1
|
Murillo-González FE, García-Aguilar R, Limón-Pacheco J, Cabañas-Cortés MA, Elizondo G. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and kynurenine induce Parkin expression in neuroblastoma cells through different signaling pathways mediated by the aryl hydrocarbon receptor. Toxicol Lett 2024; 394:114-127. [PMID: 38437907 DOI: 10.1016/j.toxlet.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Parkin regulates protein degradation and mitophagy in dopaminergic neurons. Deficiencies in Parkin expression or function lead to cellular stress, cell degeneration, and the death of dopaminergic neurons, which promotes Parkinson's disease. In contrast, Parkin overexpression promotes neuronal survival. Therefore, the mechanisms of Parkin upregulation are crucial to understand. We describe here the molecular mechanism of AHR-mediated Parkin regulation in human SH-SY5Y neuroblastoma cells. Specifically, we report that the human Parkin gene (PRKN) is transcriptionally upregulated by the aryl hydrocarbon receptor (AHR) through two different selective ligand-dependent pathways. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a stress-inducing AHR ligand, indirectly promotes PRKN transcription by inducing ATF4 expression via TCDD-mediated endoplasmic reticulum (ER) stress. In contrast, kynurenine, a nontoxic AHR agonist, induces PRKN transcription by promoting AHR binding to the PRKN promoter without activating ER stress. Our results demonstrate that AHR activation may be a potential pharmacological pathway to induce human Parkin, but such a strategy must carefully consider the choice of AHR ligand to avoid neurotoxic side effects.
Collapse
Affiliation(s)
| | - Rosario García-Aguilar
- Departamento de Toxicología, CINVESTAV-IPN, Av. IPN 2508, Ciudad de México C.P. 07360, Mexico
| | - Jorge Limón-Pacheco
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, Ciudad de México C.P. 07360, Mexico
| | | | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, Ciudad de México C.P. 07360, Mexico.
| |
Collapse
|
2
|
Grifka-Walk HM, Jenkins BR, Kominsky DJ. Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Front Immunol 2021; 12:653208. [PMID: 34149693 PMCID: PMC8213022 DOI: 10.3389/fimmu.2021.653208] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptophan (Trp) is an essential amino acid primarily derived from the diet for use by the host for protein synthesis. The intestinal tract is lined with cells, both host and microbial, that uptake and metabolize Trp to also generate important signaling molecules. Serotonin (5-HT), kynurenine and its downstream metabolites, and to a lesser extent other neurotransmitters are generated by the host to signal onto host receptors and elicit physiological effects. 5-HT production by neurons in the CNS regulates sleep, mood, and appetite; 5-HT production in the intestinal tract by enterochromaffin cells regulates gastric motility and inflammation in the periphery. Kynurenine can signal onto the aryl hydrocarbon receptor (AHR) to elicit pleiotropic responses from several cell types including epithelial and immune cells, or can be further metabolized into bioactive molecules to influence neurodegenerative disease. There is a remarkable amount of cross-talk with the microbiome with regard to tryptophan metabolites as well. The gut microbiome can regulate the production of host tryptophan metabolites and can use dietary or recycled trp to generate bioactive metabolites themselves. Trp derivatives like indole are able to signal onto xenobiotic receptors, including AHR, to elicit tolerogenic effects. Here, we review studies that demonstrate that tryptophan represents a key intra-kingdom signaling molecule.
Collapse
Affiliation(s)
| | | | - Douglas J. Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
3
|
Gestational arsenite exposure augments hepatic tumors of C3H mice by promoting senescence in F1 and F2 offspring via different pathways. Toxicol Appl Pharmacol 2020; 408:115259. [PMID: 33010264 DOI: 10.1016/j.taap.2020.115259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Previous studies showed that gestational arsenite exposure increases incidence of hepatic tumors in the F1 and F2 male offspring in C3H mice. However, the mechanisms are largely unknown. In this study, we focused on whether cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to tumor formation in C3H mice, and whether gestational arsenite exposure augments hepatic tumors through enhancement of cellular senescence. Three senescence markers (p16, p21 and p15) and two SASP factors (Cxcl1 and Mmp14) were increased in hepatic tumor tissues of 74- or 100-weeks-old C3H mice without arsenite exposure, and treatment with a senolytic drug (ABT-263) diminished hepatic tumor formation. Gestational arsenite exposure enhanced the expression of p16, p21 and Mmp14 in F1 and p15 and Cxcl1 in F2, respectively. Exploring the mechanisms by which arsenite exposure promotes cellular senescence, we found that the expression of antioxidant enzymes (Sod1 and Cat) were reduced in the tumors of F1 in the arsenite group, and Tgf-β and the receptors of Tgf-β were increased in the tumors of F2 in the arsenite group. Furthermore, the analysis of the Cancer Genome Atlas database showed that gene expression levels of the senescence markers and SASP factors were increased and associated with poor prognosis in human hepatocellular carcinoma (HCC). These results suggest that cellular senescence and SASP have important roles in hepatic tumorigenesis in C3H mice as well as HCC in humans, and gestational arsenite exposure of C3H mice enhances senescence in F1 and F2 via oxidative stress and Tgf-β activation, respectively.
Collapse
|
4
|
Okamura K, Nakabayashi K, Kawai T, Suzuki T, Sano T, Hata K, Nohara K. DNA methylation changes involved in the tumor increase in F2 males born to gestationally arsenite-exposed F1 male mice. Cancer Sci 2019; 110:2629-2642. [PMID: 31215104 PMCID: PMC6676110 DOI: 10.1111/cas.14104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 01/08/2023] Open
Abstract
Multigenerational adverse effects from the environment such as nutrition and chemicals are among important concerns in environmental health issues. Previously, we have found that arsenite exposure of only F0 females during their pregnancy increases hepatic tumors in the F2 males in C3H mice. In the current study, we investigated the association of DNA methylation with the hepatic tumor increase in the F2 males of the arsenite group. Reduced-representation bisulfite sequencing analysis newly identified that DNA methylation levels of regions around the transcriptional start sites of Tmem54 and Cd74 were decreased and the expression of these genes were significantly increased in the hepatic tumors of F2 males of the arsenite group. The associations between DNA methylation in these regions and gene expression changes were confirmed by treatment of murine hepatoma cell lines and hepatic stellate cell line with 5-aza-2'-deoxycytidine. Overexpression of Cd74 in Hepa1c1c7 cells increased Trib3 expression and suppressed the expression of tumor suppressor genes Id3 and Atoh8. Human database analysis using the Cancer Genome Atlas indicated that TMEM54, CD74, and TRIB3 were significantly increased and that ATOH8 was decreased in hepatocellular carcinoma. The data also showed that high expression of TMEM54 and TRIB3 and low expression of ATOH8 were associated with poor survival. These results suggested that an increase in Tmem54 and Cd74 expression via DNA methylation reduction was involved in the tumor increase in the F2 male offspring by gestational arsenite exposure of F0 females. This study also suggested that genes downstream of Cd74 were involved in tumorigenesis.
Collapse
Affiliation(s)
- Kazuyuki Okamura
- Center for Health and Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Kazuhiko Nakabayashi
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentSetagaya, TokyoJapan
| | - Tomoko Kawai
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentSetagaya, TokyoJapan
| | - Takehiro Suzuki
- Center for Health and Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Tomoharu Sano
- Center for Environmental Measurement and AnalysisNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Kenichiro Hata
- Department of Maternal‐Fetal BiologyNational Research Institute for Child Health and DevelopmentSetagaya, TokyoJapan
| | - Keiko Nohara
- Center for Health and Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaIbarakiJapan
| |
Collapse
|
5
|
Matsushita J, Okamura K, Nakabayashi K, Suzuki T, Horibe Y, Kawai T, Sakurai T, Yamashita S, Higami Y, Ichihara G, Hata K, Nohara K. The DNA methylation profile of liver tumors in C3H mice and identification of differentially methylated regions involved in the regulation of tumorigenic genes. BMC Cancer 2018; 18:317. [PMID: 29566670 PMCID: PMC5865360 DOI: 10.1186/s12885-018-4221-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Background C3H mice have been frequently used in cancer studies as animal models of spontaneous liver tumors and chemically induced hepatocellular carcinoma (HCC). Epigenetic modifications, including DNA methylation, are among pivotal control mechanisms of gene expression leading to carcinogenesis. Although information on somatic mutations in liver tumors of C3H mice is available, epigenetic aspects are yet to be clarified. Methods We performed next generation sequencing-based analysis of DNA methylation and microarray analysis of gene expression to explore genes regulated by DNA methylation in spontaneous liver tumors of C3H mice. Overlaying these data, we selected cancer-related genes whose expressions are inversely correlated with DNA methylation levels in the associated differentially methylated regions (DMRs) located around transcription start sites (TSSs) (promoter DMRs). We further assessed mutuality of the selected genes for expression and DNA methylation in human HCC using the Cancer Genome Atlas (TCGA) database. Results We obtained data on genome-wide DNA methylation profiles in the normal and tumor livers of C3H mice. We identified promoter DMRs of genes which are reported to be related to cancer and whose expressions are inversely correlated with the DNA methylation, including Mst1r, Slpi and Extl1. The association between DNA methylation and gene expression was confirmed using a DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) in Hepa1c1c7 cells and Hepa1-6 cells. Overexpression of Mst1r in Hepa1c1c7 cells illuminated a novel downstream pathway via IL-33 upregulation. Database search indicated that gene expressions of Mst1r and Slpi are upregulated and the TSS upstream regions are hypomethylated also in human HCC. These results suggest that DMRs, including those of Mst1r and Slpi, are involved in liver tumorigenesis in C3H mice, and also possibly in human HCC. Conclusions Our study clarified genome wide DNA methylation landscape of C3H mice. The data provide useful information for further epigenetic studies of mice models of HCC. The present study particularly proposed novel DNA methylation-regulated pathways for Mst1r and Slpi, which may be applied not only to mouse HCC but also to human HCC. Electronic supplementary material The online version of this article (10.1186/s12885-018-4221-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junya Matsushita
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan.,Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Yu Horibe
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Toshihiro Sakurai
- Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | | | - Yoshikazu Higami
- Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Gaku Ichihara
- Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan.
| |
Collapse
|
6
|
Jacob A, Potin S, Chapy H, Crete D, Glacial F, Ganeshamoorthy K, Couraud PO, Scherrmann JM, Declèves X. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure. Brain Res 2015; 1613:27-36. [DOI: 10.1016/j.brainres.2015.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/16/2015] [Accepted: 03/24/2015] [Indexed: 01/28/2023]
|
7
|
Kalaiselvan I, Samuthirapandi M, Govindaraju A, Sheeja Malar D, Kasi PD. Olive oil and its phenolic compounds (hydroxytyrosol and tyrosol) ameliorated TCDD-induced heptotoxicity in rats via inhibition of oxidative stress and apoptosis. PHARMACEUTICAL BIOLOGY 2015; 54:338-346. [PMID: 25955957 DOI: 10.3109/13880209.2015.1042980] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Naturally occurring polyphenols including olive oil (OO) and its constituents hydroxytyrosol (HT) and tyrosol (TY), consumed in the Mediterranean diet, have shown to treat various ailments due to their remarkable antioxidant properties. OBJECTIVE The present study investigates the hepatoprotective effects of OO and its phenolic compounds HT and TY against TCDD-induced hepatotoxicity in male Wistar rats. MATERIALS AND METHODS TCDD was administered at a dose of 100 ng/kg p.o. for 20 d. Administration of OO (10 ml/kg; oral), HT (0.5 mg/kg; oral), and TY (30 mg/kg; i.p) was started 5 d prior to TCDD administration, and continued for 25 d with or without TCDD administration. At the end of the experiment (25 d), blood was taken for biochemical analyses and liver for the measurement of macromolecular damages, antioxidant status, expressions of CYP1A1, and apoptotic factors. RESULTS TCDD administration resulted in significant (p < 0.05) increase in the level of hepatic stress markers ALT (101.6 ± 3.07 IU/l), AST (295.0 ± 3.0 IU/l), and ALP (266.66 ± 3.7 IU/l). Also, biochemical analyses of liver reported elevation in nitrite and protein carbonyl content and depletion of NQO1 and HO. However, OO, HT, and TY restored the antioxidant status. Protein expressions by Western Blot technique showed an increase in the level of CYP1A1 and Bax and a decreased level of Bcl-2 on TCDD treatment, and vice versa on OO, HT, and TY treatment. DISCUSSION AND CONCLUSION Our work concludes that dietary supplementation of OO, HT, and TY could serve as a potential preventive drug for TCDD-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ilavarasi Kalaiselvan
- a Department of Biotechnology , Alagappa University , Karaikudi , Tamil Nadu , India and
| | - Muniasamy Samuthirapandi
- b Department of Animal Science , Bharathidasan University , Tiruchirappalli , Tamil Nadu , India
| | - Archunan Govindaraju
- b Department of Animal Science , Bharathidasan University , Tiruchirappalli , Tamil Nadu , India
| | - Dicson Sheeja Malar
- a Department of Biotechnology , Alagappa University , Karaikudi , Tamil Nadu , India and
| | - Pandima Devi Kasi
- a Department of Biotechnology , Alagappa University , Karaikudi , Tamil Nadu , India and
| |
Collapse
|
8
|
Nohara K, Okamura K, Suzuki T, Murai H, Ito T, Shinjo K, Takumi S, Michikawa T, Kondo Y, Hata K. Augmenting effects of gestational arsenite exposure of C3H mice on the hepatic tumors of the F₂ male offspring via the F₁ male offspring. J Appl Toxicol 2015; 36:105-12. [PMID: 25825268 DOI: 10.1002/jat.3149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 02/06/2023]
Abstract
Gestational exposure can affect the F2 generation through exposure of F1 germline cells. Previous studies reported that arsenite exposure of only F0 females during their pregnancy increases hepatic tumors in the F1 males in C3H mice, whose males are predisposed spontaneously to develop hepatic tumors later in life. The present study addressed the effects of gestational arsenite exposure on tumorigenesis of the F2 males in C3H mice. Expression analysis of several genes in the normal livers at 53 and 80 weeks of age clearly showed significant changes in the F2 males obtained by crossing gestational arsenite-exposed F1 (arsenite-F1) males and females compared to the control F2 males. Some of the changes were shown to occur in a late-onset manner. Then the tumor incidence was assessed at 75-82 weeks of age in the F2 males obtained by reciprocal crossing between the control and arsenite-F1 males and females. The results demonstrated that the F2 males born to arsenite-F1 males developed tumors at a significantly higher rate than the F2 males born to the control F1 males, irrespective of exposure of F1 females. Gene expressions of hepatocellular carcinoma markers β-catenin (CTNNB1) and interleukin-1 receptor antagonist in the tumors were significantly upregulated in the F2 males born to arsenite-F1 males compared to those born to the control F1 males. These results show that arsenite exposure of only F0 pregnant mice causes late-onset changes and augments tumors in the livers of the F2 males by affecting the F1 male offspring.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, Japan
| | - Kazuyuki Okamura
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takehiro Suzuki
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hikari Murai
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Keiko Shinjo
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shota Takumi
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takehiro Michikawa
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, Japan
| | - Yutaka Kondo
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
9
|
Long-term arsenite exposure induces premature senescence in B cell lymphoma A20 cells. Arch Toxicol 2015; 90:793-803. [PMID: 25787150 DOI: 10.1007/s00204-015-1500-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 03/05/2015] [Indexed: 12/29/2022]
Abstract
Chronic arsenite exposure induces immunosuppression, but the precise mechanisms remain elusive. Our previous studies demonstrated that arsenite exposure for 24 h induces G0/G1 arrest in mouse B lymphoma A20 cells and the arrest is caused through induction of cyclin-dependent kinase inhibitor p16(INK4a) followed by accumulation of an Rb family protein, p130. In this study, we further investigated the consequences of long-term arsenite exposure of A20 cells. The results demonstrated that exposure to 10 μM sodium arsenite up to 14 days induces a great increase in G0/G1 arrest, irreversible cell growth suppression, cellular morphological changes and positive staining for senescence-associated β-galactosidase. The long-term arsenite exposure also induced up-regulation of p16(INK4a) followed by robust accumulation of p130 and activation of the p53 pathway. Knockdown experiments with siRNA showed that p130 accumulation is essential for cell cycle arrest by long-term arsenite exposure. Since p16(INK4a) and the p53 pathway are known to be activated by DNA damage, we investigated the involvement of DNA damage formation by long-term arsenite exposure. We found that a variety of DNA repair-related genes were significantly down-regulated from 24 h of arsenite exposure and activation-induced cytidine deaminase was greatly up-regulated after long-term arsenite exposure. Consistent with these findings, long-term arsenite exposure increased a DNA double-strand break marker, γ-H2AX and increased mutation frequency in a Bcl6 gene region. These results revealed that long-term arsenite exposure induces premature senescence through DNA damage increase and p130 accumulation in lymphoid cells.
Collapse
|
10
|
Takumi S, Okamura K, Yanagisawa H, Sano T, Kobayashi Y, Nohara K. The effect of a methyl-deficient diet on the global DNA methylation and the DNA methylation regulatory pathways. J Appl Toxicol 2015; 35:1550-6. [PMID: 25690533 DOI: 10.1002/jat.3117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/14/2014] [Accepted: 12/12/2014] [Indexed: 12/30/2022]
Abstract
Methyl-deficient diets are known to induce various liver disorders, in which DNA methylation changes are implicated. Recent studies have clarified the existence of the active DNA demethylation pathways that start with oxidization of 5-methylcytosine (5meC) to 5-hydroxymethylcytosine by ten-eleven translocation (Tet) enzymes, followed by the action of base-excision-repair pathways. Here, we investigated the effects of a methionine-choline-deficient (MCD) diet on the hepatic DNA methylation of mice by precisely quantifying 5meC using a liquid chromatography-electrospray ionization-mass spectrometry and by investigating the regulatory pathways, including DNA demethylation. Although feeding the MCD diet for 1 week induced hepatic steatosis and lower level of the methyl donor S-adenosylmethionine, it did not cause a significant reduction in the 5meC content. On the other hand, the MCD diet significantly upregulated the gene expression of the Tet enzymes, Tet2 and Tet3, and the base-excision-repair enzymes, thymine DNA glycosylase and apurinic/apyrimidinic-endonuclease 1. At the same time, the gene expression of DNA methyltransferase 1 and a, was also significantly increased by the MCD diet. These results suggest that the DNA methylation level is precisely regulated even when dietary methyl donors are restricted. Methyl-deficient diets are well known to induce oxidative stress and the oxidative-stress-induced DNA damage, 8-hydroxy-2'-deoxyguanosine (8OHdG), is reported to inhibit DNA methylation. In this study, we also clarified that the increase in 8OHdG number per DNA by the MCD diet is approximately 10 000 times smaller than the reduction in 5meC number, suggesting the contribution of 8OHdG formation to DNA methylation would not be significant.
Collapse
Affiliation(s)
- Shota Takumi
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.,Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kazuyuki Okamura
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Yayoi Kobayashi
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Keiko Nohara
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| |
Collapse
|
11
|
Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev 2015; 67:259-79. [PMID: 25657351 DOI: 10.1124/pr.114.009001] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.
Collapse
Affiliation(s)
- Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| | - Agneta Rannug
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| |
Collapse
|
12
|
In vivo mutagenicity of arsenite in the livers of gpt delta transgenic mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 760:42-7. [PMID: 24333349 DOI: 10.1016/j.mrgentox.2013.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/09/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023]
Abstract
While arsenic has been classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC), its mutagenicity has not been fully characterized in experimental animals. The aim of this study was to assess the in vivo mutagenicity of arsenite in C57BL/6J gpt delta mice. Male gpt delta mice were given drinking water containing sodium arsenite for 3 weeks, and the hepatic genome was assayed for mutations 2 weeks later. The gpt mutation assays showed a significant increase in mutation frequency in the liver following arsenite exposure. Sequence analysis revealed that 67% of mutations detected are G:C to A:T transitions and 5% are G:C to T:A transversions in the control group, and arsenite exposure resulted in a markedly higher rate of G:C to T:A transversions (46% of mutations detected). G:C to T:A transversions have been reported to be induced following formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a representative product that results from oxidative DNA damage. We also detected a significant increase in 8-OHdG in the livers of the mice exposed to arsenite. These results demonstrate that arsenite has mutagenicity in vivo and suggest that arsenite induces G:C to T:A transversions through oxidative-stress-induced 8-OHdG formation.
Collapse
|
13
|
Suzuki T, Yamashita S, Ushijima T, Takumi S, Sano T, Michikawa T, Nohara K. Genome-wide analysis of DNA methylation changes induced by gestational arsenic exposure in liver tumors. Cancer Sci 2013; 104:1575-85. [PMID: 24118411 DOI: 10.1111/cas.12298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/23/2013] [Accepted: 09/28/2013] [Indexed: 12/30/2022] Open
Abstract
Inorganic arsenic is known to be a human carcinogen. Previous studies have reported that DNA methylation changes are involved in arsenic-induced carcinogenesis, therefore, DNA methylation changes that are specific to arsenic-induced tumors would be useful to distinguish tumors induced by arsenic from tumors caused by other factors and to dissect arsenic carcinogenesis. Previous studies have shown that gestational arsenic exposure of C3H mice, which tend to spontaneously develop liver tumors, increases the incidence of tumors in male offspring. In this study we used the same experimental protocol as in those previous studies and searched for DNA regions where methylation status was specifically altered in the liver tumors of arsenic-exposed offspring by using methylated DNA immunoprecipitation-CpG island microarrays. The methylation levels of the DNA regions selected were measured by quantitative methylation-specific PCR and bisulfite sequencing. The results of this study clarified a number of regions where DNA methylation status was altered in the liver tumors in the C3H mice compared to normal liver tissues. Among such regions, we showed that a gene body region of the oncogene Fosb underwent alteration in DNA methylation by gestational arsenic exposure. We also showed that Fosb expression significantly increased corresponding to the DNA methylation level of the gene body in the arsenic-exposed group. These findings suggest that the DNA methylation status can be used to identify tumors increased by gestational arsenic exposure.
Collapse
Affiliation(s)
- Takehiro Suzuki
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Okamura K, Miki D, Nohara K. Inorganic arsenic exposure induces E2F-dependent G0/G1 arrest via an increase in retinoblastoma family protein p130 in B-cell lymphoma A20 cells. Genes Cells 2013; 18:839-49. [PMID: 23890198 DOI: 10.1111/gtc.12079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/27/2013] [Indexed: 11/29/2022]
Abstract
Inorganic arsenic exerts toxic effect on multiple systems including the immune system. We previously showed in a study on mouse thymocytes and B-cell lymphoma A20 cells that arsenite induces cell cycle arrest at G0/G1 by suppressing expression of E2F-target genes. In this study, we furthermore investigated the involvement of retinoblastoma (RB) family proteins in E2F-dependent cell cycle arrest by arsenite. Arsenite exposure of A20 cells was showed to increase the protein level of p130, a RB family member, without changing the mRNA level. Suppression of arsenite-induced p130 by siRNA reduced the G0/G1 phase, indicating that p130 accumulation is responsible for arsenite-induced G0/G1 arrest. The accumulated p130 was shown to increase the p130 complex with E2F4, a transcription-suppressing E2F. Comparison by Western blotting of arsenite-induced p130 and p130 accumulated by a proteasome inhibitor suggested that arsenite-induced p130 is hypophosphorylated and hypoubiquitinated and refractory to proteasome-dependent degradation. We also showed that arsenite increases mRNA and protein of p16(INK4a), an inhibitor of CDK4/6 that phosphorylates p130. Down-regulation of arsenite-induced p16(INK4a) by siRNA suppressed the p130 accumulation. We propose a novel mechanism in which arsenite inhibits phosphorylation/ubiquitin-dependent proteasome degradation of p130 by inducing p16(INK4a) and the accumulated p130 causes cell cycle arrest with E2F4.
Collapse
Affiliation(s)
- Kazuyuki Okamura
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
| | | | | |
Collapse
|
15
|
Girolami F, Spalenza V, Carletti M, Sacchi P, Rasero R, Nebbia C. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 450-451:7-12. [PMID: 23454571 DOI: 10.1016/j.scitotenv.2013.01.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 06/01/2023]
Abstract
Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes.
Collapse
Affiliation(s)
- Flavia Girolami
- Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Maekawa F, Shimba S, Takumi S, Sano T, Suzuki T, Bao J, Ohwada M, Ehara T, Ogawa Y, Nohara K. Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork. Epigenetics 2012; 7:1046-56. [PMID: 22847467 PMCID: PMC3515014 DOI: 10.4161/epi.21539] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
DNA methyltransferase 3B (DNMT3B) is critically involved in de novo DNA methylation and genomic stability, while the regulatory mechanism in liver is largely unknown. We previously reported that diurnal variation occurs in the mRNA expression of Dnmt3b in adult mouse liver. The aim of this study was to determine the mechanism underlying the diurnal expression pattern. The highest level and the lowest level of Dnmt3b mRNA expression were confirmed to occur at dawn and in the afternoon, respectively, and the expression pattern of Dnmt3b closely coincided with that of Bmal1. Since the diurnal pattern of Dnmt3b mRNA expression developed at weaning and scheduled feeding to separate the feeding cycle from the light/dark cycle led to a phase-shift in the expression, it could be assumed that feeding plays a critical role as an entrainment signal. In liver-specific Bmal1 knockout (L-Bmal1 KO) mice, L-Bmal1 deficiency resulted in significantly higher levels of Dnmt3b at all measured time points, and the time when the expression was the lowest in wild-type mice was shifted to earlier. Investigation of global DNA methylation revealed a temporal decrease of 5-methyl-cytosine percentage in the genome of wild-type mice in late afternoon. By contrast, no such decrease in 5-methyl-cytosine percentage was detected in L-Bmal1 KO mice, suggesting that altered Dnmt3b expression affects the DNA methylation state. Taken together, the results suggest that the feeding and hepatic clockwork generated by the clock genes, including Bmal1, regulate the diurnal variation in Dnmt3b mRNA expression and the consequent dynamic changes in global DNA methylation.
Collapse
Affiliation(s)
- Fumihiko Maekawa
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba, Japan
| | - Shigeki Shimba
- Department of Health Science; School of Pharmacy; Nihon University; Funabashi, Japan
| | - Shota Takumi
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis; National Institute for Environmental Studies; Tsukuba, Japan
| | - Takehiro Suzuki
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba, Japan
| | - Jinhua Bao
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba, Japan
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan
| | - Mika Ohwada
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba, Japan
| | - Tatsuya Ehara
- Department of Molecular Endocrinology and Metabolism; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo, Japan
| | - Keiko Nohara
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba, Japan
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan
| |
Collapse
|
17
|
Suzuki T, Nohara K. Long-term arsenic exposure induces histone H3 Lys9 dimethylation without altering DNA methylation in the promoter region of p16INK4aand down-regulates its expression in the liver of mice. J Appl Toxicol 2012; 33:951-8. [DOI: 10.1002/jat.2765] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/18/2012] [Accepted: 03/18/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Takehiro Suzuki
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba; 305-8506; Japan
| | - Keiko Nohara
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba; 305-8506; Japan
| |
Collapse
|
18
|
Nohara K, Tateishi Y, Suzuki T, Okamura K, Murai H, Takumi S, Maekawa F, Nishimura N, Kobori M, Ito T. Late-onset Increases in Oxidative Stress and Other Tumorigenic Activities and Tumors With a Ha-ras Mutation in the Liver of Adult Male C3H Mice Gestationally Exposed to Arsenic. Toxicol Sci 2012; 129:293-304. [DOI: 10.1093/toxsci/kfs203] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
19
|
Gene expression and inducibility of the aryl hydrocarbon receptor-dependent pathway in cultured bovine blood lymphocytes. Toxicol Lett 2011; 206:204-9. [PMID: 21803134 DOI: 10.1016/j.toxlet.2011.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 11/22/2022]
Abstract
The exposure to dioxin-like (DL) compounds, an important class of persistent environmental pollutants, results in the altered expression of target genes. This occurs through the binding to the aryl hydrocarbon receptor (AhR), the subsequent dimerization with the AhR nuclear translocator (ARNT), and the binding of the complex to DNA responsive elements. A number of genes are up-regulated, including, among others, the AhR repressor (AHRR) and several biotransformation enzymes, such as the members of CYP1 family and NAD(P)H-quinone oxidoreductase (NOQ1). The expression and the inducibility of the above genes were investigated in mitogen-stimulated cultured blood lymphocytes from cattle, which represent a notable source of DL-compound human exposure through dairy products and meat. As assessed by real-time PCR, all the examined genes except CYP1A2 and NQO1 were detected under basal conditions. Cell exposure to the DL-compounds PCB126 or PCB77 in the 10(-6)-10(-9)M concentration range resulted in a 2-4-fold induction of CYPIA1 and CYP1B1, which was antagonized by α-naphthoflavone or PCB153. This study demonstrates for the first time the presence and inducibility of the AhR pathway in easily accessible cells like bovine peripheral lymphocytes and prompts further investigations to verify whether similar changes could occur under in vivo conditions.
Collapse
|
20
|
Spalenza V, Girolami F, Bevilacqua C, Riondato F, Rasero R, Nebbia C, Sacchi P, Martin P. Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes. Vet J 2010; 189:278-83. [PMID: 21169039 DOI: 10.1016/j.tvjl.2010.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/16/2010] [Accepted: 11/15/2010] [Indexed: 11/19/2022]
Abstract
Gene expression studies in blood cells, particularly lymphocytes, are useful for monitoring potential exposure to toxicants or environmental pollutants in humans and livestock species. Quantitative PCR is the method of choice for obtaining accurate quantification of mRNA transcripts although variations in the amount of starting material, enzymatic efficiency, and the presence of inhibitors can lead to evaluation errors. As a result, normalization of data is of crucial importance. The most common approach is the use of endogenous reference genes as an internal control, whose expression should ideally not vary among individuals and under different experimental conditions. The accurate selection of reference genes is therefore an important step in interpreting quantitative PCR studies. Since no systematic investigation in bovine lymphocytes has been performed, the aim of the present study was to assess the expression stability of seven candidate reference genes in circulating lymphocytes collected from 15 dairy cows. Following the characterization by flow cytometric analysis of the cell populations obtained from blood through a density gradient procedure, three popular softwares were used to evaluate the gene expression data. The results showed that two genes are sufficient for normalization of quantitative PCR studies in cattle lymphocytes and that YWAHZ, S24 and PPIA are the most stable genes.
Collapse
Affiliation(s)
- Veronica Spalenza
- Department of Animal Production, Epidemiology and Ecology, University of Turin, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Global DNA methylation in the mouse liver is affected by methyl deficiency and arsenic in a sex-dependent manner. Arch Toxicol 2010; 85:653-61. [PMID: 20978746 DOI: 10.1007/s00204-010-0611-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/07/2010] [Indexed: 12/30/2022]
Abstract
Arsenic, a carcinogen, is assumed to induce global DNA hypomethylation by consuming the universal methyl donor S-adenosylmethionine (SAM) in the body. A previous study reported that a methyl-deficient diet (MDD) with arsenic intake greatly reduced global DNA methylation (the content of 5-methylcytosine) in the liver of male C57BL/6 mice. In the present study, we investigated the DNA methylation level, SAM content, and expression of DNA methyltransferases (DNMTs) in the liver of male and female C57BL/6 mice fed a methyl-sufficient diet (MSD), an MDD, or an MDD + arsenic. The DNA methylation level was accurately determined by measuring the content of genomic 5-methyldeoxycytidine (5medC) by high-performance liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) using stable-isotope-labeled 5medC and deoxycytidine (dC) as internal standards. The results of this study revealed that while the MDD and arsenic tended to reduce the genomic 5meC content in the male mice livers, the MDD + arsenic significantly increased the 5meC content in the female mice livers. Another unexpected finding was the small differences in 5meC content among the groups. The MDD and MDD + arsenic suppressed DNMT1 expression only in the male mice livers. In contrast, SAM content was reduced by the MDD and MDD + arsenic only in the livers of female mice, showing that the changes in 5meC content were not attributable to SAM content. The sex-dependent changes in 5meC content induced by methyl deficiency and arsenic may be involved in differences in male and female susceptibility to diseases via epigenetic modification of physiological functions.
Collapse
|
22
|
Lu H, Crawford RB, Suarez-Martinez JE, Kaplan BLF, Kaminski NE. Induction of the aryl hydrocarbon receptor-responsive genes and modulation of the immunoglobulin M response by 2,3,7,8-tetrachlorodibenzo-p-dioxin in primary human B cells. Toxicol Sci 2010; 118:86-97. [PMID: 20702590 DOI: 10.1093/toxsci/kfq234] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Past studies in rodent models identified the suppression of primary humoral immune responses as one of the most sensitive sequela associated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Yet, the sensitivity of humoral immunity to TCDD in humans represents an important toxicological data gap. Therefore, the objectives of this investigation were two-fold. The first was to assess the induction of known aryl hydrocarbon receptor (AHR)-responsive genes in primary human B cells as a measure of early biological responses to TCDD. The second was to evaluate the direct effect of TCDD on CD40 ligand-induced immunoglobulin M (IgM) secretion by human primary B cells. The effects of TCDD on induction of AHR-responsive genes and suppression of the IgM response were also compared with B cells from a TCDD-responsive mouse strain, C57BL/6. AHR-responsive genes in human B cells exhibited slower kinetics and reduced magnitude of induction by TCDD when compared with mouse B cells. Evaluation of B-cell function from 12 donors identified two general phenotypes; the majority of donors exhibited similar sensitivity to suppression by TCDD of the IgM response as mouse B cells, which was not attributable to decreased B-cell proliferation. In a minority of donors, no suppression of the IgM response by TCDD was observed. Although donor-to-donor variation in sensitivity to TCDD was observed, human B cells from the majority of donors evaluated showed impairment of effector function by TCDD. Collectively, data presented in this series of studies demonstrate that TCDD impairs the humoral immunity of humans by directly targeting B cells.
Collapse
Affiliation(s)
- Haitian Lu
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
23
|
Saurabh K, Sharma A, Yadav S, Parmar D. Polycyclic aromatic hydrocarbon metabolizing cytochrome P450s in freshly prepared uncultured rat blood lymphocytes. Biochem Pharmacol 2009; 79:1182-8. [PMID: 19951702 DOI: 10.1016/j.bcp.2009.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 11/17/2022]
Abstract
In an attempt to develop blood lymphocyte cytochrome P450 expression profile as a surrogate to monitor tissue enzyme, the present study aimed to identify the expression and regulation of polycyclic aromatic hydrocarbons (PAHs) responsive CYPs in freshly prepared rat blood lymphocytes. Semi-quantitative and RT-PCR studies demonstrated constitutive and inducible mRNA expression of CYP1A1, 1A2, 1B1 isoenzymes and the associated transcription factors, aryl hydrocarbon receptor (AhR) and AhR translocator (ARNT) in blood lymphocytes. Absolute quantification using RT-PCR revealed several fold lower basal expression of CYP1A1, 1A2 and 1B1 in lymphocytes when compared to the liver. However, significant increase in the mRNA expression of these isoenzymes as well as AhR and ARNT in lymphocytes following pretreatment with 3-methylcholanthrene (MC) have demonstrated that responsiveness is retained in the blood lymphocytes, though the magnitude of increase is several fold lower when compared to liver. This increase in the mRNA expression was found to be associated with an increase in the protein expression of CYP1A1 and 1A2 in blood lymphocytes. Further, CYPs expressed in blood lymphocytes catalysed the O-dealkylation of 7-ethoxy- and 7-methoxyresorufins (ER or MR), though the reactivity was several fold lower in lymphocytes when compared to the liver enzyme. Our data providing quantitative evidence for similarities in the regulation of PAH-regulated CYP in uncultured and non-mitogen stimulated blood lymphocytes with the liver enzyme has led us to suggest that blood lymphocytes could be used as a surrogate to monitor tissue expression of CYPs.
Collapse
Affiliation(s)
- Kumar Saurabh
- Indian Institute of Toxicology Research, Lucknow, U.P., India
| | | | | | | |
Collapse
|
24
|
Flaveny CA, Murray IA, Chiaro CR, Perdew GH. Ligand selectivity and gene regulation by the human aryl hydrocarbon receptor in transgenic mice. Mol Pharmacol 2009; 75:1412-20. [PMID: 19299563 PMCID: PMC2684888 DOI: 10.1124/mol.109.054825] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 03/19/2009] [Indexed: 11/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that displays interspecies differences with the human and mouse AHR C-terminal region sequences sharing only 58% amino acid sequence identity. Compared with the mouse AHR (mAHR), the human AHR (hAHR) displays approximately 10-fold lower relative affinity for prototypical AHR ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, which has been attributed to the amino acid residue valine 381 (alanine 375 in the mAHR) in the ligand binding domain of the hAHR. We investigated whether the 10-fold difference in ligand-binding affinity between the mAHR and hAHR would be observed with a diverse range of AHR ligands. To test this hypothesis, ligand binding assays were performed using the photo-affinity ligand 2-azido-3-[(125)I]iodo-7,8-dibromodibenzo-p-dioxin and liver cytosol isolated from hepatocyte-specific transgenic hAHR mice and C57BL/6J mice. It is noteworthy that competitive ligand-binding assays revealed that, compared with the mAHR, the hAHR has a higher relative affinity for certain compounds, including indirubin [(2Z)-2,3-biindole-2,3 (1'H,1'H)-dione and quercetin (2-(3,4dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one]. Electrophoretic mobility shift assays revealed that indirubin was more efficient at transforming the hAHR compared with the mAHR. Indirubin was also a more potent inducer of Cyp1a1 expression in transgenic hAHR mouse hepatocytes compared with C57BL/6J mouse hepatocytes. These observations suggest that indirubin is a potent hAHR ligand that is able to selectively bind to and activate the hAHR. These discoveries imply that there may be a significant degree of structural divergence between mAHR and hAHR ligands and highlights the importance of the hAHR transgenic mouse as a model to study the hAHR in vivo.
Collapse
Affiliation(s)
- Colin A Flaveny
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences, the Pennsylvania State University, 16802, USA
| | | | | | | |
Collapse
|
25
|
Flaveny CA, Perdew GH. Transgenic Humanized AHR Mouse Reveals Differences between Human and Mouse AHR Ligand Selectivity. MOLECULAR AND CELLULAR PHARMACOLOGY 2009; 1:119-123. [PMID: 20419055 PMCID: PMC2858462 DOI: 10.4255/mcpharmacol.09.15] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Aryl-hydrocarbon receptor (AHR) is a ligand activated transcription factor involved in xenobiotic metabolism. Most of the toxic effects of halogenated and non-halogenated polycyclic aromatic hydrocarbons (HAHs and PAHs respectively) are mediated by the AHR. For the AHR, a number of intra and interspecies differences exist in terms of responsiveness to the prototypical AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Interspecies differences in AHR ligand binding affinity has been shown to be linked to contrasting TCDD tolerance between species and among inbred strains of mice expressing different AHR alleles. Compared to the human AHR (hAHR), the mouse AHR(b) (mAHR(b)) has a ~10 fold higher affinity for typical AHR ligands. Using a transgenic humanized mouse model that expresses hAHR protein specifically in the liver, we have discovered that for certain ligands, such as indirubin, the hAHR exhibits higher relative ligand binding affinity and responsiveness compared to the mAHR(b). These findings may potentially influence the ongoing search for endogenous hAHR ligands and expand our understanding of the unique physiological role of the hAHR.
Collapse
Affiliation(s)
- Colin A Flaveny
- Center for Molecular Toxicology and Carcinogenesis and the Department of Veterinary and Biomedical Sciences, the Pennsylvania State University, University Park, Pennsylvania
| | | |
Collapse
|
26
|
Ao K, Suzuki T, Murai H, Matsumoto M, Nagai H, Miyamoto Y, Tohyama C, Nohara K. Comparison of immunotoxicity among tetrachloro-, pentachloro-, tetrabromo- and pentabromo-dibenzo-p-dioxins in mice. Toxicology 2008; 256:25-31. [PMID: 19041680 DOI: 10.1016/j.tox.2008.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/31/2008] [Accepted: 10/31/2008] [Indexed: 11/28/2022]
Abstract
There is concern about the growing environmental levels of brominated dioxins. Brominated dioxins are known to bind and activate the transcription factor aryl hydrocarbon receptor (AhR), as their chlorinated congeners do. However, data on the potency of brominated dioxins for immunotoxicity in vivo is largely lacking, even though the immune system is a vulnerable target for dioxins. In this study, we investigated the immunotoxic effects on mice of the brominated dioxins, 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) and 1,2,3,7,8-pentabromodibenzo-p-dioxin (PeBDD), in comparison with those of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), the two most toxic chlorinated dioxins, to gain insight into the potency of brominated dioxins for immunotoxicity. C57BL/6 mice were dosed with the dioxins and immunized with ovalbumin (OVA), and several endpoints that sensitively detect immunotoxicity were investigated, including IL-5 production by the splenocytes. The results of the present study demonstrated that TCDD and TBDD show identical effects on a per weight basis at 1.0-10mug/kg for all the endpoints examined. PeCDD also showed effects similar to those of TCDD. On the other hand, PeBDD showed somewhat dose-independent effects and was more potent at a lower dose and less potent at a higher dose than PeCDD. Dose-dependent linearity of PeBDD-induced induction of CYP1A1, an AhR target gene, was also less clear in the spleen than in the liver. These results have provided valuable data for estimating the potency of brominated dioxins for immunotoxicity.
Collapse
Affiliation(s)
- Kana Ao
- National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rowe JM, Welsh C, Pena RN, Wolf CR, Brown K, Whitelaw CBA. Illuminating role of CYP1A1 in skin function. J Invest Dermatol 2008; 128:1866-8. [PMID: 18185528 DOI: 10.1038/sj.jid.5701236] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Nakayama A, Riesen I, Köllner B, Eppler E, Segner H. Surface Marker-Defined Head Kidney Granulocytes and B Lymphocytes of Rainbow Trout Express Benzo[a]pyrene-Inducible Cytochrome P4501A Protein. Toxicol Sci 2008; 103:86-96. [DOI: 10.1093/toxsci/kfn024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Yoshizawa K, Heatherly A, Malarkey DE, Walker NJ, Nyska A. A critical comparison of murine pathology and epidemiological data of TCDD, PCB126, and PeCDF. Toxicol Pathol 2007; 35:865-79. [PMID: 18098033 PMCID: PMC2623249 DOI: 10.1080/01926230701618516] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, or dioxin) and dioxin-like compounds (DLCs) induce numerous toxicities, including developmental, endocrine, immunological, and multi-organ carcinogenic, in animals and/or humans. Multiple studies completed by the National Toxicology Program (NTP) focused on the effects caused in Harlan Sprague-Dawley rats by specific DLCs, among them the prototypical dioxin, TCDD. Because humans are exposed daily to a combination of DLCs, primarily via ingestion of food, the Toxic Equivalency Factor (TEF) was developed in order to evaluate health hazards caused by these mixtures. Herein we review the pathological effects reported in humans exposed to TCDD; 3,3',4,4',5-pentachlorobiphenyl (PCB 126); and 2,3,4,7,8,-pentachlorodibenzofuran (PeCDF) and compare them to similar changes seen in NTP murine studies performed with the same compounds. While there were differences in specific pathologies observed, clear consistency in the target organs affected (liver, oral cavity, cardiovascular system, immune system, thyroid, pancreas, and lung) could be seen in both human studies and rodent toxicity and carcinogenicity investigations.
Collapse
Affiliation(s)
- Katsuhiko Yoshizawa
- Toxicologic Pathology, Drug Safety Research Laboratories, Astellas Pharma Inc., Yodogawa, Osaka 532-8514, Japan
- Pathology II, Kansai Medical University, Moriguch, Osaka 570-8506, Japan
| | - Allison Heatherly
- Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina 27709, USA
| | - David E. Malarkey
- Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina 27709, USA
| | - Nigel J. Walker
- Environmental Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
30
|
Nohara K, Ao K, Miyamoto Y, Suzuki T, Imaizumi S, Tateishi Y, Omura S, Tohyama C, Kobayashi T. Arsenite-Induced Thymus Atrophy is Mediated by Cell Cycle Arrest: A Characteristic Downregulation of E2F-Related Genes Revealed by a Microarray Approach. Toxicol Sci 2007; 101:226-38. [DOI: 10.1093/toxsci/kfm268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|