1
|
Zhang H, Feng J, Wang D, Tang B, Xu C, Ye T. Total Synthesis and Stereochemical Assignment of Alternapyrone. Molecules 2025; 30:1597. [PMID: 40286202 PMCID: PMC11990127 DOI: 10.3390/molecules30071597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Alternapyrone, a bioactive polyketide produced by the fungal host Aspergillus oryzae, is biosynthesized by a polyketide synthase encoded by the alt1-5 gene cluster. Despite its known bioactivity, the stereochemical configuration of the three stereogenic centers in its polyketide backbone has remained unresolved. In this study, we determined the complete stereostructure of alternapyrone using an integrative approach that combines predictive, rule-based stereochemical analysis with experimental validation through total synthesis. The efficient total synthesis enabled the precise assignment of the hypothesized stereochemistry by matching the synthetic product to the natural compound. This comprehensive study conclusively established the absolute configuration of alternapyrone.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (H.Z.); (J.F.)
| | - Jiaxuan Feng
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (H.Z.); (J.F.)
| | - Di Wang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China; (D.W.); (B.T.)
| | - Bencan Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China; (D.W.); (B.T.)
| | - Chao Xu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (H.Z.); (J.F.)
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (H.Z.); (J.F.)
| |
Collapse
|
2
|
Bouhoudan A, Bakkach J, Khaddor M, Mourabit N. Anticancer Effect of Mycotoxins From Penicillium aurantiogriseum: Exploration of Natural Product Potential. Int J Microbiol 2024; 2024:5553860. [PMID: 39669001 PMCID: PMC11637627 DOI: 10.1155/ijm/5553860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
Research into biologically natural substances with antitumor properties, known for their potential to induce fewer side effects and exhibit specificity toward cancerous cells, remains imperative. The pressing demand for novel agents in cancer therapy underscores the intensive investigation of natural products from microorganisms. Penicillium aurantiogriseum, frequently isolated from food and feed, emerges as a promising candidate against pathogenic bacteria and fungi. This species harbors numerous mycotoxins that warrant extensive clinical study due to their potential in cancer treatment. Identifying mycotoxins with anticancer properties produced by P. aurantiogriseum could unveil novel therapeutic targets and enrich the pharmacological landscape. This review provides a comprehensive overview of the utilization of P. aurantiogriseum mycotoxins in cancer research and elucidates therapeutic agents' advantages and limitations. P. aurantiogriseum produces at least 15 mycotoxins with potent anticancer effects mediated through diverse mechanisms, including enzyme inhibition (e.g., pseurotin), induction of apoptosis (e.g., auranthine, aurantiamides A, aurantiomides A-C, penicillic acid, penitrem, verrucisidinol, acetate verrucosidinol, and chaetoglobosin A), and cell-cycle arrest (e.g., anicequol, aurantiamine, and Taxol). Although certain mycotoxins, such as Taxol, Anacin, and Compactin, are used in commerce, many others remain relatively unexplored. The mycotoxins derived from P. aurantiogriseum hold considerable potential for cancer treatment, offering novel therapeutic avenues and enhancing current treatments through synergistic combinations and advanced delivery systems.
Collapse
Affiliation(s)
- Assia Bouhoudan
- Department of Biology, Laboratory of Research and Development in Engineering Sciences, Faculty of Sciences and Techniques of Al-Hoceima, Abdelmalek Essaadi University, Tetouan 93000, Al-Hoceima, Morocco
| | - Joaira Bakkach
- Department of Biology, Higher Institute of Nursing Professions and Health Techniques of Tetouan, Al-Hoceima 93000, Morocco
| | - Mustapha Khaddor
- Regional Center for Careers Education and Training of Tangier, Tangier 90000, Morocco
| | - Nadira Mourabit
- Department of Biology, Laboratory of Research and Development in Engineering Sciences, Faculty of Sciences and Techniques of Al-Hoceima, Abdelmalek Essaadi University, Tetouan 93000, Al-Hoceima, Morocco
| |
Collapse
|
3
|
Zhou B, Tong Q, Zang Y, Zhu H. Two new α-pyrone-containing polyketides isolated from the fungus Aspergillus aureoterreus. Nat Prod Res 2023; 37:3207-3213. [PMID: 35412412 DOI: 10.1080/14786419.2022.2062753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Two undescribed α-pyrone-containing polyketide derivatives designated aurovertins V (1) and W (2), and a known analogue (3), were isolated from the fungus Aspergillus aureoterreus. Their structures including the absolute configuration were elucidated on the basis of extensive spectroscopic methods and theoretical ECD calculation. Compound 1 is the first example of aurovertins with a 7R configuration, whereas 2 comprises a S configuration for C-6 and a Z geometry of the double bond Δ8. Both 1 and 2 showed no cytotoxicity against human cancer cell lines HL-60, SU-DHL-2 and U266) at the concentration of 20.0 μM.
Collapse
Affiliation(s)
- Beiping Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Agricultural Microbiomics and Precision Application-Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingyi Tong
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zang
- Key Laboratory of Agricultural Microbiomics and Precision Application-Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghui Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Agricultural Microbiomics and Precision Application-Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Li YH, Mándi A, Li HL, Li XM, Li X, Meng LH, Yang SQ, Shi XS, Kurtán T, Wang BG. Isolation and characterization of three pairs of verrucosidin epimers from the marine sediment-derived fungus Penicillium cyclopium and configuration revision of penicyrone A and related analogues. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:223-231. [PMID: 37275535 PMCID: PMC10232390 DOI: 10.1007/s42995-023-00173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/27/2023] [Indexed: 06/07/2023]
Abstract
Verrucosidins, a methylated α-pyrone class of polyketides rarely reported upon, have been implicated in one or more neurological diseases. Despite the significance of verrucosidins as neurotoxins, the absolute configurations of most of the derivatives have not been accurately characterized yet. In this study, three pairs of C-9 epimeric verrucosidin derivatives, including the known compounds penicyrones A and B (1a/1b) and 9-O-methylpenicyrones A and B (2a/2b), the new compounds 9-O-ethylpenicyrones A and B (3a/3b), together with the related known derivative verrucosidin (4), were isolated and identified from the culture extract of Penicillium cyclopium SD-413, which was obtained from the marine sediment collected from the East China sea. Their structures were established based on an in-depth analysis of nuclear magnetic resonances (NMR) and mass spectroscopic data. Determination of the absolute configurations of these compounds was accomplished by Mosher's method and time-dependent density functional theory (TDDFT) calculations of electronic circular dichroism (ECD) and optical rotation (OR). The configurational assignment of penicyrone A demonstrated that the previously reported C-6 absolute configuration of verrucosidin derivatives needs to be revised from (6S) to (6R). The 9R/9S epimers of compounds 1-3 were found to exhibit growth inhibition against some pathogenic bacteria, indicating that they have potential as lead compounds for the creation of antimicrobial agents. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00173-2.
Collapse
Affiliation(s)
- Yan-He Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- School of Marine Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032 Hungary
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Xiao-Shan Shi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032 Hungary
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- School of Marine Science, University of Chinese Academy of Sciences, Beijing, 100049 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| |
Collapse
|
5
|
Rabot C, Chen Y, Bijlani S, Chiang Y, Oakley CE, Oakley BR, Williams TJ, Wang CCC. Conversion of Polyethylenes into Fungal Secondary Metabolites. Angew Chem Int Ed Engl 2023; 62:e202214609. [PMID: 36417558 PMCID: PMC10100090 DOI: 10.1002/anie.202214609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Waste plastics represent major environmental and economic burdens due to their ubiquity, slow breakdown rates, and inadequacy of current recycling routes. Polyethylenes are particularly problematic, because they lack robust recycling approaches despite being the most abundant plastics in use today. We report a novel chemical and biological approach for the rapid conversion of polyethylenes into structurally complex and pharmacologically active compounds. We present conditions for aerobic, catalytic digestion of polyethylenes collected from post-consumer and oceanic waste streams, creating carboxylic diacids that can then be used as a carbon source by the fungus Aspergillus nidulans. As a proof of principle, we have engineered strains of A. nidulans to synthesize the fungal secondary metabolites asperbenzaldehyde, citreoviridin, and mutilin when grown on these digestion products. This hybrid approach considerably expands the range of products to which polyethylenes can be upcycled.
Collapse
Affiliation(s)
- Chris Rabot
- Department of Pharmacology & Pharmaceutical SciencesUniversity of Southern California1985 Zonal AveLos AngelesCA 90033USA
| | - Yuhao Chen
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of ChemistryUniversity of Southern California837 Bloom WalkLos AngelesCA 90089USA
- Wrigley Institute for Environmental StudiesUniversity of Southern California3454 Trousdale ParkwayLos AngelesCA 90089USA
| | - Swati Bijlani
- Department of Pharmacology & Pharmaceutical SciencesUniversity of Southern California1985 Zonal AveLos AngelesCA 90033USA
| | - Yi‐Ming Chiang
- Department of Pharmacology & Pharmaceutical SciencesUniversity of Southern California1985 Zonal AveLos AngelesCA 90033USA
| | - C. Elizabeth Oakley
- Department of Molecular BiosciencesUniversity of Kansas1200 Sunnyside AvenueLawrenceKS 66045USA
| | - Berl R. Oakley
- Department of Molecular BiosciencesUniversity of Kansas1200 Sunnyside AvenueLawrenceKS 66045USA
| | - Travis J. Williams
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of ChemistryUniversity of Southern California837 Bloom WalkLos AngelesCA 90089USA
- Wrigley Institute for Environmental StudiesUniversity of Southern California3454 Trousdale ParkwayLos AngelesCA 90089USA
| | - Clay C. C. Wang
- Department of Pharmacology & Pharmaceutical SciencesUniversity of Southern California1985 Zonal AveLos AngelesCA 90033USA
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of ChemistryUniversity of Southern California837 Bloom WalkLos AngelesCA 90089USA
- Wrigley Institute for Environmental StudiesUniversity of Southern California3454 Trousdale ParkwayLos AngelesCA 90089USA
| |
Collapse
|
6
|
Exploring Verrucosidin Derivatives with Glucose-Uptake-Stimulatory Activity from Penicillium cellarum Using MS/MS-Based Molecular Networking. J Fungi (Basel) 2022; 8:jof8020143. [PMID: 35205896 PMCID: PMC8878765 DOI: 10.3390/jof8020143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Under the guidance of LC-MS/MS-based molecular networking, seven new verrucosidin derivatives, penicicellarusins A-G (3–9), were isolated together with three known analogues from the fungus Penicillium cellarum. The structures of the new compounds were determined by a combination of NMR, mass and electronic circular dichroism spectral data analysis. The absolute configuration of penicyrone A (10) was corrected based on X-ray diffraction analyses. Bioactivity screening indicated that compounds 1, 2, and 4 showed much stronger promising hypoglycemic activity than the positive drug (rosiglitazone) in the range of 25–100 μM, which represents a potential new class of hypoglycemic agents. Preliminary structure-activity relationship analysis indicates that the formation of epoxy ring on C6-C7 in the structures is important for the glucose uptake-stimulating activity. The gene cluster for the biosynthesis of 1–12 is identified by sequencing the genome of P. cellarum and similarity analysis with the gene cluster of verrucosidins in P. polonicum.
Collapse
|
7
|
Valente S, Piombo E, Schroeckh V, Meloni GR, Heinekamp T, Brakhage AA, Spadaro D. CRISPR-Cas9-Based Discovery of the Verrucosidin Biosynthesis Gene Cluster in Penicillium polonicum. Front Microbiol 2021; 12:660871. [PMID: 34093475 PMCID: PMC8176439 DOI: 10.3389/fmicb.2021.660871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
Penicillium polonicum, commonly found on food matrices, is a mycotoxigenic species able to produce a neurotoxin called verrucosidin. This methylated α-pyrone polyketide inhibits oxidative phosphorylation in mitochondria and thereby causes neurological diseases. Despite the importance of verrucosidin as a toxin, its biosynthetic genes have not been characterized yet. By similarity analysis with the polyketide synthase (PKS) genes for the α-pyrones aurovertin (AurA) and citreoviridin (CtvA), 16 PKS genes for putative α-pyrones were identified in the P. polonicum genome. A single PKS gene, verA, was found to be transcribed under verrucosidin-producing growth conditions. The annotated functions of the genes neighboring verA correspond to those required for verrucosidin biosynthesis. To prove the involvement of verA in verrucosidin biosynthesis, the clustered regularly interspaced short palindrome repeats (CRISPR) technology was applied to P. polonicum. In vitro reconstituted CRISPR-Cas9 was used to induce targeted gene deletions in P. polonicum. This approach allowed identifying and characterizing the verrucosidin biosynthetic gene cluster. VerA deletion mutants were no longer able to produce verrucosidin, whereas they were displaying morphological characteristics comparable with the wild-type strain. The available CRISPR-Cas9 technology allows characterizing the biosynthetic potential of P. polonicum as a valuable source of novel compounds.
Collapse
Affiliation(s)
- Silvia Valente
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Edoardo Piombo
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Giovanna Roberta Meloni
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - Davide Spadaro
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| |
Collapse
|
8
|
Otero C, Arredondo C, Echeverría-Vega A, Gordillo-Fuenzalida F. Penicillium spp. mycotoxins found in food and feed and their health effects. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by fungi. These compounds have different structures and target different organs, acting at different steps of biological processes inside the cell. Around 32 mycotoxins have been identified in fungal Penicillium spp. isolated from food and feed. Some of these species are important pathogens which contaminate food, such as maize, cereals, soybeans, sorghum, peanuts, among others. These microorganisms can be present in different steps of the food production process, such as plant growth, harvest, drying, elaboration, transport, and packaging. Although some Penicillium spp. are pathogens, some of them are used in elaboration of processed foods, such as cheese and sausages. This review summarises the Penicillium spp. mycotoxin toxicity, focusing mainly on the subgenus Penicillium, frequently found in food and feed. Toxicity is reviewed both in animal models and cultured cells. Finally, some aspects of their regulations are discussed.
Collapse
Affiliation(s)
- C. Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago, Chile
| | - C. Arredondo
- Laboratorio de Neuroepigenética, Instituto de Ciencias Biomédicas (ICB), Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago, Chile
| | - A. Echeverría-Vega
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - F. Gordillo-Fuenzalida
- Centro de Biotecnología de los Recursos Naturales (CENBIO), Laboratorio de Microbiología Aplicada, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca, Chile
| |
Collapse
|
9
|
Park HR. Pancastatin A and B Have Selective Cytotoxicity on Glucose-Deprived PANC-1 Human Pancreatic Cancer Cells. J Microbiol Biotechnol 2020; 30:733-738. [PMID: 32482939 PMCID: PMC9728248 DOI: 10.4014/jmb.2002.02002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Glucose deprivation and hypoxia frequently occur in solid tumor cells, including pancreatic cancer cells. Glucose deprivation activates the unfolded protein response (UPR) and causes the upregulation of glucose-regulated protein 78 (GRP78). Induction of GRP78 has been shown to protect cancer cells. Therefore, shutting down of GRP78 expression may be a novel strategy in anticancer drug development. Based on this understanding, a screening system established for anticancer agents that exhibit selective cytotoxicity on pancreatic cancer cells under glucose-deprived conditions. To test this hypothesis, the new compounds isolated, pancastatin A (PST-A) and B (PSTB), from Ponciri Fructus. PST-A and B were identified as glabretal triterpenoid moieties by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopic methods. PST-A and B suppressed the accumulation of the UPR hallmark gene, GRP78, during glucose deprivation. Furthermore, PST-A and B showed selective cytotoxicity on PANC-1 pancreatic cancer cells under glucose deprivation. Interestingly, PST-A and B had no effect on these cells under normal growth conditions. Our results suggest that PST-A and B act as novel therapeutic agents to induce selective cell death in glucose-deprived pancreatic cancer cells.
Collapse
Affiliation(s)
- Hae-Ryong Park
- School of Bioconvergence, Kyungnam University, Changwon 51767, Republic of Korea
| |
Collapse
|
10
|
Yan B, Wang H, Tan Y, Fu W. microRNAs in Cardiovascular Disease: Small Molecules but Big Roles. Curr Top Med Chem 2019; 19:1918-1947. [PMID: 31393249 DOI: 10.2174/1568026619666190808160241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Abstract
microRNAs (miRNAs) are an evolutionarily conserved class of small single-stranded noncoding RNAs. The aberrant expression of specific miRNAs has been implicated in the development and progression of diverse cardiovascular diseases. For many decades, miRNA therapeutics has flourished, taking advantage of the fact that miRNAs can modulate gene expression and control cellular phenotypes at the posttranscriptional level. Genetic replacement or knockdown of target miRNAs by chemical molecules, referred to as miRNA mimics or inhibitors, has been used to reverse their abnormal expression as well as their adverse biological effects in vitro and in vivo in an effort to fully implement the therapeutic potential of miRNA-targeting treatment. However, the limitations of the chemical structure and delivery systems are hindering progress towards clinical translation. Here, we focus on the regulatory mechanisms and therapeutic trials of several representative miRNAs in the context of specific cardiovascular diseases; from this basic perspective, we evaluate chemical modifications and delivery vectors of miRNA-based chemical molecules and consider the underlying challenges of miRNA therapeutics as well as the clinical perspectives on their applications.
Collapse
Affiliation(s)
- Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
11
|
Moradi-Marjaneh R, Paseban M, Moradi Marjaneh M. Hsp70 inhibitors: Implications for the treatment of colorectal cancer. IUBMB Life 2019; 71:1834-1845. [PMID: 31441584 DOI: 10.1002/iub.2157] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world. Despite intensive advances in diagnosis and treatment of CRC, it is yet one of the leading cause of cancer related morbidity and mortality. Therefore, there is an urgent medical need for alternative therapeutic approaches to treat CRC. The 70 kDa heat shock proteins (Hsp70s) are a family of evolutionary conserved heat shock proteins, which play an important role in cell homeostasis and survival. They overexpress in various types of malignancy including CRC and are typically accompanied with poor prognosis. Hence, inhibition of Hsp70 may be considered as a striking chemotherapeutic avenue. This review summarizes the current knowledge on the progress made so far to discover compounds, which target the Hsp70 family, with particular emphasis on their efficacy in treatment of CRC. We also briefly explain the induction of Hsp70 as a strategy to prevent CRC.
Collapse
Affiliation(s)
| | - Maryam Paseban
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Moradi Marjaneh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Zhang G, Wang X, Gillette TG, Deng Y, Wang ZV. Unfolded Protein Response as a Therapeutic Target in Cardiovascular Disease. Curr Top Med Chem 2019; 19:1902-1917. [PMID: 31109279 PMCID: PMC7024549 DOI: 10.2174/1568026619666190521093049] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Despite overwhelming socioeconomic impact and mounting clinical needs, our understanding of the underlying pathophysiology remains incomplete. Multiple forms of cardiovascular disease involve an acute or chronic disturbance in cardiac myocytes, which may lead to potent activation of the Unfolded Protein Response (UPR), a cellular adaptive reaction to accommodate protein-folding stress. Accumulation of unfolded or misfolded proteins in the Endoplasmic Reticulum (ER) elicits three signaling branches of the UPR, which otherwise remain quiescent. This ER stress response then transiently suppresses global protein translation, augments production of protein-folding chaperones, and enhances ER-associated protein degradation, with an aim to restore cellular homeostasis. Ample evidence has established that the UPR is strongly induced in heart disease. Recently, the mechanisms of action and multiple pharmacological means to favorably modulate the UPR are emerging to curb the initiation and progression of cardiovascular disease. Here, we review the current understanding of the UPR in cardiovascular disease and discuss existing therapeutic explorations and future directions.
Collapse
Affiliation(s)
- Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
13
|
Li H, Hu J, Wei H, Solomon PS, Vuong D, Lacey E, Stubbs KA, Piggott AM, Chooi YH. Chemical Ecogenomics-Guided Discovery of Phytotoxic α-Pyrones from the Fungal Wheat Pathogen Parastagonospora nodorum. Org Lett 2018; 20:6148-6152. [DOI: 10.1021/acs.orglett.8b02617] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hang Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jinyu Hu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Haochen Wei
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Peter S. Solomon
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty Ltd, Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty Ltd, Smithfield, NSW 2164, Australia
| | - Keith A. Stubbs
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Andrew M. Piggott
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
14
|
Synthesis and production of the antitumor polyketide aurovertins and structurally related compounds. Appl Microbiol Biotechnol 2018; 102:6373-6381. [DOI: 10.1007/s00253-018-9123-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
|
15
|
Doultsinos D, Avril T, Lhomond S, Dejeans N, Guédat P, Chevet E. Control of the Unfolded Protein Response in Health and Disease. SLAS DISCOVERY 2017; 22:787-800. [PMID: 28453376 DOI: 10.1177/2472555217701685] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unfolded protein response (UPR) is an integrated, adaptive biochemical process that is inextricably linked with cell homeostasis and paramount to maintenance of normal physiological function. Prolonged accumulation of improperly folded proteins in the endoplasmic reticulum (ER) leads to stress. This is the driving stimulus behind the UPR. As such, prolonged ER stress can push the UPR past beneficial functions such as reduced protein production and increased folding and clearance to apoptotic signaling. The UPR is thus contributory to the commencement, maintenance, and exacerbation of a multitude of disease states, making it an attractive global target to tackle conditions sorely in need of novel therapeutic intervention. The accumulation of information of screening tools, readily available therapies, and potential pathways to drug development is the cornerstone of informed clinical research and clinical trial design. Here, we review the UPR's involvement in health and disease and, beyond providing an in-depth description of the molecules found to target the three UPR arms, we compile all the tools available to screen for and develop novel therapeutic agents that modulate the UPR with the scope of future disease intervention.
Collapse
Affiliation(s)
- Dimitrios Doultsinos
- 1 Inserm U1242, Chemistry, Oncogenesis, Stress & Signaling, University of Rennes 1, Rennes, France.,2 Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Tony Avril
- 1 Inserm U1242, Chemistry, Oncogenesis, Stress & Signaling, University of Rennes 1, Rennes, France.,2 Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | | | | | | | - Eric Chevet
- 1 Inserm U1242, Chemistry, Oncogenesis, Stress & Signaling, University of Rennes 1, Rennes, France.,2 Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France.,3 BMYscreen, Bergonié Cancer Institute, Bordeaux, France
| |
Collapse
|
16
|
Mokarram P, Albokashy M, Zarghooni M, Moosavi MA, Sepehri Z, Chen QM, Hudecki A, Sargazi A, Alizadeh J, Moghadam AR, Hashemi M, Movassagh H, Klonisch T, Owji AA, Łos MJ, Ghavami S. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy 2017; 13:781-819. [PMID: 28358273 PMCID: PMC5446063 DOI: 10.1080/15548627.2017.1290751] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), despite numerous therapeutic and screening attempts, still remains a major life-threatening malignancy. CRC etiology entails both genetic and environmental factors. Macroautophagy/autophagy and the unfolded protein response (UPR) are fundamental mechanisms involved in the regulation of cellular responses to environmental and genetic stresses. Both pathways are interconnected and regulate cellular responses to apoptotic stimuli. In this review, we address the epidemiology and risk factors of CRC, including genetic mutations leading to the occurrence of the disease. Next, we discuss mutations of genes related to autophagy and the UPR in CRC. Then, we discuss how autophagy and the UPR are involved in the regulation of CRC and how they associate with obesity and inflammatory responses in CRC. Finally, we provide perspectives for the modulation of autophagy and the UPR as new therapeutic options for CRC treatment.
Collapse
Affiliation(s)
- Pooneh Mokarram
- a Colorectal Research Center and Department of Biochemistry , School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammed Albokashy
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Maryam Zarghooni
- c Zabol University of Medical Sciences , Zabol , Iran.,d University of Toronto Alumni , Toronto , ON , Canada
| | - Mohammad Amin Moosavi
- e Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology , Tehran , Iran
| | - Zahra Sepehri
- c Zabol University of Medical Sciences , Zabol , Iran
| | - Qi Min Chen
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | | | | | - Javad Alizadeh
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Adel Rezaei Moghadam
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Mohammad Hashemi
- g Department of Clinical Biochemistry , School of Medicine, Zahedan University of Medical Sciences , Zahedan , Iran
| | - Hesam Movassagh
- h Department of Immunology , Rady Faculty of Health Sciences, College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Thomas Klonisch
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Ali Akbar Owji
- i Department of Clinical Biochemistry , School of Medicine, Shiraz Medical University , Shiraz , Iran
| | - Marek J Łos
- j Małopolska Centre of Biotechnology , Jagiellonian University , Krakow , Poland ; LinkoCare Life Sciences AB , Sweden
| | - Saeid Ghavami
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada.,k Health Policy Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
17
|
Fu WM, Lu YF, Hu BG, Liang WC, Zhu X, Yang HD, Li G, Zhang JF. Long noncoding RNA Hotair mediated angiogenesis in nasopharyngeal carcinoma by direct and indirect signaling pathways. Oncotarget 2016; 7:4712-23. [PMID: 26717040 PMCID: PMC4826237 DOI: 10.18632/oncotarget.6731] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC), as a unique head and neck cancer type, is particularly prevalent in certain geographic areas such as eastern Asia. Until now, the therapeutic options have been restricted mainly to radiotherapy or chemotherapy. However, the clinical treatment effect remains unsatisfactory even if the combined radio-chemotherapies. Therefore, it is urgently needed to develop effective novel therapies against NPC. In this study, we discovered that lncRNA Hotair was extremely abundant in NPC cells and clinical NPC samples. Further studies showed that Hotair knockdown significantly attenuated both in vitro and in vivo tumor cell growth and angiogenesis. Our study also demonstrated that Hotair promoted angiogenesis through directly activating the transcription of angiogenic factor VEGFA as well as through GRP78-mediated upregulation of VEGFA and Ang2 expression. Therefore, Hotair may serve as a promising diagnostic marker and therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Wei-Ming Fu
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, P.R. China
| | - Ying-Fei Lu
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, P.R. China.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Bao-Guang Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, P.R. China
| | - Wei-Cheng Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Guangdong Medical College, Dong guan, 523808, P.R. China
| | - Hai-di Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, P.R. China
| | - Jin-Fang Zhang
- School of Medicine, South China University of Technology, Guangzhou 511458, P.R. China.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, P.R. China
| |
Collapse
|
18
|
Lin TS, Chiang YM, Wang CCC. Biosynthetic Pathway of the Reduced Polyketide Product Citreoviridin in Aspergillus terreus var. aureus Revealed by Heterologous Expression in Aspergillus nidulans. Org Lett 2016; 18:1366-9. [DOI: 10.1021/acs.orglett.6b00299] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tzu-Shyang Lin
- Department
of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Yi-Ming Chiang
- Department
of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Department
of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Clay C. C. Wang
- Department
of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Department
of Chemistry, University of Southern California, College of Letters, Arts, and Sciences, Los Angeles, California 90089, United States
| |
Collapse
|
19
|
Glucose-regulated protein 78 mediates the therapeutic efficacy of 17-DMAG in colon cancer cells. Tumour Biol 2015; 36:4367-76. [PMID: 25618598 DOI: 10.1007/s13277-015-3076-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/08/2015] [Indexed: 02/02/2023] Open
Abstract
Glucose-regulated protein 78 (GRP78) is expressed as part of the molecular response to endoplasmic reticulum (ER) stress and mediates protein folding within the cell. GRP78 is also an important biomarker of cancer progression and the therapeutic response of patients with different cancer types. However, the role of GRP78 in the cytotoxic effect of 17-DMAG in colon cancer cells remains unclear. GRP78 expression was knocked down by small interfering RNA (siRNA). The anticancer effects of 17-DMAG were assessed by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a flow cytometric cell-cycle analysis, and an Annexin V-propidium iodide (PI) apoptotic assay. We found that HT-29 cells expressed a lower level of GRP78 compared with DLD-1 cells. The MTT assay revealed that HT-29 cells were more sensitive to 17-DMAG treatment than DLD-1 cells. GRP78 knock down (GRP78KD) cells demonstrated an increased sensitivity to 17-DMAG treatment compared with the scrambled control cells. Based on the cell-cycle analysis and Annexin V-PI apoptotic assay, apoptosis dramatically increased in GRP78KD cells compared with scrambled control DLD-1 cells after these cells were treated with 17-DMAG. Finally, we observed a decrease in the level of Bcl-2 and an increase in the levels of Bad and Bax in GRP78KD cells treated with 17-DMAG. These results are consistent with an increased sensitivity to 17-DMAG after knock down of GRP78. The level of GRP78 expression may determine the therapeutic efficacy of 17-DMAG against colon cancer cells.
Collapse
|
20
|
Glucose-regulated protein 78 (GRP78) regulates colon cancer metastasis through EMT biomarkers and the NRF-2/HO-1 pathway. Tumour Biol 2014; 36:1859-69. [PMID: 25431258 DOI: 10.1007/s13277-014-2788-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/29/2014] [Indexed: 12/31/2022] Open
Abstract
Glucose-regulated protein 78 (GRP78) is a key chaperone and stress response protein. Previous studies have demonstrated that high GRP78 expression may be correlated with cancer progression and therapeutic response. However, the role of GRP78 in the metastasis of colon cancer is unclear. In this study, we used small interfering RNA (siRNA) to knock down GRP78 expression in colon cancer cells (HT-29 and DLD-1 cells). In wound-healing migration assays, we found that GRP78-knockdown (GRP78KD) cells showed better wound-healing ability than control cells. We also found that GRP78KD cells displayed a better migratory ability than control cells in migration and invasion assays. As we further dissected the underlying molecular mechanism, we found that silencing GRP78 may cause an increase in vimentin expression and a decrease in the E-cadherin level, which was correlated with the increase in migratory ability. In addition, we found that GRP78KD may activate the NRF-2/HO-1 pathway, and this activation was also correlated with the increase in cell invasiveness. Furthermore, we examined GRP78 expression in a tissue array and found that the GRP78 expression in metastatic adenocarcinoma in lymph nodes tended to be weaker than that in primary colonic adenocarcinoma. In conclusion, a low level of GRP78 may cause an increase in metastasis ability in colon cancer cells by altering E-cadherin and vimentin expression and activating the NRF-2/HO-1 signaling pathway. Our study demonstrates that low expression of GRP78 may correlate with a high risk of metastasis in colon cancer.
Collapse
|
21
|
Lee JM, Koo D, Park HR. Anticancer activity of 28-Oxoallobetulin on HT-29 human colon cancer cells. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0181-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Selective cytotoxicity of Saururus chinensis in glucose-deprived HT-29 human colon cancer cells. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0083-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Thomas S, Sharma N, Gonzalez R, Pao PW, Hofman FM, Chen TC, Louie SG, Pirrung MC, Schönthal AH. Repositioning of Verrucosidin, a purported inhibitor of chaperone protein GRP78, as an inhibitor of mitochondrial electron transport chain complex I. PLoS One 2013; 8:e65695. [PMID: 23755268 PMCID: PMC3675020 DOI: 10.1371/journal.pone.0065695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/03/2013] [Indexed: 01/10/2023] Open
Abstract
Verrucosidin (VCD) belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78) expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD's anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose), but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin). However, VCD's strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin) might act in a similar GRP78-independent fashion will be discussed.
Collapse
Affiliation(s)
- Simmy Thomas
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Natasha Sharma
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Reyna Gonzalez
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Peng-Wen Pao
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Florence M. Hofman
- Department of Pathology, University of Southern California, Los Angeles, California, United States of America
| | - Thomas C. Chen
- Department of Neurosurgery, University of Southern California, Los Angeles, California, United States of America
| | - Stan G. Louie
- Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, University of Southern California, Los Angeles, California, United States of America
| | - Michael C. Pirrung
- Department of Chemistry, University of California Riverside, Riverside, California, United States of America
| | - Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Kuo LJ, Hung CS, Chen WY, Chang YJ, Wei PL. Glucose-regulated protein 78 silencing down-regulates vascular endothelial growth factor/vascular endothelial growth factor receptor 2 pathway to suppress human colon cancer tumor growth. J Surg Res 2013; 185:264-72. [PMID: 23759331 DOI: 10.1016/j.jss.2013.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/09/2013] [Accepted: 05/03/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Up to 20% of colorectal cancer (CRC) is diagnosed with distant metastasis. The combination of chemotherapy with anti-vascular endothelial growth factor (VEGF) antibody can improve patient survival. Glucose-regulated protein 78 (GRP78) has an important role in cancer progression, but little is known about its role in VEGF production in CRC. The aim of this study was to explore the mechanism of GRP78 in two human colon cancer cell lines. METHODS We first checked the expression of GRP78 in human normal and colon cancer tissues and two colon cancer cell lines. Glucose-regulated protein 78 was knocked down using GRP78 small interfering RNA (siRNA) in HT29 and DLD-1 cells. We examined knockdown cells by the cell growth kinetics in vitro and tumor growth rate in vivo, respectively. We also investigated the effect of GRP78 siRNA on the expression of hypoxia inducible factor (HIF-1α), VEGF, and VEGF receptor 2 (VEGFR2). RESULTS Compared with their adjacent normal tissue, we detected high expression levels of GRP78 of surgically removed colon cancer tissues. Using GRP78 siRNA, we reduced the expression of GRP78 in HT29 and DLD-1 cells. The GRP78 knockdown cells had a lower proliferation rate with fewer colony-forming units in vitro and produced smaller tumors in vivo. In dissecting the mechanism underlying the reduced cell growth, we found that the down-regulation of GRP78 decreased the production of HIF-1α, VEGF, and VEGFR2 and suppressed angiogenesis. CONCLUSIONS Silencing GRP78 not only inhibits tumor, but also decreases the expression of VEGF and VEGFR2. Collectively, therapy targeting for GRP78 may inhibit the formation of colon cancer tumors via the HIF-1α/VEGF/VEGFR2 pathway.
Collapse
Affiliation(s)
- Li-Jen Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China; Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
25
|
Schönthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. Biochem Pharmacol 2013; 85:653-666. [DOI: 10.1016/j.bcp.2012.09.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 02/08/2023]
|
26
|
Maddalo D, Neeb A, Jehle K, Schmitz K, Muhle-Goll C, Shatkina L, Walther TV, Bruchmann A, Gopal SM, Wenzel W, Ulrich AS, Cato ACB. A peptidic unconjugated GRP78/BiP ligand modulates the unfolded protein response and induces prostate cancer cell death. PLoS One 2012; 7:e45690. [PMID: 23049684 PMCID: PMC3462190 DOI: 10.1371/journal.pone.0045690] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 08/23/2012] [Indexed: 02/07/2023] Open
Abstract
The molecular chaperone GRP78/BiP is a key regulator of protein folding in the endoplasmic reticulum, and it plays a pivotal role in cancer cell survival and chemoresistance. Inhibition of its function has therefore been an important strategy for inhibiting tumor cell growth in cancer therapy. Previous efforts to achieve this goal have used peptides that bind to GRP78/BiP conjugated to pro-drugs or cell-death-inducing sequences. Here, we describe a peptide that induces prostate tumor cell death without the need of any conjugating sequences. This peptide is a sequence derived from the cochaperone Bag-1. We have shown that this sequence interacts with and inhibits the refolding activity of GRP78/BiP. Furthermore, we have demonstrated that it modulates the unfolded protein response in ER stress resulting in PARP and caspase-4 cleavage. Prostate cancer cells stably expressing this peptide showed reduced growth and increased apoptosis in in vivo xenograft tumor models. Amino acid substitutions that destroyed binding of the Bag-1 peptide to GRP78/BiP or downregulation of the expression of GRP78 compromised the inhibitory effect of this peptide. This sequence therefore represents a candidate lead peptide for anti-tumor therapy.
Collapse
Affiliation(s)
- Danilo Maddalo
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Antje Neeb
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Katja Jehle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Katja Schmitz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Claudia Muhle-Goll
- Institute of Biological Interfaces 2, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Liubov Shatkina
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Tamara Vanessa Walther
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Anja Bruchmann
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Srinivasa M. Gopal
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces 2, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Andrew C. B. Cato
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
27
|
Li J, Ward KM, Zhang D, Dayanandam E, Denittis AS, Prendergast GC, Ayene IS. A bioactive probe of the oxidative pentose phosphate cycle: novel strategy to reverse radioresistance in glucose deprived human colon cancer cells. Toxicol In Vitro 2012; 27:367-77. [PMID: 22926048 DOI: 10.1016/j.tiv.2012.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/04/2012] [Accepted: 08/07/2012] [Indexed: 11/25/2022]
Abstract
The specific effects of glucose deprivation on oxidative pentose phosphate cycle (OPPC) function, thiol homeostasis, protein function and cell survival remain unclear due to lack of a glucose-sensitive chemical probe. Using p53 wild type and mutant human colon cells, we determined the effects of hydroxyethyl disulfide (HEDS) on NADPH, GSH, GSSG, total glutathione, total non-protein and protein thiol levels, the function of the DNA repair protein Ku, and the susceptibility to radiation-induced free radicals under normal glucose or glucose-deprived conditions. HEDS is rapidly detoxified in normal glucose but triggered a p53-independent metabolic stress in glucose depleted state that caused loss of NADPH, protein and non-protein thiol homeostasis and Ku function, and enhanced sensitivity of both p53 wild type and mutant cells to radiation induced oxidative stress. Additionally, high concentration of HEDS alone induced cell death in p53 wild type cells without significant effect on p53 mutant cells. HEDS offers a useful tool to gain insights into how glucose metabolism affects OPPC dependent stress-induced cellular functions and injury, including in tumor cells, where our findings imply a novel therapeutic approach to target glucose deprived tumor. Our work introduces a novel probe to address cancer metabolism and ischemic pathology.
Collapse
Affiliation(s)
- Jie Li
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Gu Y, Qi C, Sun X, Ma X, Zhang H, Hu L, Yuan J, Yu Q. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism. Biochem Pharmacol 2012; 84:468-76. [PMID: 22687625 DOI: 10.1016/j.bcp.2012.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/10/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity.
Collapse
Affiliation(s)
- Yuan Gu
- Department of Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fang Y, Mu J, Ma Y, Ma D, Fu D, Shen X. The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma. Mol Cell Biochem 2011; 359:59-66. [DOI: 10.1007/s11010-011-0999-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
|
30
|
Yu K, Ren B, Wei J, Chen C, Sun J, Song F, Dai H, Zhang L. Verrucisidinol and verrucosidinol acetate, two pyrone-type polyketides isolated from a marine derived fungus, Penicillium aurantiogriseum. Mar Drugs 2010; 8:2744-54. [PMID: 21139842 PMCID: PMC2996174 DOI: 10.3390/md8112744] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 12/16/2022] Open
Abstract
The new secondary metabolites verrucosidinol (1) and its derivative verrucosidinol acetate (2), together with a potent neurotoxin verrucosidin (3), a congener norverrucosidin (4) and a mixture of two known phytotoxic metabolites terrestric acids (5 and 6), were isolated from the marine derived fungus Penicillium aurantiogriseum. Verrucosidinol has a ring-opened ethylene oxide moiety in the polyene α-pyrone skeleton, and verrucosidinol acetate is its acetate derivative. The chemical structures were determined by comparing with literature data and a combination of spectroscopic techniques, including high resolution mass spectrum and two-dimentional nuclear magnetic resonance spectroscopic analysis.
Collapse
Affiliation(s)
- Ke Yu
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
- Graduate University of Chinese Academy of Sciences, Beijing 100190, China
| | - Biao Ren
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
- Graduate University of Chinese Academy of Sciences, Beijing 100190, China
| | - Junli Wei
- Tianjin Normal University, Tianjin 300387, China
| | - Caixia Chen
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinsheng Sun
- Tianjin Normal University, Tianjin 300387, China
| | - Fuhang Song
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Huanqin Dai
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Lixin Zhang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
- * Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: 86-10-62566511
| |
Collapse
|
31
|
Liu MH, Wang MC, Gao N, Li Y, Jiang WG. Expression and clinical significance of glucose regulated proteins GRP78 and GRP94 in human colon cancer. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
32
|
Chang YJ, Chiu CC, Wu CH, An J, Wu CC, Liu TZ, Wei PL, Huang MT. Glucose-regulated protein 78 (GRP78) silencing enhances cell migration but does not influence cell proliferation in hepatocellular carcinoma. Ann Surg Oncol 2010; 17:1703-1709. [PMID: 20087778 DOI: 10.1245/s10434-010-0912-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Indexed: 02/05/2023]
Abstract
BACKGROUND GRP78 plays an essential role in embryonic development and in the therapeutic treatment and progression of cancer. However, little is known about the role of GRP78 in hepatocellular carcinoma (HCC). METHODS In this study, we characterized five different HCC cell lines to examine GRP78 expression patterns and found that only HepJ5 cells ectopically overexpress GRP78. We knocked down GRP78 expression in HepJ5 cells using a small interfering RNA (siRNA), and the proliferation assay and migration assay were performed. RESULTS Using siRNA technique, we could successfully reduce GRP78 expression levels in HepJ5 cells. In a cell growth study, we found that GRP78-siRNA caused no significant changes in cellular proliferation in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, and cell cycle distribution. In a cell migration study, we found that GRP78-siRNA HepJ5 cells had dramatically increased migration ability in Transwell assay. CONCLUSIONS We conclude that ectopically expressed GRP78 does not contribute to the increased proliferation of HepJ5 cells, but does correlate with the migration of HCC cells under normoxic conditions.
Collapse
Affiliation(s)
- Yu-Jia Chang
- Department of Surgery, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim JY, Hwang JH, Cha MR, Yoon MY, Son ES, Tomida A, Ko B, Song SW, Shin-ya K, Hwang YI, Park HR. Arctigenin blocks the unfolded protein response and shows therapeutic antitumor activity. J Cell Physiol 2010; 224:33-40. [PMID: 20232300 DOI: 10.1002/jcp.22085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cancer cells in poorly vascularized solid tumors are constantly or intermittently exposed to stressful microenvironments, including glucose deprivation, hypoxia, and other forms of nutrient starvation. These tumor-specific conditions, especially glucose deprivation, activate a signaling pathway called the unfolded protein response (UPR), which enhances cell survival by induction of the stress proteins. We have established a screening method to discover anticancer agents that could preferentially inhibit tumor cell viability under glucose-deprived conditions. Here we identify arctigenin (ARC-G) as an active compound that shows selective cytotoxicity and inhibits the UPR during glucose deprivation. Indeed, ARC-G blocked expression of UPR target genes such as phosphorylated-PERK, ATF4, CHOP, and GRP78, which was accompanied by enhanced phosphorylation of eIF2 alpha during glucose deprivation. The UPR inhibition led to apoptosis involving a mitochondrial pathway by activation of caspase-9 and -3. Furthermore, ARC-G suppressed tumor growth of colon cancer HT-29 xenografts. Our results demonstrate that ARC-G can be served as a novel type of antitumor agent targeting the UPR in glucose-deprived solid tumors.
Collapse
Affiliation(s)
- Ju-Young Kim
- Department of Food Science and Biotechnology, Kyungnam University, Masan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Selective cytotoxicity of Ponciri Fructus against glucose-deprived PANC-1 human pancreatic cancer cells via blocking activation of GRP78. Biosci Biotechnol Biochem 2009; 73:2167-71. [PMID: 19809193 DOI: 10.1271/bbb.90235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pancreatic cancer cells are sometimes exposed to stressful microenvironments such as glucose deprivation, hypoxia, and starvation of other nutrients. These stresses, which are characteristic of poorly vascularized solid tumors, activate the unfolded protein response (UPR). The UPR is a stress-signaling pathway present in tumor cells that is associated with molecular chaperone GRP78. Induction of GRP78 has been found to increase cell survival and decrease apoptotic potential through genetic alterations. Thus GRP78 may represent a novel target in the development of anticancer drugs. Here we established a novel screening program to identify chaperone modulators that exhibit preferential cytotoxic activity in glucose-deprived pancreatic cancer cells. During the course of our screening, we isolated an active substance, Ponciri Fructus (PF), from an herbal medicine source and identified it as a down-regulator of GRP78. As expected, PF inhibited expression of the GRP78 protein under glucose-deprivation conditions in a dose-dependent manner. Furthermore, it induced selective cytotoxicity against glucose-deprived cancer cells; this effect was not observed under normal growth conditions. We also detected apoptotic bodies on Hoechst staining and attempted to determine whether PF-induced apoptosis involved caspase-3 activation. Our results suggest that the GRP78-inhibitory action of PF was dependent on strict hypoglycemic conditions and that it resulted in the selective death of glucose-deprived pancreatic cancer cells.
Collapse
|
35
|
Baumeister P, Dong D, Fu Y, Lee AS. Transcriptional induction of GRP78/BiP by histone deacetylase inhibitors and resistance to histone deacetylase inhibitor-induced apoptosis. Mol Cancer Ther 2009; 8:1086-94. [PMID: 19417144 PMCID: PMC2889001 DOI: 10.1158/1535-7163.mct-08-1166] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are emerging as effective therapies in the treatment of cancer, and the role of HDACs in the regulation of promoters is rapidly expanding. GRP78/BiP is a stress inducible endoplasmic reticulum (ER) chaperone with antiapoptotic properties. We present here the mechanism for repression of the Grp78 promoter by HDAC1. Our studies reveal that HDAC inhibitors specifically induce GRP78, and the induction level is amplified by ER stress. Through mutational analysis, we have identified the minimal Grp78 promoter and specific elements responsible for HDAC-mediated repression. We show the involvement of HDAC1 in the negative regulation of the Grp78 promoter not only by its induction in the presence of the HDAC inhibitors trichostatin A and MS-275 but also by exogenous overexpression and small interfering RNA knockdown of specific HDACs. We present the results of chromatin immunoprecipitation analysis that reveals the binding of HDAC1 to the Grp78 promoter before, but not after, ER stress. Furthermore, overexpression of GRP78 confers resistance to HDAC inhibitor-induced apoptosis in cancer cells, and conversely, suppression of GRP78 sensitizes them to HDAC inhibitors. These results define HDAC inhibitors as new agents that up-regulate GRP78 without concomitantly inducing the ER or heat shock stress response, and suppression of GRP78 in tumors may provide a novel, adjunctive option to enhance anticancer therapies that use these compounds.
Collapse
Affiliation(s)
- Peter Baumeister
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9176, USA
| | | | | | | |
Collapse
|
36
|
Jo KJ, Cha MR, Lee MR, Yoon MY, Park HR. Methanolic extracts of Uncaria rhynchophylla induce cytotoxicity and apoptosis in HT-29 human colon carcinoma cells. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2008; 63:77-82. [PMID: 18392727 DOI: 10.1007/s11130-008-0074-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/18/2008] [Indexed: 05/26/2023]
Abstract
In this paper, we report the anticancer activities of Uncaria rhynchophylla extracts, a Rubiaceae plant native to China. Traditionally, Uncaria rhynchophylla has been used in the prevention and treatment of neurotoxicity. However, the cytotoxic activity of Uncaria rhynchophylla against human colon carcinoma cells has not, until now, been elucidated. We found that the methanolic extract of Uncaria rhynchophylla (URE) have cytotoxic effects on HT-29 cells. The URE showed highly cytotoxic effects via the MTT reduction assay, LDH release assay, and colony formation assay. As expected, URE inhibited the growth of HT-29 cells in a dose-dependent manner. In particular, the methanolic URE of the 500 microg/ml showed 15.8% inhibition against growth of HT-29 cells. It induced characteristic apoptotic effects in HT-29 cells, including chromatin condensation and sharking occurring 24 h when the cells were treated at a concentration of the 500 microg/ml. The activation of caspase-3 and the specific proteolytic cleavage of poly (ADP-ribose) polymerase were detected over the course of apoptosis induction. These results indicate that URE contains bioactive materials with strong activity, and is a potential chemotherapeutic agent candidate against HT-29 human colon carcinoma cells.
Collapse
Affiliation(s)
- Kyung-Jin Jo
- Department of Food Science and Biotechnology, Kyungnam University, Masan, South Korea
| | | | | | | | | |
Collapse
|
37
|
Ueda JY, Nagai A, Izumikawa M, Chijiwa S, Takagi M, Shin-ya K. A Novel Antimycin-like Compound, JBIR-06, from Streptomyces sp. ML55. J Antibiot (Tokyo) 2008; 61:241-4. [DOI: 10.1038/ja.2008.35] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Langer R, Feith M, Siewert JR, Wester HJ, Hoefler H. Expression and clinical significance of glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus. BMC Cancer 2008; 8:70. [PMID: 18331622 PMCID: PMC2270853 DOI: 10.1186/1471-2407-8-70] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 03/10/2008] [Indexed: 01/01/2023] Open
Abstract
Background Glucose regulated proteins (GRPs) are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Methods Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett) adenocarcinomas (n = 137) and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G) and overall survival. Results GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm) as compared to more advanced stages (pT2 and pT3) and normal tissue (p = 0.031). Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035). In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07). GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038). For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001) and less lymph node involvement (p = 0.036). Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or pT1sm) or advanced (pT3) tumor stages and no pT2 stage (p = 0.031). Conclusion We could demonstrate an association of GRP78 and GRP94 mRNA and protein expression with tumor stage and behaviour in esophageal adenocarcinomas. Increased expression of GRP78 may be responsible for controlling local tumor growth in early tumor stages, while high expression of GRP78 and GRP94 in advanced stages may be dependent from other factors like cellular stress reactions due to glucose deprivation, hypoxia or the hosts' immune response.
Collapse
Affiliation(s)
- Rupert Langer
- Institute of Pathology, TU München, München, Germany.
| | | | | | | | | |
Collapse
|
39
|
Hwang JH, Kim JY, Cha MR, Ryoo IJ, Choo SJ, Cho SM, Tsukumo Y, Tomida A, Shin-Ya K, Hwang YI, Yoo ID, Park HR. Etoposide-resistant HT-29 human colon carcinoma cells during glucose deprivation are sensitive to piericidin A, a GRP78 down-regulator. J Cell Physiol 2008; 215:243-50. [PMID: 17941090 DOI: 10.1002/jcp.21308] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucose deprivation, a pathophysiological cell condition, causes up-regulation of GRP78 and induction of etoposide resistance in human cancer cells. The induction of drug resistance can be partly explained by the fact that GRP78 can block activation of caspase-7 induced by treatment with etoposide. Therefore, downregulating GRP78 expression may be a novel strategy anticancer drug development. Based on that premise, we established a screening program for anticancer agents that exhibit preferential cytotoxic activity for etoposide-resistant cancer cells under glucose-deprived conditions. We recently isolated an active compound, AR-054, from the culture broth of Streptomyces sp., which prevents stress-induced etoposide resistance in vitro. AR-054 was identified as piericidin A, a prototypical compound, by ESI-MS analysis and various NMR spectroscopic methods. Here, we showed that piericidin A suppressed the accumulation of GRP78 protein and was also highly toxic to etoposide-resistant HT-29 cells, with IC50 values for colony formation of 6.4 and 7.7 nM under 2-deoxyglucose supplemented and glucose-deprived conditions, respectively. Interestingly, piericidin A had no effect under normal growth conditions. Therefore, we suggest that piericidin A prevents up-regulation of GRP78, and exhibits cytotoxicity in glucose-deprived HT-29 cells that are resistant to etoposide.
Collapse
Affiliation(s)
- Ji-Hwan Hwang
- Department of Food Science and Biotechnology, Kyungnam University, Masan, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pyrko P, Schönthal AH, Hofman FM, Chen TC, Lee AS. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 2007; 67:9809-16. [PMID: 17942911 DOI: 10.1158/0008-5472.can-07-0625] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Poor chemosensitivity and the development of chemoresistance remain major obstacles to successful chemotherapy of malignant gliomas. GRP78 is a key regulator of the unfolded protein response (UPR). As a Ca2+-binding molecular chaperone in the endoplasmic reticulum (ER), GRP78 maintains ER homeostasis, suppresses stress-induced apoptosis, and controls UPR signaling. We report here that GRP78 is expressed at low levels in normal adult brain, but is significantly elevated in malignant glioma specimens and human malignant glioma cell lines, correlating with their rate of proliferation. Down-regulation of GRP78 by small interfering RNA leads to a slowdown in glioma cell growth. Our studies further reveal that temozolomide, the chemotherapeutic agent of choice for treatment of malignant gliomas, leads to induction of CHOP, a major proapoptotic arm of the UPR. Knockdown of GRP78 in glioblastoma cell lines induces CHOP and activates caspase-7 in temozolomide-treated cells. Colony survival assays further establish that knockdown of GRP78 lowers resistance of glioma cells to temozolomide, and, conversely, overexpression of GRP78 confers higher resistance. Knockdown of GRP78 also sensitizes glioma cells to 5-fluorouracil and CPT-11. Treatment of glioma cells with (-)-epigallocatechin gallate, which targets the ATP-binding domain of GRP78 and blocks its protective function, sensitizes glioma cells to temozolomide. These results identify a novel chemoresistance mechanism in malignant gliomas and show that combination of drugs capable of suppressing GRP78 with conventional agents such as temozolomide might represent a novel approach to eliminate residual tumor cells after surgery and increase the effectiveness of malignant glioma chemotherapy.
Collapse
Affiliation(s)
- Peter Pyrko
- Department of Pathology, and University of Southern California/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|