei
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| |
Collapse
|
14
|
Sethi B, Kumar V, Jayasinghe TD, Dong Y, Ronning DR, Zhong HA, Coulter DW, Mahato RI. Targeting BRD4 and PI3K signaling pathways for the treatment of medulloblastoma. J Control Release 2023; 354:80-90. [PMID: 36599397 PMCID: PMC9974792 DOI: 10.1016/j.jconrel.2022.12.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor which shows upregulation of MYC and sonic hedgehog (SHH) signaling. SHH inhibitors face acquired resistance, which is a major cause of relapse. Further, direct MYC oncogene inhibition is challenging, inhibition of MYC upstream insulin-like growth factor/ phosphatidylinositol-4,5-bisphosphate 3-kinase (IGF/PI3K) is a promising alternative. While PI3K inhibition activates resistance mechanisms, simultaneous inhibition of bromodomain-containing protein 4 (BRD4) and PI3K can overcome resistance. We synthesized a new molecule 8-(2,3-dihydrobenzo[b] [1, 4] dioxin-6-yl)-2-morpholino-4H-chromen-4-one (MDP5) that targets both BRD4 and PI3K pathways. We used X-ray crystal structures and a molecular modeling approach to confirm the interactions between MDP5 with bromo domains (BDs) from both BRD2 and BRD4, and molecular modeling for PI3K binding. MDP5 was shown to inhibit target pathways and MB cell growth in vitro and in vivo. MDP5 showed higher potency in DAOY cells (IC50 5.5 μM) compared to SF2523 (IC50 12.6 μM), and its IC50 values in HD-MB03 cells were like SF2523. Treatment of MB cells with MDP5 significantly decreased colony formation, increased apoptosis, and halted cell cycle progression. Further, MDP5 was well tolerated in NSG mice bearing either xenograft or orthotopic MB tumors at the dose of 20 mg/kg, and significantly reduced tumor growth and prolonged animal survival.
Collapse
Affiliation(s)
- Bharti Sethi
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thilina D Jayasinghe
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haizhen A Zhong
- Department of Chemistry, the University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182, USA
| | - Donald W Coulter
- Department of Pediatrics, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
15
|
Identification of Therapeutic Targets for Medulloblastoma by Tissue-Specific Genome-Scale Metabolic Model. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020779. [PMID: 36677837 PMCID: PMC9864031 DOI: 10.3390/molecules28020779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Medulloblastoma (MB), occurring in the cerebellum, is the most common childhood brain tumor. Because conventional methods decline life quality and endanger children with detrimental side effects, computer models are needed to imitate the characteristics of cancer cells and uncover effective therapeutic targets with minimum toxic effects on healthy cells. In this study, metabolic changes specific to MB were captured by the genome-scale metabolic brain model integrated with transcriptome data. To determine the roles of sphingolipid metabolism in proliferation and metastasis in the cancer cell, 79 reactions were incorporated into the MB model. The pathways employed by MB without a carbon source and the link between metastasis and the Warburg effect were examined in detail. To reveal therapeutic targets for MB, biomass-coupled reactions, the essential genes/gene products, and the antimetabolites, which might deplete the use of metabolites in cells by triggering competitive inhibition, were determined. As a result, interfering with the enzymes associated with fatty acid synthesis (FAs) and the mevalonate pathway in cholesterol synthesis, suppressing cardiolipin production, and tumor-supporting sphingolipid metabolites might be effective therapeutic approaches for MB. Moreover, decreasing the activity of succinate synthesis and GABA-catalyzing enzymes concurrently might be a promising strategy for metastatic MB.
Collapse
|
16
|
Zhou Z, Zhu B, Meng Q, Zhang T, Wu Y, Yu R, Gao S. Research progress in molecular pathology markers in medulloblastoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:139-156. [PMID: 36937322 PMCID: PMC10017192 DOI: 10.37349/etat.2023.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/22/2022] [Indexed: 03/06/2023] Open
Abstract
Medulloblastoma (MB) is the commonest primary malignant brain cancer. The current treatment of MB is usually surgical resection combined with radiotherapy or chemotherapy. Although great progress has been made in the clinical management of MB, tumor metastasis and recurrence are still the main cause of death. Therefore, definitive and timely diagnosis is of great importance for improving therapeutic effects on MB. In 2016, the World Health Organization (WHO) divided MB into four subtypes: wingless-type mouse mammary tumor virus integration site (WNT), sonic hedgehog (SHH), non-WNT/non-SHH group 3, and group 4. Each subtype of MB has a unique profile in copy number variation, DNA alteration, gene transcription, or post-transcriptional/translational modification, all of which are associated with different biological manifestations, clinical features, and prognosis. This article reviewed the research progress of different molecular pathology markers in MB and summarized some targeted drugs against these molecular markers, hoping to stimulate the clinical application of these molecular markers in the classification, diagnosis, and treatment of MB.
Collapse
Affiliation(s)
- Zixuan Zhou
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Bingxin Zhu
- Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Qingming Meng
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Tong Zhang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yihao Wu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Rutong Yu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Correspondence: Rutong Yu, Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China; Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Shangfeng Gao, Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| |
Collapse
|
17
|
Sethi B, Kumar V, Mahato K, Coulter DW, Mahato RI. Recent advances in drug delivery and targeting to the brain. J Control Release 2022; 350:668-687. [PMID: 36057395 PMCID: PMC9884093 DOI: 10.1016/j.jconrel.2022.08.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023]
Abstract
Our body keeps separating the toxic chemicals in the blood from the brain. A significant number of drugs do not enter the central nervous system (CNS) due to the blood-brain barrier (BBB). Certain diseases, such as tumor growth and stroke, are known to increase the permeability of the BBB. However, the heterogeneity of this permeation makes it difficult and unpredictable to transport drugs to the brain. In recent years, research has been directed toward increasing drug penetration inside the brain, and nanomedicine has emerged as a promising approach. Active targeting requires one or more specific ligands on the surface of nanoparticles (NPs), which brain endothelial cells (ECs) recognize, allowing controlled drug delivery compared to conventional targeting strategies. This review highlights the mechanistic insights about different cell types contributing to the development and maintenance of the BBB and summarizes the recent advancement in brain-specific NPs for different pathological conditions. Furthermore, fundamental properties of brain-targeted NPs will be discussed, and the standard lesion features classified by neurological pathology are summarized.
Collapse
Affiliation(s)
- Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Kalika Mahato
- College of Medicine, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA.
| |
Collapse
|
18
|
Lal S, Raffel C. Protocols to Manufacture an Oncolytic Measles Virus-Sensitive Immunocompetent Mouse Model of Medulloblastoma. Methods Mol Biol 2022; 2423:165-177. [PMID: 34978698 DOI: 10.1007/978-1-0716-1952-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oncolytic virotherapy translational research in the current era is heavily focused on the interaction of the immune system and tumor microenvironment with oncolytic viruses. Preclinical xenograft studies using human cells in immunodeficient mouse models does not serve this purpose. As a consequence, developing syngeneic immunocompetent murine cancer models sensitive to infection and growth of specific oncolytic viruses is required. The group 3 subtype of medulloblastoma, among the four molecular subgroups-WNT, SHH, Group 3, and Group 4, has the worst prognosis and the poorest outcome. Sadly, current treatments cause long-term toxicity and morbidity to survivors adversely affecting their quality of life. Alternate effective therapy with less side effects is urgently needed. We have shown that oncolytic measles virus (MV) is effective against localized as well as CSF-disseminated medulloblastoma in immunodeficient mouse models. To study the interaction of immune system with oncolytic measles virotherapy, we have developed a murine group 3 medulloblastoma cell line (CSCG) that is infectible by MV, is killed by MV, allows replication of MV, and is tumorigenic in the brain of syngeneic transgenic immune-competent mice. Intratumoral injection of MV results in significant prolongation of survival in mice bearing CSCG tumors in the brain. This model provides the first suitable platform to examine therapeutic regimens of MV therapy for MB tumors in the presence of intact immune system. Here, we describe our lab protocols to develop this cell line and the mouse model.
Collapse
Affiliation(s)
- Sangeet Lal
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Corey Raffel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Maurya A, Patel UK, Yadav JK, Singh VP, Agarwal A. Challenges and Recent Advances of Novel Chemical Inhibitors in Medulloblastoma Therapy. Methods Mol Biol 2022; 2423:123-140. [PMID: 34978695 DOI: 10.1007/978-1-0716-1952-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Medulloblastoma is a common term used for the juvenile malignant brain tumor, and its treatment is exciting due to different genetic origins, improper transportation of drug across the blood-brain barrier, and chemo-resistance with various side effects. Currently, medulloblastoma divided into four significant subsections (Wnt, Shh, Group 3, and Group 4) is based on their hereditary modulation and histopathological advancement. In this chapter, we tried to combine several novel chemical therapeutic agents active toward medulloblastoma therapy. All these compounds have potent activity to inhibit the medulloblastoma.
Collapse
Affiliation(s)
- Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Upendra Kumar Patel
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jitendra Kumar Yadav
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Virender Pratap Singh
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
20
|
Alammar H, Nassani R, Alshehri MM, Aljohani AA, Alrfaei BM. Deficiency in the Treatment Description of mTOR Inhibitor Resistance in Medulloblastoma, a Systematic Review. Int J Mol Sci 2021; 23:ijms23010464. [PMID: 35008889 PMCID: PMC8745694 DOI: 10.3390/ijms23010464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
Medulloblastoma is a common fatal pediatric brain tumor. More treatment options are required to prolong survival and decrease disability. mTOR proteins play an essential role in the disease pathogenesis, and are an essential target for therapy. Three generations of mTOR inhibitors have been developed and are clinically used for immunosuppression and chemotherapy for multiple cancers. Only a few mTOR inhibitors have been investigated for the treatment of medulloblastoma and other pediatric tumors. The first-generation mTOR, sirolimus, temsirolimus, and everolimus, went through phase I clinical trials. The second-generation mTOR, AZD8055 and sapanisertib, suppressed medulloblastoma cell growth; however, limited studies have investigated possible resistance pathways. No clinical trials have been found to treat medulloblastoma using third-generation mTOR inhibitors. This systematic review highlights the mechanisms of resistance of mTOR inhibitors in medulloblastoma and includes IDO1, T cells, Mnk2, and eIF4E, as they prolong malignant cell survival. The findings promote the importance of combination therapy in medulloblastoma due to its highly resistant nature.
Collapse
Affiliation(s)
- Hajar Alammar
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (H.A.); (A.A.A.)
| | - Rayan Nassani
- King Abdullah International Medical Research Center, Department of Cellular Therapy and Cancer Research, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (R.N.); (M.M.A.)
| | - Mana M. Alshehri
- King Abdullah International Medical Research Center, Department of Cellular Therapy and Cancer Research, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (R.N.); (M.M.A.)
| | - Alaa A. Aljohani
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (H.A.); (A.A.A.)
| | - Bahauddeen M. Alrfaei
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (H.A.); (A.A.A.)
- King Abdullah International Medical Research Center, Department of Cellular Therapy and Cancer Research, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia; (R.N.); (M.M.A.)
- Correspondence:
| |
Collapse
|
21
|
Pagnuzzi-Boncompagni M, Picco V, Vial V, Planas-Bielsa V, Vandenberghe A, Daubon T, Derieppe MA, Montemagno C, Durivault J, Grépin R, Martial S, Doyen J, Gavard J, Pagès G. Antiangiogenic Compound Axitinib Demonstrates Low Toxicity and Antitumoral Effects against Medulloblastoma. Cancers (Basel) 2021; 14:cancers14010070. [PMID: 35008234 PMCID: PMC8750527 DOI: 10.3390/cancers14010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Medulloblastoma is the most frequent pediatric brain cancer. Despite great improvements in the treatment of this disease over the last decades, survivors are subject to debilitating adverse effects that strongly impair their quality of life. There is an urgent need to find efficient anticancer therapies with fewer toxic effects. In this study, we suggest that an FDA- and EMA-approved antiangiogenic compound named axitinib may display effective antitumoral effects and low toxicity towards children as compared to a reference treatment currently used in clinical protocols. We also show that this compound can enter the brain compartment and exert antitumoral effects in vivo. Our study paves the way towards a clinical trial of repurposing axitinib to a pediatric brain cancer indication. Abstract Background: Despite the improvement of medulloblastoma (MB) treatments, survivors face severe long-term adverse effects and associated morbidity following multimodal treatments. Moreover, relapses are fatal within a few months. Therefore, chemotherapies inducing fewer adverse effects and/or improving survival at relapse are key for MB patients. Our purpose was to evaluate the last-generation antiangiogenic drugs for their relevance in the therapeutic arsenal of MB. Methods: We screened three EMA- and FDA-approved antiangiogenic compounds (axitinib, cabozantinib and sunitinib) for their ability to reduce cell viability of five MB cell lines and their low toxicity towards two normal cell lines in vitro. Based on this screening, single-agent and combination therapies were designed for in vivo validation. Results: Axitinib, cabozantinib and sunitinib decreased viability of all the tested tumor cells. Although sunitinib was the most efficient in tumor cells, it also impacted normal cells. Therefore, axitinib showed the highest selectivity index for MB cells as compared to normal cells. The compound did not lead to acute toxicity in juvenile rats and crossed the blood–brain barrier. Moreover, axitinib efficiently reduced the growth rate of experimental brain tumors. Analysis of public databases showed that high expression of axitinib targets correlates with poor prognosis. Conclusion: Our results suggest that axitinib is a compelling candidate for MB treatment.
Collapse
Affiliation(s)
- Marina Pagnuzzi-Boncompagni
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
- Correspondence: (V.P.); (G.P.); Tel.: +377-97-77-44-15 (V.P.); +33-4-92-03-12-39 (G.P.)
| | - Valérie Vial
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | | | - Ashaina Vandenberghe
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | - Thomas Daubon
- Institut de Biochimie et Génétique Cellulaires (IBGC), CNRS, University of Bordeaux, UMR 5095, 33000 Bordeaux, France;
| | - Marie-Alix Derieppe
- Animalerie Mutualisée, Service Commun des Animaleries, University of Bordeaux, 33600 Pessac, France;
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | - Jérôme Durivault
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | - Renaud Grépin
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | - Sonia Martial
- Centre Antoine Lacassagne, Institute for Research on Cancer and Aging of Nice (IRCAN), University Nice Cote d’Azur, CNRS UMR 7284, INSERM U1081, 06189 Nice, France;
| | - Jérôme Doyen
- Department of Radiation Oncology, Centre Antoine-Lacassagne, University of Côte d’Azur, Fédération Claude Lalanne, 06189 Nice, France;
| | - Julie Gavard
- Team SOAP, CRCINA, INSERM, CNRS, Université de Nantes, 44000 Nantes, France;
- Integrated Center of Oncology, 44800 St. Herblain, France
| | - Gilles Pagès
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
- Centre Antoine Lacassagne, Institute for Research on Cancer and Aging of Nice (IRCAN), University Nice Cote d’Azur, CNRS UMR 7284, INSERM U1081, 06189 Nice, France;
- Correspondence: (V.P.); (G.P.); Tel.: +377-97-77-44-15 (V.P.); +33-4-92-03-12-39 (G.P.)
| |
Collapse
|
22
|
Role of MicroRNAs in the Development and Progression of the Four Medulloblastoma Subgroups. Cancers (Basel) 2021; 13:cancers13246323. [PMID: 34944941 PMCID: PMC8699467 DOI: 10.3390/cancers13246323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is the most frequent malignant brain tumour in children. Medulloblastoma originate during the embryonic stage. They are located in the cerebellum, which is the area of the central nervous system (CNS) responsible for controlling equilibrium and coordination of movements. In 2012, medulloblastoma were divided into four subgroups based on a genome-wide analysis of RNA expression. These subgroups are named Wingless, Sonic Hedgehog, Group 3 and Group 4. Each subgroup has a different cell of origin, prognosis, and response to therapies. Wingless and Sonic Hedgehog medulloblastoma are so named based on the main mutation originating these tumours. Group 3 and Group 4 have generic names because we do not know the key mutation driving these tumours. Gene expression at the post-transcriptional level is regulated by a group of small single-stranded non-coding RNAs. These microRNA (miRNAs or miRs) play a central role in several cellular functions such as cell differentiation and, therefore, any malfunction in this regulatory system leads to a variety of disorders such as cancer. The role of miRNAs in medulloblastoma is still a topic of intense clinical research; previous studies have mostly concentrated on the clinical entity of the single disease rather than in the four molecular subgroups. In this review, we summarize the latest discoveries on miRNAs in the four medulloblastoma subgroups.
Collapse
|
23
|
Voskamp MJ, Li S, van Daalen KR, Crnko S, ten Broeke T, Bovenschen N. Immunotherapy in Medulloblastoma: Current State of Research, Challenges, and Future Perspectives. Cancers (Basel) 2021; 13:5387. [PMID: 34771550 PMCID: PMC8582409 DOI: 10.3390/cancers13215387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Medulloblastoma (MB), a primary tumor of the central nervous system, is among the most prevalent pediatric neoplasms. The median age of diagnosis is six. Conventional therapies include surgical resection of the tumor with subsequent radiation and chemotherapy. However, these therapies often cause severe brain damage, and still, approximately 75% of pediatric patients relapse within a few years. Because the conventional therapies cause such severe damage, especially in the pediatric developing brain, there is an urgent need for better treatment strategies such as immunotherapy, which over the years has gained accumulating interest. Cancer immunotherapy aims to enhance the body's own immune response to tumors and is already widely used in the clinic, e.g., in the treatment of melanoma and lung cancer. However, little is known about the possible application of immunotherapy in brain cancer. In this review, we will provide an overview of the current consensus on MB classification and the state of in vitro, in vivo, and clinical research concerning immunotherapy in MB. Based on existing evidence, we will especially focus on immune checkpoint inhibition and CAR T-cell therapy. Additionally, we will discuss challenges associated with these immunotherapies and relevant strategies to overcome those.
Collapse
Affiliation(s)
- Marije J. Voskamp
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Shuang Li
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Kim R. van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
24
|
Kumar V, Wang Q, Sethi B, Lin F, Kumar V, Coulter DW, Dong Y, Mahato RI. Polymeric nanomedicine for overcoming resistance mechanisms in hedgehog and Myc-amplified medulloblastoma. Biomaterials 2021; 278:121138. [PMID: 34634662 DOI: 10.1016/j.biomaterials.2021.121138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Chemoresistance and inadequate therapeutics transport across the blood brain barrier (BBB) remain the major barriers to treating medulloblastoma (MB). Hedgehog (Hh) and IGF/PI3K pathways regulate tumor cell proliferation and resistance in MB. Current Hh inhibitors are effective initially to treat SHH-MB but acquire resistance. Herein, we showed that Hh inhibitor MDB5 and BRD4/PI3K dual inhibitor SF2523 synergistically inhibited the proliferation of DAOY and HD-MB03 cells when used in combination. Treatment of these MB cells with the combination of MDB5 and SF2523 significantly decreased colony formation and expression of MYCN, p-AKT, and cyclin D1 but significantly increased in Bax expression, compared to individual drugs. We used our previously reported copolymer mPEG-b-PCC-g-DC copolymer, which showed 8.7 ± 1.0 and 6.5 ± 0.1% loading for MDB5 and SF2523 when formulated into nanoparticles (NPs). There was sustained drug release from NPs, wherein 100% of MDB5 was released in 50 h, but only 60% of SF2523 was released in 80 h. Targeted NPs prepared by mixing 30:70 ratio of COG-133-PEG-b-PBC and mPEG-b-PCC-g-DC copolymer delivered a significantly higher drug concentration in the cerebellum at 6 and 24h after intravenous injection into orthotopic SHH-MB tumor-bearing NSG mice. Moreover, systemic administration of COG-133-NPs loaded with MDB5 and SF2523 resulted in decreased tumor burden compared to non-targeted drug-loaded NPs, without any hepatic toxicity. In conclusion, our nanomedicine of MDB5 and SF2523 offers a novel therapeutic strategy to treat chemoresistant MB.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qiyue Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Feng Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vinod Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
25
|
Sokolov AV, Dostdar SA, Attwood MM, Krasilnikova AA, Ilina AA, Nabieva AS, Lisitsyna AA, Chubarev VN, Tarasov VV, Schiöth HB. Brain Cancer Drug Discovery: Clinical Trials, Drug Classes, Targets, and Combinatorial Therapies. Pharmacol Rev 2021; 73:1-32. [PMID: 34663683 DOI: 10.1124/pharmrev.121.000317] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Brain cancer is a formidable challenge for drug development, and drugs derived from many cutting-edge technologies are being tested in clinical trials. We manually characterized 981 clinical trials on brain tumors that were registered in ClinicalTrials.gov from 2010 to 2020. We identified 582 unique therapeutic entities targeting 581 unique drug targets and 557 unique treatment combinations involving drugs. We performed the classification of both the drugs and drug targets based on pharmacological and structural classifications. Our analysis demonstrates a large diversity of agents and targets. Currently, we identified 32 different pharmacological directions for therapies that are based on 42 structural classes of agents. Our analysis shows that kinase inhibitors, chemotherapeutic agents, and cancer vaccines are the three most common classes of agents identified in trials. Agents in clinical trials demonstrated uneven distribution in combination approaches; chemotherapy agents, proteasome inhibitors, and immune modulators frequently appeared in combinations, whereas kinase inhibitors, modified immune effector cells did not as was shown by combination networks and descriptive statistics. This analysis provides an extensive overview of the drug discovery field in brain cancer, shifts that have been happening in recent years, and challenges that are likely to come. SIGNIFICANCE STATEMENT: This review provides comprehensive quantitative analysis and discussion of the brain cancer drug discovery field, including classification of drug, targets, and therapies.
Collapse
Affiliation(s)
- Aleksandr V Sokolov
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Samira A Dostdar
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksandra A Krasilnikova
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anastasia A Ilina
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Amina Sh Nabieva
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anna A Lisitsyna
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N Chubarev
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (A.V.S., S.A.D., M.M.A., H.B.S.); and Department of Pharmacology, Institute of Pharmacy (A.V.S., S.A.D., A.A.K., A.A.I., A.S.N., A.A.L., V.N.C., V.V.T.) and Institute of Translational Medicine and Biotechnology (V.V.T., H.B.S.), I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
26
|
MAPK15 Controls Hedgehog Signaling in Medulloblastoma Cells by Regulating Primary Ciliogenesis. Cancers (Basel) 2021; 13:cancers13194903. [PMID: 34638386 PMCID: PMC8508543 DOI: 10.3390/cancers13194903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
In medulloblastomas, genetic alterations resulting in over-activation and/or deregulation of proteins involved in Hedgehog (HH) signaling lead to cellular transformation, which can be prevented by inhibition of primary ciliogenesis. Here, we investigated the role of MAPK15 in HH signaling and, in turn, in HH-mediated cellular transformation. We first demonstrated, in NIH3T3 mouse fibroblasts, the ability of this kinase of controlling primary ciliogenesis and canonical HH signaling. Next, we took advantage of transformed human medulloblastoma cells belonging to the SHH-driven subtype, i.e., DAOY and ONS-76 cells, to ascertain the role for MAPK15 in HH-mediated cellular transformation. Specifically, medullo-spheres derived from these cells, an established in vitro model for evaluating progression and malignancy of putative tumor-initiating medulloblastoma cells, were used to demonstrate that MAPK15 regulates self-renewal of these cancer stem cell-like cells. Interestingly, by using the HH-related oncogenes SMO-M2 and GLI2-DN, we provided evidences that disruption of MAPK15 signaling inhibits oncogenic HH overactivation in a specific cilia-dependent fashion. Ultimately, we show that pharmacological inhibition of MAPK15 prevents cell proliferation of SHH-driven medulloblastoma cells, overall suggesting that oncogenic HH signaling can be counteracted by targeting the ciliary gene MAPK15, which could therefore be considered a promising target for innovative "smart" therapies in medulloblastomas.
Collapse
|
27
|
Prognostic Value of miR-137 in Children with Medulloblastoma and its Regulatory Effect on Tumor Progression. Neuromolecular Med 2021; 24:215-223. [PMID: 34409560 DOI: 10.1007/s12017-021-08684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Medulloblastoma is a malignant tumor with high incidence and poor prognosis in adolescents and children. MicroRNA-137 (miR-137) has been found to be abnormally expressed in cancers such as pancreatic cancer. The purpose of this study is to explore the expression of miR-137 in MB and its role in cell physiological activities to determine the significance of miR-137 in the prognosis of MB. First, the expression of miR-137 in MB tissues and cell lines was analyzed by qRT-PCR. Then the Kaplan-Meier survival curve was used to analyze the significance of miR-137 expression in the prognosis, and the Cox regression model was used to explore the correlation between miR-137 expression and clinical characteristics. The effects of miR-137 on MB cell activities were analyzed by MTT assay, Transwell assays, and flow cytometry. It can be concluded from the results that the expression of miR-137 is down-regulated in MB tissues and cells. The down-regulation of miR-137 was significantly related to the poor prognosis of MB, and significantly related to clinical indicators. Up-regulated miR-137 inhibited cell proliferation, migration, invasion, and cell cycle progression, as well as induced cell apoptosis by targeting KDM1A. This study can conclude that miR-137 may be used as a prognostic biomarker of MB.
Collapse
|
28
|
Stem-Like Cell Populations, p53-Pathway Activation and Mechanisms of Recurrence in Sonic Hedgehog Medulloblastoma. Neuromolecular Med 2021; 24:13-17. [PMID: 34165693 DOI: 10.1007/s12017-021-08673-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
While most Sonic Hedgehog-associated medulloblastomas (SHH-MBs) respond to therapeutic intervention, radiation therapy often causes deleterious long-term neurocognitive defects, especially in infants and young children. To limit neurological comorbidities, the development of a reduction-of-therapy treatment or de-escalation approach was investigated. Although retrospective analysis of MBs indicated low-dose therapy was potentially effective, clinical de-escalation trials showed poor outcomes in infant SHH-MBs and was prematurely terminated. Recent studies suggest the existence of cancer-stem-cell (CSC)-like cell populations that are more resistant to therapies and drive tumor recurrence. This review will discuss the mechanism of these CSC-like cells in SHH-MBs in resisting to p53-pathway activation, which may contribute to the disappointing outcomes of the recent de-escalation trials.
Collapse
|
29
|
Zahnreich S, Schmidberger H. Childhood Cancer: Occurrence, Treatment and Risk of Second Primary Malignancies. Cancers (Basel) 2021; 13:cancers13112607. [PMID: 34073340 PMCID: PMC8198981 DOI: 10.3390/cancers13112607] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer represents the leading cause of disease-related death and treatment-associated morbidity in children with an increasing trend in recent decades worldwide. Nevertheless, the 5-year survival of childhood cancer patients has been raised impressively to more than 80% during the past decades, primarily attributed to improved diagnostic technologies and multiagent cytotoxic regimens. This strong benefit of more efficient tumor control and prolonged survival is compromised by an increased risk of adverse and fatal late sequelae. Long-term survivors of pediatric tumors are at the utmost risk for non-carcinogenic late effects such as cardiomyopathies, neurotoxicity, or pneumopathies, as well as the development of secondary primary malignancies as the most detrimental consequence of genotoxic chemo- and radiotherapy. Promising approaches to reducing the risk of adverse late effects in childhood cancer survivors include high precision irradiation techniques like proton radiotherapy or non-genotoxic targeted therapies and immune-based treatments. However, to date, these therapies are rarely used to treat pediatric cancer patients and survival rates, as well as incidences of late effects, have changed little over the past two decades in this population. Here we provide an overview of the epidemiology and etiology of childhood cancers, current developments for their treatment, and therapy-related adverse late health consequences with a special focus on second primary malignancies.
Collapse
|
30
|
Epigenetic-Based Therapy-A Prospective Chance for Medulloblastoma Patients' Recovery. Int J Mol Sci 2021; 22:ijms22094925. [PMID: 34066495 PMCID: PMC8124462 DOI: 10.3390/ijms22094925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Medulloblastoma (MB) is one of the most frequent and malignant brain tumors in children. The prognosis depends on the advancement of the disease and the patient's age. Current therapies, which include surgery, chemotherapy, and irradiation, despite being quite effective, cause significant side effects that influence the central nervous system's function and cause neurocognitive deficits. Therefore, they substantially lower the quality of life, which is especially severe in a developing organism. Thus, there is a need for new therapies that are less toxic and even more effective. Recently, knowledge about the epigenetic mechanisms that are responsible for medulloblastoma development has increased. Epigenetics is a phenomenon that influences gene expression but can be easily modified by external factors. The best known epigenetic mechanisms are histone modifications, DNA methylation, or noncoding RNAs actions. Epigenetic mechanisms comprehensively explain the complex phenomena of carcinogenesis. At the same time, they seem to be a potential key to treating medulloblastoma with fewer complications than past therapies. This review presents the currently known epigenetic mechanisms that are involved in medulloblastoma pathogenesis and the potential therapies that use epigenetic traits to cure medulloblastoma while maintaining a good quality of life and ensuring a higher median overall survival rate.
Collapse
|
31
|
Qin C, Pan Y, Li Y, Li Y, Long W, Liu Q. Novel Molecular Hallmarks of Group 3 Medulloblastoma by Single-Cell Transcriptomics. Front Oncol 2021; 11:622430. [PMID: 33816256 PMCID: PMC8013995 DOI: 10.3389/fonc.2021.622430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma (MB) is a highly heterogeneous and one of the most malignant pediatric brain tumors, comprising four subgroups: Sonic Hedgehog, Wingless, Group 3, and Group 4. Group 3 MB has the worst prognosis of all MBs. However, the molecular and cellular mechanisms driving the maintenance of malignancy are poorly understood. Here, we employed high-throughput single-cell and bulk RNA sequencing to identify novel molecular features of Group 3 MB, and found that a specific cell cluster displayed a highly malignant phenotype. Then, we identified the glutamate receptor metabotropic 8 (GRM8), and AP-1 complex subunit sigma-2 (AP1S2) genes as two critical markers of Group 3 MB, corresponding to its poor prognosis. Information on 33 clinical cases was further utilized for validation. Meanwhile, a global map of the molecular cascade downstream of the MYC oncogene in Group 3 MB was also delineated using single-cell RNA sequencing. Our data yields new insights into Group 3 MB molecular characteristics and provides novel therapeutic targets for this relentless disease.
Collapse
Affiliation(s)
- Chaoying Qin
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Yimin Pan
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhe Li
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Yue Li
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Danilenko M, Clifford SC, Schwalbe EC. Inter and intra-tumoral heterogeneity as a platform for personalized therapies in medulloblastoma. Pharmacol Ther 2021; 228:107828. [PMID: 33662447 DOI: 10.1016/j.pharmthera.2021.107828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Medulloblastoma is the most common malignant CNS tumor of childhood, affecting ~350 patients/year in the USA. In 2020, most children are cured of their disease, however, survivors are left with life-long late-effects as a consequence of intensive surgery, and application of chemo- and radio-therapy to the developing brain. A major contributor to improvements in patient survival has been the development of risk-stratified treatments derived from a better understanding of the prognostic value of disease biomarkers. The characterization and validation of these biomarkers has engendered a comprehensive understanding of the extensive heterogeneity that exists within the disease, which can occur both between and within tumors (inter- and intra-tumoral heterogeneity, respectively). In this review, we discuss inter-tumoral heterogeneity, describing the early characterization of clinical and histopathological disease heterogeneity, the more recent elucidation of molecular disease subgroups, and the potential for novel therapies based on specific molecular defects. We reflect on the limitations of current approaches when applied to a rare disease. We then review early investigations of intra-tumoral heterogeneity using FISH and immunohistochemical approaches, and focus on the application of next generation sequencing on bulk tumors to elucidate intra-tumoral heterogeneity. Finally, we critically appraise the applications of single-cell sequencing approaches and discuss their potential to drive next biological insights, and for routine clinical application.
Collapse
Affiliation(s)
- Marina Danilenko
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Edward C Schwalbe
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|
33
|
Medulloblastoma drugs in development: Current leads, trials and drawbacks. Eur J Med Chem 2021; 215:113268. [PMID: 33636537 DOI: 10.1016/j.ejmech.2021.113268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Current treatment for MB includes surgical resection, radiotherapy and chemotherapy. Despite significant progress in its management, a portion of children relapse and tumor recurrence carries a poor prognosis. Based on their molecular and clinical characteristics, MB patients are clinically classified into four groups: Wnt, Hh, Group 3, and Group 4. With our increased understanding of relevant molecular pathways disrupted in MB, the development of targeted therapies for MB has also increased. Targeted drugs have shown unique privileges over traditional cytotoxic therapies in balancing efficacy and toxicity, with many of them approved and widely used clinically. The aim of this review is to present the recent progress on targeted chemotherapies for the treatment of all classes of MB.
Collapse
|
34
|
Han Y, Chen M, Wang H. Production of a SCID mouse model of medulloblastoma to explore the therapeutic value of targeting tumor driver genes. Exp Ther Med 2020; 21:108. [PMID: 33335571 PMCID: PMC7739861 DOI: 10.3892/etm.2020.9540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/20/2020] [Indexed: 11/06/2022] Open
Abstract
Tumor driver genes are genes where structural or sequence mutations confer a selective advantage for cancer cells. The individualized targeting of tumor driver genes has become a topic of interest for tumor treatment. The prognosis for medulloblastoma (MB), a common type of malignant intracranial tumor found in children, is poor. The tumor driver genes and the corresponding targeted drugs remain to be studied. The present study analyzed tumor driver genes from tumor tissue and peripheral blood from one patient with nodular desmoplastic MB with Sonic Hedgehog activation and screened targeted drugs for the tumor driver genes. Additionally, MB tissue was successfully implanted into the SCID mouse which were then used for subsequent drug screening. The present study explored novel treatments for MB from the perspective of tumor driver genes, and may provide new ideas for choosing individualized targeted therapies for patients with MB.
Collapse
Affiliation(s)
- Yong Han
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Min Chen
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Hangzhou Wang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
35
|
Ma H, Cao W, Ding M. MicroRNA-31 weakens cisplatin resistance of medulloblastoma cells via NF-κB and PI3K/AKT pathways. Biofactors 2020; 46:831-838. [PMID: 32027070 DOI: 10.1002/biof.1616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Medulloblastoma (MB) is a malignant intracranial tumor. Cisplatin is a broad-spectrum antitumor drug. It is important to study the cisplatin resistance of MB cells for the treatment of MB. In this article, we preliminarily studied the cisplatin resistance of microRNA (miR)-31 and the possible mechanism in DAOY and UW228 cells, laying a theoretical foundation for clinical treatment of MB. METHODS Following anti-miR-31 and pre-miR-31 transfections, cell viability, BrdU, CyclinD1, and apoptosis levels of DAOY and UW228 cell were detected by CCK8, BrdU, and western blot. Meanwhile, migration, invasion, and western blot assay were respectively used to detect the functions of miR-31 migration and invasion. miR-31 levels were changed by cell transfection and detected by RT-qPCR. Furthermore, the related-proteins of pathways were also detected by western blot. RESULTS Anti-miR-31 increased DAOY and UW228 cells viability, BrdU+ numbers, and expression of CyclinD1. The migration/invasion rate and expression levels of MMP-9 and vimentin after anti-miR-31 transfection were increased. Furthermore, anti-miR-31 enhanced cells' cisplatin resistance and triggered PI3K/AKT and NF-κB pathways. Pre-miR-31 played opposite roles and promoted the apoptosis. CONCLUSION miR-31 regulated cell growth, migration, invasion and cisplatin resistance of MB cells via PI3K/AKT and NF-κB pathways.
Collapse
Affiliation(s)
- Hui Ma
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, China
| | - Wei Cao
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, China
| | - Meili Ding
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, China
| |
Collapse
|
36
|
Bortolozzi R, Luraghi A, Mattiuzzo E, Sacchetti A, Silvani A, Viola G. Ecdysteroid Derivatives that Reverse P-Glycoprotein-Mediated Drug Resistance. JOURNAL OF NATURAL PRODUCTS 2020; 83:2434-2446. [PMID: 32790992 PMCID: PMC8009596 DOI: 10.1021/acs.jnatprod.0c00334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 05/31/2023]
Abstract
The expression of multidrug resistance P-glycoprotein (P-gp) by cancer cells represents one of the major drawbacks to successful cancer therapy. Accordingly, the development of drugs that inhibit the activity of this transporter remains a major challenge in cancer drug discovery. In this context, several new ecdysteroid derivatives have been synthesized and evaluated as P-gp inhibitors. Two of them (compounds 9 and 14) were able to resensitize CEMVbl100 and LoVoDoxo resistant cell lines to vinblastine and doxorubicin, respectively. Indeed, both compounds 9 and 14 increased the cellular accumulation of rhodamine 123 in cells expressing P-gp and stimulated basal P-glycoprotein-ATPase activity at a 1 μM concentration, demonstrating their interference with the transport of other substrates in a competitive mode. Moreover, in a medulloblastoma cell line (DAOY), compounds 9 and 14 reduced the side population representing cancer stem cells, which are characterized by a high expression of ABC drug transporters. Further, in DAOY cells, the same two compounds synergized with cisplatin and vincristine, two drugs used commonly in the therapy of medulloblastoma. Molecular docking studies on the homology-modeled structure of the human P-glycoprotein provided a rationale for the biological results, validating the binding mode within the receptor site, in accordance with lipophilicity data and observed structure-activity relationship information. Altogether, the present results endorse these derivatives as promising P-gp inhibitors, and they may serve as candidates to reverse drug resistance in cancer cells.
Collapse
Affiliation(s)
- Roberta Bortolozzi
- Dipartimento
di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università degli Studi di Padova, Via Giustiniani 2, Padova, 35128, Italy
- Istituto
di Ricerca Pediatrica (IRP) Corso Stati Uniti 4, Padova, 35129, Italy
| | - Andrea Luraghi
- Dipartimento
di Chimica, Università di Milano Via Golgi 19, Milano, 20133, Italy
| | - Elena Mattiuzzo
- Dipartimento
di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università degli Studi di Padova, Via Giustiniani 2, Padova, 35128, Italy
| | - Alessandro Sacchetti
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Alessandra Silvani
- Dipartimento
di Chimica, Università di Milano Via Golgi 19, Milano, 20133, Italy
| | - Giampietro Viola
- Dipartimento
di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università degli Studi di Padova, Via Giustiniani 2, Padova, 35128, Italy
- Istituto
di Ricerca Pediatrica (IRP) Corso Stati Uniti 4, Padova, 35129, Italy
| |
Collapse
|
37
|
Wang Q, Kumar V, Lin F, Sethi B, Coulter DW, McGuire TR, Mahato RI. ApoE mimetic peptide targeted nanoparticles carrying a BRD4 inhibitor for treating Medulloblastoma in mice. J Control Release 2020; 323:463-474. [DOI: 10.1016/j.jconrel.2020.04.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
|
38
|
Huang S, Xue P, Han X, Zhang C, Yang L, Liu L, Wang X, Li H, Fu J, Zhou Y. Exosomal miR-130b-3p targets SIK1 to inhibit medulloblastoma tumorigenesis. Cell Death Dis 2020; 11:408. [PMID: 32483145 PMCID: PMC7264172 DOI: 10.1038/s41419-020-2621-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are an important carrier for cell communication. miRNAs in exosomes are potential biomarkers and therapeutic targets in different types of cancer. However, the role of exosomal miRNAs in medulloblastoma (MB) patients is largely unknown. In this study, we reported that there was a higher level of miR-130b-3p in exosomes derived from MB patient plasma compared with exosomes from healthy control plasma. Exosomes from MB patient plasma could transfer miR-130b-3p to an MB cell line and played suppressor roles for cell proliferation. miR-130b-3p suppressed MB tumorigenesis by targeting a previously unknown target, serine/threonine-protein kinase 1 (SIK1), through the p53 signaling pathways. In addition, we found an unreported role of SIK1 in promoting MB tumor growth and an SIK1 inhibitor could inhibit MB cell proliferation. This research provides new insight into the molecular mechanism of MB and may provide a new therapeutic strategy for MB treatment.
Collapse
Affiliation(s)
- Saihua Huang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Ping Xue
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.,Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, China
| | - Xiao Han
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Caiyan Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Lan Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Lijuan Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Xiang Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, China
| | - Jinrong Fu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China. .,NHC Key Laboratory of Neonatal Diseases, Fudan University, 201102, Shanghai, China.
| |
Collapse
|
39
|
Aldaregia J, Errarte P, Olazagoitia-Garmendia A, Gimeno M, Uriz JJ, Gershon TR, Garcia I, Matheu A. Erbb4 Is Required for Cerebellar Developmentand Malignant Phenotype of Medulloblastoma. Cancers (Basel) 2020; 12:cancers12040997. [PMID: 32316671 PMCID: PMC7226104 DOI: 10.3390/cancers12040997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 11/18/2022] Open
Abstract
Medulloblastoma is the most common and malignant pediatric brain tumor in childhood. It originates from dysregulation of cerebellar development, due to an excessive proliferation of cerebellar granule neuron precursor cells (CGNPs). The underlying molecular mechanisms, except for the role of SHH and WNT pathways, remain largely unknown. ERBB4 is a tyrosine kinase receptor whose activity in cancer is tissue dependent. In this study, we characterized the role of ERBB4 during cerebellum development and medulloblastoma progression paying particular interests to its role in CGNPs and medulloblastoma stem cells (MBSCs). Our results show that ERBB4 is expressed in the CGNPs during cerebellum development where it plays a critical role in migration, apoptosis and differentiation. Similarly, it is enriched in the population of MBSCs, where also controls those critical processes, as well as self-renewal and tumor initiation for medulloblastoma progression. These results are translated to clinical samples where high levels of ERBB4 correlate with poor outcome in Group 4 and all medulloblastomas groups. Transcriptomic analysis identified critical processes and pathways altered in cells with knock-down of ERBB4. These results highlight the impact and underlying mechanisms of ERBB4 in critical processes during cerebellum development and medulloblastoma.
Collapse
Affiliation(s)
- Juncal Aldaregia
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
| | - Peio Errarte
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
| | - Ane Olazagoitia-Garmendia
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
| | - Marian Gimeno
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
| | | | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27516, USA;
| | - Idoia Garcia
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Correspondence: (I.G.); (A.M.); Tel.: +34-943006073 (I.G. & A.M.)
| | - Ander Matheu
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBERfes, Carlos III Institute, 28029 Madrid, Spain
- Correspondence: (I.G.); (A.M.); Tel.: +34-943006073 (I.G. & A.M.)
| |
Collapse
|
40
|
Jackson TW, Bendfeldt GA, Beam KA, Rock KD, Belcher SM. Heterozygous mutation of sonic hedgehog receptor (Ptch1) drives cerebellar overgrowth and sex-specifically alters hippocampal and cortical layer structure, activity, and social behavior in female mice. Neurotoxicol Teratol 2020; 78:106866. [PMID: 32113901 DOI: 10.1016/j.ntt.2020.106866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Sonic hedgehog (SHH) signaling is essential for the differentiation and migration of early stem cell populations during cerebellar development. Dysregulation of SHH-signaling can result in cerebellar overgrowth and the formation of the brain tumor medulloblastoma. Treatment for medulloblastoma is extremely aggressive and patients suffer life-long side effects including behavioral deficits. Considering that other behavioral disorders including autism spectrum disorders, holoprosencephaly, and basal cell nevus syndrome are known to present with cerebellar abnormalities, it is proposed that some behavioral abnormalities could be inherent to the medulloblastoma sequalae rather than treatment. Using a haploinsufficient SHH receptor knockout mouse model (Ptch1+/-), a partner preference task was used to explore activity, social behavior and neuroanatomical changes resulting from dysregulated SHH signaling. Compared to wild-type, Ptch1+/- females displayed increased activity by traveling a greater distance in both open-field and partner preference tasks. Social behavior was also sex-specifically modified in Ptch1+/- females that interacted more with both novel and familiar animals in the partner preference task compared to same-sex wild-type controls. Haploinsufficiency of PTCH1 resulted in cerebellar overgrowth in lobules IV/V and IX of both sexes, and female-specific decreases in hippocampal size and isocortical layer thickness. Taken together, neuroanatomical changes related to deficient SHH signaling may alter social behavior.
Collapse
Affiliation(s)
- Thomas W Jackson
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs, Campus Box 7617, Raleigh, NS, USA.
| | - Gabriel A Bendfeldt
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs, Campus Box 7617, Raleigh, NS, USA.
| | - Kelby A Beam
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs, Campus Box 7617, Raleigh, NS, USA.
| | - Kylie D Rock
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs, Campus Box 7617, Raleigh, NS, USA.
| | - Scott M Belcher
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs, Campus Box 7617, Raleigh, NS, USA.
| |
Collapse
|
41
|
Bahmad HF, Poppiti RJ. Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. J Clin Pathol 2020; 73:243-249. [PMID: 32034059 DOI: 10.1136/jclinpath-2019-206246] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common malignant primary intracranial neoplasm diagnosed in childhood. Although numerous efforts have been made during the past few years to exploit novel targeted therapies for this aggressive neoplasm, there still exist substantial hitches hindering successful management of MB. Lately, progress in cancer biology has shown evidence that a subpopulation of cells within the tumour, namely cancer stem cells (CSCs), are thought to be responsible for the resistance to most chemotherapeutic agents and radiation therapy, accounting for cancer recurrence. Hence, it is crucial to identify the molecular signatures and genetic aberrations that characterise those CSCs and develop therapies that specifically target them. In this review, we aim to give an overview of the main genetic and molecular cues that depict MB-CSCs and provide a synopsis of the novel therapeutic approaches that specifically target this population of cells to attain enhanced antitumorous effects and therefore overcome resistance to therapy.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Robert J Poppiti
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA .,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
42
|
Huang P, Guo YD, Zhang HW. Identification of Hub Genes in Pediatric Medulloblastoma by Multiple-Microarray Analysis. J Mol Neurosci 2019; 70:522-531. [DOI: 10.1007/s12031-019-01451-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
|
43
|
Sun XH, Fan WJ, An ZJ, Sun Y. Inhibition of Long Noncoding RNA CRNDE Increases Chemosensitivity of Medulloblastoma Cells by Targeting miR-29c-3p. Oncol Res 2019; 28:95-102. [PMID: 31753063 PMCID: PMC7851516 DOI: 10.3727/096504019x15742472027401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Long noncoding RNA CRNDE (CRNDE) recently emerged as a carcinogenic promoter in various cancers including medulloblastoma. However, the functions and molecular mechanisms of CRNDE to the acquired drug resistance of medulloblastoma are still unclear. The transcript levels of CRNDE were examined in four medulloblastoma cell lines exposed to cisplatin treatment, and IC50 values were calculated. Effects of CRNDE knockdown or miR-29c-3p overexpression on cell viability, colony formation, apoptosis, migration, and invasion were assessed using the CCK-8, colony formation assay, flow cytometry, and Transwell assays, respectively. RNA pulldown and RNA-binding protein immunoprecipitation (RIP) were performed to confirm the molecular interactions between CRNDE and miR-29c-3p involved in medulloblastoma cells. The in vivo role of CRNDE knockdown or miR-29c-3p overexpression on tumor growth and apoptosis was evaluated in a xenograft mouse model of human medulloblastoma. The transcript levels of lncRNA CRNDE were significantly higher in cisplatin-treated tumor cells with higher IC50 values. Depletion of CRNDE inhibited tumor cell proliferation and colony formation, induced cell apoptosis, and suppressed migration and invasion in medulloblastoma cells. Moreover, overexpression of miR-29c-3p inhibited tumor cell proliferation and colony formation, migration, and invasion, and enhanced apoptosis and chemosensitivity to cisplatin. In addition, CRNDE was found to act as a miR-29c-3p sponge. Furthermore, in vivo experiments showed the CRNDE/miR-29c-3p interactions involved in medulloblastoma. Our study demonstrates that CRNDE acts as a critical mediator of proliferation, apoptosis, migration, invasion, and resistance to chemotherapeutics via binding to and negatively regulating miR-29c-3p in medulloblastoma cells. These results provide novel molecular targets for treatment of medulloblastoma.
Collapse
Affiliation(s)
- Xiao-Hui Sun
- Medical Department, Qingdao Infectious Disease HospitalQingdao, ShandongP.R. China
| | - Wen-Jie Fan
- Department of Anesthesia, Qingdao Women and Children's HospitalQingdao, ShandongP.R. China
| | - Zong-Jian An
- Department of Pediatric Neurosurgery, Qingdao Women and Children's HospitalQingdao, ShandongP.R. China
| | - Yong Sun
- Department of Pediatric Neurosurgery, Qingdao Women and Children's HospitalQingdao, ShandongP.R. China
| |
Collapse
|
44
|
Li B, Shen M, Yao H, Chen X, Xiao Z. Long Noncoding RNA TP73-AS1 Modulates Medulloblastoma Progression In Vitro And In Vivo By Sponging miR-494-3p And Targeting EIF5A2. Onco Targets Ther 2019; 12:9873-9885. [PMID: 31819485 PMCID: PMC6874156 DOI: 10.2147/ott.s228305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies have shown that P73 antisense RNA 1T (non-protein coding), also known as TP73-AS1, is a long non-coding RNA (lncRNA) and involved in the development of medulloblastoma. However, the regulatory mechanism of lncRNA TP73-AS1 in medulloblastoma was still unclear, the present study was aimed to investigate the detailed functions and the mechanism of TP73-AS1 in regulation of medulloblastoma. Materials and methods The levels of TP73-AS1, miR-494-3p, and Eukaryotic initiation factor 5A2 (EIF5A2) were determined using quantitative real-time PCR (qRT-PCR), in situ hybridization (ISH), or Immunohistochemistry (IHC). The function of TP73-AS1 in proliferation, apoptosis, migration, and invasion of medulloblastoma cells was evaluated using cell counting Kit-8 (CCK-8), flow cytometry, and transwell assay, respectively. The protein levels were determined by Western blot. Bioinformatics analysis and dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assay were used to search and confirm the target gene of TP73-AS1 and miR-494-3p. The effect of TP73-AS1 knockdown in vivo was detected by animal experiment. Results The levels of TP73-AS1 and EIF5A2 were up-regulated, while miR-494-3p expression was down-regulated in medulloblastoma tissues and cells, ELF5A2 was a direct target of miR-494-3p, and miR-494-3p bound to TP73-AS1. The knockdown of TP73-AS1 inhibited cell proliferation, invasion, migration, and promoted apoptosis of medulloblastoma cells, while the miR-494-3p inhibitor abolished the effects of TP73-AS1 knockdown on medulloblastoma cells. Conclusion TP73-AS1 positively regulated EIF5A2 expression by sponging miR-494-3p. These findings suggested that TP73-AS1 served as an oncogene and promoted the progression of medulloblastoma.
Collapse
Affiliation(s)
- Bing Li
- Department of Neurosurgery, Shangqiu First People's Hospital, Shangqiu 476000, Henan, People's Republic of China
| | - Mingfeng Shen
- Department of Neurosurgery, Shangqiu First People's Hospital, Shangqiu 476000, Henan, People's Republic of China
| | - Hongwei Yao
- Department of Neurosurgery, Shangqiu First People's Hospital, Shangqiu 476000, Henan, People's Republic of China
| | - Xuan Chen
- Department of Neurosurgery, Shangqiu First People's Hospital, Shangqiu 476000, Henan, People's Republic of China
| | - Zhiqiang Xiao
- Department of Neurosurgery, Shangqiu First People's Hospital, Shangqiu 476000, Henan, People's Republic of China
| |
Collapse
|
45
|
Wang W, Zhang L, Gao W, Zhang D, Zhao Z, Bao Y. miR‑489 promotes apoptosis and inhibits invasiveness of glioma cells by targeting PAK5/RAF1 signaling pathways. Oncol Rep 2019; 42:2390-2401. [PMID: 31638257 PMCID: PMC6859450 DOI: 10.3892/or.2019.7381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/24/2019] [Indexed: 12/03/2022] Open
Abstract
Glioma patients receiving therapy are at a high risk of relapse and rapid progression and, thus, more effective treatments are required. The aim of the present study was to determine the suppressive role of miR-489 as an alternative therapeutic target for preventing glioma progression. The results of the present study demonstrated that patients with relatively lower levels of expression of miR-489 had more favorable clinical outcomes. Furthermore, miR-489 expression was inversely correlated with p21-activated kinase 5 (PAK5) mRNA expression levels in glioma specimens. A dual luciferase reporter assay revealed that miR-489 suppressed PAK5 expression by directly targeting the PAK5 3′-untranslated region. The effects of miR-489 on cell viability were measured using MTT and Cell Counting Kit-8 assays. The results demonstrated that ectopic expression of miR-489 mimic decreased cell viability by interfering with cyclin D1 and c-Myc signaling. Additionally, the effect of miR-489 on apoptosis was determined using Hoechst 33258 staining and flow cytometry. The results demonstrated that miR-489 decreased the activity of RAF1, reduced Bcl-2 and promoted Bax expression, resulting in increased cell apoptosis. Furthermore, the effect of miR-489 mimic on cellular motility was assessed using migration and invasion assays. miR-489 was shown to abolish the PAK5/RAF1/MMP2 pathway, resulting in decreased cell invasion ability. These results indicated that miR-489 may be involved in PAK5-mediated regulation of glioma progression, demonstrating the potential therapeutic benefits of targeting miR-489 in glioma.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Luyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wei Gao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dongyong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zilong Zhao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yijun Bao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
46
|
Lal S, Carrera D, Phillips JJ, Weiss WA, Raffel C. An oncolytic measles virus-sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro Oncol 2019; 20:1606-1615. [PMID: 29912438 DOI: 10.1093/neuonc/noy089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Oncolytic measles virus (MV) is effective in xenograft models of many tumor types in immune-compromised mice. However, no murine cell line exists that is tumorigenic, grows in immune-competent mice, and is killed by MV. The lack of such a model prevents an examination of the effect of the immune system on MV oncotherapy. Methods Cerebellar stem cells from human CD46-transgenic immunocompetent mice were transduced to express Sendai virus C-protein, murine C-Myc, and Gfi1b proteins. The resultant cells were injected into the brain of NSG mice, and a cell line, called CSCG, was prepared from the resulting tumor. Results CSCG cells are highly proliferative, and express stem cell markers. These cells are permissive for replication of MV and are killed by the virus in a dose- and time-dependent manner. CSCG cells form aggressive tumors that morphologically resemble medulloblastoma when injected into the brains of immune-competent mice. On the molecular level, CSCG tumors overexpress natriuretic peptide receptor 3 and gamma-aminobutyric acid type A receptor alpha 5, markers of Group 3 medulloblastoma. A single intratumoral injection of MV‒green fluorescent protein resulted in complete tumor regression and prolonged survival of animals compared with treatments with phosphate buffered saline (P = 0.0018) or heat-inactivated MV (P = 0.0027). Conclusions This immune-competent model provides the first platform to test therapeutic regimens of oncolytic MV for Group 3 medulloblastoma in the presence of anti-measles immunity. The strategy presented here can be used to make MV-sensitive murine models of any human tumor for which the driving mutations are known.
Collapse
Affiliation(s)
- Sangeet Lal
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - Diego Carrera
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - William A Weiss
- Department of Neurology, Pediatrics, and Neurological Surgery and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Corey Raffel
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| |
Collapse
|
47
|
Thomaz A, Pinheiro KDV, Souza BK, Gregianin L, Brunetto AL, Brunetto AT, de Farias CB, Jaeger MDC, Ramaswamy V, Nör C, Taylor MD, Roesler R. Antitumor Activities and Cellular Changes Induced by TrkB Inhibition in Medulloblastoma. Front Pharmacol 2019; 10:698. [PMID: 31297057 PMCID: PMC6606946 DOI: 10.3389/fphar.2019.00698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins are critically involved in regulating normal neural development and plasticity. Brain-derived neurotrophic factor (BDNF), a neurotrophin that acts by binding to the tropomyosin receptor kinase B (TrkB) receptor, has also been implicated in the progression of several types of cancer. However, its role in medulloblastoma (MB), the most common type of malignant brain tumor afflicting children, remains unclear. Here we show that selective TrkB inhibition with the small molecule compound ANA-12 impaired proliferation and viability of human UW228 and D283 MB cells, and slowed the growth of MB tumors xenografted into nude mice. These effects were accompanied by increased apoptosis, reduced extracellular-regulated kinase (ERK) activity, increased expression of signal transducer and activator of transcription 3 (STAT3), and differential modulation of p21 expression dependent on the cell line. In addition, MB cells treated with ANA-12 showed morphological alterations consistent with differentiation, increased levels of the neural differentiation marker β-III Tubulin (TUBB3), and reduced expression of the stemness marker Nestin. These findings are consistent with the possibility that selective TrkB inhibition can display consistent anticancer effects in MB, possibly by modulating intracellular signaling and gene expression related to tumor progression, apoptosis, and differentiation.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Kelly de Vargas Pinheiro
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bárbara Kunzler Souza
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
48
|
Human Sialic acid O-acetyl esterase (SIAE) - mediated changes in sensitivity to etoposide in a medulloblastoma cell line. Sci Rep 2019; 9:8609. [PMID: 31197190 PMCID: PMC6565703 DOI: 10.1038/s41598-019-44950-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
Medulloblastoma (MB), the most common malignant paediatric brain tumour occurs in the cerebellum. Advances in molecular genomics have led to the identification of defined subgroups which are associated with distinct clinical prognoses. Despite this classification, standard therapies for all subgroups often leave children with life-long neurological deficits. New therapeutic approaches are therefore urgently needed to reduce current treatment toxicity and increase survival for patients. GD3 is a well-studied ganglioside which is known to have roles in the development of the cerebellum. Post-partum GD3 is not highly expressed in the brain. In some cancers however GD3 is highly expressed. In MB cells GD3 is largely acetylated to GD3A. GD3 is pro-apoptotic but GD3A can protect cells from apoptosis. Presence of these gangliosides has previously been shown to correlate with resistance to chemotherapy. Here we show that the GD3 acetylation pathway is dysregulated in MB and as a proof-of-principle we show that increased GD3 expression sensitises an MB cell line to etoposide.
Collapse
|
49
|
Cormerais Y, Pagnuzzi‐Boncompagni M, Schrötter S, Giuliano S, Tambutté E, Endou H, Wempe MF, Pagès G, Pouysségur J, Picco V. Inhibition of the amino-acid transporter LAT1 demonstrates anti-neoplastic activity in medulloblastoma. J Cell Mol Med 2019; 23:2711-2718. [PMID: 30784173 PMCID: PMC6433660 DOI: 10.1111/jcmm.14176] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
Most cases of medulloblastoma (MB) occur in young children. While the overall survival rate can be relatively high, current treatments combining surgery, chemo- and radiotherapy are very destructive for patient development and quality of life. Moreover, aggressive forms and recurrences of MB cannot be controlled by classical therapies. Therefore, new therapeutic approaches yielding good efficacy and low toxicity for healthy tissues are required to improve patient outcome. Cancer cells sustain their proliferation by optimizing their nutrient uptake capacities. The L-type amino acid transporter 1 (LAT1) is an essential amino acid carrier overexpressed in aggressive human cancers that was described as a potential therapeutic target. In this study, we investigated the therapeutic potential of JPH203, a LAT1-specific pharmacological inhibitor, on two independent MB cell lines belonging to subgroups 3 (HD-MB03) and Shh (DAOY). We show that while displaying low toxicity towards normal cerebral cells, JPH203 disrupts AA homeostasis, mTORC1 activity, proliferation and survival in MB cells. Moreover, we demonstrate that a long-term treatment with JPH203 does not lead to resistance in MB cells. Therefore, this study suggests that targeting LAT1 with JPH203 is a promising therapeutic approach for MB treatment.
Collapse
Affiliation(s)
- Yann Cormerais
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Present address:
Department of Genetics and Complex DiseasesHarvard T. H. Chan School of Public HealthBostonMassachusetts
| | | | - Sandra Schrötter
- Department of Genetics and Complex DiseasesHarvard T. H. Chan School of Public HealthBostonMassachusetts
| | - Sandy Giuliano
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
| | - Eric Tambutté
- Marine Biology DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
| | | | - Michael F. Wempe
- School of PharmacyAnschutz Medical Campus, University of Colorado DenverAuroraColorado
| | - Gilles Pagès
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University of Cote d’AzurNiceFrance
| | - Jacques Pouysségur
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University of Cote d’AzurNiceFrance
| | - Vincent Picco
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
| |
Collapse
|
50
|
Abstract
Medulloblastoma is the most common malignant solid tumor in childhood and the most common embryonal neuroepithelial tumor of the central nervous system. Several morphological variants are recognized: classic medulloblastoma, large cell/anaplastic medulloblastoma, desmoplastic/nodular medulloblastoma, and medulloblastoma with extensive nodularity. Recent advances in transcriptome and methylome profiling of these tumors led to a molecular classification that includes 4 major genetically defined groups. Accordingly, the 2016 revision of the World Health Organization's Classification of Tumors of the Central Nervous System recognizes the following medulloblastoma entities: Wingless (WNT)-activated, Sonic hedgehog (SHH)-activated, Group 3, and Group 4. This transcriptionally driven classification constitutes the basis of new risk stratification schemes applied to current therapeutic clinical trials. Because additional layers of molecular tumor heterogeneities are being progressively unveiled, several clinically relevant subgroups within the 4 major groups have already been identified. The purpose of this article is to review the recent basic science and clinical advances in the understanding of "medulloblastomas," and their diagnostic imaging correlates and the implications of those on current neuroimaging practice.
Collapse
|