1
|
Menzies SK, Patel RN, Ainsworth S. Practical progress towards the development of recombinant antivenoms for snakebite envenoming. Expert Opin Drug Discov 2025; 20:799-819. [PMID: 40302313 DOI: 10.1080/17460441.2025.2495943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Snakebite envenoming is a neglected tropical disease that affects millions globally each year. In recent years, research into the potential production of recombinant antivenoms, formulated using mixtures of highly defined anti-toxin monoclonal antibodies, has rapidly moved from a theoretical concept to demonstrations of practical feasibility. AREAS COVERED This article examines the significant practical advancements in transitioning recombinant antivenoms from concept to potential clinical translation. The authors have based their review on literature obtained from Google Scholar and PubMed between September and November 2024. Coverage includes the development and validation of recombinant antivenom antibody discovery strategies, the characterization of the first broadly neutralizing toxin class antibodies, and recent translational proof-of-concept experiments. EXPERT OPINION The transition of recombinant antivenoms from a 'concept' to the current situation where high-throughput anti-venom mAb discovery is becoming routine, accompanied by increasing evidence of their broad neutralizing capacity in vivo, has been extraordinary. It is now important to build on this momentum by expanding the discovery of broadly neutralizing mAbs to encompass as many toxin classes as possible. It is anticipated that key demonstrations of whether recombinant antivenoms can match or surpass existing conventional polyvalent antivenoms in terms of neutralizing scope and capacity will be achieved in the next few years.
Collapse
Affiliation(s)
- Stefanie K Menzies
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Rohit N Patel
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Talukdar A, Giri S, Doley R. Kraits of Indian subcontinent: Natural history, risks, venom variation, lethality and treatment strategies - A comprehensive review. Toxicon 2025; 262:108406. [PMID: 40374096 DOI: 10.1016/j.toxicon.2025.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/30/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
The World Health Organization (WHO) has re-classified "Snakebite" as a Neglected Tropical Disease in 2017, and estimated that as many as 5.4 million people suffer from snakebites every year. Out of this large number of snakebites, envenoming occurs in about 50 % of the cases, and the number of resulting deaths could be as high as 138,000. The genus Bungarus commonly known as kraits are medically important elapid snakes widely distributed in the Indian subcontinent, southern China and the Southeast Asian countries (except Philippines). The Indian subcontinent (India, Bangladesh, Bhutan, Nepal, Pakistan, Sri Lanka and Maldives) is home to 8-9 krait species, among which B. caeruleus and B. niger are highly venomous. This review presents the current state of knowledge on krait bites in the Indian subcontinent. The risk of envenomation by kraits, the venom lethality and krait bite management in the Indian subcontinent have been critically analyzed. Moreover, the issue of dry bites from kraits and their management has also been reviewed. Furthermore, critical aspects, such as knowledge of snakebite management among healthcare workers, clinical symptoms of snakebite patients, and treatment in healthcare facilities including antivenom administration and their clinical efficacy, have helped us in identifying the critical knowledge gaps. Proposed preventive measures will help to reduce krait bite associated mortality and morbidity. Moreover, development and accessibility to affordable treatment options may help in the effective management of krait bites.
Collapse
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Surajit Giri
- Demow Rural Government Community Health Centre, Raichai, Konwar Dihingia Gaon, Sivasagar, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
3
|
Wang H, Cai W, Tang Z, Fu J, König E, Zhang N, Chen X, Chen T, Shaw C. Discovery and Characterisation of Novel Poly-Histidine-Poly-Glycine Peptides as Matrix Metalloproteinase Inhibitors. Biomolecules 2025; 15:706. [PMID: 40427599 DOI: 10.3390/biom15050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
For the first time, two poly-histidine-poly-glycine peptides (pHpG-H5 and pHpG-H7) were identified as promising candidates for matrix metalloproteinase inhibitors. cDNAs encoding pHpG-H5 and pHpG-H7 peptides were isolated from the Atheris squamigera cDNA library constructed using oligo(dT)-primed reverse transcription. Deduced sequences of pHpG peptides were systematically organised and utilised as templates for synthesising chemical replicates. All synthetic pHpG peptides exhibited inhibitory effects on human matrix metalloproteinase-1 (MMP-1). Spectroscopic analyses and molecular modelling demonstrated that pHpG peptides disrupt zinc ion coordination within the central catalytic domain of MMP-1, thereby inhibiting its enzymatic activity. As a novel peptide inhibitor of matrix metalloproteinase, pHpG-H7 modulates multiple biological processes, such as cell migration and angiogenesis, suggesting significant therapeutic potential.
Collapse
Affiliation(s)
- He Wang
- School of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Wenchao Cai
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou 350000, China
| | - Zhiyu Tang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou 350000, China
| | - Juanli Fu
- School of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Enrico König
- Laboratory of Synthetic and Structural Vaccinology, University of Trento, 38100 Trento, Italy
| | - Nanwen Zhang
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou 350000, China
| | - Xiaole Chen
- Department of Bioengineering and Biopharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou 350000, China
| | - Tianbao Chen
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Chris Shaw
- Medicine Natural Peptide Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
4
|
da Cunha E Silva FA, Silva BRD, Barros LRD, Beraldo-Neto E, Maleski ALA, Alberto-Silva C. Snake Venom Peptide Fractions from Bothrops jararaca and Daboia siamensis Exhibit Differential Neuroprotective Effects in Oxidative Stress-Induced Zebrafish Models. Pharmaceuticals (Basel) 2025; 18:678. [PMID: 40430497 DOI: 10.3390/ph18050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction: Snake venoms are rich sources of bioactive peptides with therapeutic potential, particularly against neurodegenerative diseases linked to oxidative stress. While the peptide fraction (<10 kDa) from Bothrops jararaca venom has shown in vitro neuroprotection, analogous fractions from related species remain unexplored in vivo. Methods: This study comparatively evaluated the neuroprotective effects of two peptide fractions (pf) from Daboia siamensis (pf-Ds) and B. jararaca (pf-Bj) against H2O2-induced oxidative stress using in vitro (PC12 cells) and in vivo (zebrafish, Danio rerio) models. Results: In vitro, pf-Ds (1 µg mL-1) did not protect PC12 cells against H2O2-induced cytotoxicity, unlike previously reported effects of pf-Bj. In vivo, neither pf-Ds nor pf-Bj (1-20 µg mL-1) induced significant developmental toxicity in zebrafish larvae up to 120 h post-fertilization (hpf). The neuroprotective effects of both pf were evaluated using two experimental models: (I) Larvae at 96 hpf were exposed to either pf-Ds or pf-Bj (10 µg mL-1) for 4 h, followed by co-exposure to H2O2 (0.2 mmol L-1) for an additional 10 h to induce oxidative stress (4-20 h model); (II) Embryos at 4 hpf were treated with pf-Ds or pf-Bj (10 µg mL-1) continuously until 96 hpf, after which they were exposed to H2O2 (0.2 mmol L-1) for another 24 h (96-120 h model). In a short-term treatment model, neither fraction reversed H2O2-induced deficits in metabolism or locomotor activity. However, in a prolonged treatment model, pf-Bj significantly reversed the H2O2-induced locomotor impairment, whereas pf-Ds did not confer protection. Conclusions: These findings demonstrate, for the first time, the in vivo neuroprotective potential of pf-Bj against oxidative stress-induced behavioral deficits in zebrafish, contingent on the treatment regimen. The differential effects between pf-Ds and pf-Bj highlight species-specific venom composition and underscore the value of zebrafish for evaluating venom-derived peptides.
Collapse
Affiliation(s)
- Felipe Assumpção da Cunha E Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil
| | - Brenda Rufino da Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil
| | - Leticia Ribeiro de Barros
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil
| | - Emidio Beraldo-Neto
- Biochemistry Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil
| | - Adolfo Luis Almeida Maleski
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil
| | - Carlos Alberto-Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil
| |
Collapse
|
5
|
Muttiah B, Hanafiah A. Snake Venom Compounds: A New Frontier in the Battle Against Antibiotic-Resistant Infections. Toxins (Basel) 2025; 17:221. [PMID: 40423304 DOI: 10.3390/toxins17050221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/20/2025] [Accepted: 04/30/2025] [Indexed: 05/28/2025] Open
Abstract
The occurrence of antibiotic-resistant bacteria is a serious global health issue, and it emphasizes the need for novel antimicrobial agents. This review explores the potential of snake venom as another alternative strategy against antimicrobial resistance. Snake venoms are complex combinations of bioactive peptides and proteins, including metalloproteases (MPs), serine proteases (SPs), phospholipase A2 (PLA2) enzymes, three-finger toxins (3FTXs), cysteine-rich secretory proteins (CRISPs), L-amino acid oxidases (LAAOs), and antimicrobial peptides (AMPs). The antibacterial products possess wide-spectrum antibacterial activity against resistant microbes via diverse mechanisms such as cell membrane disruption, enzymatic hydrolysis of microbial structures, generation of oxidative stress, inhibition of biofilms, and immunomodulation. Strong antimicrobial activity is reported by most studies, but these are mostly restricted to in vitro testing with low translational use. Although preliminary insights into molecular targets and physiological effects exist, further studies are needed to clarify long-term safety and therapeutic potential. Special attention is given to snake venom-derived extracellular vesicles (SVEVs), which enhance the therapeutic potential of venom toxins by protecting them from degradation, improving bioavailability, and facilitating targeted delivery. Furthermore, innovative delivery strategies such as PEGylation, liposomes, hydrogels, microneedle patches, biopolymer films, and nanoparticles are discussed for their role in reducing systemic toxicity and enhancing antimicrobial efficacy. The rational modification of venom-derived peptides further expands their therapeutic utility by improving pharmacokinetics and minimizing off-target effects. Together, these approaches highlight the translational potential of snake venom-based therapies as next-generation antimicrobials in the fight against resistant infections. By outlining these challenges and directions, this review positions snake venom as an overlooked but fertile resource in the battle against antibiotic resistance.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- GUT Research Group, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Menon JC, Sreekrishnan TP, Nair SB, Pillay VV, Kanungo S, Aravind MS, Bharti OK, Joseph JK, Pati S. Snakebite envenoming in India: it is time we look beyond the concept of the Big Four species. Trans R Soc Trop Med Hyg 2025:traf042. [PMID: 40223652 DOI: 10.1093/trstmh/traf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
India faces substantial challenges from snakebite envenoming secondary to the high morbidity, mortality and financial burden, particularly in rural communities. While concentrated on the 'Big Four' venomous species, recent research indicates a necessity to expand the focus to encompass additional medically relevant species. This review emphasizes the geographic heterogeneity in venom among these snakes, which impacts antivenom effectiveness and necessitating region-specific formulations. This analysis highlights the shortcomings of current antivenoms and identifies non-Big Four species involved in snakebite envenoming, advocating for an urgent shift to inclusive antivenom strategies that integrate local venom profiles to enhance treatment effectiveness and thereby reduce snakebite-related morbidity and mortality. Improved training for healthcare providers and enhancements in anti-snake venom quality are essential for meeting the World Health Organization's 2030 Sustainable Development Goal objective of halving snakebite-related fatalities and disabilities. Incorporating snakebite management into national health programs and conducting epidemiological research systematically are crucial to mitigating this preventable health concern.
Collapse
Affiliation(s)
- Jaideep C Menon
- Adult Cardiology and Public Health, Amrita Institute of Medical Sciences, Kochi 682041, India
| | - T P Sreekrishnan
- Emergency Medicine, Amrita Institute of Medical Sciences, Kochi 682041, India
| | - Sabarish B Nair
- Emergency Medicine, Amrita Institute of Medical Sciences, Kochi 682041, India
| | - Vijay V Pillay
- Poison Control Centre, Professor, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Srikanta Kanungo
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, India
| | - M S Aravind
- Department of Public Health, Amrita Institute of Medical Sciences, Kochi 682041, India
| | - Omesh K Bharti
- State Institute of Health and family Welfare, Himachal Pradesh, India
| | - Joseph K Joseph
- Department of Nephrology, Little Flower Hospital and Research Centre, Angamaly, Kochi 683572, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, India
| |
Collapse
|
7
|
Choudhury A, Linne K, Bulfone TC, Hossain T, Sina AAI, Bickler PL, Fry BG, Lewin MR. Electrical Cell Impedance Sensing (ECIS): Feasibility of a Novel In Vitro Approach to Studying Venom Toxicity and Potential Therapeutics. Toxins (Basel) 2025; 17:193. [PMID: 40278691 PMCID: PMC12031041 DOI: 10.3390/toxins17040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Snakebite envenoming is often discussed in terms of lethality and limb loss, but local tissue injury and coagulotoxic effects of venom are significantly more common acute manifestations of snakebite envenoming (SBE). Local tissue injury and the hemorrhagic and coagulotoxic effects of venom are challenging to study in live animals and can be ethically fraught due to animal welfare concerns such that attention to the 3Rs of animal welfare motivates the development of in vitro techniques in this arena. Herein, we tested the use of a wound-healing study technique known as Electric Cell-Substrate Impedance Sensing (ECIS) to assess populations of cultured cells exposed to venom with or without sPLA2 and/or metalloprotease inhibitors (varespladib and marimastat, respectively). For comparison, the StarMax coagulation analyzer for coagulotoxicity was further used to evaluate the venoms and the neutralizing capabilities of the abovementioned direct toxin inhibitors (DTIs) against the same venoms examined using ECIS. Three viper and three elapid venoms that were examined for their effects on H1975 cells were Agkistrodon contortrix (Eastern Copperhead), Crotalus helleri (Southern Pacific Rattlesnake), and Vipera ammodytes (Horned Viper) and Naja atra (Chinese Cobra), Naja mossambica (Mozambique Spitting Cobra), and Naja nigricollis (Black-necked Spitting Cobra), respectively. The combination of cellular and coagulation techniques appears to usefully discriminate the in vitro capabilities and limitations of specific inhibitors to inhibit specific venom effects. This study suggests that ECIS with or without concomitant coagulation testing is a feasible method to generate reproducible, meaningful preclinical data and could be used with any type of cell line. Importantly, this approach is both quantitative and has the potential of reducing animal use and suffering during the evaluation of potential therapeutics. To further evaluate the potential of this method, rescue studies should be performed.
Collapse
Affiliation(s)
- Abhinandan Choudhury
- Adaptive Biotoxicology Lab, University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Kaitlin Linne
- Department of Emergency Medicine, University of California San Francisco Medical Center, San Francisco, CA 94143, USA (T.C.B.); (P.L.B.)
| | - Tommaso C. Bulfone
- Department of Emergency Medicine, University of California San Francisco Medical Center, San Francisco, CA 94143, USA (T.C.B.); (P.L.B.)
| | - Tanvir Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia (A.A.I.S.)
| | - Abu Ali Ibn Sina
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia (A.A.I.S.)
| | - Philip L. Bickler
- Department of Emergency Medicine, University of California San Francisco Medical Center, San Francisco, CA 94143, USA (T.C.B.); (P.L.B.)
- California Academy of Sciences, San Francisco, CA 94118, USA
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Matthew R. Lewin
- California Academy of Sciences, San Francisco, CA 94118, USA
- Ophirex, Inc., Corte Madera, CA 94925, USA
| |
Collapse
|
8
|
Zhang Y, Li Z, Wang X, Gao K, Tian L, Ayanniyi OO, Xu Q, Yang C. Epidemiology, molecular characterization, and risk factors of Acanthamoeba spp., Blastocystis spp., and Cyclospora spp. infections in snakes in China. Vet Parasitol 2025; 335:110420. [PMID: 39970835 DOI: 10.1016/j.vetpar.2025.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Snakes are widely farmed in China for medicinal purposes and as pets worldwide. Acanthamoeba spp., Blastocystis spp., and Cyclospora spp. are significant zoonotic pathogens frequently discovered in various animals, causing diseases with global public health implications. However, their prevalence and zoonotic potential in snakes remain poorly understood. In this study, 812 snake faecal samples were collected across 28 China provinces. The partial small subunit (SSU) rRNA gene was amplified using polymerase chain reaction (PCR) to assess evolutionary relationships and genetic characterization. Detection rates for Acanthamoeba spp., Blastocystis spp., and Cyclospora spp. were 6.40 %, 3.33 %, and 2.71 %, respectively. Sequencing and phylogenetic analysis revealed that Cyclospora isolates were closely related to those found in humans and cattle. Subtyping for Blastocystis species identified two zoonotic subtypes (ST4, ST6) and four host-specific subtypes (ST10, ST15, ST21, ST42). Multiple Acanthamoeba genotypes were detected, including T4, T11, and T13. Furthermore, species, age, and living conditions are key risk factors. This study provides valuable insights into these infections in snakes and underscores the need for proper hygiene and One Health measures to reduce zoonotic transmission and environmental contamination.
Collapse
Affiliation(s)
- Yilei Zhang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Zhouchun Li
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Xinyuan Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Kaili Gao
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Lijie Tian
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | | | - Qianming Xu
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China.
| | - Congshan Yang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China.
| |
Collapse
|
9
|
Ayesiga I, Okoro LN, Taremba C, Yeboah MO, Naab JTM, Anyango RM, Adekeye J, Kahwa I. Genetic variability in snake venom and its implications for antivenom development in sub-Saharan Africa. Trans R Soc Trop Med Hyg 2025; 119:400-406. [PMID: 39749534 DOI: 10.1093/trstmh/trae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 09/19/2024] [Indexed: 01/04/2025] Open
Abstract
Snake venom, a complex mixture of proteins, has attracted human attention for centuries due to its associated mortality, morbidity and other therapeutic properties. In sub-Saharan Africa (SSA), where snakebites pose a significant health risk, understanding the genetic variability of snake venoms is crucial for developing effective antivenoms. The wide geographic distribution of venomous snake species in SSA countries demonstrates the need to develop specific and broad antivenoms. However, the development of broad antivenoms has been hindered by different factors, such as antivenom cross-reactivity and polygenic paratopes. While specific antivenoms have been hindered by the numerous snake species across the SSA region, current antivenoms, such as SAIMR polyvalent and Premium Serums & Vaccines, exhibit varying degrees of cross-reactivity. Such ability to cross-react enables the antivenoms to target multiple components from the different snake species. The advent of biotechnological innovations, including recombinant antibodies, small-molecule drugs, monoclonal antibodies and synthetic antivenoms, presents options for eliminating limitations associated with traditional plasma-derived antivenoms. However, challenges still persist, especially in SSA, in addressing genetic variability, as evidenced by inadequate testing capacity and limited genomic research facilities. This comprehensive review explores the genetic variability of snake venoms in SSA, emphasizing the venom composition of various snake species and their interactions. This information is critical in developing multiple strategies during antivenom development. Finally, it offers information concerning the need for extensive collaborative engagements, technological advancements and comprehensive genomic evaluations to produce targeted and effective antivenoms.
Collapse
Affiliation(s)
- Innocent Ayesiga
- Department of Research, Ubora Foundation Africa, Kampala 759125, Uganda
| | - Lenz N Okoro
- Department of Community Medicine, David Umahi Federal University Teaching Hospital, Uburu, Ebonyi State 480101, Nigeria
| | - Chirigo Taremba
- National University of Science and Technology, Bulawayo 00000, Zimbabwe
| | - Michael O Yeboah
- School of Public Health, University of Port Harcourt, River State 500001, Nigeria
| | - Justine T M Naab
- School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi GA107, Ghana
| | - Ruphline M Anyango
- Department of Veterinary Tropical Medicine, University of Pretoria, Pretoria 0002, South Africa
| | - John Adekeye
- Virology clinic, Olabisi Onabanjo University Teaching Hospital, Sagamu, Ogun state 111103, Nigeria
| | - Ivan Kahwa
- Pharm-Biotechnology and Traditional Medicine Centre (PHARMBIOTRAC), Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 40006, Uganda
| |
Collapse
|
10
|
Borja M, Castañeda-Gaytán G, Alagón A, Strickland JL, Parkinson CL, Gutiérrez-Martínez A, Rodriguez-López B, Zarzosa V, Lomonte B, Saviola AJ, Fernández J, Smith CF, Hansen KC, Pérez-Robles A, Castañeda-Pérez S, Hirst SR, Olvera-Rodríguez F, Fernández-Badillo L, Sigala J, Jones J, Montaño-Ruvalcaba C, Ramírez-Chaparro R, Margres MJ, Acosta-Campaña G, Neri-Castro E. Venom variation and ontogenetic changes in the Crotalus molossus complex: Insights into composition, activities, and antivenom neutralization. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110129. [PMID: 39892555 DOI: 10.1016/j.cbpc.2025.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
The Crotalus molossus complex consists of five to seven phylogenetically related lineages of black-tailed rattlesnakes widely distributed in Mexico. While previous studies have noted venom variation within specific lineages of the Crotalus molossus complex, a comprehensive characterization of interspecific and ontogenetic venom variations, their functional implications, and the neutralizing ability of the Mexican antivenom against these variants remains largely unexamined. Herein, using two proteomic approaches for five lineages (C. basiliscus, C. m. molossus, C. m. nigrescens, C. m. oaxacus, and C. ornatus) of the C. molossus complex we characterized the number of toxins and their relative abundance in the venom of individuals of varying sizes. All five lineages undergo ontogenetic venom composition shifts associated with snake length. However, the pattern of ontogenetic shifts varied among lineages. In some lineages, these shifts led to significant differences in proteolytic, phospholipase A2, and fibrinogenolytic activities. Venom in smaller C. basiliscus, C. m. nigrescens, and C. m. oaxacus individuals had lower LD50 values (more lethal) in mice. Whereas the venom lethality of C. m. nigrescens (both juvenile and adult) and C. m. oaxacus (adult) was several times higher in a mammalian (mouse) model than in a reptilian (iguana) model. Antivipmyn® showed different neutralizing potencies toward venom pools. Overall, our results indicated that even among closely related rattlesnake lineages, venom phenotypes may vary greatly, impacting their function and the efficacy of antivenom neutralization.
Collapse
Affiliation(s)
- Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico
| | - Jason L Strickland
- Department of Biology, University of South Alabama, 5871 USA Dr. N., Mobile, AL 36688, USA
| | | | - Areli Gutiérrez-Martínez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | - Bruno Rodriguez-López
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | - Vanessa Zarzosa
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Cara F Smith
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Armando Pérez-Robles
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico
| | - Sebastián Castañeda-Pérez
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 s/n. Fracc. Filadelfia, Apartado Postal No. 51, C.P. 35010 Gómez Palacio, Dgo., Mexico
| | - Samuel R Hirst
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Felipe Olvera-Rodríguez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C.P. 62210 Cuernavaca, Mor., Mexico
| | - Leonardo Fernández-Badillo
- Laboratorio de Interacciones Biológicas, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, km 4.5 carretera Pachuca-Tulancingo, Col. Carboneras, C.P. 42184 Mineral de la Reforma, Hidalgo, Mexico
| | - Jesús Sigala
- Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Departamento de Biología, Colección Zoológica, Aguascalientes, Mexico
| | - Jason Jones
- Herp.mx A.C., Villa de Álvarez, Colima, Mexico
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | | | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Dgo., Mexico.
| |
Collapse
|
11
|
Nachtigall PG, Nystrom GS, Broussard EM, Wray KP, Junqueira-de-Azevedo ILM, Parkinson CL, Margres MJ, Rokyta DR. A Segregating Structural Variant Defines Novel Venom Phenotypes in the Eastern Diamondback Rattlesnake. Mol Biol Evol 2025; 42:msaf058. [PMID: 40101100 PMCID: PMC11965796 DOI: 10.1093/molbev/msaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Of all mutational mechanisms contributing to phenotypic variation, structural variants are both among the most capable of causing major effects as well as the most technically challenging to identify. Intraspecific variation in snake venoms is widely reported, and one of the most dramatic patterns described is the parallel evolution of streamlined neurotoxic rattlesnake venoms from hemorrhagic ancestors by means of deletion of snake venom metalloproteinase (SVMP) toxins and recruitment of neurotoxic dimeric phospholipase A2 (PLA2) toxins. While generating a haplotype-resolved, chromosome-level genome assembly for the eastern diamondback rattlesnake (Crotalus adamanteus), we discovered that our genome animal was heterozygous for a ∼225 Kb deletion containing six SVMP genes, paralleling one of the two steps involved in the origin of neurotoxic rattlesnake venoms. Range-wide population-genomic analysis revealed that, although this deletion is rare overall, it is the dominant homozygous genotype near the northwestern periphery of the species' range, where this species is vulnerable to extirpation. Although major SVMP deletions have been described in at least five other rattlesnake species, C. adamanteus is unique in not additionally gaining neurotoxic PLA2s. Previous work established a superficially complementary north-south gradient in myotoxin (MYO) expression based on copy number variation with high expression in the north and low in the south, yet we found that the SVMP and MYO genotypes vary independently, giving rise to an array of diverse, novel venom phenotypes across the range. Structural variation, therefore, forms the basis for the major axes of geographic venom variation for C. adamanteus.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Emilie M Broussard
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Kenneth P Wray
- Biodiversity Center, University of Texas at Austin, Austin, TX, USA
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
12
|
Sarangi N, Laxme RRS, Sunagar K. Significant Serpents: Predictive Modelling of Bioclimatic Venom Variation in Russell's Viper. PLoS Negl Trop Dis 2025; 19:e0012949. [PMID: 40208847 PMCID: PMC11984747 DOI: 10.1371/journal.pntd.0012949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/24/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Russell's viper (Daboia russelii) is the clinically most important snake species in the world. Considerable variation has been documented in D. russelii venoms across the Indian subcontinent, which can drive the diverse envenomation profiles in snakebite victims. Therefore, understanding the role of ecological and environmental factors influencing the compositional and functional variation can provide critical insights into the complex evolutionary adaptations of this species and pave the way for the development of targeted therapies. METHODS We examined the influence of bioclimatic factors on D. russelii venom functions by analysing 115 samples sourced from various locations across India. The enzymatic activities of major toxins, such as proteases and phospholipases, were estimated to capture the functional variation in these venoms. Multiple regression models were developed to evaluate the relationship between venom variability and the historical climate data, specifically temperature and precipitation. Furthermore, predictive models were employed to map venom phenotypes across the distribution range of D. russelii. FINDINGS Our findings reveal a collective influence of various temperature and precipitation parameters that partly explain the variability in enzymatic activities of D. russelii venom. Our models effectively captured regional differences in venom composition and linked climatic conditions with functional variations. CONCLUSION This study highlights the significant role of abiotic factors in shaping the venom profiles of Russell's vipers across India. The predictive venom phenotype maps developed from our models can guide the deployment of targeted therapies and treatment protocols across the biogeographically diverse Indian subcontinent and improve clinical treatment outcomes of D. russelii envenoming. This research enhances our understanding of venom phenotype evolution and has practical implications for improving snakebite management.
Collapse
Affiliation(s)
- Navaneel Sarangi
- Centre for Ecological Sciences, Indian Institute of Science Bangalore, India
| | - R. R. Senji Laxme
- Centre for Ecological Sciences, Indian Institute of Science Bangalore, India
| | - Kartik Sunagar
- Centre for Ecological Sciences, Indian Institute of Science Bangalore, India
| |
Collapse
|
13
|
Bala AA, Bedraoui A, El Mejjad S, Willard NK, Hatcher JD, Iliuk A, Curran JE, Sanchez EE, Suntravat M, Salazar E, El Fatimy R, Daouda T, Galan JA. Bioinformatics-Guided Identification and Quantification of Biomarkers of Crotalus atrox Envenoming and Its Neutralization by Antivenom. Mol Cell Proteomics 2025; 24:100956. [PMID: 40147718 DOI: 10.1016/j.mcpro.2025.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Quantitative mass spectrometry-based proteomics of extracellular vesicles (EVs) provides systems-level exploration for the analysis of snakebite envenoming (SBE) as the venom progresses, causing injuries such as hemorrhage, trauma, and death. Predicting EV biomarkers has become an essential aspect of this process, offering an avenue to explore the specific pathophysiological changes that occur after envenoming. As new omics approaches emerge to advance our understanding of SBE, further bioinformatics analyses are warranted to incorporate the use of antivenom or other therapeutics to observe their global impact on various biological processes. Herein, we used an in vivo BALB/c mouse model and proteomics approach to analyze the physiological impacts of SBE and antivenom neutralization in intact animals; this was followed by bioinformatics methods to predict potential EV biomarkers. Groups of mice (n = 5) were intramuscularly injected with Saline or Crotalus atrox venom. After 30 min, the mice received saline or antivenom (Antivipmyn) by intravenous injection. After 24 h, blood was collected to extract the plasma to analyze the EV content and determine the exposome of C. atrox venom as well as the neutralizing capabilities of the antivenom. The predicted biomarkers consistently and significantly sensitive to antivenom treatment are Slc25a4, Rps8, Akr1c6, Naa10, Sult1d1, Hadha, Mbl2, Zc3hav, Tgfb1, Prxl2a, Coro1c, Tnni1, Ryr3, C8b, Mycbp, and Cfhr4. These biomarkers pointed toward specific physiological alterations, causing significant metabolic changes in mitochondrial homeostasis, lipid metabolism, immunity, and cytolysis, indicating hallmarks of traumatic injury. Here, we present a more comprehensive view of murine plasma EV proteome and further identify significant changes in abundance for potential biomarkers associated with antivenom treatment. The predicted biomarkers have the potential to enhance current diagnostic tools for snakebite management, thereby contributing significantly to the evolution of treatment strategies in the diagnosis and prognosis of SBE.
Collapse
Affiliation(s)
- Auwal A Bala
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Anas Bedraoui
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Salim El Mejjad
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Nicholas K Willard
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, Texas, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - Joseph D Hatcher
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, Texas, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, Indiana, USA
| | - Joanne E Curran
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, Texas, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, Texas, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - Rachid El Fatimy
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Tariq Daouda
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Jacob A Galan
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
14
|
Barker A, Jones L, Bourke LA, Seneci L, Chowdhury A, Violette A, Fourmy R, Soria R, Aldridge M, Fry BG. Snake Venom Makeover: Age-Dependent Variations in Procoagulant Biochemistry of Egyptian Saw-Scaled Viper ( Echis pyramidum pyramidum) Venom. Toxins (Basel) 2025; 17:149. [PMID: 40137922 PMCID: PMC11946080 DOI: 10.3390/toxins17030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Echis species (saw-scaled vipers) are WHO Category 1 medically significant venomous snakes with potent procoagulant venoms, which cause lethal venom-induced consumptive coagulopathy in human victims. Despite clinical presentations of bites varying significantly between individuals within the same species, the contribution of age-related changes in the venom biochemistry has not been investigated. This study investigated the ontogenetic changes in Echis pyramidum pyramidum venom and its impact on therapeutic efficacy. The efficacy of various antivenoms (Echitab, Echitab+ ICP, Inosan MENA, Inosan Pan African, and SAVP-Echis) was tested against both venom phenotypes. While both neonate and adult venoms were procoagulant, there were differences in the underlying biochemistry. Neonate venom was found to potently pathophysiologically activate Factor VII and Factor X, and to a lesser degree Factor XII. In contrast, adult venom was a slower clotter, less potent in activating FVII, equipotent with neonate venom on FXII, and inactive on FX. This is the first documentation of FVII and FXII activation for any Echis venom. The significant ontogenetic toxicological variations in Echis species were shown to impact antivenom efficacy. Among the tested antivenoms, SAVP-Echis was the most effective against both venom phenotypes, with adult venom being better neutralized. These findings suggest the need for a reconsideration of venom mixture selection in antivenom production through the inclusion of neonate venom. Additionally, the results indicate differential ontogenetic predatory ecology, providing a foundation for future natural history investigations.
Collapse
Affiliation(s)
- Alex Barker
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lachlan A. Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory srl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory srl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | | | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| |
Collapse
|
15
|
Zona Rubio DC, Aragón DM, Almeida Alves I. Innovations in Snake Venom-Derived Therapeutics: A Systematic Review of Global Patents and Their Pharmacological Applications. Toxins (Basel) 2025; 17:136. [PMID: 40137909 PMCID: PMC11945783 DOI: 10.3390/toxins17030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 03/29/2025] Open
Abstract
Active compounds from natural sources, particularly snake venoms, are crucial for pharmaceutical development despite challenges in drug discovery. Snake venoms, historically used for medicinal purposes, contain bioactive peptides and enzymes that show therapeutic potential for conditions such as arthritis, asthma, cancer, chronic pain, infections and cardiovascular diseases. The objective of this study was to examine pharmacological and biomedical innovations by identifying the key research trends, the most studied snake species, and their therapeutic applications. A systematic review of patents related to snake venoms was conducted using the European Patent Office database, Espacenet, covering 2014 to mid-2024. The search employed the keyword "venom," applying IPC classification A61K38/00, resulting in 31 patents after screening. A PubMed survey on "snake venom derivatives innovations" was conducted to compare the scientific literature volume with the identified patents. This review highlights the therapeutic potential of snake venom-derived products for coagulation disorders, cancer, inflammation, and pain management. Despite challenges in pharmacokinetics and venom variability, advancements in biotechnology offer promise for personalized therapies. The future of snake venom-based treatments appears promising for addressing complex medical conditions.
Collapse
Affiliation(s)
- Diana Carolina Zona Rubio
- Grupo de Investigación Cuidado Cardiorrespiratorio, Universidad Manuela Beltrán, Bogotá 110231, Colombia
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Izabel Almeida Alves
- Faculdade de Farmácia, Departamento do Medicamento, Universidade Federal da Bahia, Salvador 40110-909, Bahia, Brazil;
- Programa de Pós-Graduação em Farmácia, Universidade Estadual da Bahia, Salvador 40110-909, Bahia, Brazil
| |
Collapse
|
16
|
Lakušić M, Martínez-Freiría F, Anđelković M, Hempel BF. Beyond sexual maturity: Importance of dietary changes in venom variation in Vipera ammodytes. Toxicon 2025; 257:108291. [PMID: 39983996 DOI: 10.1016/j.toxicon.2025.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Identifying individual age and size is crucial in venom research to understand potential phenotypic changes. When studying venom ontogeny, juveniles and adults are often determined by size at sexual maturity. However, in gape-limited predators such as snakes, venom shifts may occur earlier, coinciding with an increase in jaw size that allows the intake of larger prey. This study explored venom variation in Vipera ammodytes along the snout-vent length (SVL), linking these changes to dietary shifts and reproductive status. A total of 57 venom samples from two populations were analysed using chip electrophoresis (CE) and MALDI-TOF mass spectrometry. Individuals were categorised into three groups: immature individuals feeding on lizards (<300 mm SVL), immature individuals feeding on lizards but start including mammals in their diet (between 300 and 440 mm), and mature individuals feeding on mammals and lizards (>440 mm). Significant venom composition changes around 300 mm SVL were observed, aligning with a dietary shift marked by increased mammalian prey intake and preceding sexual maturity. This finding highlights the need to use SVL as a metric for accurate venom analysis along ontogeny. Our results indicate that when pooling venom samples is necessary, allocating individuals to age categories should be based on dietary shifts rather than sexual maturity. Additionally, CE and MALDI-TOF MS proved effective in detecting ontogenetic venom changes, offering a fast and affordable approach to venom profiling. This study emphasises the importance of integrating natural history data in venom studies to better understand the ecological and evolutionary drivers of venom adaptation.
Collapse
Affiliation(s)
- Margareta Lakušić
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Marko Anđelković
- University of Belgrade, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11108, Belgrade, Serbia
| | - Benjamin-Florian Hempel
- Veterinary Center for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
17
|
Silva BR, Mendes LC, Echeverry MB, Juliano MA, Beraldo-Neto E, Alberto-Silva C. Peptide Fraction from Naja mandalayensis Snake Venom Showed Neuroprotection Against Oxidative Stress in Hippocampal mHippoE-18 Cells but Not in Neuronal PC12 Cells. Antioxidants (Basel) 2025; 14:277. [PMID: 40227273 PMCID: PMC11939396 DOI: 10.3390/antiox14030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Functional characterization of peptide fraction (PF) from snake venom has provided novel opportunities to investigate possible neuroprotective compounds relevant to pharmaceuticals. This study was performed to investigate the PF-mediated neuroprotection obtained from Naja mandalayensis snake venom, a member of the Elapidae family, using two neuronal cell lines, undifferentiated PC12 and differentiated mHippoE-18, in response to H2O2-induced oxidative stress. Cells were pre-treated for 4 h with PF (10, 1, 0.01, and 0.001 μg mL-1), and thereafter exposed to H2O2 (0.5 mmol L-1) for 20 h. Then, the oxidative stress markers and label-free differential proteome strategy were analyzed to understand the neuroprotective effects of PF. In PC12 cells, PF showed no neuroprotective effects against oxidative stress. In mHippoE-18 cells, PF at 0.01 and 0.001 μg mL-1 increased the viability and metabolism of cells against H2O2-induced neurotoxicity, reducing reactive oxygen species (ROS) generation. Interestingly, PF also exhibited a substantial reduction in baseline ROS levels compared to the control, indicating that PF could have compounds with antioxidant features. The comparative proteomic profiling identified 53 proteins with differential expression related to antioxidant action, catalysis, molecular function regulators, structural molecule activity, translation regulatory activity, ATP, and binding. The PF + H2O2 group indicated that protein expression is 6% upregulated, 4% downregulated, and 94% unchanged compared to the H2O2 group. Three significant proteins upregulated in the PF + H2O2 group, including elongation factor 2 (P58252), proteasome subunit alpha type (E9Q0X0), and E2 ubiquitin-conjugating enzyme (A0A338P786), suggested that PF-mediated neuroprotection happens through translational regulation and the degradation of defective proteins via the proteasome complex. Additionally, differential protein expression in PF changed the metabolism, protein synthesis, synaptic activity, and intracellular transport, suggesting that PF contains the rich mixture of bioactive peptides of interest pharmacologically. Overall, this study offers new opportunities for evaluating whether PF's neuroprotective features in specific neuronal cells are maintained and to investigate neurodegenerative disease drug development processes.
Collapse
Affiliation(s)
- Brenda R. Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil;
| | - Lais C. Mendes
- Biochemistry Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (L.C.M.); (E.B.-N.)
| | - Marcela B. Echeverry
- Center for Mathematics, Computation and Cognition (CMCC), Universidade Federal do ABC UFABC, São Bernardo do Campo 09606-070, SP, Brazil;
| | - Maria Aparecida Juliano
- Departament of Biophysical, Escola Paulista de Medicina, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil;
| | - Emidio Beraldo-Neto
- Biochemistry Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (L.C.M.); (E.B.-N.)
| | - Carlos Alberto-Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil;
| |
Collapse
|
18
|
Alves ÁEF, Barros ABC, Silva LCF, Carvalho LMM, Pereira GMA, Uchôa AFC, Barbosa-Filho JM, Silva MS, Luna KPO, Soares KSR, Xavier-Júnior FH. Emerging Trends in Snake Venom-Loaded Nanobiosystems for Advanced Medical Applications: A Comprehensive Overview. Pharmaceutics 2025; 17:204. [PMID: 40006571 PMCID: PMC11858983 DOI: 10.3390/pharmaceutics17020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 02/27/2025] Open
Abstract
Advances in medical nanobiotechnology have notably enhanced the application of snake venom toxins, facilitating the development of new therapies with animal-derived toxins. The vast diversity of snake species and their venom complexities underline the need for ongoing research. This review is dedicated to exploring the integration of snake venom with nanoparticles to enable their use in human therapies aiming to develop treatments. The complex mixture of snake venom not only inflicts significant pathological effects but also offers valuable insights for the creation of innovative therapies, particularly in the realm of nanobiotechnology. Nanoscale encapsulation not only mitigates the inherent toxicity of snake venom but also amplifies their antitumoral, antimicrobial, and immunomodulatory properties. The synergy between venom-derived macromolecules and nanotechnology offers a novel pathway for augmenting the efficacy and safety of conventional antivenom therapies, extending their applicability beyond treating bites to potentially addressing a myriad of health issues. In conclusion, nanotechnology presents a compelling therapeutic frontier that promises to improve current treatment modalities and ameliorate the adverse effects associated with venomous snakebites.
Collapse
Affiliation(s)
- Álisson E. F. Alves
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| | - Anne B. C. Barros
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Lindomara C. F. Silva
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Lucas M. M. Carvalho
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Graziela M. A. Pereira
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Ana F. C. Uchôa
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - José M. Barbosa-Filho
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| | - Marcelo S. Silva
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| | - Karla P. O. Luna
- Venomics Laboratory (LabVenom), Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campus I, Bodocongó, Campina Grande 58429-600, PB, Brazil;
| | - Karla S. R. Soares
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Francisco H. Xavier-Júnior
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| |
Collapse
|
19
|
Yong MY, Tan KY, Tan CH. A genus-wide study on venom proteome variation and phospholipase A 2 inhibition in Asian lance-headed pit vipers (genus: Trimeresurus). Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110077. [PMID: 39579840 DOI: 10.1016/j.cbpc.2024.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
High molecular weight proteins are present abundantly in viperid venoms. The amino acid sequence can be highly variable, contributing to the structure and function diversity of snake venom protein. However, this variability remains poorly understood in many species. The study investigated the venom protein variability in a distinct clade of Asian pit vipers (Trimeresurus species complex) through comparative proteomics, applying gel electrophoresis (SDS-PAGE), liquid chromatography-tandem mass spectrometry (LCMS/MS), and bioinformatic approaches. The proteomes revealed a number of conserved protein families, within each are variably expressed protein paralogs that are unrelated to the snake phylogeny and geographic origin. The expression levels of two major enzymes, i.e., snake venom serine proteinase and metalloproteinase, correlate weakly with procoagulant and hemorrhagic activities, implying co-expression of other functionally versatile toxins in the venom. The phospholipase A2 (PLA2) abundance correlates strongly with its enzymatic activity, and a unique phenotype was discovered in two species expressing extremely little PLA2. The commercial mono-specific antivenom effectively neutralized the venoms' procoagulant and hemorrhagic effects but failed to inhibit the PLA2 activities. Instead, the PLA2 activities of all venoms were effectively inhibited by the small molecule inhibitor varespladib, suggesting its potential to be repurposed as a highly potent adjuvant therapeutic in snakebite envenoming.
Collapse
Affiliation(s)
- Mun Yee Yong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
20
|
Lakušić M, Damm M, Bjelica V, Anđelković M, Tomović L, Bonnet X, Arsovski D, Süssmuth RD, Calvete JJ, Martínez-Freiría F. Ontogeny, not prey availability, underlies allopatric venom variability in insular and mainland populations of Vipera ammodytes. J Proteomics 2025; 310:105320. [PMID: 39306033 DOI: 10.1016/j.jprot.2024.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Allopatric populations living under distinct ecological conditions are excellent systems to infer factors underlying intraspecific venom variation. The venom composition of two populations of Vipera ammodytes, insular with a diet based on ectotherms and mainland with a diet based on ectotherms and endotherms, was compared considering the sex and age of individuals. Ten toxin families, dominated by PLA2, svMP, svSP, and DI, were identified through a bottom-up approach. The venom profiles of adult females and males were similar. Results from 58 individual SDS-PAGE profiles and venom pool analysis revealed significant differences between juveniles compared to subadults and adults. Two venom phenotypes were identified: a juvenile svMP-dominated and KUN-lacking phenotype and an adult PLA2/svMP-balanced and KUN-containing phenotype. Despite differences in prey availability (and, therefore, diet) between populations, no significant differences in venom composition were found. As the populations are geographically isolated, the lack of venom diversification could be explained by insufficient time for natural selection and/or genetic drift to act on the venom composition of island vipers. However, substantial differences in proteomes were observed when compared to venoms from geographically distant populations inhabiting different conditions. These findings highlight the need to consider ecological and evolutionary processes when studying venom variability. SIGNIFICANCE: This study provides the first comprehensive analysis of the venom composition of two allopatric populations of Vipera ammodytes, living under similar abiotic (climate) but distinct biotic (prey availability) conditions. The ontogenetic changes in venom composition, coupled with the lack of differences between sex and between populations, shed light on the main determinants of venom evolution in this medically important snake. Seven new proteomes may facilitate future comparative studies of snake venom evolution. This study highlights the importance of considering ecological and evolutionary factors to understand snake venom variation.
Collapse
Affiliation(s)
- Margareta Lakušić
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany; Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen 35392, Germany; Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Vukašin Bjelica
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Marko Anđelković
- University of Belgrade, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Ljiljana Tomović
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Xavier Bonnet
- CEBC, UMR-7372, CNRS Université de La Rochelle, 79360 Villiers en Bois, France
| | - Dragan Arsovski
- Macedonian Ecological Society, Arhimedova 5, 1000 Skopje, North Macedonia
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
21
|
Aoki Y, Paghubasan J, Tiglao PJ, Sarmiento MJ, Arrieta R, Tan MA, Sarsalijo MS, Aquino GJB, Beronilla-Uraga MG, Comandante JDL, Santamaria EB, Malijan GMB, Suzuki S, Takahashi K, Yamano S, Smith C, Hayakawa K, Tasaki O, Agosto LC, Warrell DA, Ariyoshi K. Characteristics of snakebite patients due to Naja samarensis in the Philippines: a prospective hospital-based study. Trans R Soc Trop Med Hyg 2025:trae110. [PMID: 39749526 DOI: 10.1093/trstmh/trae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 10/23/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Little is known about snakebites by Naja samarensis, a species unique to the Philippines. The aim here is to describe the clinical and epidemiological characteristics of patients bitten by this medically important cobra in the Eastern Visayas. METHODS A hospital-based prospective study analysed the features of snakebite patients attending Eastern Visayas Medical Center between June 2022 and May 2023. Logistic regression analysis identified the factors associated with severity. RESULTS A total of 175 snakebite patients with five fatalities were included. Naja samarensis was most commonly implicated (n=49, 28.0%), although it could be definitively identified, by examining photographs of the snake responsible, in only four cases. The N. samarensis bites occurred in grass or rice fields, in daytime, and during farming activities, but the people bitten were most frequently students (34.7%) who were bitten at home (36.7%). Patients bitten by N. samarensis often presented with cytotoxic (63.3%) and neurotoxic signs (46.9%). Traditional remedies were common, resulting in delayed presentation to the hospital. Bites by N. samarensis, and older age (>44 y) were independently associated with severity (adjusted OR of 10.33 and 7.89, respectively). CONCLUSION Naja samarensis is a major cause of severe snakebites in this region. Pre-hospital treatment frequently involves wasted time and unproven traditional methods. Enhancement of public awareness is urgently needed. Development of a diagnostic test for species identification is warranted to improve future surveys and management.
Collapse
Affiliation(s)
- Yoshihiro Aoki
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8102, Japan
- Coordination Office for Emergency Medicine and International Response, Acute and Critical Care Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Jonathan Paghubasan
- Department of Emergency Medicine, Eastern Visayas Medical Center, Tacloban City 6500, Philippines
| | - Patrick Joseph Tiglao
- Department of Emergency Medicine, University of the Philippines - Philippine General Hospital, Manila 1000, Philippines
- Philippine Toxinology Society, Inc., Manila 1000, Philippines
| | - Marvin Jay Sarmiento
- Philippine Toxinology Society, Inc., Manila 1000, Philippines
- Crocodylus Porosus Philippines Inc., Makati City 1233, Philippines
- University of the Philippines Los Banos, Los Banos 4031, Philippines
| | - Rustan Arrieta
- Department of Emergency Medicine, Eastern Visayas Medical Center, Tacloban City 6500, Philippines
| | - Mariedel A Tan
- Poison Control Center, Eastern Visayas Medical Center, Tacloban City 6500, Philippines
| | - Mardie S Sarsalijo
- Poison Control Center, Eastern Visayas Medical Center, Tacloban City 6500, Philippines
| | - Grace Joy B Aquino
- Poison Control Center, Eastern Visayas Medical Center, Tacloban City 6500, Philippines
| | | | - John David L Comandante
- Philippine Toxinology Society, Inc., Manila 1000, Philippines
- National Poison Management and Control Center, University of the Philippines - Philippine General Hospital, Manila 1000, Philippines
| | - Emelia B Santamaria
- Department of Emergency Medicine, University of the Philippines - Philippine General Hospital, Manila 1000, Philippines
- Philippine Toxinology Society, Inc., Manila 1000, Philippines
| | - Greco Mark B Malijan
- San Lazaro Hospital - Nagasaki University Collaborative Research Office, Manila 1003, Philippines
| | - Shuichi Suzuki
- San Lazaro Hospital - Nagasaki University Collaborative Research Office, Manila 1003, Philippines
| | - Kensuke Takahashi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8102, Japan
- Coordination Office for Emergency Medicine and International Response, Acute and Critical Care Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8102, Japan
| | - Shuhei Yamano
- Coordination Office for Emergency Medicine and International Response, Acute and Critical Care Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Chris Smith
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8102, Japan
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Koichi Hayakawa
- Coordination Office for Emergency Medicine and International Response, Acute and Critical Care Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Osamu Tasaki
- Acute and Critical Care Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Lourdes C Agosto
- Poison Control Center, Eastern Visayas Medical Center, Tacloban City 6500, Philippines
| | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Koya Ariyoshi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8102, Japan
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8102, Japan
| |
Collapse
|
22
|
Lima EOVD, Tasima LJ, Grego KF, Tanaka-Azevedo AM. Fibrinogenolytic potential of venoms of medically important Brazilian snakes. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110019. [PMID: 39233288 DOI: 10.1016/j.cbpc.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
One of the main clinical manifestations presented by victims of snake bite envenoming are coagulation disorders. Considering that fibrinogen is a key molecule for crosslinked fibrin clot formation, the objective of this work was the quantitative analysis of the fibrinogenolytic activity of snakes of medical importance in Brazil and neutralization by specific antivenom. For this, pools of three genera of medical importance (Bothrops, Crotalus and Lachesis) that are used for the production of antivenom were used, and three pools of species of the genus Bothrops that are not part of the pool for the production of antivenom. The Lachesis pool had the highest fibrinogenolytic activity, even demonstrating partial cleavage (42.9 % consumption) of the fibrinogen gamma chain. The Bothrops genus venom pools have shown subtle variations between them. The Crotalus pool, despite not showing total cleavage of any fibrinogen chain, began cleavage of fibrinogen by the beta chain. The specific antivenoms used were able to delay the cleavage of fibrinogen in all the venoms used, which could be the first step towards implementing previous in vitro tests to analyze the quality of the batches of antivenoms produced, thus potentially reducing the use of animals used in this process.
Collapse
Affiliation(s)
- Eduardo Oliveira Venancio de Lima
- Laboratory of Herpetology, Instituto Butantan, São Paulo 05503-900, SP, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Lídia Jorge Tasima
- Laboratory of Herpetology, Instituto Butantan, São Paulo 05503-900, SP, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | | | - Anita Mitico Tanaka-Azevedo
- Laboratory of Herpetology, Instituto Butantan, São Paulo 05503-900, SP, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil.
| |
Collapse
|
23
|
Gutiérrez JM, R Casewell N, Laustsen AH. Progress and Challenges in the Field of Snakebite Envenoming Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:465-485. [PMID: 39088847 DOI: 10.1146/annurev-pharmtox-022024-033544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Snakebite envenoming kills and maims hundreds of thousands of people every year, especially in the rural settings of tropical regions. Envenomings are still treated with animal-derived antivenoms, which have prevented many lives from being lost but which are also medicines in need of innovation. Strides are being made to improve envenoming therapies, with promising efforts made toward optimizing manufacturing and quality aspects of existing antivenoms, accelerating research and development of recombinant antivenoms based on monoclonal antibodies, and repurposing of small-molecule inhibitors that block key toxins. Here, we review the most recent advances in these fields and discuss therapeutic opportunities and limitations for different snakebite treatment modalities. Finally, we discuss challenges related to preclinical and clinical evaluation, regulatory pathways, large-scale manufacture, and distribution and access that need to be addressed to fulfill the goals of the World Health Organization's global strategy to prevent and control snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica;
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom;
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
24
|
Steinhorst J, Baker C, Padidar S, Litschka-Koen T, Ngwenya E, Mmema L, Thomas B, Shongwe N, Sithole T, Mathobela M, Trelfa A, Casewell NR, Lalloo DG, Harrison RA, Pons J, Stienstra Y. Developing and applying a training needs analysis tool for healthcare workers managing snakebite envenoming: A cross-sectional study in Eswatini. PLoS Negl Trop Dis 2025; 19:e0012778. [PMID: 39776319 PMCID: PMC11709266 DOI: 10.1371/journal.pntd.0012778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
A considerable number of patients present to hospitals in Eswatini each year following bites by venomous snakes. Effectively diagnosing and treating patients with snakebite envenoming requires healthcare workers to have a variety of generic and snakebite-specific medical skills. In several countries, however, healthcare workers have been found to have limited skills in managing snakebite patients. We used the Delphi method to adapt the Hennessy-Hicks training needs analysis questionnaire to the context of snakebite envenoming and subsequently used the adapted questionnaire to assess the self-perceived training needs of 90 healthcare workers from ten hospitals in Eswatini. Two-thirds (63%) of participants were nursing staff and one third (34%) medical doctors. Overall, 74% of healthcare workers had previously received training on snakebite. Although a training need was reported for all skills included in the survey, the extent of the training need varied between different skills and groups of healthcare workers. The highest average training need was registered in the domains 'research and audit' and 'clinical tasks' with the latter accounting for nine of the ten skills with the highest training need. Nurses reported a higher training need than doctors, especially for clinical tasks. Receiving snakebite training before as well as after obtaining the primary qualification was associated with the lowest average training need, particularly in clinical skills. Ninety-three percent of interviewed healthcare workers would welcome more frequent training opportunities on the clinical management of snakebite patients. This newly developed snakebite training needs analysis tool can aid in adapting training initiatives to a dynamic and evolving healthcare workforce and it is designed to be transferrable to snakebite endemic settings worldwide.
Collapse
Affiliation(s)
- Jonathan Steinhorst
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine/ Infectious Diseases, Groningen, The Netherlands
| | - Clare Baker
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Mersey and West Lancashire Teaching Hospitals NHS Trust, United Kingdom
| | - Sara Padidar
- Eswatini Snakebite Research and Intervention Centre, Simunye, Eswatini
- Eswatini Antivenom Foundation, Simunye, Eswatini
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
| | - Thea Litschka-Koen
- Eswatini Snakebite Research and Intervention Centre, Simunye, Eswatini
- Eswatini Antivenom Foundation, Simunye, Eswatini
| | - Ezekiel Ngwenya
- Eswatini Snakebite Research and Intervention Centre, Simunye, Eswatini
- Eswatini Antivenom Foundation, Simunye, Eswatini
| | - Lindelwa Mmema
- Eswatini Snakebite Research and Intervention Centre, Simunye, Eswatini
- Eswatini Antivenom Foundation, Simunye, Eswatini
| | - Brent Thomas
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nondumiso Shongwe
- Eswatini Snakebite Research and Intervention Centre, Simunye, Eswatini
- Eswatini Antivenom Foundation, Simunye, Eswatini
| | | | | | - Anna Trelfa
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David G. Lalloo
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert A. Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jonathan Pons
- Eswatini Snakebite Research and Intervention Centre, Simunye, Eswatini
- Eswatini Antivenom Foundation, Simunye, Eswatini
| | - Ymkje Stienstra
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine/ Infectious Diseases, Groningen, The Netherlands
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
25
|
Lennox-Bulow D, Courtney R, Seymour J. Geographic variation in stonefish (Synanceia spp.) venom. Toxicon 2025; 254:108222. [PMID: 39725328 DOI: 10.1016/j.toxicon.2024.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Stonefish (Synanceia spp.) possess a medically significant venom and are widely distributed throughout the Indo-Pacific. Yet, little is known about how the ecology of these animals may influence their venom. The aim of this study was to explore the effect of species and geographic location on stonefish venom composition. We collected the venom of Synanceia horrida (Estuarine Stonefish) and Synanceia verrucosa (Reef Stonefish) from various locations across Australia (Cairns, Brisbane, Caloundra, and Onslow), and Southeast Asia (Kota Kinabalu, and Cebu) and analysed these samples using SDS-PAGE, FPLC, and HPLC. Stonefish have a complex venom comprised of numerous components. Stonefish venom exhibited both similarities and variations in composition within species between geographically isolated populations, as well as between species in a single location. We speculate that the observed geographic and interspecific trends may be driven by similarities and differences in the selective pressures faced by these animals, particularly those associated with predator dynamics. The findings of this study have furthered our understanding of the ecology of stonefish and their toxins.
Collapse
Affiliation(s)
- Danica Lennox-Bulow
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia.
| | - Robert Courtney
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| |
Collapse
|
26
|
Feng Z, Fang C, Yu M, Wang Y, Abiola OF, Lin J, Liu Y, Zeng Z, Zeng L, Mo Z, Ma Y. Snake venom weakens neurovascular integrity and promotes vulnerability to neuroinflammation. Int Immunopharmacol 2024; 143:113586. [PMID: 39532019 DOI: 10.1016/j.intimp.2024.113586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Snake envenomation poses significant medical challenges, particularly in subtropical and tropical regions, with long-term impacts on neurovascular integrity and neuroinflammation remaining underexplored. This study investigates the effects of venom from four species of venomous snakes in southern China-Zhoushan Cobra (Naja atra, NA), Many-banded Krait (Bungarus multicinctus, BM), Five-paced Pit Viper (Deinagkistrodon acutus, DA), and Chinese Moccasin (Protobothrops mucrosquamatus, PM) - on the blood-brain barrier (BBB) and chronic neuroinflammation. Using mass spectrometry, we analyzed venom protein compositions, while cytotoxic effects on mouse brain endothelial cells (bEND.3) were evaluated to determine IC50 values. In vitro BBB models and in vivo experiments in C57BL/6J mice revealed that NA venom, in particular, significantly compromised BBB integrity without inducing large-scale apoptosis, leading to persistent BBB disruption characterized by increased permeability and selective degradation of extracellular matrix and tight junction proteins. Moreover, to simulate secondary infections that often occur following snakebites, we combined venom exposure with lipopolysaccharide (LPS) treatment, which exacerbated neuroinflammatory responses by intensifying microglial activation and promoting a pro-inflammatory phenotype. These findings highlight the role of snake venom in compromising neurovascular integrity and promoting vulnerability to chronic neuroinflammation, emphasizing the need for further research into venom-induced neuroinflammatory pathways and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ziying Feng
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen 518055, Guangdong, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen 518055, Guangdong, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen 518055, Guangdong, China
| | - Yueqing Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen 518055, Guangdong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ogunleye Femi Abiola
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen 518055, Guangdong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Lin
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yuxiang Liu
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhongyi Zeng
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Linsheng Zeng
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
27
|
Majeed R, Bester J, Kgarosi K, Strydom M. Mapping evidence on the regulations affecting accessibility, availability and management of snake antivenom globally: a scoping review protocol. BMJ Open 2024; 14:e086964. [PMID: 39806579 PMCID: PMC11667422 DOI: 10.1136/bmjopen-2024-086964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Snakebite envenomation has been declared a neglected tropical disease by the WHO since 2017. The disease is endemic in affected areas due to the lack of availability and access to antivenom, despite it being the standard treatment for snakebites. This challenge is perpetuated by the shortcomings of the regulatory systems and policies governing the management of antivenoms. This study aims to map the evidence about regulations of snake antivenom globally and identify gaps in the literature. This protocol provides an overview of the methodology and analysis which will be used to conduct the scoping review. METHOD AND ANALYSIS The scoping review follows the guidelines from the Arksey and O'Malley framework for scoping reviews and will be reported using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews. A search strategy was developed with assistance from a health sciences librarian, and the search was done using six relevant databases. The databases used are PubMed, SCOPUS, ProQuest Central, Africa Wide Web, Academic Search Output and Web of Science. Articles in the English language and between 2009 and 2023 were included. The search results were collated, duplicates were removed and results were exported to Rayyan (https://www.rayyan.ai/) for screening. The initial screening for titles and abstracts is currently in progress, and thereafter the second round of screening will be done for full texts. Data extraction will be done using Google Forms. The results of the review will be synthesised using quantitative and qualitative tools. ETHICS AND DISSEMINATION This review will provide guidance for studies investigating regulatory gaps globally and inform future policies governing antivenom management. Ethics approval for the complete postgraduate project was obtained from the University of Pretoria Research Ethics Committee. The review will be published in a scientific journal, and findings will also be disseminated using conference presentations. TRIAL REGISTRATION This review has been registered on Open Science Framework (OSF): https://osf.io/54zja.
Collapse
Affiliation(s)
- Ramsha Majeed
- Department of Pharmacology, University of Pretoria, Pretoria, South Africa
| | - Janette Bester
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Kabelo Kgarosi
- Department of Library Services, University of Pretoria, Pretoria, South Africa
| | - Morné Strydom
- Department of Pharmacology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
28
|
Kempson K, Chowdhury A, Violette A, Fourmy R, Soria R, Fry BG. Age Is Just a Number: Ontogenetic Conservation in Activation of Blood Clotting Factors VII, X, and XII by Caucasus Blunt-Nosed Viper ( Macrovipera lebetina obtusa) Venoms. Toxins (Basel) 2024; 16:520. [PMID: 39728778 PMCID: PMC11728708 DOI: 10.3390/toxins16120520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake Macrovipera lebetina obtusa, focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve. Intriguingly, females were more potent than males within each age group, but this requires a larger sample size to confirm. Antivenom neutralization efficacy was equipotent across age groups. The venoms potently activated Factor X (FX) robustly, consistent with previous knowledge of this genus. For the first time, the ability to activate Factors VII (FVII) and XII (FXII) was identified in this genus, with FXII exhibiting particularly strong activation. The study found no significant ontogenetic variation in procoagulant venom potency on human plasma, convergent with the Daboia genus, the other large-bodied lineage within the Palearctic viperid clade. However, the activation of FXII and FVII reveals previously undocumented pathways in the procoagulant activity of these venoms, contributing to the broader understanding of venom evolution and its clinical impacts. These findings have implications for venom biodiscovery and the development of antivenoms, highlighting the complexity of clotting factor activation beyond traditional investigations that have myopically focused upon FX and prothrombin pathways, thereby underscoring the importance of exploring additional clotting factors.
Collapse
Affiliation(s)
- Katrina Kempson
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
- Biomedical Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
| |
Collapse
|
29
|
Damm M, Avella I, Merzara R, Lucchini N, Buldain J, Corga F, Bouazza A, Fahd S, Süssmuth RD, Martínez-Freiría F. Venom variation among the three subspecies of the North African mountain viper Vipera monticola Saint Girons 1953. Biochimie 2024; 227:152-160. [PMID: 39029575 DOI: 10.1016/j.biochi.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The North African mountain viper (Vipera monticola) is a medically relevant venomous snake distributed in Morocco, Algeria, and Tunisia. Three subspecies of V. monticola, exhibiting differences in morphotypes and dietary regimes, are currently recognised: V. m. monticola, V. m. atlantica, and V. m. saintgironsi. Through the application of snake venomics, we analysed the venoms of specimens of Moroccan origin belonging to each of the three subspecies. Snake venom metalloproteinases (svMP), snake venom serine proteases (svSP), C-type lectin and C-type lectin-related proteins (CTL), and phospholipases A2 (PLA2) were predominant, with PLA2 being the most abundant toxin family overall. Disintegrins (DI) and cysteine-rich secretory proteins (CRISP) were exclusive to V. m. monticola and V. m. atlantica, while l-amino-acid oxidases (LAAO) were only found in V. m. saintgironsi. The differences detected in the venom profiles, as well as in presence/absence and relative abundances of toxin families, indicate the occurrence of intraspecific venom variation within V. monticola. The identified patterns of venom similarity between subspecies seem to align more with their phylogenetic relationships than with the reported differences in their feeding habits.
Collapse
Affiliation(s)
- Maik Damm
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany; LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt Am Main, Germany; Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany; Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Gießen, Germany.
| | - Ignazio Avella
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany; LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt Am Main, Germany; Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Gießen, Germany
| | - Reema Merzara
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Nahla Lucchini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Jon Buldain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Frederico Corga
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Abdellah Bouazza
- Equipe de recherche Exploration, Gestion des Ressources naturelles et Environnementales, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Morocco
| | - Soumia Fahd
- Laboratoire Ecologie, Systématique, Conservation de la Biodiversité, LESCB URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tétouan, Morocco
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
30
|
Senthilkumaran S, Williams J, Almeida JR, Williams HF, Patel K, Thirumalaikolundusubramanian P, Vaiyapuri S. Snakebite-induced reversible cerebral vasoconstriction syndrome: Report of three cases. Toxicon 2024; 251:108161. [PMID: 39491731 DOI: 10.1016/j.toxicon.2024.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Envenomings from Russell's viper typically result in local tissue damage and bleeding complications, but the bites from common krait and cobra primarily cause neurotoxic effects. While most symptoms can be treated with appropriate antivenom, additional support is necessary for several snakebite victims to tackle a broad range of unusual complications that they develop following bites. Reversible vasoconstriction syndrome (RCVS), characterised by the constriction of cerebral arteries, is a rare but serious issue, presenting with severe headaches and, in extreme cases, haemorrhagic/ischaemic stroke. This report presents three cases of RCVS in snakebite victims following Russell's viper, krait and cobra bites. The patients were admitted to the hospital with neurological and/or haematological complications, and they were treated with polyvalent antivenom. After two days of antivenom treatment, all the patients developed intense headaches that lasted for several hours and failed to respond to commonly used analgesics. While the physical, laboratory and computed tomography examinations were normal, the RCVS was diagnosed with multimodal magnetic resonance angiography. All patients were successfully treated with oral nimodipine, and during their follow-ups, physical and laboratory examinations were unremarkable, and the magnetic resonance imaging confirmed the reversal of RCVS. To achieve positive outcomes in patients, clinicians must swiftly identify such rare complications and make accurate diagnoses to provide prompt treatments. Overall, this report presents an unusual complication of RCVS in snakebite patients and appropriate diagnosis and treatment approaches to tackle this condition.
Collapse
Affiliation(s)
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - José R Almeida
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Harry F Williams
- Toxiven Biotech Private Limited, Coimbatore, 641042, Tamil Nadu, India
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | | | | |
Collapse
|
31
|
Ivanović SR, Rešetar Maslov D, Rubić I, Mrljak V, Živković I, Borozan N, Grujić-Milanović J, Borozan S. The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom. Vet Sci 2024; 11:605. [PMID: 39728945 DOI: 10.3390/vetsci11120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Deep proteomic analyses identified, in total, 159 master proteins (with 1% FDR and 2 unique peptides) from 26 protein families in the venom of Vipera ammodytes ammodytes (Vaa). Data are available via ProteomeXchange with the identifier PXD056495. The relative abundance of PLA2s is 11.60% of the crude venom, of which 4.35% are neurotoxic Ammodytoxins (Atxs). The neurotoxicity of the venom of Vaa and the neutralizing effect of the antivenom were tested on the neuromuscular preparation of the diaphragm (NPD) of rats. The activity of PLA2 in the venom of Vaa and its neutralization by the antivenom were determined under in vitro conditions. The Vaa venom leads to a progressive decrease in NPD contractions. We administered pre-incubated venom/antivenom mixtures at various ratios of 1:2, 1:10 and 1:20 (w/w) and observed the effects of these mixtures on NPD contractions. The results show that the mean effective time (ET50) for NPD contractions with the 1:20 mixture is highly significantly different (p < 0.001) from the ET50 for the venom and the ET50 for the 1:2 and 1:10 mixture ratios. We also found a highly significant (p < 0.001) reduction in Na+/K+-ATPase activity in the NPD under the influence of the venom. The reduction in the activity of this enzyme was reversible by the antivenom. Under in vitro conditions, we have achieved the complete neutralization of PLA2 by the antivenom. In conclusion, the antivenom abolished the venom-induced progressive decrease in NPD contractions in a concentration-dependent manner. Antivenom with approximately the same mass proportion almost completely restores Na+/K+-ATPase activity in the NPD and completely neutralizes the PLA2 activity of the venom in vitro.
Collapse
Affiliation(s)
- Saša R Ivanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Dina Rešetar Maslov
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Vladimir Mrljak
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Irena Živković
- Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, 11000 Belgrade, Serbia
| | - Nevena Borozan
- Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Jelica Grujić-Milanović
- Department of Cardiovascular Research, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
32
|
Rashmi U, Bhatia S, Nayak M, Khochare S, Sunagar K. Elusive elapids: biogeographic venom variation in Indian kraits and its repercussion on snakebite therapy. Front Pharmacol 2024; 15:1443073. [PMID: 39575383 PMCID: PMC11579489 DOI: 10.3389/fphar.2024.1443073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Snakebite is a major public health concern in many parts of the world, including India, where over 58,000 deaths occur annually due to snake envenoming. The common krait (Bungarus caeruleus) is responsible for the second-highest number of snakebite-related mortalities in the country. However, despite its notoriety, little is known about its venom ecology, functions and compositional variation across bioclimatic zones, partly because these nocturnal snakes are highly elusive, making it difficult to find them in the wild. We aim to address this knowledge gap by characterising the venom composition and toxicity profiles of the pan-Indian populations (n = 8) of B. caeruleus using a combination of proteomics, receptor-toxin interaction assays, biochemical experiments, pharmacological tests and preclinical evaluations. We reveal considerable variation in venom composition, functions, and pharmacological activities among the geographically distinct populations of B. caeruleus. Furthermore, toxin-receptor interaction assays provide insights into their feeding ecology and prey-predator interactions. Finally, in vitro and in vivo experiments revealed the poor neutralising potencies of Indian antivenoms towards most populations of the common krait. Our findings highlight the alarming need to develop efficacious snakebite therapy in India to treat bites from this medically most important elapid snake.
Collapse
Affiliation(s)
| | | | | | | | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
33
|
Kalogeropoulos K, Rosca V, O'Brien C, Christensen CR, Grahadi R, Sørensen CV, Overath MD, Espi DR, Jenkins DE, Keller UAD, Laustsen AH, Fryer TJ, Jenkins TP. V-ToCs (Venom Toxin Clustering): A tool for the investigation of sequence and structure similarities in snake venom toxins. Toxicon 2024; 250:108088. [PMID: 39222754 DOI: 10.1016/j.toxicon.2024.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Recently, there has been a major push toward the development of next-generation treatments against snakebite envenoming. However, unlike current antivenoms that rely on animal-derived polyclonal antibodies, most of these novel approaches are reliant on an in-depth understanding of the over 2000 known snake venom toxins. Indeed, by identifying similarities (i.e., conserved epitopes) across these different toxins, it is possible to design cross-reactive treatments, such as broadly-neutralising antibodies, that target these similarities. Therefore, in this project, we built an automated pipeline that generates sequence and structural distance matrices and homology trees across all available snake venom toxin sequences and structures. To facilitate analysis, we also developed a user-friendly and high-throughput visualisation tool, coined "Venom TOxin CluStering" (V-ToCs). This tool allows researchers to easily investigate sequence and structure patterns in snake venom toxins for a wide array of purposes, such as elucidating toxin evolution, and will also hopefully help guide the discovery and development of increasingly broadly-neutralising antivenoms in the near future.
Collapse
Affiliation(s)
| | - Vlad Rosca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carol O'Brien
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Rahmat Grahadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia
| | | | - Max D Overath
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Diego Ruiz Espi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas J Fryer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
34
|
Bardaran M, Mohajer S, Kazemi SM. Distribution mapping of deadly scorpions in Iran. Toxicon 2024; 250:108109. [PMID: 39332503 DOI: 10.1016/j.toxicon.2024.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Scorpion sting is a problem all over the world and becomes an acute problem when it is associated with death. Iran is known as a region with a large number of scorpions and, of course, with many cases of scorpion stings per year. So far, 11 scorpion species in Iran have been identified as dangerous, of which there are only three species for which deaths have been reported. Due to the importance of these three species, we prepared a distribution map of these three types of scorpions and discuss the implications of these findings in the larger context of dangerous scorpion stings in Iran.
Collapse
Affiliation(s)
- Masoumeh Bardaran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sedigheh Mohajer
- General ICU, Poursina Medical and Educational Center, Rasht, Guilan, Iran
| | - Seyed Mahdi Kazemi
- Zagros Herpetological Institute, 37156-88415, P. O. No 12, Somayyeh 14 Avenue, Qom, Iran
| |
Collapse
|
35
|
Paolino G, Di Nicola MR, Ballouard JM, Bonnet X, Damm M, Le Roux G, Lüddecke T, Marini D, Weinstein SA, Avella I. A review of bites by non-front-fanged snakes (NFFS) of Europe. Toxicon 2024; 250:108116. [PMID: 39368556 DOI: 10.1016/j.toxicon.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Non-front-fanged snakes (NFFS) have long been overlooked by snake venom research, likely due to most of them being considered non-medically relevant for humans. The paucity of information about composition and activities of NFFS venoms and oral secretions makes it difficult to assess whether a given species can inflict medically significant bites. Here, we provide a review of the information currently available about the symptoms/signs elicited by bites from European NFFS, aiming to offer a foundation for understanding the threat they pose in terms of snakebite. Despite an overall limited amount of available data for most of the considered taxa, the genus Malpolon is notable for its capacity to cause local and systemic envenoming, including neurotoxic symptoms. Bites by other genera like, Hemorrhois, Hierophis, Natrix, Platyceps, Telescopus, and Zamenis are mainly associated with local symptoms, but the extent of their medical significance remains unclear. Our findings suggest that, although bites from European NFFS generally cause only mild effects, the potential occurrence of systemic effects from some species cannot be ruled out. Considering the above, any bite by European NFFS should receive professional medical evaluation in order to ensure patient safety and appropriate management, as well as detailed documentation facilitating construction of an accurate medical risk profile for the species.
Collapse
Affiliation(s)
- Giovanni Paolino
- Unit of Dermatology, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Matteo R Di Nicola
- Unit of Dermatology, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy; Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy.
| | - Jean-Marie Ballouard
- CRCC Centre for Research and Conservation of Chelonians, SOPTOM, Var, Routes du Luc 1065, 83660, Carnoules, France
| | - Xavier Bonnet
- CEBC, UMR-7372, CNRS-Université de La Rochelle, 79360, Villiers en Bois, France
| | - Maik Damm
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff Ring 26-32, 35392, Giessen, Germany; Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Gaël Le Roux
- Centre Antipoison et Toxicovigilance Grand Ouest, Centre Hospitalo-Universitaire d'Angers, Rue Larrey 4, 49933, Angers, France
| | - Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126, Perugia, Italy; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Scott A Weinstein
- Young Adult Institute, 220 E. 42nd St., 8th Floor, NY, 10017, USA; Premier HealthCare, 227 E. 41st St., 8th Floor, NY, 10017, USA
| | - Ignazio Avella
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff Ring 26-32, 35392, Giessen, Germany; Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
| |
Collapse
|
36
|
Dinesh MD, P T, Sivaraman T, Anju KV, James T, Nair DJ. Obscure properties of a traditional herb Pittosporum neelgherrense used to treat snakebite envenoming against Daboia russelli venoms. Toxicon 2024; 250:108089. [PMID: 39241868 DOI: 10.1016/j.toxicon.2024.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
In tropical nations, snakebite envenomation is a significant public health issue with negative human and social effects. This is due to three factors: 1) more species of the most hazardous snakes are present; 2) emergency medical assistance is not readily available; and 3) inadequate health care. The problems caused by snakebite envenomation have been partially resolved by immunotherapy. An extensive collection of medicinal herbs is recognized to have antivenomous properties in traditional medicine. However, very few species have undergone scientific investigation, and even fewer have had their active components separated and structurally and functionally defined. In this work, the anti-venom potential of hot and cold aqueous extracts from Pittosporum neelgherrense is evaluated using an in-vitro model. The experimental results showed that 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-(11.20), 1-Undecanol (16.38), Lauryl acetate (18.25), and Cyclotridecane (19.14) were phytochemical substances whose chemical structures were recognized by GCMS. The Direct and Indirect hemorrhagic activity was found to be completely neutralized by P. neelgherrense extract (44.61% hot plant extract & 55.38% cold plant extract) and the zone (2.4 mm), respectively. The neutralization of venoms was indicated by the zone (0.5-0.9 cm) of hydrolysis production of proteolytic activity. Additionally, the results of the gelatine liquefaction study demonstrated that clot formation was not triggered by venom at low concentrations (50:50) but was instead brought on by higher concentrations. The present study suggested that the neutralization of venom by hot water extracts of P. neelgherrense is a potentially therapeutic application.
Collapse
Affiliation(s)
- M D Dinesh
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, 641 005, Tamil Nadu, India.
| | - Thirunavukkarasu P
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore, 641 005, Tamil Nadu, India
| | - Thulasi Sivaraman
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, 641 005, Tamil Nadu, India
| | - K V Anju
- Department of Panchakarma, Vaidyarathnam Ayurveda College, Thaikkattusseri, Thrissur, 680 306, Kerala, India
| | - Thushara James
- PG and Research Department of Aquaculture and Fishery Microbiology, MES Ponnani College, Ponnani, Malappuram, Kerala, India
| | - Dhanusha J Nair
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, 641 005, Tamil Nadu, India
| |
Collapse
|
37
|
Travers SL, Hutter CR, Austin CC, Donnellan SC, Buehler MD, Ellison CE, Ruane S. VenomCap: An exon-capture probe set for the targeted sequencing of snake venom genes. Mol Ecol Resour 2024; 24:e14020. [PMID: 39297212 PMCID: PMC11495845 DOI: 10.1111/1755-0998.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024]
Abstract
Snake venoms are complex mixtures of toxic proteins that hold significant medical, pharmacological and evolutionary interest. To better understand the genetic diversity underlying snake venoms, we developed VenomCap, a novel exon-capture probe set targeting toxin-coding genes from a wide range of elapid snakes, with a particular focus on the ecologically diverse and medically important subfamily Hydrophiinae. We tested the capture success of VenomCap across 24 species, representing all major elapid lineages. We included snake phylogenomic probes in the VenomCap capture set, allowing us to compare capture performance between venom and phylogenomic loci and to infer elapid phylogenetic relationships. We demonstrated VenomCap's ability to recover exons from ~1500 target markers, representing a total of 24 known venom gene families, which includes the dominant gene families found in elapid venoms. We find that VenomCap's capture results are robust across all elapids sampled, and especially among hydrophiines, with respect to measures of target capture success (target loci matched, sensitivity, specificity and missing data). As a cost-effective and efficient alternative to full genome sequencing, VenomCap can dramatically accelerate the sequencing and analysis of venom gene families. Overall, our tool offers a model for genomic studies on snake venom gene diversity and evolution that can be expanded for comprehensive comparisons across the other families of venomous snakes.
Collapse
Affiliation(s)
- Scott L. Travers
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Carl R. Hutter
- Museum of Natural Sciences and Department of Biological Sciences. Louisiana State University. Baton Rouge, LA 70803, USA
| | - Christopher C. Austin
- Museum of Natural Sciences and Department of Biological Sciences. Louisiana State University. Baton Rouge, LA 70803, USA
| | - Stephen C. Donnellan
- South Australian Museum, North Terrace, Adelaide 5000, Australia
- Australian Museum Research Institute, Australian Museum, 1 William St, Sydney 2010, Australia
| | - Matthew D. Buehler
- Department of Biological Sciences and Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | | | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research Center, Field Museum, Chicago, IL 60605, USA
| |
Collapse
|
38
|
Roman-Ramos H, Ho PL. Current Technologies in Snake Venom Analysis and Applications. Toxins (Basel) 2024; 16:458. [PMID: 39591213 PMCID: PMC11598588 DOI: 10.3390/toxins16110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This comprehensive review explores the cutting-edge advancements in snake venom research, focusing on the integration of proteomics, genomics, transcriptomics, and bioinformatics. Highlighting the transformative impact of these technologies, the review delves into the genetic and ecological factors driving venom evolution, the complex molecular composition of venoms, and the regulatory mechanisms underlying toxin production. The application of synthetic biology and multi-omics approaches, collectively known as venomics, has revolutionized the field, providing deeper insights into venom function and its therapeutic potential. Despite significant progress, challenges such as the functional characterization of toxins and the development of cost-effective antivenoms remain. This review also discusses the future directions of venom research, emphasizing the need for interdisciplinary collaborations and new technologies (mRNAs, cryo-electron microscopy for structural determinations of toxin complexes, synthetic biology, and other technologies) to fully harness the biomedical potential of venoms and toxins from snakes and other animals.
Collapse
Affiliation(s)
- Henrique Roman-Ramos
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil;
| | - Paulo Lee Ho
- Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
39
|
Lüddecke T, Avella I, Damm M, Schulte L, Eichberg J, Hardes K, Schiffmann S, Henke M, Timm T, Lochnit G, Vilcinskas A. The Toxin Diversity, Cytotoxicity, and Enzymatic Activity of Cape Cobra ( Naja nivea) Venom. Toxins (Basel) 2024; 16:438. [PMID: 39453214 PMCID: PMC11511112 DOI: 10.3390/toxins16100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
"True" cobras (genus Naja) are among the venomous snakes most frequently involved in snakebite accidents in Africa and Asia. The Cape cobra (Naja nivea) is one of the African cobras of highest medical importance, but much remains to be learned about its venom. Here, we used a shotgun proteomics approach to better understand the qualitative composition of N. nivea venom and tested its cytotoxicity and protease activity as well as its effect on intracellular Ca2+ release and NO synthesis. We identified 156 venom components representing 17 protein families, with the dominant ones being three-finger toxins, mostly of the short-chain type. Two-thirds of the three-finger toxin entries identified were assigned as cytotoxins, while the remainder were categorized as neurotoxins, including short-chain, long-chain, and ancestral three-finger toxins. We also identified snake venom metalloproteinases and members of CRISP, l-amino acid oxidase, and other families. Protease activity and its effect on intracellular Ca2+ release and NO synthesis were low. Phospholipase A2 activity was surprisingly high, despite this toxin family being marginally recovered in the analyzed venom. Cytotoxicity was relevant only at higher venom concentrations, with macrophage and neuroblastoma cell lines showing the lowest viability. These results are in line with the predominantly neurotoxic envenomation symptoms caused by Cape cobra bites. The present overview of the qualitatively complex and functionally intriguing venom of N. nivea may provide insights into the pathobiochemistry of this species' venom.
Collapse
Affiliation(s)
- Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
| | - Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Lennart Schulte
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Susanne Schiffmann
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Marina Henke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Thomas Timm
- Institute for Biochemistry, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (T.T.); (G.L.)
| | - Günter Lochnit
- Institute for Biochemistry, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (T.T.); (G.L.)
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| |
Collapse
|
40
|
Rajan K, Alangode A, Menon JC, Raveendran D, Nair SS, Reick M, Nair BG, Reick M, Vanuopadath M. Comparative functional characterization and in vitro immunological cross-reactivity studies on Daboia russelii and Craspedocephalus malabaricus venom. Trans R Soc Trop Med Hyg 2024; 118:682-696. [PMID: 38860309 DOI: 10.1093/trstmh/trae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Snake venom is a complex mixture of organic and inorganic constituents, including proteins and peptides. Several studies showed that antivenom efficacy differs due to intra- and inter-species venom variation. METHODS In the current study, comparative functional characterization of major enzymatic proteins present in Craspedocephalus malabaricus and Daboia russelii venom was investigated through various in vitro and immunological cross-reactivity assays. RESULTS The enzymatic assays revealed that hyaluronidase and phospholipase A2 activities were markedly higher in D. russelii. By contrast, fibrinogenolytic, fibrin clotting and L-amino acid oxidase activities were higher in C. malabaricus venom. ELISA results suggested that all the antivenoms had lower binding potential towards C. malabaricus venom. For D. russelii venom, the endpoint titration value was observed at 1:72 900 for all the antivenoms. In the case of C. malabaricus venom, the endpoint titration value was 1:2700, except for Biological E (1:8100). All these results, along with the avidity assays, indicate the strength of venom-antivenom interactions. Similarly, the western blot results suggest that all the antivenoms showed varied efficacies in binding and detecting the venom antigenic epitopes in both species. CONCLUSIONS The results highlight the need for species-specific antivenom to better manage snakebite victims.
Collapse
Affiliation(s)
- Karthika Rajan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Aswathy Alangode
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Jaideep C Menon
- Preventive Cardiology & Population Health Sciences, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682 041 , Kerala, India
| | - Dileepkumar Raveendran
- Indriyam Biologics Pvt. Ltd, SCTIMST-TIMED, 5th Floor. M S Valiathan Building, BMT Wing - Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | - Sudarslal Sadasivan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Margaret Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Bipin Gopalakrishnan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Martin Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| | - Muralidharan Vanuopadath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O , Kollam 690 525, Kerala, India
| |
Collapse
|
41
|
Dawson CA, Bartlett KE, Wilkinson MC, Ainsworth S, Albulescu LO, Kazandijan T, Hall SR, Westhorpe A, Clare R, Wagstaff S, Modahl CM, Harrison RA, Casewell NR. Intraspecific venom variation in the medically important puff adder (Bitis arietans): Comparative venom gland transcriptomics, in vitro venom activity and immunological recognition by antivenom. PLoS Negl Trop Dis 2024; 18:e0012570. [PMID: 39423239 PMCID: PMC11524477 DOI: 10.1371/journal.pntd.0012570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/30/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Variation in snake venoms is well documented, both between and within species, with intraspecific venom variation often correlated with geographically distinct populations. The puff adder, Bitis arietans, is widely distributed across sub-Saharan Africa and into the Arabian Peninsula where it is considered a leading cause of the ~310,000 annual snakebites across the region, with its venom capable of causing substantial morbidity and mortality. Despite its medical importance and wide geographic distribution, there is little known about venom variation between different B. arietans populations and the potential implications of this variation on antivenom efficacy. METHODOLOGY We applied a range of analyses, including venom gland transcriptomics, in vitro enzymatic assays and reverse phase chromatography to comparatively analyse B. arietans venoms originating from Nigeria, Tanzania, and South Africa. Immunological assays and in vitro enzymatic neutralisation assays were then applied to investigate the impact of venom variation on the potential efficacy of three antivenom products; SAIMR Polyvalent, EchiTAb-Plus and Fav-Afrique. FINDINGS Through the first comparison of venom gland transcriptomes of B. arietans from three geographically distinct regions (Nigeria, Tanzania, and South Africa), we identified substantial variation in toxin expression. Findings of venom variation were further supported by chromatographic venom profiling, and the application of enzymatic assays to quantify the activity of three pathologically relevant toxin families. However, the use of western blotting, ELISA, and in vitro enzymatic inhibition assays revealed that variation within B. arietans venom does not appear to substantially impact upon the efficacy of three African polyvalent antivenoms. CONCLUSIONS The large distribution and medical importance of B. arietans makes this species ideal for understanding venom variation and the impact this has on therapeutic efficacy. The findings in this study highlight the likelihood for considerable venom toxin variation across the range of B. arietans, but that this may not dramatically impact upon the utility of treatment available in the region.
Collapse
Affiliation(s)
- Charlotte A. Dawson
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Keirah E. Bartlett
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mark C. Wilkinson
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stuart Ainsworth
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Taline Kazandijan
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Steven R. Hall
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Adam Westhorpe
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Rachel Clare
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Simon Wagstaff
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Cassandra M. Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert A. Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
42
|
Avella I, Schulte L, Hurka S, Damm M, Eichberg J, Schiffmann S, Henke M, Timm T, Lochnit G, Hardes K, Vilcinskas A, Lüddecke T. Proteogenomics-guided functional venomics resolves the toxin arsenal and activity of Deinagkistrodon acutus venom. Int J Biol Macromol 2024; 278:135041. [PMID: 39182889 DOI: 10.1016/j.ijbiomac.2024.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Snakebite primarily impacts rural communities of Africa, Asia, and Latin America. The sharp-nosed viper (Deinagkistrodon acutus) is among the snakes of highest medical importance in Asia. Despite various studies on its venom using modern venomics techniques, a comprehensive understanding of composition and function of this species' venom remains lacking. We combined proteogenomics with extensive bioactivity profiling to present the first genome-level catalogue of D. acutus venom proteins and their exochemistry. Our analysis identified an unusually simple venom containing 45 components from 20 distinct protein families. Relative toxin abundances indicate that C-type lectin and C-type lectin-related protein (CTL), snake venom metalloproteinase (svMP), snake venom serine protease (svSP), and phospholipase A2 (PLA2) constitute 90 % of the venom. Bioassays targeting key aspects of viperid envenomation showed considerable concentration-dependent cytotoxicity, particularly in kidney and lung cells, and potent protease and PLA2 activity. Factor Xa and thrombin activities were minor, and no plasmin activity was observed. Effects on haemolysis, intracellular calcium (Ca2+) release, and nitric oxide (NO) synthesis were negligible. Our analysis provides the first holistic genome-based overview of the toxin arsenal of D. acutus, predicting the molecular and functional basis of its life-threatening effects, and opens novel avenues for treating envenomation by this highly dangerous snake.
Collapse
Affiliation(s)
- Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Lennart Schulte
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sabine Hurka
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Johanna Eichberg
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Susanne Schiffmann
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Marina Henke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Günther Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
43
|
Hboub H, Ben Mrid R, Bouchmaa N, Oukkache N, El Fatimy R. An in-depth exploration of snake venom-derived molecules for drug discovery in advancing antiviral therapeutics. Heliyon 2024; 10:e37321. [PMID: 39323826 PMCID: PMC11422003 DOI: 10.1016/j.heliyon.2024.e37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Snake venom is a cocktail and rich source of various bioactive compounds that have been extensively studied for their potential as pharmaceutical agents due to their diverse chemical structures and wide range of biological activities. In light of the emergency and the re-emergence of viral infectious diseases that threaten human health and economic systems, exploring new fertile and rich fields such as snake venom is an attractive path for anti-viral drug discovery, especially in the lack of effective vaccines. Although 85 % of reported antiviral molecules belong to the phospholipase A2 (PLA2) family, other protein families including L-amino acid oxidases (LAAO), disintegrins, metalloproteases (SVMPs), and cathelicidins have also shown antiviral activity. Thus, in this review, we have highlighted the antiviral properties of compounds derived from snake venom and their mechanisms of action against virus classes like HIV, Coronaviridae, Flaviviridae, and Paramyxoviridae. Although the initial research emphasis has been on Retroviridae (HIV) and Flaviviridae viruses, it is crucial to extend the exploration of the potential of these compounds to other viruses. The utilization of snake venom-derived compounds as antivirals shows significant promise for the development of novel therapeutics to address viral infections. However, a more in-depth investigation is necessary to fully assess the potential of these compounds against other viruses and unveil the mechanisms underlying their action.
Collapse
Affiliation(s)
- Hicham Hboub
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, 20360, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
44
|
Lay M, Hodgson WC. Isolation and Pharmacological Characterisation of Pre-Synaptic Neurotoxins from Thai and Javanese Russell's Viper ( Daboia siamensis) Venoms. Toxins (Basel) 2024; 16:405. [PMID: 39330863 PMCID: PMC11436103 DOI: 10.3390/toxins16090405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The widespread geographical distribution of Russell's vipers (Daboia spp.) is associated with marked variations in the clinical outcomes of envenoming by species from different countries. This is likely to be due to differences in the quantity and potency of key toxins and, potentially, the presence or absence of some toxins in venoms across the geographical spectrum. In this study, we aimed to isolate and pharmacologically characterise the major neurotoxic components of D. siamensis venoms from Thailand and Java (Indonesia) and explore the efficacy of antivenom and a PLA2 inhibitor, Varespladib, against the neuromuscular activity. These data will provide insights into the link between venom components and likely clinical outcomes, as well as potential treatment strategies. Venoms were fractionated using RP-HPLC and the in vitro activity of isolated toxins assessed using the chick biventer cervicis nerve-muscle preparation. Two major PLA2 fractions (i.e., fractions 8 and 10) were isolated from each venom. Fraction 8 from both venoms produced pre-synaptic neurotoxicity and myotoxicity, whereas fraction 10 from both venoms was weakly neurotoxic. The removal of the two fractions from each venom abolished the in vitro neurotoxicity, and partially abolished myotoxicity, of the whole venom. A combination of the two fractions from each venom produced neurotoxic activity that was equivalent to the respective whole venom (10 µg/mL), but the myotoxic effects were not additive. The in vitro neurotoxicity of fraction 8 (100 nM) from each venom was prevented by the pre-administration of Thai Russell's viper monovalent antivenom (2× recommended concentration) or preincubation with Varespladib (100 nM). Additionally, the neurotoxicity produced by a combination of the two fractions was partially reversed by the addition of Varespladib (100-300 nM) 60 min after the fractions. The present study demonstrates that the in vitro skeletal muscle effects of Thai and Javanese D. siamensis venoms are primarily due to key PLA2 toxins in each venom.
Collapse
Affiliation(s)
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
45
|
Rajendiran P, Naidu R, Othman I, Zainal Abidin SA. Identification of antigenic proteins from the venom of Malaysian snakes using immunoprecipitation assay and tandem mass spectrometry (LC-MS/MS). Heliyon 2024; 10:e37243. [PMID: 39286227 PMCID: PMC11403504 DOI: 10.1016/j.heliyon.2024.e37243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Snake envenomation poses a significant risk to Malaysians and country visitors. Malaysia witnesses an estimated 650 snake bites per 100,000 population annually. The primary treatment for snake envenomation involves administering antivenom derived from horses, despite its drawbacks, such as anaphylactic reactions and serum sickness. Identifying the venom proteome is crucial for understanding and predicting the clinical implications of envenomation and developing effective treatments targeting specific venom proteins. In this study, we employ an immunoprecipitation assay followed by LC-MS/MS to identify antigenic proteins in five common venomous snakes in Malaysia compassing of two families which are pit vipers, (Calloselasma rhodostoma and Cryptelytrops purpureomaculatus) and cobras (Ophiophagus hannah, Naja kaouthia, and Naja sumatrana). The immunoprecipitation assay utilises a 2 % agarose gel, allowing antigenic proteins to diffuse and bind with antibodies in the antivenom. The antivenom utilised in this research was procured from the Queen Saovabha Memorial Institute (QSMI), Thailand, including king cobra antivenom (KCAV), cobra antivenom (CAV), Malayan pit viper antivenom (MPAV), Russell's viper antivenom (RPAV), hematopolyvalent antivenom (HPAV), neuropolyvalent antivenom (NPAV), banded krait antivenom (BKAV), and Malayan krait antivenom (MKAV). The protein identified through these interactions which are exclusive to the cobras are three-finger toxins (3FTXs) while snake C-type lectins (Snaclecs) are unique to the pit vipers. Common protein that are present in both families are L-amino acid oxidase (LAAO), Phospholipase A2 (PLA2), and snake venom metalloproteinase (SVMP). Identifying these proteins is vital for formulating a broad-spectrum antivenom applicable across multiple species.
Collapse
Affiliation(s)
- Preetha Rajendiran
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Proteomics and Metabolomics Platform, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Proteomics and Metabolomics Platform, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
46
|
Qiao Z, Jones L, Bourke LA, Seneci L, Chowdhury A, Violette A, Fourmy R, Soria R, Aldridge M, Fry BG. Tiny but Mighty: Vipera ammodytes meridionalis (Eastern Long-Nosed Viper) Ontogenetic Venom Variations in Procoagulant Potency and the Impact on Antivenom Efficacies. Toxins (Basel) 2024; 16:396. [PMID: 39330854 PMCID: PMC11436208 DOI: 10.3390/toxins16090396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
The Eastern Long-Nosed Viper (Vipera ammodytes meridionalis) is considered one of the most venomous snakes in Europe. However, it is unknown whether ontogenetic variation in venom effects occurs in this subspecies and how this may impact antivenom efficacy. In this study, we compared the procoagulant activities of V. a. meridionalis venom on human plasma between neonate and adult venom phenotypes. We also examined the efficacy of three antivenoms-Viperfav, ViperaTAb, and Inoserp Europe-across our neonate and adult venom samples. While both neonate and adult V. a. meridionalis venoms produced procoagulant effects, the effects produced by neonate venom were more potent. Consistent with this, neonate venom was a stronger activator of blood-clotting zymogens, converting them into their active forms, with a rank order of Factor X >> Factor VII > Factor XII. Conversely, the less potent adult venom had a rank order of FXII marginally more activated than Factor VII, and both much more so than Factor X. This adds to the growing body of evidence that activation of factors besides FII (prothrombin) and FX are significant variables in reptile venom-induced coagulopathy. Although all three examined antivenoms displayed effective neutralization of both neonate and adult V. a. meridionalis venoms, they generally showed higher efficacy on adult venom than on neonate venom. The ranking of antivenom efficacy against neonate venom, from the most effective to the least effective, were Viperfav, Inoserp Europe, ViperaTAb; for adult venom, the ranking was Inoserp Europe, Viperfav, ViperaTAb. Our data reveal ontogenetic variation in V. a meridionalis, but this difference may not be of clinical concern as antivenom was effective at neutralizing both adult and neonate venom phenotypes. Regardless, our results highlight a previously undocumented ontogenetic shift, likely driven by the documented difference in prey preference observed for this species across age classes.
Collapse
Affiliation(s)
- Zichen Qiao
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lachlan A. Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Raul Soria
- Inosan Biopharma, 28108 Alcobendas, Madrid, Spain;
| | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| |
Collapse
|
47
|
Hirst SR, Rautsaw RM, VanHorn CM, Beer MA, McDonald PJ, Rosales García RA, Rodriguez Lopez B, Rubio Rincón A, Franz Chávez H, Vásquez-Cruz V, Kelly Hernández A, Storfer A, Borja M, Castañeda-Gaytán G, Frandsen PB, Parkinson CL, Strickland JL, Margres MJ. Where the "ruber" Meets the Road: Using the Genome of the Red Diamond Rattlesnake to Unravel the Evolutionary Processes Driving Venom Evolution. Genome Biol Evol 2024; 16:evae198. [PMID: 39255072 PMCID: PMC11440179 DOI: 10.1093/gbe/evae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Understanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond Rattlesnake (Crotalus ruber) and used range-wide 'omic data to estimate the degree to which neutral and adaptive evolutionary processes shaped venom evolution. We characterized population structure and found substantial genetic differentiation across two populations, each with distinct demographic histories. We identified significant differentiation in venom expression across age classes with substantially reduced but discernible differentiation across populations. We then used conditional redundancy analysis to test whether venom expression variation was best predicted by neutral divergence patterns or geographically variable (a)biotic factors. Snake size was the most significant predictor of venom variation, with environment, prey availability, and neutral sequence variation also identified as significant factors, though to a lesser degree. By directly including neutrality in the model, our results confidently highlight the predominant, yet not singular, role of life history in shaping venom evolution.
Collapse
Affiliation(s)
- Samuel R Hirst
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Rhett M Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Cameron M VanHorn
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Preston J McDonald
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | | - Bruno Rodriguez Lopez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Alexandra Rubio Rincón
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Víctor Vásquez-Cruz
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Veracruz, Mexico
- PIMVS Herpetario Palancoatl, Veracruz, Mexico
| | | | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
48
|
Kumar R, Rathore AS. Snakebite Management: The Need of Reassessment, International Relations, and Effective Economic Measures to Reduce the Considerable SBE Burden. J Epidemiol Glob Health 2024; 14:586-612. [PMID: 38856820 PMCID: PMC11442967 DOI: 10.1007/s44197-024-00247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
The sole treatment for snakebite envenomation (SBE), the anti-snake venom (ASV), suffers from considerable drawbacks, including side effects and limited species specificity. Additionally, despite its existence for more than a century, uniform availability of good quality ASV does not yet exist. The present review describes the journey of a SBE victim and highlights the global crisis of SBE management. A detailed analysis of the current ASV market has also been presented along with the worldwide snake distribution. The current production of country specific licensed ASV throughout the globe along with their manufacturers has been examined at the snake species level. Furthermore, a detailed analysis of on-ground situation of SBE management in antivenom manufacturing countries has been done using the most recent literature. Additionally, the export and import of different ASVs have been discussed in terms of procurement policies of individual countries, their shortcomings, along with the possible solution at the species level. It is interesting to note that in most countries, the existence of ASV is really either neglected or overstated, implying that it is there but unsuitable for use, or that it is not present but can be obtained from other countries. This highlights the urgent need of significant reassessment and international collaborations not just for development and production, but also for procurement, distribution, availability, and awareness. A PROMISE (Practical ROutes for Managing Indigenous Snakebite Envenoming) approach has also been introduced, offering simple, economical, and easy to adopt steps to efficiently alleviate the worldwide SBE burden.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
49
|
Edge RJ, Marriott AE, Stars EL, Patel RN, Wilkinson MC, King LDW, Slagboom J, Tan CH, Ratanabanangkoon K, Draper SJ, Ainsworth S. Plug and play virus-like particles for the generation of anti-toxin antibodies. Toxicon X 2024; 23:100204. [PMID: 39280983 PMCID: PMC11401359 DOI: 10.1016/j.toxcx.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Snakebite is a major global health concern, for which antivenom remains the only approved treatment to neutralise the harmful effects of the toxins. However, some medically important toxins are poorly immunogenic, resulting in reduced efficacy of the final product. Boosting the immunogenicity of these toxins in the commercial antivenom immunising mixtures could be an effective strategy to improve the final dose efficacy, and displaying snake antigens on Virus-like particles (VLPs) is one method for this. However, despite some applications in the field of snakebite, VLPs have yet to be explored in methods that could be practical at an antivenom manufacturing scale. Here we describe the utilisation of a "plug and play" VLP system to display immunogenic linear peptide epitopes from three finger toxins (3FTxs) and generate anti-toxin antibodies. Rabbits were immunised with VLPs displaying individual consensus linear epitopes and their antibody responses were characterised by immunoassay. Of the three experimental consensus sequences, two produced antibodies capable of recognising the consensus peptides, whilst only one of these could also recognise native whole toxins. Further characterisation of antibodies raised against this peptide demonstrated a sub-class specific response, and that these were able to elicit partially neutralising antibody responses, resulting in increased survival times in a murine snakebite envenoming model.
Collapse
Affiliation(s)
- Rebecca J Edge
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Amy E Marriott
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Emma L Stars
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Rohit N Patel
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Mark C Wilkinson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Choo Hock Tan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| |
Collapse
|
50
|
Kazemi SM, Kelisani ZG, Avella I, Lüddecke T. The need for a refined scorpion antivenom for Iran. Toxicon 2024; 248:108033. [PMID: 39038663 DOI: 10.1016/j.toxicon.2024.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Scorpion sting is a medical burden globally but especially frequent hotspots of scorpion biodiversity. In Iran, one of those hotspot countries, many fatalities occur in the South as well as the Southwest and are thought to be caused by Hemiscorpius lepturus. Accordingly, those are used for antivenom production. However, recent surveys revealed that indeed a different species Hemiscorpius acanthocercus is responsible for most accidents in the South, while H. lepturus is primarily causing the fatalities in the Southwest and thus Iranian scorpion antivenom needs to be refined in that respect. Such a refined antivenom would need to cover both species of Hemiscorpius. In response, the Iranian Ministry of Health requested the adjustment of the production line from local antivenom suppliers but until today no action has been taken.
Collapse
Affiliation(s)
- Seyed Mahdi Kazemi
- Zagros Herpetological Institute, 37156-88415, P. O. No 12, Somayyeh 14 Avenue, Qom, Iran
| | - Zohreh Gholam Kelisani
- Department of Counseling Feizoleslam Non-Profit Institute of Higher Education, Institute Khomeini Shahr, Isfahan, Iran
| | - Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Gießen, Germany; Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff Ring 26-32, 35392, Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany; Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Gießen, Germany.
| |
Collapse
|