1
|
Shahzamani K, Amooyi A, Karampoor S, Khanizadeh S, Farahmand M. Klotho protein: A key modulator of aging and COVID-19 severity. Int J Biol Macromol 2025; 296:139234. [PMID: 39798764 DOI: 10.1016/j.ijbiomac.2024.139234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/04/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
The COVID-19 pandemic has drawn significant attention to factors affecting disease severity, especially in older adults. This study explores the relationship between Klotho, an anti-aging protein, and COVID-19 severity. Conducted at Tehran's Firouzgar Hospital, this case-control study involved 279 participants, assessing serum levels of Klotho, inflammatory markers (C-reactive protein (CRP), Interleukin 6 (IL-6)), and Vitamin D. The findings indicate significantly lower Klotho levels in COVID-19 patients, especially those in the ICU, which correlate with elevated inflammatory markers and reduced Vitamin D levels. This inverse relationship between Klotho levels and disease severity underscores the protein's potential modulatory role in the inflammatory response to COVID-19. The study not only highlights the importance of Klotho as a biomarker for aging and disease severity but also suggests its potential therapeutic value in managing COVID-19, offering a novel perspective on targeting aging-related pathways to mitigate the impact of the disease. These insights open new avenues for research and intervention strategies to leverage anti-aging mechanisms to combat COVID-19 and potentially other age-related diseases.
Collapse
Affiliation(s)
- Kiana Shahzamani
- Lorestan University of Medical Sciences, Islamic Republic of Iran.
| | - Atefeh Amooyi
- Lorestan University of Medical Sciences, Islamic Republic of Iran
| | - Sajad Karampoor
- Iran University of Medical Sciences, Islamic Republic of Iran
| | | | | |
Collapse
|
2
|
Angelova P, Hinkov A, Gerasimova V, Staleva P, Kamenova-Nacheva M, Alipieva K, Shivachev D, Shishkov S, Shishkova K. Antiviral Activity of Water-Alcoholic Extract of Cistus incanus L. Int J Mol Sci 2025; 26:947. [PMID: 39940715 PMCID: PMC11817444 DOI: 10.3390/ijms26030947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Recently, previously known viruses have changed their pathogenicity and encompassed new types of host populations. An example of such an infection is that caused by SARS-CoV, belonging to the "well-known" coronavirus family. Another group of viruses that are of great importance to the human population are the herpes viruses. Due to increasing viral resistance to existing antiviral drugs, plant extracts are attracting increasing interest due to their complex composition and their simultaneous attack of different viral targets. Based on the above, we tested the antiviral potential of water-alcoholic extract obtained from a commercial sample of the plant Cistus incanus L. against the enveloped viruses SvHA1, SvHA2 (ACV resistant) and HCoV 229E. The results showed both complete inhibition of the intracellular stages of the viral replication and a strong effect on extracellular virions in the three viral models. In a study of the effect on the replication of SvHA 2, the calculated selectivity index was over 10. From the experiments on the virucidal effects on the two herpes viruses, it was found that the viral titer of the samples decreased by about 4 lg compared to the control sample. The extract is of interest for introduction into practice.
Collapse
Affiliation(s)
- Petya Angelova
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (P.A.); (S.S.)
| | - Anton Hinkov
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (P.A.); (S.S.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (BIORESOURCES BG), 1000 Sofia, Bulgaria;
| | - Vanya Gerasimova
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (BIORESOURCES BG), 1000 Sofia, Bulgaria;
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (P.S.); (M.K.-N.); (K.A.)
| | - Plamena Staleva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (P.S.); (M.K.-N.); (K.A.)
- Laboratory for Extraction of Natural Products and Synthesis of Bioactive Compounds, Research and Development and Innovation Consortium, Sofia Tech Park JSC, 111 Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria
| | - Mariana Kamenova-Nacheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (P.S.); (M.K.-N.); (K.A.)
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (P.S.); (M.K.-N.); (K.A.)
| | | | - Stoyan Shishkov
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (P.A.); (S.S.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (BIORESOURCES BG), 1000 Sofia, Bulgaria;
| | - Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (P.A.); (S.S.)
| |
Collapse
|
3
|
Senpuku H, Kato H. Preventive effect of flavor/fragrance components on SARS-CoV-2 infections. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100335. [PMID: 39835268 PMCID: PMC11743867 DOI: 10.1016/j.crmicr.2024.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The SARS-CoV-2 infection has spread to various areas of the world, and the number of infected people, seriously ill people, and deaths have increased in 2020∼2023. It is important to suppress the spread of virus from infected people to non-infected people in order to prevent the disease from becoming more severe. To protect widespread of virus, flavor/fragrances composition was selected as a convenient effective material to protect the inhibition. It was previously investigated whether flavor/fragrances composition inhibit the binding between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and host angiotensin converting enzyme 2 (ACE2) in the infection model assay. This binding lead to natural infection of SARS-CoV-2 to tissues. In a previous report, it was found that some Flavor/fragrances compositions strongly inhibited the binding between RBD and ACE2. To clarify whether these flavor/fragrances compositions actually inhibit the infection of SARS-CoV-2, the inhibition assay of infection to VeroE6/TMPRSS2 cells, the inhibition model in vitro, were performed by the treatment of these compositions. Some flavor/fragrances compositions excepting for cinnamyl alcohol, 0.25 %, strongly inhibited the infection of SARS-CoV-2 to VeroE6/TMPRSS2 cells because cinnamyl alcohol could not be completely melted by PBS (pH 7.4) containing 1.5 % Tween 20 and 0.5 % BSA. Among fragrance compounds, cinnamon flavor and cinnamon mint had stronger inhibition effects on the infection effects on SARS-C0V-2 than others. The strategy of using flavor/fragrances compositions such as cinnamon flavor and cinnamon mint may be useful to protect widespread of SARS-CoV-2 in their daily lives.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Microbiology and Immunology, Nihon University of School at Matsudo, Matsudo 271-8587, Japan
- Department of Bacterilogy I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hiroyuki Kato
- Department of Orthodontics, Nihon University of Dental School at Matsudo. Chiba 271-8587, Japan
| |
Collapse
|
4
|
Wen L, Tian H, Huang X, Song T, Tang L, Wei W, Tian S, Huang Y, Zhang X. Effect of SARS-CoV-2 on semen parameters: A meta-analysis of 39 articles from 15 countries. J Glob Health 2024; 14:05021. [PMID: 39212663 PMCID: PMC11364090 DOI: 10.7189/jogh.14.05021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background Declining birth rates during the pandemic have led to concerns about the potential impact of the of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on fertility among men. As previous studies have had inconsistent conclusions, we conducted a meta-analysis to evaluate the effects of SARS-CoV-2 on semen parameters. Methods We searched several databases for articles published between 1 January 2020 and 25 July 2023. We performed a robust screening process based on predetermined inclusion and exclusion criteria and, following quality assessment, extracted data from high-quality studies for the meta-analysis. We determined the P-values and 95% confidence intervals (CIs) for both continuous and dichotomous variables, which we described using mean differences (MDs) and odds ratios (ORs), respectively. Lastly, we used the leave-one-out approach for our sensitivity analysis, and Begg's and Egger's tests to determine publication bias. Results We included 39 articles with 1887 cases and 2097 controls. In patients infected with SARS-CoV-2, the sperm volume (MD = -0.29; 95% CI = -0.50, -0.07; P = 0.008) and concentration (MD = -8.71; 95% CI = -16.94, -0.48; P = 0.04) were decreased, which increased oligospermia risk (OR = 2.49; 95% CI = 1.04, 5.99; P = 0.04). Furthermore, we observed reduced sperm motility (MD = -8.18; 95% CI = -12.19, -4.17; P < 0.001) and increased immotility (MD = 4.06; 95% CI = 1.57, 6.54; P = 0.001) in infected patients, which increased asthenospermia risk (OR = 3.86; 95%CI = 1.83, 8.14; P = 0.0004). We also saw a decreased proportion of semen with normal sperm morphology (MD = -1.67; 95% CI = -2.68, -0.66; P = 0.001) and an increased proportion of semen with abnormal sperm morphology (MD = -1.31; 95% CI = -2.14, -0.49; P = 0.002,), along with increases in teratospermia (OR = 1.98; 95% CI = 1.00, 3.92; P = 0.05) in infected compared non-infected patients. Although we found consistency within most subgroups, we observed differences in severity, follow-up time, and country of origin. The results of the main meta-analysis results remained stable in the sensitivity analysis, while Begg's and Egger's tests showed no publication bias. Conclusions Based on sufficient evidence, we see that the effects of SARS-CoV-2 on semen parameters resulted in a decline in male fertility. The increased severity and shorter duration of the SARS-CoV-2 infection increased the likelihood of altering of semen parameters. Registration INPLASY: INPLASY202420083.
Collapse
Affiliation(s)
- Lequan Wen
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Haokun Tian
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Xing Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tiangang Song
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lirui Tang
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, China
- Nanchang Joint Programme, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Wenjie Wei
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuo Tian
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Antar SA, Ashour NA, Hamouda AO, Noreddin AM, Al-Karmalawy AA. Recent advances in COVID-19-induced liver injury: causes, diagnosis, and management. Inflammopharmacology 2024:10.1007/s10787-024-01535-7. [PMID: 39126569 DOI: 10.1007/s10787-024-01535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/29/2024] [Indexed: 08/12/2024]
Abstract
Since the start of the pandemic, considerable advancements have been made in our understanding of the effects of SARS-CoV-2 infection and the associated COVID-19 on the hepatic system. There is a broad range of clinical symptoms for COVID-19. It affects multiple systems and has a dominant lung illness depending on complications. The progression of COVID-19 in people with pre-existing chronic liver disease (CLD) has also been studied in large multinational groups. Notably, SARS-CoV-2 infection is associated with a higher risk of hepatic decompensation and death in patients with cirrhosis. In this review, the source, composition, mechanisms, transmission characteristics, clinical characteristics, therapy, and prevention of SARS-CoV-2 were clarified and discussed, as well as the evolution and variations of the virus. This review briefly discusses the causes and effects of SARS-CoV-2 infection in patients with CLD. As part of COVID-19, In addition, we assess the potential of liver biochemistry as a diagnostic tool examine the data on direct viral infection of liver cells, and investigate potential pathways driving SARS-CoV-2-related liver damage. Finally, we explore how the pandemic has had a significant impact on patient behaviors and hepatology services, which may increase the prevalence and severity of liver disease in the future. The topics encompassed in this review encompass the intricate relationships between SARS-CoV-2, liver health, and broader health management strategies, providing valuable insights for both current clinical practice and future research directions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Amir O Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ayman M Noreddin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, 12566, Egypt
- Department of Internal Medicine, School of Medicine, University of California -Irvine, Irvine, USA
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, New Damietta, 34518, Egypt.
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, 12566, Egypt.
| |
Collapse
|
6
|
Haq Z, Nazir J, Manzoor T, Saleem A, Hamadani H, Khan AA, Saleem Bhat S, Jha P, Ahmad SM. Zoonotic spillover and viral mutations from low and middle-income countries: improving prevention strategies and bridging policy gaps. PeerJ 2024; 12:e17394. [PMID: 38827296 PMCID: PMC11144393 DOI: 10.7717/peerj.17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/25/2024] [Indexed: 06/04/2024] Open
Abstract
The increasing frequency of zoonotic spillover events and viral mutations in low and middle-income countries presents a critical global health challenge. Contributing factors encompass cultural practices like bushmeat consumption, wildlife trade for traditional medicine, habitat disruption, and the encroachment of impoverished settlements onto natural habitats. The existing "vaccine gap" in many developing countries exacerbates the situation by allowing unchecked viral replication and the emergence of novel mutant viruses. Despite global health policies addressing the root causes of zoonotic disease emergence, there is a significant absence of concrete prevention-oriented initiatives, posing a potential risk to vulnerable populations. This article is targeted at policymakers, public health professionals, researchers, and global health stakeholders, particularly those engaged in zoonotic disease prevention and control in low and middle-income countries. The article underscores the importance of assessing potential zoonotic diseases at the animal-human interface and comprehending historical factors contributing to spillover events. To bridge policy gaps, comprehensive strategies are proposed that include education, collaborations, specialized task forces, environmental sampling, and the establishment of integrated diagnostic laboratories. These strategies advocate simplicity and unity, breaking down barriers, and placing humanity at the forefront of addressing global health challenges. Such a strategic and mental shift is crucial for constructing a more resilient and equitable world in the face of emerging zoonotic threats.
Collapse
Affiliation(s)
- Zulfqarul Haq
- ICMR project, Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Junaid Nazir
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - H. Hamadani
- ICMR project, Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Azmat Alam Khan
- ICMR project, Division of Livestock Production and Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| | - Priyanka Jha
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
7
|
Mangiaterra S, Gavazza A, Biagini L, Rossi G. Study of Macrophage Activity in Cats with FIP and Naturally FCoV-Shedding Healthy Cats. Pathogens 2024; 13:437. [PMID: 38921735 PMCID: PMC11206276 DOI: 10.3390/pathogens13060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/27/2024] Open
Abstract
Coronavirus frequently infects humans and animals, showing the ability to recombine and cross over to different species. Cats can be considered a model for studying coronavirus infection, in which feline coronavirus (FCoV) represents a major enteric pathogen related to gastroenteric disease. In this animal, the virus can acquire tropism for macrophage cells, leading to a deadly disease called feline infectious peritonitis (FIP). In this study, monocyte-derived macrophages were isolated by CD14-positive selection in venous whole blood from 26 cats with FIP and 32 FCoV-positive healthy cats. Phagocytosis and respiratory burst activities were investigated and compared between the groups. This is the first study comparing macrophage activity in cats affected by FIP and healthy cats positive for FCoV infection. Our results showed that in cats with FIP, the phagocytic and respiratory burst activities were significantly lower. Our results support the possible role of host immunity in Coronaviridae pathogenesis in cats, supporting future research on the immune defense against this systemic disease.
Collapse
Affiliation(s)
- Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (A.G.); (L.B.); (G.R.)
| | | | | | | |
Collapse
|
8
|
Al-Zadjali J, Al-Lawati A, Al Riyami N, Al Farsi K, Al Jarradi N, Boudaka A, Al Barhoumi A, Al Lawati M, Al Khaifi A, Musleh A, Gebrayel P, Vaulont S, Peyssonnaux C, Edeas M, Saleh J. Reduced HDL-cholesterol in long COVID-19: A key metabolic risk factor tied to disease severity. Clinics (Sao Paulo) 2024; 79:100344. [PMID: 38552385 PMCID: PMC10998035 DOI: 10.1016/j.clinsp.2024.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/17/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024] Open
Abstract
This controlled study investigated metabolic changes in non-vaccinated individuals with Long-COVID-19, along with their connection to the severity of the disease. The study involved 88 patients who experienced varying levels of initial disease severity (mild, moderate, and severe), and a control group of 29 healthy individuals. Metabolic risk markers from fasting blood samples were analyzed, and data regarding disease severity indicators were collected. Findings indicated significant metabolic shifts in severe Long-COVID-19 cases, mainly a marked drop in HDL-C levels and a doubled increase in ferritin levels and insulin resistance compared to the mild cases and controls. HDL-C and ferritin were identified as the leading factors predicted by disease severity. In conclusion, the decline in HDL-C levels and rise in ferritin levels seen in Long-COVID-19 individuals, largely influenced by the severity of the initial infection, could potentially play a role in the persistence and progression of Long-COVID-19. Hence, these markers could be considered as possible therapeutic targets, and help shape preventive strategies to reduce the long-term impacts of the disease.
Collapse
Affiliation(s)
| | | | - Nafila Al Riyami
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Koukab Al Farsi
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Najwa Al Jarradi
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | - Ammar Boudaka
- Sultan Qaboos University, Muscat, Oman; Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | | | | | | | | - Sophie Vaulont
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Carole Peyssonnaux
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Marvin Edeas
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France.
| | - Jumana Saleh
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
9
|
Coelho RDCC, Martins CLELP, Pastana LF, Rodrigues JCG, Aguiar KEC, Cohen-Paes ADN, Gellen LPA, de Moraes FCA, Calderaro MCL, de Assunção LA, Monte N, Pereira EEB, Ribeiro-dos-Santos AM, Ribeiro-do-Santos Â, Rodriguez Burbano RM, de Souza SJ, Guerreiro JF, de Assumpção PP, dos Santos SEB, Fernandes MR, dos Santos NPC. Molecular Profile of Variants Potentially Associated with Severe Forms of COVID-19 in Amazonian Indigenous Populations. Viruses 2024; 16:359. [PMID: 38543725 PMCID: PMC10974871 DOI: 10.3390/v16030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 05/23/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infection caused by SARS-CoV-2. Genome-wide association studies (GWASs) have suggested a strong association of genetic factors with the severity of the disease. However, many of these studies have been completed in European populations, and little is known about the genetic variability of indigenous peoples' underlying infection by SARS-CoV-2. The objective of the study is to investigate genetic variants present in the genes AQP3, ARHGAP27, ELF5L, IFNAR2, LIMD1, OAS1 and UPK1A, selected due to their association with the severity of COVID-19, in a sample of indigenous people from the Brazilian Amazon in order to describe potential new and already studied variants. We performed the complete sequencing of the exome of 64 healthy indigenous people from the Brazilian Amazon. The allele frequency data of the population were compared with data from other continental populations. A total of 66 variants present in the seven genes studied were identified, including a variant with a high impact on the ARHGAP27 gene (rs201721078) and three new variants located in the Amazon Indigenous populations (INDG) present in the AQP3, IFNAR2 and LIMD1 genes, with low, moderate and modifier impact, respectively.
Collapse
Affiliation(s)
- Rita de Cássia Calderaro Coelho
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Carlliane Lima e Lins Pinto Martins
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Lucas Favacho Pastana
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Juliana Carla Gomes Rodrigues
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Kaio Evandro Cardoso Aguiar
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Amanda de Nazaré Cohen-Paes
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Laura Patrícia Albarello Gellen
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Francisco Cezar Aquino de Moraes
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Maria Clara Leite Calderaro
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Letícia Almeida de Assunção
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Natasha Monte
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Esdras Edgar Batista Pereira
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - André Maurício Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belém 66077-830, PA, Brazil; (A.M.R.-d.-S.); (Â.R.-d.-S.); (J.F.G.)
| | - Ândrea Ribeiro-do-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belém 66077-830, PA, Brazil; (A.M.R.-d.-S.); (Â.R.-d.-S.); (J.F.G.)
| | - Rommel Mario Rodriguez Burbano
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
- Ophir Loyola Hospital, Pará State Department of Health, Belém 66063-240, PA, Brazil
| | - Sandro José de Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - João Farias Guerreiro
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belém 66077-830, PA, Brazil; (A.M.R.-d.-S.); (Â.R.-d.-S.); (J.F.G.)
| | - Paulo Pimentel de Assumpção
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
| | - Sidney Emanuel Batista dos Santos
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belém 66077-830, PA, Brazil; (A.M.R.-d.-S.); (Â.R.-d.-S.); (J.F.G.)
| | - Marianne Rodrigues Fernandes
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
- Ophir Loyola Hospital, Pará State Department of Health, Belém 66063-240, PA, Brazil
| | - Ney Pereira Carneiro dos Santos
- Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (R.d.C.C.C.); (C.L.e.L.P.M.); (L.F.P.); (J.C.G.R.); (K.E.C.A.); (A.d.N.C.-P.); (L.P.A.G.); (F.C.A.d.M.); (M.C.L.C.); (L.A.d.A.); (N.M.); (E.E.B.P.); (R.M.R.B.); (P.P.d.A.); (S.E.B.d.S.); (M.R.F.)
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belém 66077-830, PA, Brazil; (A.M.R.-d.-S.); (Â.R.-d.-S.); (J.F.G.)
| |
Collapse
|
10
|
Zhang Z, He D, Zhao S, Qu J. Recent Developments in Semiconductor-Based Photocatalytic Degradation of Antiviral Drug Pollutants. TOXICS 2023; 11:692. [PMID: 37624197 PMCID: PMC10458903 DOI: 10.3390/toxics11080692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The prevalence of antiviral drugs (ATVs) has seen a substantial increase in response to the COVID-19 pandemic, leading to heightened concentrations of these pharmaceuticals in wastewater systems. The hydrophilic nature of ATVs has been identified as a significant factor contributing to the low degradation efficiency observed in wastewater treatment plants. This characteristic often necessitates the implementation of additional treatment steps to achieve the complete degradation of ATVs. Semiconductor-based photocatalysis has garnered considerable attention due to its promising potential in achieving efficient degradation rates and subsequent mineralization of pollutants, leveraging the inexhaustible energy of sunlight. However, in recent years, there have been few comprehensive reports that have thoroughly summarized and analyzed the application of photocatalysis for the removal of ATVs. This review commences by summarizing the types and occurrence of ATVs. Furthermore, it places a significant emphasis on delivering a comprehensive summary and analysis of the characteristics pertaining to the photocatalytic elimination of ATVs, utilizing semiconductor photocatalysts such as metal oxides, doped metal oxides, and heterojunctions. Ultimately, the review sheds light on the identified research gaps and key concerns, offering invaluable insights to steer future investigations in this field.
Collapse
Affiliation(s)
- Zhaocheng Zhang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China;
| | - Dongyang He
- School of Environment, Northeast Normal University, Changchun 130117, China;
| | - Siyu Zhao
- School of Environment, Northeast Normal University, Changchun 130117, China;
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, China;
| |
Collapse
|
11
|
Abbasi SAA, Noor T, Mylavarapu M, Sahotra M, Bashir HA, Bhat RR, Jindal U, Amin U, V A, Siddiqui HF. Double Trouble Co-Infections: Understanding the Correlation Between COVID-19 and HIV Viruses. Cureus 2023; 15:e38678. [PMID: 37288215 PMCID: PMC10243673 DOI: 10.7759/cureus.38678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 06/09/2023] Open
Abstract
A global outbreak of coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mounted a substantial threat to public health worldwide. It initially emerged as a mere outbreak in Wuhan, China, in December 2019 and quickly engulfed the entire world, evolving into a global pandemic, consuming millions of lives and leaving a catastrophic effect on our lives in ways unimaginable. The entire healthcare system was significantly impacted and HIV healthcare was not spared. In this article, we reviewed the effect of HIV on COVID-19 disease and the ramifications of the recent COVID-19 pandemic over HIV management strategies. Our review highlights that contrary to the instinctive belief that HIV should render patients susceptible to COVID-19 infection, the studies depicted mixed results, although comorbidities and other confounders greatly affected the results. Few studies showed a higher rate of in-hospital mortality due to COVID-19 among HIV patients; however, the use of antiretroviral therapy had no consequential effect. COVID-19 vaccination was deemed safe among HIV patients in general. The recent pandemic can destabilize the HIV epidemic control as it hugely impacted access to care and preventive services and led to a marked reduction in HIV testing. The collision of these two disastrous pandemics warrants the need to materialize rigorous epidemiological measures and health policies, but most importantly, brisk research in prevention strategies to mitigate the combined burden of the two viruses and to battle similar future pandemics.
Collapse
Affiliation(s)
| | - Tarika Noor
- Department of Medicine, Government Medical College, Patiala, Ludhiana, IND
| | | | - Monika Sahotra
- Department of Medicine, Bukovinian State Medical University, Chernivtsi, UKR
| | - Hunmble A Bashir
- Forensic Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Rakshita Ramesh Bhat
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, IND
- Internal Medicine, Bangalore Medical College and Research Institute, Bangalore, IND
| | - Urmi Jindal
- Department of Medicine, Karamshi Jethabhai Somaiya Medical College, Mumbai, IND
| | - Uzma Amin
- Pathology, Rawalpindi Medical University, Rawalpindi, PAK
| | - Anushree V
- Department of Medicine, Jagadguru Jayadeva Murugarajendra (JJM) Medical College, Davangere, IND
| | - Humza F Siddiqui
- Department of Medicine, Jinnah Sindh Medical University, Karachi, PAK
| |
Collapse
|
12
|
Balaji Easwaran V, Satarker S, V Gujaran T, John J, Veedu AP, George KT, Purayil DK, Beegum F, Mathew A, Vibhavari R, Chaudhari SS, Pai KSR. Expediting Molecular Translational Approach of Mesenchymal Stem Cells in COVID-19 Treatment. Curr Stem Cell Res Ther 2023; 18:653-675. [PMID: 36424799 DOI: 10.2174/1574888x18666221124122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/27/2022]
Abstract
Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 with severe respiratory failure and organ damage that later appeared as a pandemic disease. Worldwide, people's mental and physical health and socioeconomic have been affected. Currently, with no promising treatment for COVID-19, the existing anti-viral drugs and vaccines are the only hope to boost the host immune system to reduce morbidity and mortality rate. Unfortunately, several reports show that people who are partially or fully vaccinated are still susceptible to COVID-19 infection. Evidence suggests that COVID-19 immunopathology may include dysregulation of macrophages and monocytes, reduced type 1 interferons (IFN-1), and enhanced cytokine storm that results in hypersecretion of proinflammatory cytokines, capillary leak syndrome, intravascular coagulation, and acute respiratory distress syndrome (ARDS) ultimately leading to the worsening of patient's condition and death in most cases. The recent use of cell-based therapies such as mesenchymal stem cells (MSCs) for critically ill COVID-19 patients has been authorized by the Food and Drug Administration (FDA) to alleviate cytokine release syndrome. It protects the alveolar epithelial cells by promoting immunomodulatory action and secreting therapeutic exosomes to improve lung function and attenuate respiratory failure. As a result, multiple clinical trials have been registered using MSCs that aim to use various cell sources, and dosages to promote safety and efficacy against COVID-19 infection. In this review, the possibility of using MSCs in COVID-19 treatment and its associated challenges in their use have been briefly discussed.
Collapse
Affiliation(s)
- Vignesh Balaji Easwaran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Tanvi V Gujaran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anuranjana Putiya Veedu
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Divya Kunhi Purayil
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anna Mathew
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rja Vibhavari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sneha Sunil Chaudhari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
13
|
Glutamine-Driven Metabolic Adaptation to COVID-19 Infection. Indian J Clin Biochem 2023; 38:83-93. [PMID: 35431470 PMCID: PMC8992789 DOI: 10.1007/s12291-022-01037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/11/2022] [Indexed: 01/24/2023]
Abstract
Background COVID-19 is known to be transmitted by direct contact, droplets or feces/orally. There are many factors which determines the clinical progression of the disease. Aminoacid disturbance in viral disease is shown in many studies. İn this study we aimed to evaluate the change of aminoacid metabolism especially the aspartate, glutamine and glycine levels which have been associated with an immune defence effect in viral disease. Methods Blood samples from 35 volunteer patients with COVID-19, concretized diagnosis was made by oropharyngeal from nazofaringeal swab specimens and reverse transcriptase-polymerase chain reaction, and 35 control group were analyzed. The amino acid levels were measured with liquid chromatography-mass spectrometry technology. Two groups were compared by Kolmogorov-Smirnov analysis, Kruskal-Wallis and the Mann-Whitney U. The square test was used to evaluate the tests obtained by counting, and the error level was taken as 0.05. Results The average age of the patient and control group were 48.5 ± 14.9 and 48.8 ± 14.6 years respectively. The decrease in aspartate (p = 5.5 × 10-9) and glutamine levels (p = 9.0 × 10-17) were significiantly in COVID group, whereas Glycine (p = 0.243) increase was not significiant. Conclusions Metabolic pathways, are affected in rapidly dividing cells in viral diseases which are important for immun defence. We determined that aspartate, glutamine and glycine levels in Covid 19 patients were affected by the warburg effect, malate aspartate shuttle, glutaminolysis and pentose phosphate pathway. Enteral or parenteral administration of these plasma amino acid levels will correct the duration and pathophysiology of the patients' stay in hospital and intensive care.
Collapse
|
14
|
Thakor JC, Dinesh M, Manikandan R, Bindu S, Sahoo M, Sahoo D, Dhawan M, Pandey MK, Tiwari R, Emran TB, Dhama K, Chaicumpa W. Swine coronaviruses (SCoVs) and their emerging threats to swine population, inter-species transmission, exploring the susceptibility of pigs for SARS-CoV-2 and zoonotic concerns. Vet Q 2022; 42:125-147. [PMID: 35584308 PMCID: PMC9225692 DOI: 10.1080/01652176.2022.2079756] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
Swine coronaviruses (SCoVs) are one of the most devastating pathogens affecting the livelihoods of farmers and swine industry across the world. These include transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine respiratory coronavirus (PRCV), porcine hemagglutinating encephalomyelitis virus (PHEV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV). Coronaviruses infect a wide variety of animal species and humans because these are having single stranded-RNA that accounts for high mutation rates and thus could break the species barrier. The gastrointestinal, cardiovascular, and nervous systems are the primary organ systems affected by SCoVs. Infection is very common in piglets compared to adult swine causing high mortality in the former. Bat is implicated to be the origin of all CoVs affecting animals and humans. Since pig is the only domestic animal in which CoVs cause a wide range of diseases; new coronaviruses with high zoonotic potential could likely emerge in the future as observed in the past. The recently emerged severe acute respiratory syndrome coronavirus virus-2 (SARS-CoV-2), causing COVID-19 pandemic in humans, has been implicated to have animal origin, also reported from few animal species, though its zoonotic concerns are still under investigation. This review discusses SCoVs and their epidemiology, virology, evolution, pathology, wildlife reservoirs, interspecies transmission, spill-over events and highlighting their emerging threats to swine population. The role of pigs amid ongoing SARS-CoV-2 pandemic will also be discussed. A thorough investigation should be conducted to rule out zoonotic potential of SCoVs and to design appropriate strategies for their prevention and control.
Collapse
Affiliation(s)
- Jigarji C. Thakor
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Diptimayee Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Megha Katare Pandey
- Department of Translational Medicine Center, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Khongthaw B, Dulta K, Chauhan PK, Kumar V, Ighalo JO. Lycopene: a therapeutic strategy against coronavirus disease 19 (COVID- 19). Inflammopharmacology 2022; 30:1955-1976. [PMID: 36050507 PMCID: PMC9436159 DOI: 10.1007/s10787-022-01061-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Lycopene is a group of phytochemicals found in nature, primarily in fruits and vegetables. Lycopene is thought to protect against a variety of diseases attributed to its antioxidant capabilities. Lycopene has anti-inflammatory, anti-cancer, and immunity-boosting qualities, among other biological and pharmacological benefits. COVID-19 (coronavirus disease 19) is an infectious disease caused by the SARS-CoV-2 virus, which has recently emerged as one of the world's leading causes of death. Patients may be asymptomatic or show signs of respiratory, cytokine release syndrome, gastrointestinal, or even multiple organ failure, all of which can lead to death. In COVID-19, inflammation, and cytokine storm are the key pathogenic mechanisms, according to SARS-CoV-2 infection symptoms. ARDS develops in some vulnerable hosts, which is accompanied by an inflammatory "cytokine syndrome" that causes lung damage. Immunological and inflammatory markers were linked to disease severity in mild and severe COVID-19 cases, implying that inflammatory markers, including IL-6, CRP, ESR, and PCT were significantly linked with COVID-19 severity. Patients with severe illness have reduced levels of several immune subsets, including CD4 + T, NK, and CD8 + cells. As a result, lycopene can be commended for bolstering physiological defenses against COVID-19 infections.
Collapse
Affiliation(s)
- Banlambhabok Khongthaw
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Kumar Chauhan
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
16
|
Al-Bashiti AI, Ahmed KA, Alqaisi KM. Relationship of inflammatory mediators and sex-related parameters in Jordanian adult men patients with Covid-19. J Med Biochem 2022; 41:474-482. [PMID: 36381078 PMCID: PMC9618331 DOI: 10.5937/jomb0-35601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/26/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Recent epidemiological data suggest that Co - ro navirus disease 2019 (COVID-19) has a gender predisposition, with men being more seriously affected than women. Furthermore, older men accounting for most deaths. Therefore, this study aimed to investigate the serum testosterone, inhibin B, intrleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a) levels in different age groups of Jordanian males with SARS-CoV2 infection and to evaluate the correlation of these markers in male patients with COVID-19. METHODS This study was performed on 157 selected individuals divided into two groups; COVID-19 patients and healthy controls. The participants of each group were further divided into two subgroups based on the age (20-50 years and 51-80 years age groups). The biochemical tests that were performed in this research are testosterone, inhibin-B, TNF-a, and IL-6. RESULTS The levels of IL-6 were significantly higher in COVID-19 patients than healthy individuals (7.63 ± 6.30 vs. 5.54 ± 2.10, P=0.006). Similarly, the difference between the levels of TNF-a in the study groups were statistically significant (P=0.001). The mean testosterone levels in COVID-19 patients and healthy controls were 1.53 ± 1.24 and 3.87 ± 1.44, respectively (P<0.001), whereas the mean inhibin B levels in COVID-19 patients (54.29 ± 7.33) were lower than in healthy controls (64.14 ± 37.66) with P = 0.011. TNF-a was significantly and positively correlated with age (r = 0.263, P=0.018) and IL-6 (r = 0.245, P=0.027). Inhibin B had a significant, but negative correlation with TNF-a (r = -0.326, P = 0.003). CONCLUSIONS It can be concluded that most men seeking medical attention with symptomatic COVID-19 had low testosterone and inhibin B levels with increased both IL-6 and TNF-a, which are independent of age conforming the deleterious effects of SARS-CoV-2 infection on testicular function and immune response induction.
Collapse
Affiliation(s)
- Amneh I. Al-Bashiti
- Al-Ahliyya Amman University, Faculty of Allied Medical Sciences, Department of Medical Laboratory Sciences, Amman, Jordan
| | - Khaled A. Ahmed
- Al-Ahliyya Amman University, Faculty of Allied Medical Sciences, Department of Medical Laboratory Sciences, Amman, Jordan
| | - Khalid M. Alqaisi
- Al-Ahliyya Amman University, Faculty of Allied Medical Sciences, Department of Medical Laboratory Sciences, Amman, Jordan
| |
Collapse
|
17
|
Zhang X, Cai J, Chen L, Yang Q, Tian H, Wu J, Ji Z, Zheng D, Li Z, Chen Y. Mapping global trends in research of stem cell therapy for COVID-19: A bibliometric analysis. Front Public Health 2022; 10:1016237. [PMID: 36311582 PMCID: PMC9614336 DOI: 10.3389/fpubh.2022.1016237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023] Open
Abstract
Over the past 2 years, the world has witnessed the devastating effects of the COVID-19 pandemic on humanity. Fortunately, stem cell therapy is widely used in clinical practice for the treatment of COVID-19 and has saved the lives of many critically ill patients. A bibliometric analysis of this field can analyze research hotspots and predict the research trends. This research analyzed documents from Web of Science between the years 2020-2022. The bibliometrics software bibliometrix, VOSviewer, and CiteSpace were used to complete the visual analysis of publications, authors, countries, documents, organizations, collaborative networks, and keywords clustering. 896 publications on COVID-19 stem cell therapy were included in the analysis, including 451 articles and 445 review articles. The field grew at the average growth rate of 103.17% between 2020 and 2021. The United States had the highest number of publications and citations. Many developing countries had also contributed significantly to the field. The journal with the most articles was Stem Cell Research and Therapy. The most cited journal was Stem Cell Reviews and Reports. The published documents were focused on five themes: "Cell Biology", "Medicine Research Experimental", "Cell Tissue Engineering", "Immunology", and "Pharmacology Pharmacy". The bibliometric analysis revealed that current clinical trials had validated stem cell therapy's remarkable potential in treating COVID-19 and its complications. It is foreseeable that future research in this area will continue to increase. With the help of bibliometric analysis, researchers can identify the current state of research and potential research hotspots.
Collapse
Affiliation(s)
- Xinkang Zhang
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jiehui Cai
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | | - Zhiyang Li
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yexi Chen
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
18
|
Singh AR, Kabirpanthi V, Sonare A, Chavan PV, Ashraf M, Shewade HD. Are we expecting too much for too long from the vaccinators? A qualitative study on perceived challenges of COVID-19 vaccinators of district Shahdol, India. J Family Med Prim Care 2022; 11:5940-5955. [PMID: 36618140 PMCID: PMC9810937 DOI: 10.4103/jfmpc.jfmpc_148_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/11/2022] Open
Abstract
Background There is a paucity of knowledge regarding challenges faced by the coronavirus disease 2019 (COVID-19) vaccinators in resource constraint settings like district Shahdol, Central India. Hence, the present study was planned to explore the perceived challenges of vaccinators regarding COVID-19 vaccination. Methods In October 2021, district health authorities conducted a one-day workshop with the auxiliary nurse midwives, staff nurses, and lady health visitors who work as vaccinators. It had three distinct but mutually connected phases. In the first phase, a free listing exercise was performed to list out their perceived challenges that are prominent and representative of their cultural domain. In the second phase, the pile-sorting exercise with the challenges mentioned in the above step was performed to produce similar data in the form of a matrix, based on a perceived similarity between them by multi-dimensional scaling analysis. In the final phase, the transcripts generated during the discussion on the free listing and pile sorting exercises was used for the thematic analysis to find plausible explanations for the findings. Result A total of 15 vaccinators took part in the workshop. In the free listing exercise, a total of 14 items were identified as perceived challenges for COVID-19 vaccinators. The three items with the highest Smith's S value were overtime duty, no holidays, and lack of monetary incentive. The analysis of pile-sorting suggested that participants clustered their 14 perceived challenges into five groups; 1) beneficiaries related, 2) vaccination schedule related, 3) lack of facilities at vaccination site, 4) lack of monetary incentive, and 5) issues related to digital data handling. Thematic analysis suggested that their main challenges were overtime duty, no monetary incentive, and lack of toilet, food, and transport facility at the session site. Conclusion Vaccinators perceive overtime duty and lack of holidays as their top two challenges and expect monetary incentives for this. The study recommends better basic amenities like toilet facility, sustained and effective community engagement, a monetary incentive, and a better ecosystem for digital data handling for the vaccinators.
Collapse
Affiliation(s)
- Akash Ranjan Singh
- Department of Community Medicine, Government Medical College Shahdol, Madhya Pradesh, India,Address for correspondence: Dr. Akash Ranjan Singh, Assistant Professor, Department of Community Medicine, Government Medical College Shahdol, Madhya Pradesh, India. E-mail:
| | - Vikrant Kabirpanthi
- Department of Community Medicine, Government Medical College Shahdol, Madhya Pradesh, India
| | - Anshuman Sonare
- District Immunization Officer, Shahdol, Madhya Pradesh, India
| | - Pragati V. Chavan
- Department of Community Medicine, Government Medical College Shahdol, Madhya Pradesh, India
| | - Mohd. Ashraf
- District Data Manager, District Health System, Shahdol, Madhya Pradesh, India
| | - Hemant D. Shewade
- Division of Health System Research, ICMR-National Institute of Epidemiology (ICMR-NIE), Chennai, Tamil Nadu, India
| |
Collapse
|
19
|
Alali NS, Alsaif SA, Alsudairi OK, Benaskar AM, Alali AH. Transmission and Cleaning Misconception During the COVID-19 Pandemic Time in Riyadh, Saudi Arabia. Cureus 2022; 14:e27757. [PMID: 36106248 PMCID: PMC9445406 DOI: 10.7759/cureus.27757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the knowledge and attitude of the public in Saudi Arabia toward the concept of surface decontamination during the COVID-19 pandemic. METHODS A cross-sectional, web-based study was conducted over six months, from February 2021 to July 2021. We included adult Saudi and non-Saudi males and females living in Riyadh, Saudi Arabia. Results: Six hundred and twenty-six responses from Saudi (92.7%) and non-Saudi (7.3%) participants with a median age of 24 years and interquartile range (IQR) of 21-29 years were received. Regarding knowledge level, 32.10% of the participants had good knowledge of respiratory virus transmission, and only 3.4% had good knowledge of decontamination products. Overall, 58.1% of the participants had a positive attitude toward decontamination products, and 28% had a negative attitude. Older participants, females, and participants who received their information from the Ministry of Health had higher odds of having a positive attitude toward disinfectant (OR = 1.022, 95% CI: 1.004 to 1.039, p = 0.013), (OR = 3.05, 95% CI: 2.08 to 4.47, p < 0.001), and (OR = 2.95, 95% CI: 1.44 to 6.05, p = 0.003), respectively. Conclusion: The current evidence suggests that the knowledge in the general population of Saudi Arabia is low regarding the transmission of COVID-19 infection and disinfectant products. The prevalence of using decontamination products and attitude toward it is average. Continuous awareness campaigns are required to increase the public's awareness toward such products to change the population's attitude and practice, improve the prevention, and reduce the spread of the infection and its related misconception.
Collapse
Affiliation(s)
- Naif S Alali
- College of Medicine, Almaarefa University, Riyadh, SAU
| | - Saad A Alsaif
- College of Medicine, Almaarefa University, Riyadh, SAU
| | | | | | - Alaa H Alali
- Infectious Diseases, King Saud Medical City, Riyadh, SAU
| |
Collapse
|
20
|
Li M, Zhu H, Liu Y, Lu Y, Sun M, Zhang Y, Shi J, Shi N, Li L, Yang K, Sun X, Liu J, Ge L, Huang L. Role of Traditional Chinese Medicine in Treating Severe or Critical COVID-19: A Systematic Review of Randomized Controlled Trials and Observational Studies. Front Pharmacol 2022; 13:926189. [PMID: 35910363 PMCID: PMC9336221 DOI: 10.3389/fphar.2022.926189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) continues to spread globally. Due to the higher risk of mortality, the treatment of severe or critical patients is a top priority. Traditional Chinese medicine (TCM) treatment has played an extremely important role in the fight against COVID-19 in China; a timely evidence summary on TCM in managing COVID-19 is crucial to update the knowledge of healthcare for better clinical management of COVID-19. This study aimed to assess the effects and safety of TCM treatments for severe/critical COVID-19 patients by systematically collecting and synthesizing evidence from randomized controlled trials (RCTs) and observational studies (e.g., cohort).Methods: We searched nine databases up to 19th March 2022 and the reference lists of relevant publications. Pairs of reviewers independently screened studies, extracted data of interest, and assessed risk of bias. We performed qualitative systematic analysis with visual presentation of results and compared the direction and distribution of effect estimates for each patient’s important outcome. We performed sensitivity analyses to observe the robustness of results by restricting analysis to studies with low risk of bias.Results: The search yielded 217,761 records, and 21 studies (6 RCTs and 15 observational studies) proved eligible. A total of 21 studies enrolled 12,981 severe/critical COVID-19 patients with a mean age of 57.21 years and a mean proportion of men of 47.91%. Compared with usual supportive treatments, the effect estimates of TCM treatments were consistent in direction, illustrating that TCM treatments could reduce the risk of mortality, rate of conversion to critical cases, and mechanical ventilation, and showed significant advantages in shortening the length of hospital stay, time to viral clearance, and symptom resolution. The results were similar when we restricted analyses to low-risk-bias studies. No serious adverse events were reported with TCM treatments, and no significant differences were observed between groups.Conclusion: Encouraging evidence suggests that TCM presents substantial advantages in treating severe/critical COVID-19 patients. TCM has a safety profile that is comparable to that of conventional treatment alone. TCMs have played an important role in China’s prevention and treatment of COVID-19, which sets an example of using traditional medicine in preventing and treating COVID-19 worldwide.
Collapse
Affiliation(s)
- Mengting Li
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Hongfei Zhu
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yafei Liu
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yao Lu
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minyao Sun
- Evidence Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, China
| | - Yuqing Zhang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- CEBIM (Center for Evidence Based Integrative Medicine)-Clarity Collaboration, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Nottingham Ningbo GRADE Center, The University of Nottingham Ningbo, Ningbo, China
| | - Jiaheng Shi
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Emergency, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Li
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- WHO Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| | - Jie Liu
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| | - Long Ge
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
- WHO Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| | - Luqi Huang
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| |
Collapse
|
21
|
Madaan S, Talwar D, Jaiswal A, Kumar S, Acharya N, Acharya S, Dewani D. Post-COVID-19 menstrual abnormalities and infertility: Repercussions of the pandemic. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2022; 11:170. [PMID: 35847136 PMCID: PMC9277727 DOI: 10.4103/jehp.jehp_1200_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 05/31/2023]
Abstract
While battling the life-threatening complications of COVID-19, its effect on the menstrual cycle and infertility has been somewhat ignored. This brief review aims on highlighting the importance of menstrual abnormalities being experienced during the post-COVID period and to make the clinicians aware about what to expect in regard of menstrual abnormalities by learning from various studies that have been conducted worldwide. This review article was written with systematic literature review with the help of data search machine such as PubMed, Scopus, Web of Sciences, and Google Scholar. A search strategy leads to the extraction of 160 related articles that after the removal of inappropriate and duplicate articles, 33 articles were selected for the review. To find other potentially relevant articles, the references of the extracted articles were thoroughly examined. The search was carried out using keywords including "COVID-19," "Menstrual abnormalities," and "Infertility." Using OR and AND, the keywords mentioned above were combined and then utilized in the search box of the databases. Articles published from January 2020 to September 2021 were included in this study. It includes worldwide data ranging from studies done in China, India, Ireland, Turkey, Jordan, and Germany. During the post-COVID period, there is a significant alteration in the sex hormones of females infected by COVID-19 which may manifest as menstrual cycle abnormalities such as decreased cycle length or prolonged menstrual cycle bleeding. It may also manifest as infertility due to ovarian failure due to suppression of ovarian function COVID-19 a novel coronavirus which is presently a pandemic has affected the world in manner reminding the world of 1918 Spanish flu. However, while battling the deadly pandemic, the clinicians should also be aware of the repercussions of the effect this infection has on multiple organs such as ovarian suppression leading to infertility, oligomenorrhea, or menorrhagia.
Collapse
Affiliation(s)
- Sparsh Madaan
- Department of Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Dhruv Talwar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Arpita Jaiswal
- Department of Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Sunil Kumar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Neema Acharya
- Department of Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Sourya Acharya
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| | - Deepika Dewani
- Department of Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, Maharashtra, India
| |
Collapse
|
22
|
Guerrero‐Preston R, Rivera‐Amill V, Caraballo K, Rodríguez‐Torres S, Purcell‐Wiltz A, García AA, Torres RS, Zamuner FT, Zanettini C, MacKay MJ, Baits R, Salgado D, Khullar G, Metti J, Baker T, Dudley J, Vale K, Pérez G, De Jesús L, Miranda Y, Ortiz D, García‐Negrón A, Viera L, Ortiz A, Canabal JA, Romaguera J, Jiménez‐Velázquez I, Marchionni L, Rodríguez‐Orengo JF, Baez A, Mason CE, Sidransky D. Precision health diagnostic and surveillance network uses S gene target failure (SGTF) combined with sequencing technologies to track emerging SARS-CoV-2 variants. Immun Inflamm Dis 2022; 10:e634. [PMID: 35634961 PMCID: PMC9092005 DOI: 10.1002/iid3.634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic revealed a worldwide lack of effective molecular surveillance networks at local, state, and national levels, which are essential to identify, monitor, and limit viral community spread. SARS-CoV-2 variants of concern (VOCs) such as Alpha and Omicron, which show increased transmissibility and immune evasion, rapidly became dominant VOCs worldwide. Our objective was to develop an evidenced-based genomic surveillance algorithm, combining reverse transcription polymerase chain reaction (RT-PCR) and sequencing technologies to quickly identify highly contagious VOCs, before cases accumulate exponentially. METHODS Deidentified data were obtained from 508,969 patients tested for coronavirus disease 2019 (COVID-19) with the TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) in four CLIA-certified clinical laboratories in Puerto Rico (n = 86,639) and in three CLIA-certified clinical laboratories in the United States (n = 422,330). RESULTS TaqPath data revealed a frequency of S Gene Target Failure (SGTF) > 47% for the last week of March 2021 in both, Puerto Rico and US laboratories. The monthly frequency of SGTF in Puerto Rico steadily increased exponentially from 4% in November 2020 to 47% in March 2021. The weekly SGTF rate in US samples was high (>8%) from late December to early January and then also increased exponentially through April (48%). The exponential increase in SGFT prevalence in Puerto Rico was concurrent with a sharp increase in VOCs among all SARS-CoV-2 sequences from Puerto Rico uploaded to Global Influenza Surveillance and Response System (GISAID) (n = 461). Alpha variant frequency increased from <1% in the last week of January 2021 to 51.5% of viral sequences from Puerto Rico collected in the last week of March 2021. CONCLUSIONS According to the proposed evidence-based algorithm, approximately 50% of all SGTF patients should be managed with VOCs self-quarantine and contact tracing protocols, while WGS confirms their lineage in genomic surveillance laboratories. Our results suggest this workflow is useful for tracking VOCs with SGTF.
Collapse
Affiliation(s)
| | - Vanessa Rivera‐Amill
- Center for Research ResourcesPonce Health Sciences University‐Ponce Research InstitutePoncePuerto Rico
| | | | | | - Ana Purcell‐Wiltz
- LifeGene‐Biomarks, IncSan JuanPuerto Rico
- Biology DepartmentUniversity of Puerto RicoRíoPiedrasPuerto Rico
| | - Andrea A. García
- Center for Research ResourcesPonce Health Sciences University‐Ponce Research InstitutePoncePuerto Rico
| | - Raphael S. Torres
- Center for Research ResourcesPonce Health Sciences University‐Ponce Research InstitutePoncePuerto Rico
| | - Fernando T. Zamuner
- Department of Otolaryngology‐Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineCornell UniversityNew YorkNew YorkUSA
| | | | | | | | | | | | | | | | | | - Gabriela Pérez
- Neurology Medicine DepartmentPalmetto General HospitalMiamiFloridaUSA
| | | | | | | | | | - Liliana Viera
- Department of SurgeryUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | - Alberto Ortiz
- Internal Medicine DepartmentUniversity of Puerto Rico School of MedicineSanJuanPuerto Rico
| | - Jorge A. Canabal
- Internal Medicine DepartmentUniversity of Puerto Rico School of MedicineSanJuanPuerto Rico
| | - Josefina Romaguera
- Obstetrics and Gynecology DepartmentUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | | | - Luigi Marchionni
- Department of Otolaryngology‐Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Adriana Baez
- Otolaryngology DepartmentUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | | | - David Sidransky
- Department of Otolaryngology‐Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
23
|
Bhuiyan TR, Akhtar M, Khaton F, Rahman SIA, Ferdous J, Alamgir A, Rahman M, Kawser Z, Hasan I, Calderwood SB, Harris JB, Charles RC, LaRocque RC, Ryan ET, Banu S, Shirin T, Qadri F. Covishield vaccine induces robust immune responses in Bangladeshi adults. IJID REGIONS 2022; 3:211-217. [PMID: 35720155 PMCID: PMC9050186 DOI: 10.1016/j.ijregi.2022.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
All participants became seropositive 2 months after receipt of the second dose of vaccine. Comparable antibody responses were observed in both males and females. Participants with previous severe acute respiratory syndrome coronavirus-2 infection showed a robust antibody response. Similar antibody responses were observed in participants with and without comorbidities.
Objective To evaluate severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific antibody responses after Covishield vaccination for 6 months after vaccination. Design SARS-CoV-2-specific antibody responses were assessed by enzyme-linked immunosorbent assay of the recombinant receptor-binding domain of SARS-CoV-2 in 381 adults given the Covishield vaccine at baseline (n=119), 1 month (n=126) and 2 months (n=75) after the first dose, 1 month after the second dose (n=161), and monthly for 3 additional months. Results Over 51% of participants were seropositive at baseline (before vaccination with Covishield), and almost all participants (159/161) became seropositive 1 month after the second dose. Antibody levels peaked 1 month after receipt of the second dose of vaccine, and decreased by 4 months after the first dose; the lowest responses were found 6 months after the first dose, although antibody responses and responder frequencies remained significantly higher compared with baseline (P<0.0001). Compared with younger participants, older participants had lower antibody responses 6 months after the first dose of vaccine (P<0.05). Participants who had previous SARS-CoV-2 infection showed robust higher antibody responses after vaccination. Conclusions These findings help to elucidate the longevity of vaccine-specific antibody responses following vaccination with Covishield, and provide information relevant to the planning of booster doses after the initial two doses of vaccine.
Collapse
Affiliation(s)
| | - Marjahan Akhtar
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Fatema Khaton
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | | | - Jannatul Ferdous
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - A.S.M. Alamgir
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Zannat Kawser
- Institute of Developing Sciences and Health Initiatives, Dhaka, Bangladesh
| | - Imrul Hasan
- Institute of Developing Sciences and Health Initiatives, Dhaka, Bangladesh
| | - Stephen Beaven Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward Thomas Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sayera Banu
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
- Corresponding author: Address: Mucosal Immunology and Vaccinology Unit, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh. Tel.: +880 (0)2 2222 77001 10, Ext. 2431.
| |
Collapse
|
24
|
Kashani NR, Azadbakht J, Ehteram H, Kashani HH, Rajabi-Moghadam H, Ahmad E, Nikzad H, Hosseini ES. Molecular and Clinical Investigation of COVID-19: From Pathogenesis and Immune Responses to Novel Diagnosis and Treatment. Front Mol Biosci 2022; 9:770775. [PMID: 35664675 PMCID: PMC9161360 DOI: 10.3389/fmolb.2022.770775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 04/04/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus-related severe acute respiratory syndrome (SARS-CoV) in 2002/2003, the Middle East respiratory syndrome (MERS-CoV) in 2012/2013, and especially the current 2019/2021 severe acute respiratory syndrome-2 (SARS-CoV-2) negatively affected the national health systems worldwide. Different SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and recently Omicron (B.1.1.529), have emerged resulting from the high rate of genetic recombination and S1-RBD/S2 mutation/deletion in the spike protein that has an impact on the virus activity. Furthermore, genetic variability in certain genes involved in the immune system might impact the level of SARS-CoV-2 recognition and immune response against the virus among different populations. Understanding the molecular mechanism and function of SARS-CoV-2 variants and their different epidemiological outcomes is a key step for effective COVID-19 treatment strategies, including antiviral drug development and vaccine designs, which can immunize people with genetic variabilities against various strains of SARS-CoV-2. In this review, we center our focus on the recent and up-to-date knowledge on SARS-CoV-2 (Alpha to Omicron) origin and evolution, structure, genetic diversity, route of transmission, pathogenesis, new diagnostic, and treatment strategies, as well as the psychological and economic impact of COVID-19 pandemic on individuals and their lives around the world.
Collapse
Affiliation(s)
- Narjes Riahi Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Ehteram
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Rajabi-Moghadam
- Department of Cardiovascular Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ejaz Ahmad
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyed Hosseini
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
25
|
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
26
|
Mohapatra RK, Kuppili S, Kumar Suvvari T, Kandi V, Behera A, Verma S, Kudrat‐E‐Zahan, Biswal SK, Al‐Noor TH, El‐ajaily MM, Sarangi A, Dhama K. SARS-CoV-2 and its variants of concern including Omicron: A never ending pandemic. Chem Biol Drug Des 2022; 99:769-788. [PMID: 35184391 PMCID: PMC9111768 DOI: 10.1111/cbdd.14035] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 is associated with high morbidity and mortality. This zoonotic virus has emerged in Wuhan of China in December 2019 from bats and pangolins probably and continuing the human-to-human transmission globally since last two years. As there is no efficient approved treatment, a number of vaccines were developed at an unprecedented speed to counter the pandemic. Moreover, vaccine hesitancy is observed that may be another possible reason for this never ending pandemic. In the meantime, several variants and mutations were identified and causing multiple waves globally. Now the safety and efficacy of these vaccines are debatable and recommended to determine whether vaccines are able to interrupt transmission of SARS-CoV-2 variant of concern (VOC). Moreover, the VOCs continue to emerge that appear more transmissible and less sensitive to virus-specific immune responses. In this overview, we have highlighted various drugs and vaccines used to counter this pandemic along with their reported side effects. Moreover, the preliminary data for the novel VOC "Omicron" are discussed with the existing animal models.
Collapse
Affiliation(s)
| | | | | | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Ajit Behera
- Department of Metallurgical & Materials EngineeringNational Institute of TechnologyRourkelaIndia
| | - Sarika Verma
- Council of Scientific and Industrial Research‐Advanced Materials and Processes Research InstituteBhopalMPIndia
- Academy of council Scientific and Industrial Research ‐ Advanced Materials and Processes Research Institute (AMPRI)BhopalMPIndia
| | - Kudrat‐E‐Zahan
- Department of ChemistryRajshahi UniversityRajshahiBangladesh
| | - Susanta K. Biswal
- Department of ChemistrySchool of Applied SciencesCenturion University of Technology and ManagementOdishaIndia
| | - Taghreed H. Al‐Noor
- Chemistry DepartmentIbn‐Al‐Haithem College of Education for Pure ScienceBaghdad UniversityBaghdadIraq
| | | | - Ashish K. Sarangi
- Department of ChemistrySchool of Applied SciencesCenturion University of Technology and ManagementOdishaIndia
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteUttar PradeshBareillyIndia
| |
Collapse
|
27
|
Brasso C, Bellino S, Blua C, Bozzatello P, Rocca P. The Impact of SARS-CoV-2 Infection on Youth Mental Health: A Narrative Review. Biomedicines 2022; 10:772. [PMID: 35453522 PMCID: PMC9031156 DOI: 10.3390/biomedicines10040772] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND COVID-19 pandemic has affected the physical health, psychological wellbeing, and mental health of the whole population. Young people are among those most at risk of developing mental health symptoms or disorders related to the pandemic. PURPOSE the present narrative review is aimed at providing an updated overview of the current literature concerning the psychological impact of the SARS-CoV-2 infection but also of the COVID-19 outbreak, environmental restriction, and social distancing on mental health outcomes among the youth population aged between 15 and 25 years. METHODS in December 2021, an electronic search on this topic was performed on PubMed. Relevant publications from January 2020 until December 2021 were included. FINDINGS 53 cross-sectional studies, 26 longitudinal studies, 4 ecological studies, 1 qualitative study, and 1 systematic review were included. We found many methodological limitations in the studies included, especially poor choice of study samples and short follow-ups. Little literature was in support of a strong relationship between SARS-CoV-2 infection and consequences on youth mental health. On the contrary, many studies showed how extraordinary measures to limit the spread of the virus have impacted young people in terms of onset of new mental disorders and symptoms, suicidality, and access to emergency psychiatric services. Depressive and anxiety symptoms and disorders show the greatest increase in incidence, especially in girls and young women. CONCLUSIONS it seems important to pay attention to the mental health of young people in relation to the consequences of the COVID-19 pandemic. However, studies with more robust methodologies and longer follow-ups are needed to establish precise indications for targeted interventions in this context.
Collapse
Affiliation(s)
- Claudio Brasso
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (S.B.); (C.B.); (P.B.); (P.R.)
| | | | | | | | | |
Collapse
|
28
|
Das D, Biswas SK, Bandyopadhyay S. Perspective of AI system for COVID-19 detection using chest images: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:21471-21501. [PMID: 35310889 PMCID: PMC8923339 DOI: 10.1007/s11042-022-11913-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/27/2021] [Accepted: 01/03/2022] [Indexed: 05/11/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is an evolving communicable disease caused due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) which has led to a global pandemic since December 2019. The virus has its origin from bat and is suspected to have transmitted to humans through zoonotic links. The disease shows dynamic symptoms, nature and reaction to the human body thereby challenging the world of medicine. Moreover, it has tremendous resemblance to viral pneumonia or Community Acquired Pneumonia (CAP). Reverse Transcription Polymerase Chain Reaction (RT-PCR) is performed for detection of COVID-19. Nevertheless, RT-PCR is not completely reliable and sometimes unavailable. Therefore, scientists and researchers have suggested analysis and examination of Computing Tomography (CT) scans and Chest X-Ray (CXR) images to identify the features of COVID-19 in patients having clinical manifestation of the disease, using expert systems deploying learning algorithms such as Machine Learning (ML) and Deep Learning (DL). The paper identifies and reviews various chest image features using the aforementioned imaging modalities for reliable and faster detection of COVID-19 than laboratory processes. The paper also reviews and compares the different aspects of ML and DL using chest images, for detection of COVID-19.
Collapse
Affiliation(s)
- Dolly Das
- Department of Computer Science and Engineering, National Institute of Technology Silchar, Assam Silchar, Cachar, India
| | - Saroj Kumar Biswas
- Department of Computer Science and Engineering, National Institute of Technology Silchar, Assam Silchar, Cachar, India
| | - Sivaji Bandyopadhyay
- Department of Computer Science and Engineering, National Institute of Technology Silchar, Assam Silchar, Cachar, India
| |
Collapse
|
29
|
Özgeris FB, Koçak ÖF, Kurt N, Parlak E, Yüce N, Keles MS. High Serum Progranulin Levels in COVID-19 Patients: A Pilot Study. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:207-214. [PMID: 35526852 PMCID: PMC8916789 DOI: 10.1134/s0006297922030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/23/2022]
Abstract
In this study, we aimed to determine whether the progranulin level in serum predicts the course and severity of the disease in COVID-19 (+) patients and whether it can be used as a biomarker in these patients. Therefore, we sampled 61 people infected with COVID-19, and the cases were divided into the following groups: asymptomatic, noncomplicated, moderate, and severe. Concentrations of progranulin, TNF-α, IL-6 from in serum obtained from all participants were measured using commercially available ELISA kits, as well as WBC, PLT, NE, LY, ALT, AST, Hb, PCT, and CRP were examined with clinical analyzer. All measurements obtained for the patient samples were compared with those of 20 healthy individuals. The serum progranulin concentration was statistically higher in the COVID-19 (+) patient group than in the control group of healthy individuals [112.6 ± 54.8, 0.0 (0.0-54.2 pg/ml, respectively p = 0.000)]. ROC analysis was performed to evaluate the progranulin potential as a biomarker for COVID-19 (+) patients. A larger AUC (0.931 ± 0.08) value and a more significant p-value for progranulin than for CRP (p = 0.000) was detected. As a result, we believe that progranulin reaches high levels in the COVID-19 disease and may be a determinant in diagnosis and prognosis, and may be a better biomarker than CRP.
Collapse
Affiliation(s)
- Fatma B Özgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, 25240 Turkey.
| | - Ömer F Koçak
- Department of Chemistry and Chemical Process Technologies, Erzurum Vocational College, Atatürk University, Erzurum, 25240 Turkey.
| | - Nezahat Kurt
- Department of Basic Medical Sciences, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, 24002 Turkey.
| | - Emine Parlak
- Department of Infection Diseases, Faculty of Medicine, Atatürk University, Erzurum, 25240 Turkey.
| | - Neslihan Yüce
- Department of Medical Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, 25240 Turkey.
| | - Mevlüt S Keles
- Department of Medical Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, 34662 Turkey.
| |
Collapse
|
30
|
Decoding the Clinical and Laboratory Parameters of COVID-19 and Dengue Co-infection. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory diseases caused by coronavirus disease 2019 (COVID-19) have caused infections around the world, and this disease has been declared a global pandemic by the World Health Organization. COVID-19 has severely impacted the world economy, and as it has multiple unnoticeable transmission routes, it can derail the health care system for a long time. Most states in India are affected by the COVID pandemic. As India is known for its seasonal infections such as dengue, leptospirosis, influenza, malaria, and enteric fever, it is expected that these infections may co-exist. Coinfection of these two viral infections causes challenges in diagnosis and treatment, especially in places with limited resources. Antibody-mediated enhancement of the immune response is a cause for concern in co-infection of COVID-19 and dengue. The present article discusses the clinical features, serological cross reactions, and antibody-dependent enhancement of COVID-19 coinfection with dengue infection.
Collapse
|
31
|
Fernandez ML, Benchetrit A, Astudillo OG, Garay AM, De Vedia L, Garcia Bournissen F, Lloveras SC, Orduna TA, Gonzalez GD. COVID-19 and Chagas Disease in Buenos Aires, Argentina. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2021.779428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2. COVID-19 leads, in most patients, to mild-to-moderate symptoms, but some develop severe disease and succumbed to death. People with medical conditions have a higher risk of death than those without them. Chagas disease (CD) can cause cardiac diseases in approximately one-third of affected people. The aim of this study is to find out if there is any clinical association between Chagas disease and COVID-19 severity. This is a cohort study of 29 patients who were hospitalized with COVID-19 and had a diagnosis of chronic Trypanosoma cruzi infection. This coinfected cohort was matched by sex, age, presence of comorbidities, and requirement of hospitalization on intensive care unit (ICU) at admission with a control cohort of patients hospitalized due to COVID-19 without CD in a 3:1 ratio (n = 87). The clinical outcomes evaluated were as follows: days of hospitalization, death, and requirement of ICU and mechanical respiratory assistance (MV). The study protocol was approved by the Institutional Ethics in Research Committee. The Chagas disease/COVID-19 coinfected cohort had a median age of 55 years old (49.0, 66.0); 17 (59%) were male. All patients survived the acute COVID-19. Three of them were admitted to the ICU, and two required MV. Twenty-two (75.8%) required supplemental oxygen. There were no statistical differences in any laboratory parameters between the groups except for lactic acid dehydrogenase, which showed higher levels in the coinfected cohort, with a median of 573 U/L (interquartile range: 486.00, 771.00) vs. 476 U/L (346.00, 641.00) in the control group (p = 0.007). There were no differences in clinical outcomes between both groups. On the cohort with Chagas disease, there were zero deaths, three (10.3%) were admitted in the ICU, and two (6.9%) required MV, while for the control group there were six deaths (6.6%), 13 required ICU (14.9%), and 11 required MV (12.6%), without a statistically significant difference. This small series of coinfected Chagas disease and COVID-19 does not suggest differences in clinical evolution compared to non-Chagas patients. This data is similar to a Brazilian cohort. More data of this population with and without cardiomyopathy is needed to optimize the follow-up and recommendation for the population affected by this neglected tropical disease about COVID-19.
Collapse
|
32
|
da Silva Torres MK, Bichara CDA, de Almeida MDNDS, Vallinoto MC, Queiroz MAF, Vallinoto IMVC, dos Santos EJM, de Carvalho CAM, Vallinoto ACR. The Complexity of SARS-CoV-2 Infection and the COVID-19 Pandemic. Front Microbiol 2022; 13:789882. [PMID: 35222327 PMCID: PMC8870622 DOI: 10.3389/fmicb.2022.789882] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the death of millions of people worldwide and thousands more infected individuals developed sequelae due to the disease of the new coronavirus of 2019 (COVID-19). The development of several studies has contributed to the knowledge about the evolution of SARS-CoV2 infection and the disease to more severe forms. Despite this information being debated in the scientific literature, many mechanisms still need to be better understood in order to control the spread of the virus and treat clinical cases of COVID-19. In this article, we carried out an extensive literature review in order to bring together, in a single article, the biological, social, genetic, diagnostic, therapeutic, immunization, and even socioeconomic aspects that impact the SAR-CoV-2 pandemic. This information gathered in this article will enable a broad and consistent reading of the main aspects related to the current pandemic.
Collapse
Affiliation(s)
- Maria Karoliny da Silva Torres
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | - Carlos David Araújo Bichara
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
- Laboratory of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Mariana Cayres Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- University Center of the State of Pará, Belém, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| | | | - Eduardo José Melo dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
- Laboratory of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Antonio Carlos R. Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém, Brazil
| |
Collapse
|
33
|
Maciaszek J, Lenart-Bugla M, Szcześniak D, Gawłowski P, Borowicz W, Misiak B, Rymaszewska J. Does Mental Health Affect the Decision to Vaccinate Against SARS-CoV-2? A Cross-Sectional Nationwide Study Before the Vaccine Campaign. Front Psychiatry 2022; 13:810529. [PMID: 35185653 PMCID: PMC8854753 DOI: 10.3389/fpsyt.2022.810529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 pandemic generated a sense of threat in the society, leading to social isolation and mental health deterioration. A great deal of hope for the development of herd immunity was placed in preventive vaccinations. The survey, performed before vaccine campaign between September 26-October 27, 2020, during the second wave of the SARS-CoV-2 pandemic in Poland with the Computer Assisted Web Interviews method. The study was partly community based and partly open to the public. Participants were invited to complete the survey using Google forms via social media (Facebook, WhatsApp). The survey was also distributed 54 times at the request of interested persons via e-mail. Total 1,043 questionnaires were assessed for eligibility and 41 were excluded (13 because of the age under 18, and 28 due to refusal to participate: non-response after sending questionnaire via e-mail). Finally 1,001 questionnaires were included to the study and statistical analysis was performed on the basis of the 1,001 responses. The questionnaire consisted of three parts: a sociodemographic survey, a questionnaire assessing the knowledge of the SARS-CoV-2 and the General Health Questionnaire-28. Participants also determined their attitude toward being vaccinated against SARS-CoV-2. The questionnaire was completed by a total of 1,001 participants: 243 people declared that they will not get vaccinated against SARS-CoV-2. Majority of people declaring the willingness to vaccinate were representatives of medical professions, suffering from chronic diseases, with higher values on the total GHQ-28 scale and the subscales: anxiety and insomnia, social dysfunction and somatic dysfunction. Loss of income, difficult access to health care, recognizing the restrictions as excessive and knowledge about COVID-19 were found as significant positive determinants of the reluctance to vaccinate. Greater readiness to vaccinate can be associated with greater certainty about its effectiveness and a hypothetical collectivist attitude. Experiencing anxiety and psychopathological symptoms are risk factors for infection, but can also be conducive to reliance on information about vaccination presented in the media. Reluctance to vaccinate may result from greater awareness of the complexity of the disease, and thus less faith in the effectiveness of vaccines.
Collapse
Affiliation(s)
- Julian Maciaszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Dorota Szcześniak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Gawłowski
- Department of Emergency Medical Service, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Borowicz
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
34
|
Kelleni MT. NSAIDs/nitazoxanide/azithromycin repurposed for COVID-19: potential mitigation of the cytokine storm interleukin-6 amplifier via immunomodulatory effects. Expert Rev Anti Infect Ther 2022; 20:17-21. [PMID: 34088250 PMCID: PMC8220441 DOI: 10.1080/14787210.2021.1939683] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/03/2021] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Mediators of immunity and inflammation are playing a crucial role in COVID-19 pathogenesis and complications as demonstrated by several genetic and clinical studies. Thus, repurposing of drugs that possess anti-inflammatory and/or immune-modulatory effects for COVID-19 is considered a rational approach. AREAS COVERED We analyze selected studies that correlated COVID-19 with dysregulated interferon and inflammatory responses while reflecting on our academic and real-life experience using non-steroidal anti-inflammatory drugs, nitazoxanide and azithromycin for management of COVID-19. Moreover, we interpret the results that suggested a potential survival benefit of low-dose aspirin and colchicine when used for COVID-19. EXPERT OPINION Nitazoxanide/azithromycin combination has been first hypothesized by the author and practiced by him and several researchers to benefit COVID-19 patients due to a potential ability to augment the natural interferon response as well as their positive immunomodulatory effects on several cytokines. Furthermore, NSAIDs, that are unfortunately currently at best of second choice after paracetamol, have been early postulated and clinically practiced by the author to prevent or ameliorate COVID-19 complications and mortality due to their anti-inflammatory and immunomodulatory properties. Finally, we repeat our previous call to adopt our observational study that used these drugs in sufficiently powered double blind randomized clinical trials.
Collapse
Affiliation(s)
- Mina T. Kelleni
- Pharmacology Department, College of Medicine, Minia University, Egypt
| |
Collapse
|
35
|
Characteristics and Outcomes of COVID-19 in Reproductive-Aged Pregnant and Non-Pregnant Women in Osaka, Japan. Int J Infect Dis 2022; 117:195-200. [PMID: 35104668 PMCID: PMC8800534 DOI: 10.1016/j.ijid.2022.01.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To describe the clinical characteristics and outcomes of reproductive-aged female patients with coronavirus disease 2019 (COVID-19). Methods We conducted a retrospective study of female patients aged 10–49 years, diagnosed with COVID-19 in Osaka, Japan, between January and November 2020. We assessed their epidemiological and clinical characteristics according to their pregnancy status. Results A total of 4,156 patients were enrolled, of whom 29 (0.7%) were pregnant. Most patients exhibited mild symptoms, and 10.8% of the cases were asymptomatic. No moderate or severe cases were observed in pregnant women, whereas only 0.1% of the nonpregnant women had severe disease at diagnosis. No clusters were observed in the pregnant patients; however, most acquired the infection from a family member. Of the 29 pregnant women, 22 (75.9%) were hospitalized; whereas among the nonpregnant women, 579 (14.0%) were hospitalized (p < 0.001). No patients were admitted to the intensive care unit, and there were no deaths among women aged 10–49 years. Conclusions Pregnant women accounted for 0.7% of the total cases of COVID-19 among women aged 10–49 years. Pregnant women were more likely to be hospitalized but generally had mild disease.
Collapse
|
36
|
Tripathi D, Sodani M, Gupta PK, Kulkarni S. Host directed therapies: COVID-19 and beyond. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100058. [PMID: 34870156 PMCID: PMC8464038 DOI: 10.1016/j.crphar.2021.100058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of SARS-CoV-2 has necessitated the development of novel, safe and effective therapeutic agents against this virus to stop the pandemic, however the development of novel antivirals may take years, hence, the best alternative available, is to repurpose the existing antiviral drugs with known safety profile in humans. After more than one year into this pandemic, global efforts have yielded the fruits and with the launch of many vaccines in the market, the world is inching towards the end of this pandemic, nonetheless, future pandemics of this magnitude or even greater cannot be denied. The preparedness against viruses of unknown origin should be maintained and the broad-spectrum antivirals with activity against range of viruses should be developed to curb future viral pandemics. The majority of antivirals developed till date are pathogen specific agents, which target critical viral pathways and lack broad spectrum activity required to target wide range of viruses. The surge in drug resistance among pathogens has rendered a compelling need to shift our focus towards host directed factors in the treatment of infectious diseases. This gains special relevance in the case of viral infections, where the pathogen encodes a handful of genes and predominantly depends on host factors for their propagation and persistence. Therefore, future antiviral drug development should focus more on targeting molecules of host pathways that are often hijacked by many viruses. Such cellular proteins of host pathways offer attractive targets for the development of broad-spectrum anticipatory antivirals. In the present article, we have reviewed the host directed therapies (HDTs) effective against viral infections with a special focus on COVID-19. This article also discusses the strategies involved in identifying novel host targets and subsequent development of broad spectrum HDTs.
Collapse
Affiliation(s)
- Devavrat Tripathi
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Megha Sodani
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pramod Kumar Gupta
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Corresponding author.
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author. Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India.
| |
Collapse
|
37
|
Fajar JK, Ilmawan M, Mamada SS, Mutiawati E, Husnah M, Yusuf H, Nainu F, Sirinam S, Keam S, Ophinni Y, Rosiello F, Fahriani M, Rosa SGV. Global prevalence of persistent neuromuscular symptoms and the possible pathomechanisms in COVID-19 recovered individuals: A systematic review and meta-analysis. NARRA J 2021; 1:e48. [PMID: 38450213 PMCID: PMC10914045 DOI: 10.52225/narra.v1i3.48] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/26/2021] [Indexed: 02/05/2023]
Abstract
This study was conducted to determine the prevalence of prolonged neuromuscular symptoms, including fatigue, anosmia, headache, myalgia, and joint pain in COVID-19 survivors hospitalized with mild, moderate, or severe infections worldwide. The search was conducted up to January 30th, 2021 using three databases (PubMed, Scopus, and Web of Science) to identify potentially eligible studies. Data on study characteristics, follow-up characteristics, and severity of COVID-19 during hospitalization were collected in accordance with PRISMA guidelines. The Newcastle-Ottawa scale was used to assess the quality of relevant articles. The estimated prevalence of specific prolonged neuromuscular symptoms and the association between COVID-19 severity and occurrence of prolonged neuromuscular symptoms was analyzed wherever appropriate. Database search yielded 4,050 articles and 22 articles were included for meta-analysis. The estimated prevalence of prolonged fatigue was recorded in 21.2% (95%CI: 11.9%- 34.8%) of 3,730 COVID-19 survivors. Persistent anosmia was recorded in 239 of 2,600 COVID-19 survivors (9.7%, 95%CI: 6.1%-15.2%). In 84 out of 2,412 COVID-19 survivors (8.9%, 95%CI: 3.2%-22.6%), prolonged headache was observed. A total of 53 out of 1,125 COVID-19 patients (5.6%, 95%CI: 2.1%-14.2%) complained of persistent myalgia even after being discharged from the hospital. The prevalence of prolonged joint pain was in 15.4% (95%CI: 8.2%-27.2%) of subjects. Due to data scarcity on COVID-19 severity and prolonged neuromuscular symptoms, association analysis could not be conducted. Widespread concern regarding long-term impacts of COVID-19 was raised after several studies reported prolonged symptoms in COVID-19 survivors. Numerous theories have been proposed to address this concern; however, as the research on this pandemic is still ongoing, no explanation is definitive yet. Therefore, follow-up studies in COVID-19 survivors after recovery from COVID-19 are warranted to determine the pathogenesis of prolonged symptoms. PROSPERO registration: CRD42021242332.
Collapse
Affiliation(s)
- Jonny K Fajar
- Brawijaya Internal Medicine Research Center, Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | - Sukamto S Mamada
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar, Indonesia
| | - Endang Mutiawati
- Department of Neurology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
| | - Milda Husnah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Hanifah Yusuf
- Department of Pharmacology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar, Indonesia
| | - Salin Sirinam
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Synat Keam
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Youdiil Ophinni
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Harvard University, Cambridge, MA, USA
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Francesco Rosiello
- Department of Public Health and Infectious Disease, Sapienza-University of Rome, Rome, Italy
| | - Marhami Fahriani
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Sandro G V Rosa
- Diretoria de Patentes, Divisão De Farmácia - Instituto Nacional Da Propriedade Industrial, Rio de Janeiro, Brasil
- Programa De Pós-Graduação Em Ciências Aplicadas a Produtos Para Saúde, Faculdade De Farmácia, Universidade Federal Fluminense, Brasil
| |
Collapse
|
38
|
Akter R, Rahman MH, Bhattacharya T, Kaushik D, Mittal V, Parashar J, Kumar K, Kabir MT, Tagde P. Novel coronavirus pathogen in humans and animals: an overview on its social impact, economic impact, and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68071-68089. [PMID: 34664166 PMCID: PMC8523003 DOI: 10.1007/s11356-021-16809-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/25/2021] [Indexed: 04/15/2023]
Abstract
In the light of thousands of infections and deaths, the World Health Organization (WHO) has declared the outbreak of coronavirus disease (COVID-19) a worldwide pandemic. It has spread to about 22 million people worldwide, with a total of 0.45 million expiries, limiting the movement of most people worldwide in the last 6 months. However, COVID-19 became the foremost health, economic, and humanitarian challenge of the twenty-first century. Measures intended to curb the pandemic of COVID-19 included travel bans, lockdowns, and social distances through shelter orders, which will further stop human activities suddenly and eventually impact the world and the national economy. The viral disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After SARS-CoV-2 virus and Middle East respiratory syndrome (MERS)-related CoV, COVID-19 is the third most significant lethal disease to humans. According to WHO, COVID-19 mortality exceeded that of SARS and MERS since COVID-19 was declared an international public health emergency. Genetic sequencing has recently established that COVID-19 is close to SARS-CoV and bat coronavirus which has not yet been recognized as the key cause of this pandemic outbreak, its transmission, and human pathogen mechanism. This review focuses on a brief introduction of novel coronavirus pathogens, including coronavirus in humans and animals, its taxonomic classification, symptoms, pathogenicity, social impact, economic impact, and potential treatment therapy for COVID-19.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213, Bangladesh.
| | - Tanima Bhattacharya
- School of Chemistry & Chemical Engineering, Hubei University, Wuhan, People's Republic of China, 430062
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal, M.P, India
| |
Collapse
|
39
|
Mohapatra RK, Dhama K, El-Arabey AA, Sarangi AK, Tiwari R, Emran TB, Azam M, Al-Resayes SI, Raval MK, Seidel V, Abdalla M. Repurposing benzimidazole and benzothiazole derivatives as potential inhibitors of SARS-CoV-2: DFT, QSAR, molecular docking, molecular dynamics simulation, and in-silico pharmacokinetic and toxicity studies. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2021; 33:101637. [PMID: 34642560 PMCID: PMC8496942 DOI: 10.1016/j.jksus.2021.101637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 05/20/2023]
Abstract
Density Functional Theory (DFT) and Quantitative Structure-Activity Relationship (QSAR) studies were performed on four benzimidazoles (compounds 1-4) and two benzothiazoles (compounds 5 and 6), previously synthesized by our group. The compounds were also investigated for their binding affinity and interactions with the SARS-CoV-2 Mpro (PDB ID: 6LU7) and the human angiotensin-converting enzyme 2 (ACE2) receptor (PDB ID: 6 M18) using a molecular docking approach. Compounds 1, 2, and 3 were found to bind with equal affinity to both targets. Compound 1 showed the highest predictive docking scores, and was further subjected to molecular dynamics (MD) simulation to explain protein stability, ligand properties, and protein-ligand interactions. All compounds were assessed for their structural, physico-chemical, pharmacokinetic, and toxicological properties. Our results suggest that the investigated compounds are potential new drug leads to target SARS-CoV-2.
Collapse
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha 758002, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ashish K Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia
| | - Saud I Al-Resayes
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia
| | - Mukesh K Raval
- Department of Chemistry, G. M. University, Sambalpur, Odisha, India
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province 250012, PR China
| |
Collapse
|
40
|
Suvvari TK, P C, Kuppili S, Kandi V, Kutikuppala LVS, Kandula VDK, Mishra S, Sarangi AK, Mohapatra RK, Dhama K. Consecutive Hits of COVID-19 in India: The Mystery of Plummeting Cases and Current Scenario. ARCHIVES OF RAZI INSTITUTE 2021; 76:1165-1174. [PMID: 35355747 PMCID: PMC8934068 DOI: 10.22092/ari.2021.356147.1791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/16/2021] [Indexed: 01/28/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19)-related pandemic has been in existence for almost 2 years now after its possible emergence from a wet market in the city of Wuhan of the Chinese mainland. Evidence of the emergence and transmission of this virus was attributed to bats and pangolins. The causative virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has rapidly spread globally, affecting humans considerably with its current death toll to be over 4.7 million out of more than 233 confirmed cases as of September 2021. The virus is constantly mutating and continuously trying to establish itself in humans by increasing its transmissibility and virulence through its numerous emerging variants. Several countries have been facing multiple waves of COVID-19 outbreaks one after the other, putting the medical and healthcare establishments under tremendous stress. Although very few drugs and vaccines have been approved for emergency use, their production capabilities need to meet the needs of a huge global population. Currently, not even a quarter of the world population is vaccinated. The situation in India has worsened during the ongoing second wave with the involvement of virus variants with a rapid and huge surge in COVID-19 cases, where the scarcity of hospital infrastructure, antiviral agents, and oxygen has led to increased deaths. Recently, increased surveillance and monitoring, strengthening of medical facilities, campaigns of awareness programs, progressive vaccination drive, and high collaborative efforts have led to limiting the surge of COVID-19 cases in India to a low level. This review outlines the global status of the pandemic with special reference to the Indian scenario.
Collapse
Affiliation(s)
- T K Suvvari
- NTR University of Health Sciences, Vijayawada, India
| | - C P
- Rungta College of Dental Sciences and Research, Bhilai, India
| | - S Kuppili
- Konaseema Institute of Medical Sciences and Research Foundation, Amalapuram, India
| | - V Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, India
| | - L V S Kutikuppala
- Konaseema Institute of Medical Sciences and Research Foundation, Amalapuram, India
| | - V D K Kandula
- GSL Medical College and General Hospital, Rajahmundry, India
| | - S Mishra
- Bioenergy Lab, School of Biotechnology, KIIT Deemed University, Bhubaneswar, India
| | - A K Sarangi
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - R K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, India
| | - K Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
41
|
Pomorska-Mól M, Turlewicz-Podbielska H, Gogulski M, Ruszkowski JJ, Kubiak M, Kuriga A, Barket P, Postrzech M. A cross-sectional retrospective study of SARS-CoV-2 seroprevalence in domestic cats, dogs and rabbits in Poland. BMC Vet Res 2021; 17:322. [PMID: 34620166 PMCID: PMC8495444 DOI: 10.1186/s12917-021-03033-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background Coronaviruses (CoVs) have long been known to cause infection in domestic and free-living birds and mammals including humans. The zoonotic origin of SARS-CoV-2 and the biological properties of CoVs, including ability to cross interspecies barriers, enable its emergence in populations of various animals, including companion animals (cats, dogs, rabbits) an area requiring further study. To date, several cases of cats and dogs positive for SARS-CoV-2 and/or specific antibodies have been described. The aim of our cross-sectional retrospective study is to determine seroprevalence of SARS-CoV-2 in domestic dog, cat and rabbit population during recent COVID-19 pandemic in Poland. Results In total, serum samples from 279 cats and 343 dogs and 29 rabbits were used in the study. The seroprevalence of SARS-CoV-2 in cats and dogs reached 1.79% (95% CI: 0.77 – 4.13) and 1.17% (95% CI 0.45 – 2.96), respectively (p ≥ 0.05). Anti- SARS-CoV-2 antibodies were detected in 5 cats (mean S/P% 106 ± 48.23) and 4 dogs (mean S/P% 78.5 ± 16.58). All 29 samples from rabbits were negative for SARS-CoV-2 antibodies. No significant gender or age differences in seroprevalence in dogs and cats (p ≥ 0.05) were found. None of the animals with anti-SARS-CoV-2 antibodies displayed respiratory or gastrointestinal signs at the time of sampling. Conclusions Our results confirmed previous findings that SARS-CoV-2 infections in companion animals occurs but are not frequent. Future serological testing of large pet population may provide a comprehensive picture of disease dynamics in companion animals.
Collapse
Affiliation(s)
- Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołynska 35, 60-637, Poznan, Poland.
| | - Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołynska 35, 60-637, Poznan, Poland
| | - Maciej Gogulski
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołynska 35, 60-637, Poznan, Poland
| | - Jakub J Ruszkowski
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animals Sciences, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznan, Poland
| | - Magdalena Kubiak
- Department of Internal Medicine and Diagnostics, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - Anna Kuriga
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołynska 35, 60-637, Poznan, Poland
| | - Przemysław Barket
- Veterinary Clinic Centrum Małych Zwierząt S.C. M. i P. Barket, Przemysl, Poland
| | | |
Collapse
|
42
|
Deng H, Yan X, Yuan L. Human genetic basis of coronavirus disease 2019. Signal Transduct Target Ther 2021; 6:344. [PMID: 34545062 PMCID: PMC8450706 DOI: 10.1038/s41392-021-00736-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in considerable morbidity and mortality worldwide. COVID-19 incidence, severity, and mortality rates differ greatly between populations, genders, ABO blood groups, human leukocyte antigen (HLA) genotypes, ethnic groups, and geographic backgrounds. This highly heterogeneous SARS-CoV-2 infection is multifactorial. Host genetic factors such as variants in the angiotensin-converting enzyme gene (ACE), the angiotensin-converting enzyme 2 gene (ACE2), the transmembrane protease serine 2 gene (TMPRSS2), along with HLA genotype, and ABO blood group help to explain individual susceptibility, severity, and outcomes of COVID-19. This review is focused on COVID-19 clinical and viral characteristics, pathogenesis, and genetic findings, with particular attention on genetic diversity and variants. The human genetic basis could provide scientific bases for disease prediction and targeted therapy to address the COVID-19 scourge.
Collapse
Affiliation(s)
- Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China.
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.
- Disease Genome Research Center, Central South University, Changsha, China.
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Xue Yan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Chaubey I, Vignesh R, Babu H, Wagoner I, Govindaraj S, Velu V. SARS-CoV-2 in Pregnant Women: Consequences of Vertical Transmission. Front Cell Infect Microbiol 2021; 11:717104. [PMID: 34568094 PMCID: PMC8458876 DOI: 10.3389/fcimb.2021.717104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ishaan Chaubey
- The Center for Advanced Studies in Science, Math, and Technology at Wheeler High School, Marietta, GA, United States
| | - Ramachandran Vignesh
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Hemalatha Babu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Isabelle Wagoner
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory Vaccine Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
44
|
Saied AA, Metwally AA, Madkhali NAB, Haque S, Dhama K. Egypt's COVID-19 Recent Happenings and Perspectives: A Mini-Review. Front Public Health 2021; 9:696082. [PMID: 34485226 PMCID: PMC8415352 DOI: 10.3389/fpubh.2021.696082] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected countries across the world. While the zoonotic aspects of SARS-CoV-2 are still under investigation, bats and pangolins are currently cited as the animal origin of the virus. Several types of vaccines against COVID-19 have been developed and are being used in vaccination drives across the world. A number of countries are experiencing second and third waves of the pandemic, which have claimed nearly four million lives out of the 180 million people infected globally as of June 2021. The emerging SARS-CoV-2 variants and mutants are posing high public health concerns owing to their rapid transmissibility, higher severity, and in some cases, ability to infect vaccinated people (vaccine breakthrough). Here in this mini-review, we specifically looked at the efforts and actions of the Egyptian government to slow down and control the spread of COVID-19. We also review the COVID-19 statistics in Egypt and the possible reasons behind the low prevalence and high case fatality rate (CFR%), comparing Egypt COVID-19 statistics with China (the epicenter of COVID-19 pandemic) and the USA, Brazil, India, Italy, and France (the first countries in which the numbers of patients infected with COVID-19). Additionally, we have summarized the SARS-CoV-2 variants, vaccines used in Egypt, and the use of medicinal plants as preventive and curative options.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, Egypt.,Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, Egypt
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | | | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Bursa Uludağ University, Faculty of Medicine, Bursa, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
45
|
Vadakedath S, Kandi V, Mohapatra RK, Pinnelli VBK, Yegurla RR, Shahapur PR, Godishala V, Natesan S, Vora KS, Sharun K, Tiwari R, Bilal M, Dhama K. Immunological aspects and gender bias during respiratory viral infections including novel Coronavirus disease-19 (COVID-19): A scoping review. J Med Virol 2021; 93:5295-5309. [PMID: 33990972 PMCID: PMC8242919 DOI: 10.1002/jmv.27081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
The human immune system is not adequately equipped to eliminate new microbes and could result in serious damage on first exposure. This is primarily attributed to the exaggerated immune response (inflammatory disease), which may prove detrimental to the host, as evidenced by SARS-CoV-2 infection. From the experiences of Novel Coronavirus Disease-19 to date, male patients are likely to suffer from high-intensity inflammation and disease severity than the female population. Hormones are considered the significant pillars of sex differences responsible for the discrepancy in immune response exhibited by males and females. Females appear to be better equipped to counter invading respiratory viral pathogens, including the novel SARS-CoV-2, than males. It can be hypothesized that females are more shielded from disease severity, probably owing to the diverse action/influence of estrogen and other sex hormones on both cellular (thymus-derived T lymphocytes) and humoral immunity (antibodies).
Collapse
Affiliation(s)
- Sabitha Vadakedath
- Department of BiochemistryPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | | | - Venkata B. K. Pinnelli
- Department of BiochemistryVydehi Institute of Medical Sciences and Research CentreBangaloreKarnatakaIndia
| | | | | | - Vikram Godishala
- Department of BiotechnologyGanapthi Degree CollegeParakalTelanganaIndia
| | - Senthilkumar Natesan
- Department of Infectious DiseasesIndian Institute of Public Health GandhinagarGanghinagarGujaratIndia
| | - Kranti S. Vora
- Department of Infectious DiseasesIndian Institute of Public Health GandhinagarGanghinagarGujaratIndia
| | - Khan Sharun
- Division of SurgeryICAR‐Indian Veterinary Research InstituteBareillyUttar PradeshIndia
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and ImmunologyCollege of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU)MathuraIndia
| | - Muhammad Bilal
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteBareillyUttar PradeshIndia
| |
Collapse
|
46
|
Wang L, Su W, Xue J, Gong X, Dai Y, Chen J, Xue L, He P, Liu Y, Tan N. Association of thrombocytopenia and infection in patients with ST-elevation myocardial infarction undergoing percutaneous coronary intervention. BMC Cardiovasc Disord 2021; 21:404. [PMID: 34418967 PMCID: PMC8379583 DOI: 10.1186/s12872-021-02210-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background The impact of thrombocytopenia on infection in patients with ST-elevation myocardial infarction (STEMI) remains poorly understood. Aims To evaluate the association between thrombocytopenia and infection in patients with STEMI. Methods Patients diagnosed with STEMI were identified from January 2010 to June 2016. The primary endpoint was in-hospital infection, and major adverse clinical events (MACE) and all-cause death were considered as secondary endpoints. Results A total of 1401 STEMI patients were enrolled and divided into two groups according to the presence (n = 186) or absence (n = 1215) of thrombocytopenia. The prevalence of in-hospital infection was significantly higher in the thrombocytopenic group (30.6% (57/186) vs. 16.2% (197/1215), p < 0.001). Prevalence of in-hospital MACE (30.1% (56/186) vs. 16.4% (199/1215), p < 0.001) and all-cause death (8.1% (15/186) vs. 3.8% (46/1215), p = 0.008) revealed an increasing trend. Multivariate analysis indicated that thrombocytopenia was independently associated with increased in-hospital infection (OR, 2.09; 95%CI 1.32–3.27; p = 0.001) and MACE (1.92; 1.27–2.87; p = 0.002), but not all-cause death (1.87; 0.88–3.78; p = 0.091). After a median follow-up of 2.85 years, thrombocytopenia was not associated with all-cause death at multivariable analysis (adjusted hazard ratio, 1.19; 95%CI 0.80–1.77; p = 0.383). Conclusions Thrombocytopenia is significantly correlated with in-hospital infection and MACE, and might be used as a prognostic tool in patients with STEMI. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02210-3.
Collapse
Affiliation(s)
- Litao Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China.,Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510100, China
| | - Weijiang Su
- Department of Cardiology, The People's Hospital of Dianbai District, Maoming, 525400, China
| | - Jinhua Xue
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Xiao Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yining Dai
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China
| | - Jiyan Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China
| | - Ling Xue
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China.,Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510100, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yuanhui Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China.
| | - Ning Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China. .,Guangdong Provincial People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510100, China. .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
47
|
Shylesh C M S, V S A, S K K, P UD. Renin-angiotensin system modulators in COVID-19 patients with hypertension: friend or foe? Clin Exp Hypertens 2021; 44:1-10. [PMID: 34414841 DOI: 10.1080/10641963.2021.1963070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: ACE2, a component of the non-classic renin-angiotensin system (RAS), acts as a functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) spike protein, which enables the entry of the virus into the host cells. Non-classical ACE2 is one of two types of ACE2 that has a protective effect on vascular and respiratory cells. RAS modulators like angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are among the first-line treatment for hypertensive patients. An upregulation in ACE2 levels with RAS modulators was observed in few preclinical studies, which raised concerns regarding possible increased infectivity among patients treated with RAS modulators.Method: For shortlisting the outcome effects, open-ended, English-restricted databases, published literature, and various clinical studies performed utilizing RAS modulators in COVID 19 patients were considered. Conclusion: Current evidence reveals no increased risk of COVID-19 infection among hypertensive patients on ACEIs/ARBs compared to other antihypertensive medications. Several studies have demonstrated no detrimental effects of RAS modulators on clinical severity, hospital/intensive care unit stay, ventilation and mortality. Hence, we can conclude that neither ARBs nor ACEIs treatment will cause any side effects or undesirable interactions in COVID-19 infected hypertensive patients.
Collapse
Affiliation(s)
- Shakhi Shylesh C M
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| | - Arya V S
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| | - Kanthlal S K
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| | - Uma Devi P
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| |
Collapse
|
48
|
Mental Health, Coping, and Social Support Among People Living with HIV in the Americas: A Comparative Study Between Argentina and the USA During the SARS-CoV-2 Pandemic. AIDS Behav 2021; 25:2391-2399. [PMID: 33630198 PMCID: PMC7905200 DOI: 10.1007/s10461-021-03201-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
The COVID-19 pandemic poses a risk to mental health and may disproportionately affect people living with HIV (PLWH). This study examined the interaction of social support and resilient coping in predicting depressive symptoms among PLWH. PLWH residing in Buenos Aires, Argentina and in Miami, Florida (US) were asked to complete an anonymous survey on the impact of COVID-19. Statistical analysis included ordinary least squares regression. A total of 1,554 participants were included. Mean age was 47.30 years; 63.70% were men. A test of three-way interaction of social support × resilient coping × study site indicated differences by site (b = −0.63, p = 0.04, 95%CI [−1.24, −0.02]). In Argentina, higher levels of social support and resilient coping were associated with lower depressive symptoms. Lower levels of social support and resilient coping were associated with higher depressive symptoms. The impact of COVID-19 on mental health illustrates the need for developing innovative strategies to support resilience and to enhance coping with stress and adversity among PLWH.
Collapse
|
49
|
Malik YS, Kumar P, Ansari MI, Hemida MG, El Zowalaty ME, Abdel-Moneim AS, Ganesh B, Salajegheh S, Natesan S, Sircar S, Safdar M, Vinodhkumar OR, Duarte PM, Patel SK, Klein J, Rahimi P, Dhama K. SARS-CoV-2 Spike Protein Extrapolation for COVID Diagnosis and Vaccine Development. Front Mol Biosci 2021; 8:607886. [PMID: 34395515 PMCID: PMC8355592 DOI: 10.3389/fmolb.2021.607886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/09/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to coronavirus disease 2019 (COVID-19) pandemic affecting nearly 71.2 million humans in more than 191 countries, with more than 1.6 million mortalities as of 12 December, 2020. The spike glycoprotein (S-protein), anchored onto the virus envelope, is the trimer of S-protein comprised of S1 and S2 domains which interacts with host cell receptors and facilitates virus-cell membrane fusion. The S1 domain comprises of a receptor binding domain (RBD) possessing an N-terminal domain and two subdomains (SD1 and SD2). Certain regions of S-protein of SARS-CoV-2 such as S2 domain and fragment of the RBD remain conserved despite the high selection pressure. These conserved regions of the S-protein are extrapolated as the potential target for developing molecular diagnostic techniques. Further, the S-protein acts as an antigenic target for different serological assay platforms for the diagnosis of COVID-19. Virus-specific IgM and IgG antibodies can be used to detect viral proteins in ELISA and lateral flow immunoassays. The S-protein of SARS-CoV-2 has very high sequence similarity to SARS-CoV-1, and the monoclonal antibodies (mAbs) against SARS-CoV-1 cross-react with S-protein of SARS-CoV-2 and neutralize its activity. Furthermore, in vitro studies have demonstrated that polyclonal antibodies targeted against the RBD of S-protein of SARS-CoV-1 can neutralize SARS-CoV-2 thus inhibiting its infectivity in permissive cell lines. Research on coronaviral S-proteins paves the way for the development of vaccines that may prevent SARS-CoV-2 infection and alleviate the current global coronavirus pandemic. However, specific neutralizing mAbs against SARS-CoV-2 are in clinical development. Therefore, neutralizing antibodies targeting SARS-CoV-2 S-protein are promising specific antiviral therapeutics for pre-and post-exposure prophylaxis and treatment of SARS-CoV-2 infection. We hereby review the approaches taken by researchers across the world to use spike gene and S-glycoprotein for the development of effective diagnostics, vaccines and therapeutics against SARA-CoV-2 infection the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Mohd Ikram Ansari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
- Department of Biosciences, Integral University, Lucknow, India
| | - Maged G. Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Hofuf, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamed E. El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ahmed S. Abdel-Moneim
- Microbiology Department, College of Medicine, Taif University, Al-Taif, Saudi Arabia
- Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Balasubramanian Ganesh
- Laboratory Division, Indian Council of Medical Research - National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, India
| | - Sina Salajegheh
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur, Pakistan
| | - O. R. Vinodhkumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Phelipe M. Duarte
- Veterinarian, Professor at the Faculty of Biological and Health Sciences, Universidade de Cuiabá, Primavera do Leste, Brazil
| | - Shailesh K. Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Jörn Klein
- Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Parastoo Rahimi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
50
|
Aydin Sayilan A, Kulakaç N, Uzun S. Burnout levels and sleep quality of COVID-19 heroes. Perspect Psychiatr Care 2021; 57:1231-1236. [PMID: 33145787 DOI: 10.1111/ppc.12678] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 01/08/2023] Open
Abstract
PURPOSE This study was carried out to determine the burnout levels and sleep quality of nurses in the coronavirus disease-2019 process. DESIGN AND METHODS The population of this descriptive and cross-sectional study consisted of all nurses working in hospitals in Turkey. FINDINGS Nurses' mean scores were compared by gender. The emotional burnout and personal achievement scores of male nurses were higher than those of female nurses. Single nurses had significantly higher emotional exhaustion and depersonalization scores than married individuals. Nurses mostly experienced emotional exhaustion, and burnout levels increased in line with insomnia. IMPLICATIONS FOR NURSING PRACTICE Nurses struggling on the frontline during the pandemic were determined to be at risk of insomnia and burnout.
Collapse
Affiliation(s)
- Aylin Aydin Sayilan
- Department of Nursing, Kırklareli University School of Health, Kirklareli, Turkey
| | - Nurşen Kulakaç
- Department of Nursing, Gümüşhane University Faculty of Health Sciences, Gümüşhane, Turkey
| | - Sevda Uzun
- Department of Nursing, Faculty of Health Sciences, Sevda UZUN, Gümüşhane University, Gümüşhane, Turkey
| |
Collapse
|