1
|
Alhareth DY, Alanazi A, Alanazi WA, Ansari MA, Nagi MN, Ahmad SF, Attia MSM, Nadeem A, Bakheet SA, Attia SM. Carfilzomib Mitigates Lipopolysaccharide/D-Galactosamine/Dimethylsulfoxide-Induced Acute Liver Failure in Mice. Biomedicines 2023; 11:3098. [PMID: 38002097 PMCID: PMC10669466 DOI: 10.3390/biomedicines11113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Acute liver failure (ALF) is a disease accompanied by severe liver inflammation. No effective therapy is available yet apart from liver transplantation; therefore, developing novel treatments for ALF is urgently required. Inflammatory mediators released by NF-кB activation play an essential role in ALF. Proteasome inhibitors have many medical uses, such as reducing inflammation and NF-кB inhibition, which are believed to account for most of their repurposing effects. This study was undertaken to explore the possible protective effects and the underlying mechanisms of carfilzomib, a proteasome inhibitor, in a mouse model of ALF induced by lipopolysaccharide/D-galactosamine/dimethylsulfoxide (LPS/GalN/DMSO). Carfilzomib dose-dependently protected mice from LPS/GalN/DMSO-induced liver injury, as indicated by the decrease in serum alanine aminotransferase and aspartate aminotransferase levels. LPS/GalN/DMSO increased TNF-α, NF-кB, lipid peroxidation, NO, iNOS, cyclooxygenase-II, myeloperoxidase, and caspase-3 levels. Carfilzomib administration mitigated LPS/GalN/DMSO-induced liver damage by decreasing the elevated levels of TNF-α, NF-кB, lipid peroxidation, nitric oxide, iNOS, cyclooxygenase-II, myeloperoxidase, caspase-3, and histopathological changes. A restored glutathione level was also observed in the carfilzomib-treated LPS/GalN/DMSO mice. Our results demonstrate that carfilzomib protects against LPS/GalN/DMSO-induced ALF by inhibiting NF-кB, decreasing inflammatory mediators, oxidative/nitrosative stress, neutrophil recruitment, and apoptosis, suggesting that carfilzomib may be a potential therapeutic agent for ALF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| |
Collapse
|
2
|
Wang L, Liu Y, Gao H, Ge S, Yao X, Liu C, Tan X. Chronotoxicity of Acrylamide in Mice Fed a High-Fat Diet: The Involvement of Liver CYP2E1 Upregulation and Gut Leakage. Molecules 2023; 28:5132. [PMID: 37446793 PMCID: PMC10343525 DOI: 10.3390/molecules28135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Acrylamide (ACR) is produced under high-temperature cooking of carbohydrate-rich foods via the Maillard reaction. It has been reported that ACR has hepatic toxicity and can induce liver circadian disorder. A high fat diet (HFD) could dysregulate liver detoxification. The current study showed that administration of ACR (100 mg/kg) reduced the survival rate in HFD-fed mice, which was more pronounced when treated during the night phase than during the day phase. Furthermore, ACR (25 mg/kg) treatment could cause chronotoxicity in mice fed a high-fat diet, manifested as more severe mitochondrial damage of liver during the night phase than during the day phase. Interestingly, HFD induced a higher CYP2E1 expressions for those treated during the night phase, leading to more severe DNA damage. Meanwhile, the expression of gut tight junction proteins also significantly decreases at night phase, leading to the leakage of LPSs and exacerbating the inflammatory response at night phase. These results indicated that a HFD could induce the chronotoxicity of ACR in mice liver, which may be associated with increases in CYP2E1 expression in the liver and gut leak during the night phase.
Collapse
Affiliation(s)
- Luanfeng Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
| | - Yanhong Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Huajing Gao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Shuqi Ge
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Xinru Yao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Chang Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Xintong Tan
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| |
Collapse
|
3
|
Oyster-Derived Tyr-Ala (YA) Peptide Prevents Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Failure by Suppressing Inflammatory, Apoptotic, Ferroptotic, and Pyroptotic Signals. Mar Drugs 2021; 19:md19110614. [PMID: 34822485 PMCID: PMC8624370 DOI: 10.3390/md19110614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Models created by the intraperitoneal injection of lipopolysaccharide (LPS) and D-galactosamine (D-GalN) have been widely used to study the pathogenesis of human acute liver failure (ALF) and drug development. Our previous study reported that oyster (Crassostrea gigas) hydrolysate (OH) had a hepatoprotective effect in LPS/D-GalN-injected mice. This study was performed to identify the hepatoprotective effect of the tyrosine-alanine (YA) peptide, the main component of OH, in a LPS/D-GalN-injected ALF mice model. We analyzed the effect of YA on previously known mechanisms of hepatocellular injury in the model. LPS/D-GalN-injected mice showed inflammatory, apoptotic, ferroptotic, and pyroptotic liver injury. The pre-administration of YA (10 mg/kg or 50 mg/kg) significantly reduced the liver damage factors. The hepatoprotective effect of YA was higher in the 50 mg/kg YA pre-administered group than in the 10 mg/kg YA pre-administered group. These results showed that YA had a hepatoprotective effect by reducing inflammation, apoptosis, ferroptosis, and pyroptosis in the LPS/D-GalN-injected ALF mouse model. We suggest that YA can be used as a functional peptide for the prevention of acute liver injury.
Collapse
|
4
|
Kim H, Yang WS, Htwe KM, Lee MN, Kim YD, Yoon KD, Lee BH, Lee S, Cho JY. Dipterocarpus tuberculatus Roxb. Ethanol Extract Has Anti-Inflammatory and Hepatoprotective Effects In Vitro and In Vivo by Targeting the IRAK1/AP-1 Pathway. Molecules 2021; 26:molecules26092529. [PMID: 33926126 PMCID: PMC8123704 DOI: 10.3390/molecules26092529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.
Collapse
Affiliation(s)
- Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (W.S.Y.)
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (W.S.Y.)
| | - Khin Myo Htwe
- Popa Mountain Park, Forest Department, Kyaukpadaung Township, Mandalay Division, Kyaukpadaung 05241, Myanmar;
| | - Mi-Nam Lee
- Department of Hospitality and Culinary, Ansan University, Ansan 15318, Korea;
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon 200-702, Korea;
| | - Ki Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea;
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea;
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea;
- Correspondence: (S.L.); (J.Y.C.); Tel.: +82-32-590-7265 (S.L.); +82-31-290-7868 (J.Y.C.); Fax: +82-32-590-7472 (S.L.); +82-31-290-7870 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (W.S.Y.)
- Correspondence: (S.L.); (J.Y.C.); Tel.: +82-32-590-7265 (S.L.); +82-31-290-7868 (J.Y.C.); Fax: +82-32-590-7472 (S.L.); +82-31-290-7870 (J.Y.C.)
| |
Collapse
|
5
|
Hu Y, Wang Y, Wen X, Pan Y, Cheng X, An R, Gao G, Chen HY, Ye D. Responsive Trimodal Probes for In Vivo Imaging of Liver Inflammation by Coassembly and GSH-Driven Disassembly. RESEARCH 2020; 2020:4087069. [PMID: 33029587 PMCID: PMC7520820 DOI: 10.34133/2020/4087069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Noninvasive in vivo imaging of hepatic glutathione (GSH) levels is essential to early diagnosis and prognosis of acute hepatitis. Although GSH-responsive fluorescence imaging probes have been reported for evaluation of hepatitis conditions, the low penetration depth of light in liver tissue has impeded reliable GSH visualization in the human liver. We present a liver-targeted and GSH-responsive trimodal probe (GdNPs-Gal) for rapid evaluation of lipopolysaccharide- (LPS-) induced acute liver inflammation via noninvasive, real-time in vivo imaging of hepatic GSH depletion. GdNPs-Gal are formed by molecular coassembly of a GSH-responsive Gd(III)-based MRI probe (1-Gd) and a liver-targeted probe (1-Gal) at a mole ratio of 5/1 (1-Gd/1-Gal), which shows high r 1 relaxivity with low fluorescence and fluorine magnetic resonance spectroscopic (19F-MRS) signals. Upon interaction with GSH, 1-Gd and 1-Gal are cleaved and GdNPs-Gal rapidly disassemble into small molecules 2-Gd, 2-Gal, and 3, producing a substantial decline in r 1 relaxivity with compensatory enhancements in fluorescence and 19F-MRS. By combining in vivo magnetic resonance imaging (1H-MRI) with ex vivo fluorescence imaging and 19F-MRS analysis, GdNPs-Gal efficiently detect hepatic GSH using three independent modalities. We noninvasively visualized LPS-induced liver inflammation and longitudinally monitored its remediation in mice after treatment with an anti-inflammatory drug, dexamethasone (DEX). Findings highlight the potential of GdNPs-Gal for in vivo imaging of liver inflammation by integrating molecular coassembly with GSH-driven disassembly, which can be applied to other responsive molecular probes for improved in vivo imaging.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoyang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Liu L, Zhang L, Li L, Chen M, Wang Z, Shen Y, Huang J, Tang L. Sleep deprivation aggravated lipopolysaccharide/D-galactosamine-induced acute liver injury by suppressing melatonin production. Inflamm Res 2020; 69:1133-1142. [PMID: 32809047 DOI: 10.1007/s00011-020-01393-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Sleep loss is common in patients with liver injury, but the effects of sleep deprivation (SD) on liver injury remain unclear. In the present study, the potential effects of SD on acute liver injury and the underlying mechanisms have been investigated. METHODS The sleep of male BALB/c mice has been deprived by using a modified multiple platform water bath for 3 days and acute liver injury was induced by intraperitoneal injection of lipopolysaccharide (LPS) and D-galactosamine (D-Gal). The degree of liver injury was detected by aminotransferase determination, histopathology and survival rate analysis. Inflammatory response and melatonin (MT) were measured by enzyme-linked immunosorbent assay (ELISA). In addition, hepatocyte apoptosis was determined by caspase activity measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. RESULTS We observed that SD increased plasma aminotransferases, TUNEL-positive hepatocytes, histological abnormalities and mortality rates in mice with LPS/D-Gal treatment. SD also promoted LPS/D-Gal-induced production of TNF-α and upregulated hepatic caspase-8, caspase-9, and caspase-3 activities in LPS/D-Gal-exposed mice. In addition, SD significantly decreased MT contents in plasma of mice with acute liver injury, but supplementation with MT reversed these SD-promoted changes. CONCLUSION Our data suggested that SD exacerbated LPS/D-Gal-induced liver injury via decreasing melatonin production.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rehabilitation Medicine and Physical Therapy, The Affiliated Rehabilitation Hospital of Chongqing Medical University, 50 Xiejiawan Cultural Seventh Village, Jiulongpo District, Chongqing, 400050, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Mengting Chen
- Department of Neurology, The Affiliated Rehabilitation Hospital of Chongqing Medical University, 50 Xiejiawan Cultural Seventh Village, Jiulongpo District, Chongqing, 400050, China
| | - Zhe Wang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing, 401331, China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing, 401331, China.
| |
Collapse
|
7
|
Colunga Biancatelli RML, Berrill M, Mohammed YH, Marik PE. Melatonin for the treatment of sepsis: the scientific rationale. J Thorac Dis 2020; 12:S54-S65. [PMID: 32148926 DOI: 10.21037/jtd.2019.12.85] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis affects 30 million people worldwide, leading to 6 million deaths every year (WHO), and despite decades of research, novel initiatives are drastically needed. According to the current literature, oxidative imbalance and mitochondrial dysfunction are common features of septic patients that can cause multiorgan failure and death. Melatonin, alongside its traditionally accepted role as the master hormonal regulator of the circadian rhythm, is a promising adjunctive drug for sepsis through its anti-inflammatory, antiapoptotic and powerful antioxidant properties. Several animal models of sepsis have demonstrated that melatonin can prevent multiorgan dysfunction and improve survival through restoring mitochondrial electron transport chain (ETC) function, inhibiting nitric oxide synthesis and reducing cytokine production. The purpose of this article is to review the current evidence for the role of melatonin in sepsis, review its pharmacokinetic profile and virtual absence of side effects. While clinical data is limited, we propose the adjunctive use of melatonin is patients with severe sepsis and septic shock.
Collapse
Affiliation(s)
- Ruben Manuel Luciano Colunga Biancatelli
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, USA.,Policlinico Umberto I, La Sapienza University of Rome, Rome, Italy
| | - Max Berrill
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, USA.,St. Peter's Hospital, Department of Respiratory Medicine, London, UK
| | - Yassen H Mohammed
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
8
|
Zhang L, Xu AL, Yang S, Zhao BS, Wang T. In vitro screening and toxic mechanism exploring of leading components with potential hepatotoxicity of Herba Epimedii extracts. Toxicol In Vitro 2019; 62:104660. [PMID: 31629066 DOI: 10.1016/j.tiv.2019.104660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 11/15/2022]
Abstract
Herba Epimedii is a famous Chinese edible herb, and due to its potential hepatotoxic effects, the safety associated with this herb has attracted a great deal of attention. In this study, the components of four types of the Herba Epimedii extracts were identified by HPLC-MS/MS. Among these components, 11 components that were present in all four extracts and could be obtained as reference substances were evaluated for their ability of cytotoxicity in HL-7702 and HepG2 cells, resulting in the identification of icarisid I and sagittatoside A as the most relevant with respect to the toxicity of the extracts. The targeted toxicological effects were further investigated using a series of correlated biological indicators to elucidate potentially hepatotoxic mechanisms. The results showed that the extracts and the selected compounds had varying degrees of influence on the leakage of ALT, AST and LDH; the activity of SOD, GSH and MDA; the increase in intercellular ROS; and the decrease in MMP. Among the tested substances, the ethanol extracts exhibited stronger hepatotoxicity, with icarisid I and sagittatoside A correlating with this toxic effect, and the hepatoxic mechanisms of which may be associated with damaged cell structure, increased oxidative stress and induction of apoptosis.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, People's Republic of China
| | - An-Long Xu
- School of Life Science, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, People's Republic of China.
| | - Song Yang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, People's Republic of China
| | - Bao-Sheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, People's Republic of China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 10029, People's Republic of China.
| |
Collapse
|
9
|
Yang C, He L, Wang C, Huang Y, Wang A, Li X, Ao J. Dexmedetomidine alleviated lipopolysaccharide/D-galactosamine-induced acute liver injury in mice. Int Immunopharmacol 2019; 72:367-373. [DOI: 10.1016/j.intimp.2019.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 01/29/2023]
|
10
|
Gabr SA, Gabr NS, Elsaed WM. Aqueous Green Tea Extract and Prediction of Fibrosis in Lipopolysaccharide Intoxicated Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.403.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
N P, Ss A, Pv M. Comprehensive biology of antipyretic pathways. Cytokine 2019; 116:120-127. [PMID: 30711851 DOI: 10.1016/j.cyto.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/10/2023]
Abstract
Pyrogens, the fever inducing substances accidently enter into a human body through contamination from medical or pharmaceutical products may create mild to severe complications including septicaemia and shocking syndromes. To avoid such drastic situations all the pharmaceuticals and medical devices are analysed for presence of pyrogens prior to their release into market. The entry of exogenous pyrogens like bacterial endotoxins induces the release of endogenous pyrogens or inflammatory cytokines that activate immune system to defend against these pathogens. Generation of heat is considered as one of the important defence mechanism of body achieved through receptor mediated interaction of endogenous pyrogens at the thermoregulatory centre of hypothalamus. However, uncontrolled fever and febrile reaction may cause lethal effects to the subject itself. So a well sophistically functioning antipyretic mechanism is necessary to achieve thermoregulation. The coordinated interaction of antipyretic cytokines and other mediators are active in human immune system which play a crucial role in maintaining thermal homeostasis. The multiple interacting antipyretic signals and their mechanism are the major subjects of this review.
Collapse
Affiliation(s)
- Prajitha N
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India
| | - Athira Ss
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India
| | - Mohanan Pv
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
12
|
Ning Q. Main Complications of AECHB and Severe Hepatitis B (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498917 DOI: 10.1007/978-94-024-1603-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qin Ning
- Department of Infectious Disease, Tongji Hospital, Wuhan, China
| |
Collapse
|
13
|
Rondanelli M, Peroni G, Gasparri C, Infantino V, Nichetti M, Cuzzoni G, Spadaccini D, Perna S. Is a Combination of Melatonin and Amino Acids Useful to Sarcopenic Elderly Patients? A Randomized Trial. Geriatrics (Basel) 2018; 4:geriatrics4010004. [PMID: 31023972 PMCID: PMC6473373 DOI: 10.3390/geriatrics4010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the effectiveness of a 4-week intervention of melatonin and essential aminoacid supplementation on body composition, protein metabolism, strength and inflammation in 159 elderly sarcopenic patients (42/117, men/women), assigned to four groups: isocaloric placebo (P, n = 44), melatonin (M, 1 mg/daily, n = 42), essential amino acids (eAA 4 g/daily, n = 40) or eAA plus melatonin (eAAM, 4 g eAA and 1 mg melatonin/daily, n = 30). Data from body composition (dual X-ray absortiometry (DXA)), strength (handgrip test) and biochemical parameters for the assessment of protein metabolism (albumin) and inflammation (CRP) were collected at baseline and after the 4-week intervention. Compared with P and M, supplementation with eAA plus M increased total fat-free mass (vs. P: +2190 g; p < 0.01; vs. M: +2107 g; p < 0.05). M alone lowered albumin levels (vs. P: −0.39 g; p < 0.01; vs. eAA: −0.47 g; p < 0.01). This data on albumin was confirmed by within-group analysis (M −0.44g; p < 0.001; eAAM: −0.34 p < 0.05). M and eAA seemed to lower the percentage of gynoid fat (p < 0.05) and android fat (p < 0.01). No significant changes in inflammation or strength were reported. A 4-week intervention with eAA plus M together may be effective in enhancing fat-free-mass compared to M and P but not versus eAA. M alone demonstrates a negative effect on albumin level.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy.
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
| | - Gabriella Peroni
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
| | - Clara Gasparri
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
| | - Vittoria Infantino
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy.
| | - Mara Nichetti
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
| | | | - Daniele Spadaccini
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, 27100 Pavia, Italy.
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus P.O. Box 32038, Kingdom of Bahrain.
| |
Collapse
|
14
|
Li RX, Li J, Zhang SY, Mi YL, Zhang CQ. Attenuating effect of melatonin on lipopolysaccharide-induced chicken small intestine inflammation. Poult Sci 2018; 97:2295-2302. [PMID: 29596657 DOI: 10.3382/ps/pey084] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Indexed: 12/12/2022] Open
Abstract
Enriched melatonin (MEL) has been found in the mammalian intestine and has been recently demonstrated to alleviate rodent colitis. In this study, the effect of MEL on lipopolysaccharide (LPS)-induced intestinal inflammations was investigated in new chicken hatchlings. The chicks were fed with a diet supplemented with MEL (12.5 mg/day) from D1 to D10. Meanwhile, the chicks in the LPS or MEL + LPS groups were injected with LPS (10 mg/kg BW, i.p.) at D10. LPS treatment for 6 h increased the expression of IL-6, IL-4, caspase-3 mRNAs and TUNEL-positive cell populations, but decreased populations of the goblet and PCNA+ cells, IgA production and the expression of MUC2 mRNA in the duodenum. Compared with the LPS group, MEL pre-feeding alleviated duodenal inflammation and decreased the expression of TNF-α mRNAs by 23.6% (P = 0.004), IL-6 mRNAs by 69.4% (P = 0.001), IL-4 mRNAs by 4.1% (P = 0.824) and caspase-3 mRNAs by 45.8% (P < 0.001). Conversely, MEL pre-feeding attenuated the LPS-induced changes of IgA production by 161.6% (P = 0.013) and PCNA+ cell populations by 172.1% (P < 0.001) in the duodenum. TLR4 mRNA was also up-regulated by LPS treatment but down-regulated by MEL pre-feeding. In conclusion, dietary MEL could attenuate LPS-induced chick duodenal inflammation by down-regulating the expression of inflammatory cytokines, promoting epithelial cell proliferation, improving the immunological barrier and inhibiting epithelial apoptosis via the mediation of TLR4.
Collapse
Affiliation(s)
- R X Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - J Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - S Y Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Y L Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - C Q Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Bak DH, Na J, Choi MJ, Lee BC, Oh CT, Kim JY, Han HJ, Kim MJ, Kim TH, Kim BJ. Anti‑apoptotic effects of human placental hydrolysate against hepatocyte toxicity in vivo and in vitro. Int J Mol Med 2018; 42:2569-2583. [PMID: 30132515 PMCID: PMC6192762 DOI: 10.3892/ijmm.2018.3830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Apoptosis and oxidative stress are essential for the pathogenesis of acute liver failure and fulminant hepatic failure. Human placental hydrolysate (hPH) has been reported to possess antioxidant and anti-inflammatory properties. In the present study, the protective effects of hPH against D-galactosamine (D-GalN)- and lipopolysaccharide (LPS)-induced hepatocyte apoptosis were investigated in vivo. In addition, the molecular mechanisms underlying the anti-apoptotic activities of hPH against D-GalN-induced cell death in vitro were examined. Male Sprague-Dawley rats were injected with D-GaIN/LPS with or without the administration of hPH. Rats were sacrificed 24 h after D-GaIN/LPS intraperitoneal injection, and the blood and liver samples were collected for future inflammation and hepatotoxicity analyses. Changes in cell viability, apoptosis protein expression, mitochondrial mass, mitochondrial membrane potential, reactive oxygen species generation, and the levels of proteins and mRNA associated with a protective mechanism were determined in HepG2 cells pretreated with hPH for 2 h prior to D-GalN exposure. The findings suggested that hPH treatment effectively protected against D-GalN/LPS-induced hepatocyte apoptosis by reducing the levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, interleukin-6, and tumor necrosis factor-α, and increasing the level of proliferating cell nuclear antigen. It was also found that hPH inhibited the apoptotic cell death induced by D-GalN. hPH activated the expression of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase, and catalase, which were further upregulated by the Kelch-like ECH2-associated protein 1-p62-nuclear factor-erythroid 2-related factor 2 pathway, a component of oxidative stress defense mechanisms. Furthermore, hPH markedly reduced cytosolic and mitochondrial reactive oxygen species and rescued mitochondrial loss and dysfunction through the reduction of damage-regulated autophagy modulator, p53, and C/EBP homologous protein. Collectively, hPH exhibited a protective role in hepatocyte apoptosis by inhibiting oxidative stress and maintaining cell homeostasis. The underlying mechanisms may be associated with the inhibition of endoplasmic reticulum stress and minimization of the autophagy progress.
Collapse
Affiliation(s)
- Dong-Ho Bak
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Jungtae Na
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Mi Ji Choi
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Byung Chul Lee
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Chang Taek Oh
- Research and Development Center, Green Cross WellBeing Corporation, Seongnam, Gyeonggi 13595, Republic of Korea
| | - Jeom-Yong Kim
- Research and Development Center, Green Cross WellBeing Corporation, Seongnam, Gyeonggi 13595, Republic of Korea
| | - Hae Jung Han
- Research and Development Center, Green Cross WellBeing Corporation, Seongnam, Gyeonggi 13595, Republic of Korea
| | | | - Tae Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon‑si, Gyeonggi 14647, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
16
|
Seo HY, Kim MK, Lee SH, Hwang JS, Park KG, Jang BK. Kahweol Ameliorates the Liver Inflammation through the Inhibition of NF-κB and STAT3 Activation in Primary Kupffer Cells and Primary Hepatocytes. Nutrients 2018; 10:nu10070863. [PMID: 29973533 PMCID: PMC6073512 DOI: 10.3390/nu10070863] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Gut derived bacterial endotoxins, such as lipopolysaccharide (LPS), are involved in one of the important mechanisms that lead to inflammation associated with various liver diseases, including nonalcoholic fatty liver disease and alcoholic liver disease. Kahweol is a coffee-specific diterpene present in coffee bean and exhibits anti-angiogenic and anti-inflammatory activities. However, to date, the effect of kahweol on liver inflammation remains unknown. In this study, we examined whether kahweol exhibits a protective effect by inhibiting liver inflammation in primary Kupffer cells and primary hepatocytes cultures as well as their co-cultures. Kahweol decreased the LPS-induced production of interleukin 1 alpha, interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha. The inhibitory effect of kahweol on the liver inflammation was associated with the down regulation of LPS-stimulated phospho-nuclear factor kappa B and -signal transducer and activator of transcription 3 expression. These results suggest that kahweol might be a novel potent agent to treat liver inflammation induced by LPS.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - Mi-Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - So-Hee Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - Jae Seok Hwang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea.
- Institute for Medical Science, Keimyung University School of Medicine, Daegu 42601, Korea.
| |
Collapse
|
17
|
Zhou H, Tang L, Yang Y, Lin L, Dai J, Ge P, Ai Q, Jiang R, Zhang L. Dopamine alleviated acute liver injury induced by lipopolysaccharide/d-galactosamine in mice. Int Immunopharmacol 2018; 61:249-255. [PMID: 29894864 DOI: 10.1016/j.intimp.2018.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Dopamine (DA), a crucial neurotransmitter, not only functions in the central nervous system but also plays important roles in the modulation of inflammation. Several studies suggest that DA might suppress the inflammatory response both in vitro and in vivo. In the present study, the potential effects of DA in a mouse model with lipopolysaccharide (LPS)/d-galactosamine (D-Gal)-induced acute liver injury were investigated. The results show that DA-treated LPS/D-Gal-exposed mice had reduced incidence of histologic lesions, lower plasma aminotransferases and improved the survival rates compared to LPS/D-Gal-exposed mice. Treatment with DA also suppressed LPS/D-Gal-induced production of TNF-α, phosphorylation of c-jun-N-terminal kinase (JNK), cleavage of caspase-3, up-regulation of hepatic caspase-3, caspase-8, and caspase-9 activities and reduced the count of TUNEL-positive hepatocytes. These data indicate that DA attenuated LPS/D-Gal-induced fulminant liver injury in mice, which implies that DA might have value for the prevention of inflammatory liver disease.
Collapse
Affiliation(s)
- Honghong Zhou
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, Chongqing, China
| | - Pu Ge
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qing Ai
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China; Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Mortezaee K, Majidpoor J, Daneshi E, Abouzaripour M, Abdi M. Post-treatment of melatonin with CCl 4 better reduces fibrogenic and oxidative changes in liver than melatonin co-treatment. J Cell Biochem 2018; 119:1716-1725. [PMID: 28782839 DOI: 10.1002/jcb.26331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 08/28/2024]
Abstract
Therapeutic effects of melatonin (MEL) in targeting CCl4 -induced liver fibrosis has been widely known, but there is no study comparing oxidative and fibrogenic changes in co- and post-treatment of MEL with CCl4 , which was further aimed in this experiment. Male SD rats were injected with CCl4 (1 mL/kg/i.p./daily) dissolved 1:1 in olive oil for 1 month. Some animals received MEL (20 mg/kg/i.p./daily) diluted in 1 mL PBS in combination with CCl4 (co-treatment), and some rats were treated with MEL, beginning with injection of the last dose of CCl4 for one month (post-treatment). The groups were control, CCl4 , CCl4 -co vehicle, CCl4 -post vehicle, post-CCl4 , MEL co-treatment, and MEL post-treatment. MEL post-treatment group showed significantly lower lipid deposition, serum malondialdehyde (MDA), serum alanine aminotransferase (ALT), and liver hydroxyproline. This group also had low expressions of Bax and transforming growth factor-β1 (TGF-β1). MEL post-treatment group revealed higher sera levels of albumin, superoxide dismutase (SOD) and glutathione peroxidase (GPx). Expression levels of metalloproteinase-13 (MMP-13) and Bcl2 was also higher in this group (P ≤ 0.05 vs co-treatment). Results of the present study indicated that MEL post-treatment is more powerful in reduction of CCl4 -induced liver fibrosis through reduction of oxidative stress and maintenance of matrix balance.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Daneshi
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Morteza Abouzaripour
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mahdad Abdi
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
19
|
Melatonin Modulates Neuronal Cell Death Induced by Endoplasmic Reticulum Stress under Insulin Resistance Condition. Nutrients 2017; 9:nu9060593. [PMID: 28604593 PMCID: PMC5490572 DOI: 10.3390/nu9060593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022] Open
Abstract
Insulin resistance (IR) is an important stress factor in the central nervous system, thereby aggravating neuropathogenesis and triggering cognitive decline. Melatonin, which is an antioxidant phytochemical and synthesized by the pineal gland, has multiple functions in cellular responses such as apoptosis and survival against stress. This study investigated whether melatonin modulates the signaling of neuronal cell death induced by endoplasmic reticulum (ER) stress under IR condition using SH-SY5Y neuroblastoma cells. Apoptosis cell death signaling markers (cleaved Poly [ADP-ribose] polymerase 1 (PARP), p53, and Bax) and ER stress markers (phosphorylated eIF2α (p-eIF2α), ATF4, CHOP, p-IRE1, and spliced XBP1 (sXBP1)) were measured using reverse transcription-PCR, quantitative PCR, and western blottings. Immunofluorescence staining was also performed for p-ASK1 and p-IRE1. The mRNA or protein expressions of cell death signaling markers and ER stress markers were increased under IR condition, but significantly attenuated by melatonin treatment. Insulin-induced activation of ASK1 (p-ASK1) was also dose dependently attenuated by melatonin treatment. The regulatory effect of melatonin on neuronal cells under IR condition was associated with ASK1 signaling. In conclusion, the result suggested that melatonin may alleviate ER stress under IR condition, thereby regulating neuronal cell death signaling.
Collapse
|
20
|
Bi X, Wang P, Ma Q, Han L, Wang X, Mu Y, Guan P, Qu X, Wang Z, Huang X. Anti-Inflammatory Activities and Liver Protection of Alisol F and 25-Anhydroalisol F through the Inhibition of MAPK, STAT3, and NF-κB Activation In Vitro and In Vivo. Molecules 2017; 22:molecules22060951. [PMID: 28594379 PMCID: PMC6152757 DOI: 10.3390/molecules22060951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
Alisol F and 25-anhydroalisol F isolated from Alisma orientale, were proved to exhibit anti-inflammatory potential in our previous work. In the current study, the anti-inflammatory effects and action mechanisms of alisol F and 25-anhydroalisol F were investigated in vitro. Moreover, the pharmacological effects of alisol F in lipopolysaccharide (LPS)/d-galactosamine (d-gal)-induced acute liver-injured mice were evaluated. The results demonstrated that alisol F and 25-anhydroalisol F could suppress LPS-induced production of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β), as well as inhibit the mRNA and protein levels of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2). In addition, we investigated the role of alisol F and 25-anhydroalisol F in mediating mitogen-activated protein kinases (MAPKs), signal transducers, and activators of transcription 3 (STAT3) and nuclear factor κB (NF-κB) pathways involved in the inflammation process of LPS-stimulated RAW 264.7 cells. The phosphorylation of ERK, JNK, p38, and STAT3, and the NF-κB signaling pathway, were obviously suppressed in alisol F and 25-anhydroalisol F treated cells. Results obtained from in vitro experiments suggested alisol F obviously improved liver pathological injury by inhibiting the production of TNF-α, IL-1β, and IL-6, and significantly decreasing the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in LPS/d-gal-induced mice. Furthermore, the reduction of phosphorylation of ERK and JNK, as well as suppression of the NF-κB signaling pathway, were also observed in liver tissues of the alisol F-treated mice model. Alisol F and 25-anhydroalisol F may serve as potential leads for development of anti-inflammatory agents for acute liver failure treatment.
Collapse
Affiliation(s)
- Xiaoxu Bi
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Qingjuan Ma
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Li Han
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Xingbo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Yu Mu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Peipei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Xiaodan Qu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Zhanyou Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Xueshi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
21
|
Liu WC, Wang X, Zhang X, Chen X, Jin X. Melatonin Supplementation, a Strategy to Prevent Neurological Diseases through Maintaining Integrity of Blood Brain Barrier in Old People. Front Aging Neurosci 2017; 9:165. [PMID: 28596733 PMCID: PMC5442221 DOI: 10.3389/fnagi.2017.00165] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022] Open
Abstract
Blood brain barrier (BBB) plays a crucial role in maintaining homeostasis of microenvironment that is essential to neural function of the central nervous system (CNS). When facing various extrinsic or intrinsic stimuli, BBB is damaged which is an early event in pathogenesis of a variety of neurological diseases in old patients including acute and chronic cerebral ischemia, Alzheimer’s disease and etc. Treatments that could maintain the integrity of BBB may prevent neurological diseases following various stimuli. Old people often face a common stress of sepsis, during which lipopolysaccharide (LPS) is released into circulation and the integrity of BBB is damaged. Of note, there is a significant decrease of melatonin level in old people and animal. Melatonin has been shown to preserves BBB integrity and permeability via a variety of pathways: inhibition of matrix metalloproteinase-9 (MMP-9), inhibition of NADPH oxidase-2, and impact on silent information regulator 1 (SIRT1) and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. More important, a recent study showed that melatonin supplementation alleviates LPS-induced BBB damage in old mice through activating AMP-activated protein kinase (AMPK) and inhibiting gp91phox, suggesting that melatonin supplementation may help prevent neurological diseases through maintaining the integrity of BBB in old people.
Collapse
Affiliation(s)
- Wen-Cao Liu
- Department of Emergency, Shanxi Provincial People's HospitalTaiyuan, China
| | - Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| | - Xinyu Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| | - Xi Chen
- Department of Core Facility, the People's Hospital of Baoan ShenzhenShenzhen, China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, the Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai UniversityYantai, China
| |
Collapse
|
22
|
Wang X, Xue GX, Liu WC, Shu H, Wang M, Sun Y, Liu X, Sun YE, Liu CF, Liu J, Liu W, Jin X. Melatonin alleviates lipopolysaccharide-compromised integrity of blood-brain barrier through activating AMP-activated protein kinase in old mice. Aging Cell 2017; 16:414-421. [PMID: 28156052 PMCID: PMC5334533 DOI: 10.1111/acel.12572] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 11/26/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction is considered to be an early event in the pathogenesis of a variety of neurological diseases in old patients, and this could occur in old people even when facing common stress. However, the mechanism remains to be defined. In this study, we tested the hypothesis that decreased melatonin levels may account for the BBB disruption in old mice challenged with lipopolysaccharide (LPS), which mimicked the common stress of sepsis. Mice (24–28 months of age) received melatonin (10 mg kg−1 day−1, intraperitoneally, i.p.) or saline for one week before exposing to LPS (1 mg kg−1, i.p.). Evan's blue dye (EB) and immunoglobulin G (IgG) leakage were used to assess BBB permeability. Immunostaining and Western blot were used to detect protein expression and distribution. Our results showed that LPS significantly increased BBB permeability in old mice accompanied by the degradation of tight junction proteins occludin and claudin‐5, suppressed AMP‐activated protein kinase (AMPK) activation, and elevated gp91phox protein expression. Interestingly, administration of melatonin for one week significantly decreased LPS‐induced BBB disruption, AMPK suppression, and gp91phox upregualtion. Moreover, activation of AMPK with metformin significantly inhibited LPS‐induced gp91phox upregualtion in endothelial cells. Taken together, our findings demonstrate that melatonin alleviates LPS‐induced BBB disruption through activating AMPK and inhibiting gp91phox upregulation in old mice.
Collapse
Affiliation(s)
- Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Gai-Xiu Xue
- Suzhou Municipal Hospital; Suzhou 215002 China
| | - Wen-Cao Liu
- Department of Emergency; Shanxi Provincial People's Hospital; Taiyuan 030001 China
| | - Hui Shu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Mengwei Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Yanyun Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| | - Xiaojing Liu
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
| | - Yi Eve Sun
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
- Department of Psychiatry and Biobehavioral Sciences; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
- Department of Neurology; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University; Suzhou 215004 China
| | - Jie Liu
- Translational Center for Stem Cell Research; Tongji Hospital; Stem Cell Research Center; Tongji University School of Medicine; Shanghai 200065 China
| | - Wenlan Liu
- The Central Laboratory; Shenzhen Second People's Hospital; the First Affiliated Hospital of Shenzhen University; Shenzhen 518035 China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience; The Second Affiliated Hospital of Soochow University; Suzhou 215004 China
| |
Collapse
|
23
|
Zhang X, Wu J, Ye B, Wang Q, Xie X, Shen H. Protective effect of curcumin on TNBS-induced intestinal inflammation is mediated through the JAK/STAT pathway. Altern Ther Health Med 2016; 16:299. [PMID: 27544348 PMCID: PMC4992287 DOI: 10.1186/s12906-016-1273-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022]
Abstract
Background Curcumin displays a protective role in rat models of intestinal inflammation. However, the mechanism of how curcumin affects on intestinal inflammation is less known. The purpose of the current study is to explore the signal pathway in which the curcumin protecting rat from intestinal inflammation. Methods The intestinal inflammation rat models were made by TNBS treatment. Curcumin was added to their diet 5 days before the TNBS instillation. After that, body weight change, score of macroscopic assessment of disease activity and microscopic scoring were utilized to analyse the severity of the induced inflammation. In addition, the level of pro-inflammatory cytokines and anti-inflammatory were detected to determine the effect of curcumin on intestinal inflammation. The JAK/STAT pathway of pro-inflammation response was also evaluated. Finally, the impact of curcumin on apoptosis in intestinal inflammation was assessed by TUNEL staining. Results Rats pretreated with curcumin significantly reversed the decrease of body weight and increase of colon weight derived from TNBS-induced colitis. Histological improvement was observed in response to curcumin. In addition, curcumin attenuated TNBS-induced secretion of pro-inflammatory cytokines and M1/M2 ratio, while stimulated the secretion of anti-inflammatory cytokines. The inhibition of pro-inflammation response was mediated by SOCS-1, which could efficiently suppress JAK/STAT pathways. Furthermore, curcumin efficiently suppressed the TNBS-induced apoptosis, and reduced the accumulation of cytochrome C in cytosol. Conclusion The anti-inflammatory effect of curcumin is realized by enhancing SOCS-1 expression and inhibiting JAK/STAT pathways. Curcumin also plays an anti-apoptotic role in TNBS-induced intestinal inflammation. We propose that curcumin may have therapeutic implications for human intestinal inflammation.
Collapse
|
24
|
Choi JW, Kim IH, Kim YM, Lee MK, Nam TJ. Pyropia yezoensis glycoprotein regulates antioxidant status and prevents hepatotoxicity in a rat model of D-galactosamine/lipopolysaccharide-induced acute liver failure. Mol Med Rep 2016; 13:3110-4. [PMID: 26935645 DOI: 10.3892/mmr.2016.4932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 11/18/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effects of Pyropia yezoensis glycoprotein (PYGP) on hepatic antioxidative enzyme activity and mitogen-activated protein kinase (MAPK) phosphorylation in a rat model of D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced hepatotoxicity. Glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were measured to determine the severity of hepatotoxicity. Treatment with D‑GalN/LPS significantly increased the GOT, GPT and lipid peroxidation levels, and decreased the antioxidant capacity of the rats. Treatment with PYGP (150 and 300 mg/kg/body weight) decreased the levels of GOT, GPT and lipid peroxidation levels. The activities of antioxidative enzymes, including catalase, glutathione S‑transferase and glutathione were upregulated following PYGP treatment. Furthermore, D‑GalN/LPS‑induced MAPK phosphorylation, and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression were downregulated by PYGP. These results indicated that PYGP may exert hepatoprotective effects via the upregulation of antioxidative enzymes, and the downregulation of the MAPK signaling pathway and iNOS and COX-2 expression.
Collapse
Affiliation(s)
- Jeong-Wook Choi
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - In-Hye Kim
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Young-Min Kim
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| |
Collapse
|
25
|
Xu Y, Wang S, Jiang L, Wang H, Yang Y, Li M, Wang X, Zhao X, Xie K. Identify Melatonin as a Novel Therapeutic Reagent in the Treatment of 1-Bromopropane(1-BP) Intoxication. Medicine (Baltimore) 2016; 95:e2203. [PMID: 26817862 PMCID: PMC4998236 DOI: 10.1097/md.0000000000002203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
1-Bromopropane (1-BP) has been used as an alternative for fluoride compounds and 1-BP intoxication may involve lung, liver, and central neural system (CNS). Our previous studies showed that 1-BP impaired memory ability by compromising antioxidant cellular defenses. Melatonin is a powerful endogenousantioxidant, and the objective of this study was to explore the therapeutic role of melatonin in the treatment of 1-BP intoxication. Rats were intragastrically treated with 1-BP with or without melatonin, and then sacrificed on 27th day after 1-BP administration. The Morris water maze (MWM) test was used to evaluate the spatial learning and memory ability of the experimental animals, and NeuN staining was performed to assess neuron loss in hippocampus. We found that rats treated with 1-BP spent more time and swam longer distance before landing on the hidden platform with a comparable swimming speed, which was markedly mitigated by the pretreatment with melatonin in a concentration-dependent manner. In addition, 1-BP-induced notable decrease in neuron population in hippocampus by promoting apoptosis, and melatonin pretreatment attenuated those changes in brain. The GSH/GSSG ratio was proportionately decreased and heme oxygenase 1 was increased in the rats exposed to 1-BP (Figure 6), and administration of melatonin restored them. Meanwhile, MDA, the level of lipid peroxidation product, was significantly increased upon exposed to 1-BP, which was significantly attenuated by melatonin pretreatment, indicating that administration of 1-BP could interfere with redox homeostasis of brain in rat, and such 1-BP-induced biomedical changes were reversed by treatment with melatonin.We conclude that treatment with melatonin attenuates 1-BP-induced CNS toxicity through its ROS scavenging effect.
Collapse
Affiliation(s)
- Yongpeng Xu
- From the Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fernández A, Ordóñez R, Reiter RJ, González-Gallego J, Mauriz JL. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res 2015. [PMID: 26201382 DOI: 10.1111/jpi.12264] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) is a dynamic organelle that participates in a number of cellular functions by controlling lipid metabolism, calcium stores, and proteostasis. Under stressful situations, the ER environment is compromised, and protein maturation is impaired; this causes misfolded proteins to accumulate and a characteristic stress response named unfolded protein response (UPR). UPR protects cells from stress and contributes to cellular homeostasis re-establishment; however, during prolonged ER stress, UPR activation promotes cell death. ER stressors can modulate autophagy which in turn, depending of the situation, induces cell survival or death. Interactions of different autophagy- and apoptosis-related proteins and also common signaling pathways have been found, suggesting an interplay between these cellular processes, although their dynamic features are still unknown. A number of pathologies including metabolic, neurodegenerative and cardiovascular diseases, cancer, inflammation, and viral infections are associated with ER stress, leading to a growing interest in targeting components of the UPR as a therapeutic strategy. Melatonin has a variety of antioxidant, anti-inflammatory, and antitumor effects. As such, it modulates apoptosis and autophagy in cancer cells, neurodegeneration and the development of liver diseases as well as other pathologies. Here, we review the effects of melatonin on the main ER stress mechanisms, focusing on its ability to regulate the autophagic and apoptotic processes. As the number of studies that have analyzed ER stress modulation by this indole remains limited, further research is necessary for a better understanding of the crosstalk between ER stress, autophagy, and apoptosis and to clearly delineate the mechanisms by which melatonin modulates these responses.
Collapse
Affiliation(s)
- Anna Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Raquel Ordóñez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
27
|
Paul R, Borah A. The potential physiological crosstalk and interrelationship between two sovereign endogenous amines, melatonin and homocysteine. Life Sci 2015; 139:97-107. [PMID: 26281918 DOI: 10.1016/j.lfs.2015.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/07/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022]
Abstract
The antioxidant melatonin and the non-proteinogenic excitotoxic amino acid homocysteine (Hcy) are very distinct but related reciprocally to each other in their mode of action. The elevated Hcy level has been implicated in several disease pathologies ranging from cardio- and cerebro-vascular diseases to neurodegeneration owing largely to its free radical generating potency. Interestingly, melatonin administration potentially normalizes the elevated Hcy level, thereby protecting the cells from the undesired Hcy-induced excitotoxicity and cell death. However, the exact mechanism and between them remain obscure. Through literature survey we have found an indistinct but a vital link between melatonin and Hcy i.e., the existence of reciprocal regulation between them, and this aspect has been thoroughly described herein. In this review, we focus on all the possibilities of co-regulation of melatonin and Hcy at the level of their production and metabolism both in basal and in pathological conditions, and appraised the potential of melatonin in ameliorating homocysteinemia-induced cellular stresses. Also, we have summarized the differential mode of action of melatonin and Hcy on health and disease states.
Collapse
Affiliation(s)
- Rajib Paul
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| |
Collapse
|
28
|
García-Niño WR, Zazueta C. Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 2015; 97:84-103. [DOI: 10.1016/j.phrs.2015.04.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/23/2022]
|
29
|
Zhang J, Xu L, Zhang L, Ying Z, Su W, Wang T. Curcumin attenuates D-galactosamine/lipopolysaccharide-induced liver injury and mitochondrial dysfunction in mice. J Nutr 2014; 144:1211-8. [PMID: 24899159 DOI: 10.3945/jn.114.193573] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Curcumin, a naturally occurring antioxidant, has various beneficial effects in the treatment of human diseases. However, little information regarding the protection it provides against acute liver injury is available. The present study investigated the protective effects of curcumin against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver injury in mice. A total of 40 male Kunming mice were randomly assigned to 5 groups: 1) mice administered saline vehicle injection (control), 2) mice administered 200 mg/kg body weight (BW) curcumin by i.p. injection (CUR), 3) mice administered D-GalN/LPS (700 mg and 5 μg/kg BW) via i.p. injection (GL), 4) mice administered 200 mg/kg BW curcumin i.p. 1 h before D-GalN/LPS injection (CUR-GL), and 5) mice administered 200 mg/kg BW curcumin i.p. 1 h after D-GalN/LPS injection (GL-CUR). Twenty h after D-GalN/LPS injection, serum alanine aminotransferase activities were 18.5% and 13.5% lower (P < 0.05) and aspartate aminotransferase (AST) activities were 26.6% and 9.6% lower (P < 0.05) in the CUR-GL and GL-CUR groups, respectively, than in the GL group. The CUR-GL and GL-CUR groups had 64.4% and 15.0% higher (P < 0.05) mitochondrial membrane potentials, respectively, and the CUR-GL group had a 44.7% lower reactive oxygen species concentration than the GL group (P < 0.05). Mitochondrial manganese superoxide dismutase activities were 111% and 77.9% higher (P < 0.05) and the percentages of necrotic cells were 47.0% and 32.4% lower (P < 0.05) in the CUR-GL and GL-CUR groups, respectively, than in the GL group. Liver mRNA levels of sirtuin 1 (Sirt1) were 56.4% lower (P < 0.05) in the CUR-GL group than in the GL group. Moreover, compared with the GL-CUR group, the CUR-GL group had an 18.7% lower serum AST activity, a 31.7% lower mitochondrial malondialdehyde concentration, a 36.0% lower hepatic reactive oxygen species concentration, and a 43.0% higher mitochondrial membrane potential. These results suggested that curcumin protects against D-GalN/LPS-induced liver damage by the enhancing antioxidant defense system, attenuating mitochondrial dysfunction and inhibiting apoptosis. This was especially true for curcumin pretreatment, which highlighted its promise as a preventive treatment for acute liver injury in clinical settings.
Collapse
Affiliation(s)
- Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Li Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Weipeng Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Kavishankar GB, Moree SS, Lakshmidevi N. Hepatoprotective and antioxidant activity of N-Trisaccharide in different experimental rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1026-1031. [PMID: 24867503 DOI: 10.1016/j.phymed.2014.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVES To investigate the hepatoprotective, antioxidant and antihyperlipidemic effect of N-Trisaccharide isolated from Cucumis prophetarum (L.) on different experimental rats. METHODS N-Trisaccharide (25 and 50 mg/kg.b.w), silymarin (25 mg/kg) and glibenclamide (25 mg/kg) was orally administered once daily for 28 days and toxicity evaluation studies were carried out. Liver damage was assessed by determining DNA damage, serum enzyme activities and hepatic histopathology of carbon tetrachloride (CCl4) induced hepatic injury in rats. Enzymatic and non enzymatic antioxidant levels in liver and kidney were determined and biochemical parameters such as, serum lipid profile, renal function markers were estimated in type 2 diabetic rats. RESULTS DNA fragmentation analysis revealed the protective effect of N-Trisaccharide on liver DNA damage. Histopathological studies indicated that CCl4-induced liver injury was less severe in N-Trisaccharide (25 and 50mg/kg) treated group. Given at the above doses conferred significant protection against the hepatotoxic actions of CCl4 in rats, reducing serum markers like SGOT, SGPT, ALP, creatinine and urea levels back to near normal (p<0.05) compared to untreated rats. In diabetic rats, N-Trisaccharide treatment significantly reversed abnormal status of enzymatic and non-enzymatic antioxidants levels to near normal. Also, serum lipids such as TG, TC, LDL-C and VLDL-C levels were significantly (p<0.05) reduced compared to diabetic untreated rats. CONCLUSION Present study results confirm that N-Trisaccharide possesses significant antihyperlipidemic, antioxidant and hepatoprotective properties.
Collapse
Affiliation(s)
- G B Kavishankar
- Department of Studies in Microbiology, University of Mysore, Mysore 570006, India; Department of Studies in Biochemistry, University of Mysore, Mysore 570006, India
| | - S S Moree
- Department of Studies in Biochemistry, University of Mysore, Mysore 570006, India
| | - N Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Mysore 570006, India.
| |
Collapse
|
31
|
Sheik Abdulazeez S, Thiruvengadam D. Effect of lycopene on oxidative stress induced during D-galactosamine/lipopolysaccharide-sensitized liver injury in rats. PHARMACEUTICAL BIOLOGY 2013; 51:1592-1599. [PMID: 24028090 DOI: 10.3109/13880209.2013.803579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Lycopene is a phytonutrient under considerable investigation for its antioxidant benefits in treating diseases like cancer, cardiovascular diseases, osteoporosis and diabetes. OBJECTIVE This study explores the effect of lycopene against oxidative damage during experimental hepatitis, induced by D-galactosamine/lipopolysaccharide (D-GalN/LPS). MATERIALS AND METHODS Experimental rats were pretreated with lycopene intraperitoneally for 6 d (10 mg/kg body weight/day) and then induced by D-GalN/LPS. After induction, the levels of lipid peroxides in serum and liver of control and experimental group of animals were measured. The activities of enzymatic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase and nonenzymatic antioxidants, such as reduced glutathione, vitamin C and vitamin E were also analyzed. The genotoxic effect of D-GalN/LPS was evaluated through the comet assay. RESULTS The elevated level of lipid peroxides induced by D-GalN/LPS was significantly (p < 0.05) reverted in lycopene pretreated animals. Lycopene administration restored (p < 0.05) the decreased activities of enzymatic and nonenzymatic antioxidant markers during D-GalN/LPS induction. The DNA strand breaks (72.3 μM) generated during d-GalN/LPS toxic injury was significantly reduced (35.5 μM) upon pretreatment with lycopene as observed by reduced tail movement in comet assay. DISCUSSION AND CONCLUSION There is no conclusive report about lycopene-assisted protection against free radical mediated toxic injury induced by D-GalN/LPS. Our findings reveal that lycopene effectively combated oxidative damage and protected antioxidant defense status of the cell. Pretreatment of lycopene also offers protection against the DNA damage and confirms the antioxidant nature of the phytonutreint against experimental hepatitis.
Collapse
|
32
|
Carpentieri A, Marchionatti A, Areco V, Perez A, Centeno V, Tolosa de Talamoni N. Antioxidant and antiapoptotic properties of melatonin restore intestinal calcium absorption altered by menadione. Mol Cell Biochem 2013; 387:197-205. [PMID: 24234419 DOI: 10.1007/s11010-013-1885-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/05/2013] [Indexed: 12/11/2022]
Abstract
The intestinal Ca²⁺ absorption is inhibited by menadione (MEN) through oxidative stress and apoptosis. The aim of this study was to elucidate whether the antioxidant and antiapoptotic properties of melatonin (MEL) could protect the gut against the oxidant MEN. For this purpose, 4-week-old chicks were divided into four groups: (1) controls, (2) treated i.p. with MEN (2.5 μmol/kg of b.w.), (3) treated i.p. with MEL (10 mg/kg of b.w.), and (4) treated with 10 mg MEL/kg of b.w after 2.5 μmol MEN/kg of b.w. Oxidative stress was assessed by determination of glutathione (GSH) and protein carbonyl contents as well as antioxidant enzyme activities. Apoptosis was assayed by the TUNEL technique, protein expression, and activity of caspase 3. The data show that MEL restores the intestinal Ca²⁺ absorption altered by MEN. In addition, MEL reversed the effects caused by MEN such as decrease in GSH levels, increase in the carbonyl content, alteration in mitochondrial membrane permeability, and enhancement of superoxide dismutase and catalase activities. Apoptosis triggered by MEN in the intestinal cells was arrested by MEL, as indicated by normalization of the mitochondrial membrane permeability, caspase 3 activity, and DNA fragmentation. In conclusion, MEL reverses the inhibition of intestinal Ca²⁺ absorption produced by MEN counteracting oxidative stress and apoptosis. These findings suggest that MEL could be a potential drug of choice for the reversal of impaired intestinal Ca²⁺ absorption in certain gut disorders that occur with oxidative stress and apoptosis.
Collapse
|
33
|
Tuñón MJ, San-Miguel B, Crespo I, Laliena A, Vallejo D, Álvarez M, Prieto J, González-Gallego J. Melatonin treatment reduces endoplasmic reticulum stress and modulates the unfolded protein response in rabbits with lethal fulminant hepatitis of viral origin. J Pineal Res 2013; 55:221-8. [PMID: 23679826 DOI: 10.1111/jpi.12063] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/26/2013] [Indexed: 12/15/2022]
Abstract
Hepatocyte apoptosis plays an important role in the development of fulminant hepatic failure (FHF). The objective of this study was to investigate whether endoplasmic reticulum (ER) stress and unfolded protein response (UPR) inhibition is an underlying mechanism of melatonin anti-apoptotic effects in an animal model of FHF of viral origin induced by the rabbit hemorrhagic disease virus (RHDV). Rabbits were experimentally infected with 2 × 10(4) hemagglutination units of a RHDV isolate and received melatonin at two concentrations of 10 mg/kg and 20 mg/kg at 0 hr, 12 hr and 24 hr postinfection. RHDV infection induced increased expression of CCAAT/enhancer-binding protein homologous protein (CHOP), immunoglobulin heavy chain binding protein (BiP/GRP78), glucose-regulated protein 94 (GRP94), phospho-c-Jun N-terminal kinase (JNK) and caspase-12. These effects were attenuated by melatonin. Double immunofluorescence staining showed colocalization of CHOP and cleaved caspase-3 in liver sections of RHDV-infected rabbits, while immunostaining decreased markedly with melatonin treatment. RHDV infection resulted in significant increases in the mRNA levels of activating transcription factor 6 (ATF6), ATF4, inositol-requiring enzyme 1 (IRE1), spliced X-box binding protein-1 (XBP1s) and tumor necrosis factor receptor-associated factor 2 (TRAF2). Melatonin attenuated the extent of the changes. Data obtained provide evidence that in rabbits with experimental infection by RHDV, reduction in apoptotic liver damage by melatonin is associated with attenuation of ER stress through a modulation of the three arms of UPR signaling and further support a potential hepatoprotective role of melatonin in FHF.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Apoptosis
- Caliciviridae Infections/drug therapy
- Caliciviridae Infections/genetics
- Caliciviridae Infections/metabolism
- Caliciviridae Infections/pathology
- Disease Models, Animal
- Endoplasmic Reticulum Stress/drug effects
- Hemorrhagic Disease Virus, Rabbit/metabolism
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/pathology
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Hepatocytes/virology
- Liver Failure, Acute/drug therapy
- Liver Failure, Acute/metabolism
- Liver Failure, Acute/pathology
- Liver Failure, Acute/virology
- Male
- Melatonin/pharmacology
- Rabbits
- Signal Transduction
- Unfolded Protein Response/drug effects
Collapse
Affiliation(s)
- María J Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hoque R, Vodovotz Y, Mehal W. Therapeutic strategies in inflammasome mediated diseases of the liver. J Hepatol 2013; 58:1047-52. [PMID: 23266490 PMCID: PMC4113326 DOI: 10.1016/j.jhep.2012.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022]
Abstract
Tissue stress and cell death result in inflammation even in the absence of pathogens. Such sterile inflammation is dependent on a cytosolic complex of proteins inside immune cells termed the inflammasome. This complex converts two groups of extracellular signals into an inflammatory response via activation of caspase-1 and secretion of IL-1β and IL-18. Group 1 signals are typically TOLL like receptor agonists and result in transcriptional upregulation of inflammasome components and pro-cytokines. Group 2 signals are diverse, ranging from uric acid to ATP, and lead to assembly and activation of the inflammasome complex. Inflammasome components are required for a wide range of acute and chronic pathologies, including experimental alcoholic and non-alcoholic steatohepatitis, and drug-induced liver injury. Collectively, group 1 and 2 signals, inflammasome components, and cytokine receptors provide a rich source of therapeutic targets. Many of the advances in the field have come from standard reductionist experiments. Progress in the understanding of complex human systems will, however, be dependent on novel strategies such as systems analysis, which analyze large data sets to provide new insights.
Collapse
Affiliation(s)
- Rafaz Hoque
- Section of Digestive Diseases, Yale University, and West Haven Veterans Medical Center, New Haven, CT, United States
| | | | | |
Collapse
|
35
|
Farshori NN, Al-Sheddi ES, Al-Oqail MM, Hassan WHB, Al-Khedhairy AA, Musarrat J, Siddiqui MA. Hepatoprotective potential of Lavandula coronopifolia extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells. Toxicol Ind Health 2013; 31:727-37. [PMID: 23546397 DOI: 10.1177/0748233713483188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The present investigations were carried out to study the protective potential of four extracts (namely petroleum ether extract (LCR), chloroform extract (LCM), ethyl acetate extract (LCE), and alcoholic extract (LCL)) of Lavandula coronopifolia on oxidative stress-mediated cell death induced by ethanol, a known hepatotoxin in human hapatocellular carcinoma (HepG2) cells. Cells were pretreated with LCR, LCM, LCE, and LCL extracts (10-50 μg/ml) of L. coronopifolia for 24 h and then ethanol was added and incubated further for 24 h. After the exposure, cell viability using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red uptake assays and morphological changes in HepG2 cells were studied. Pretreatment with various extracts of L. coronpifolia was found to be significantly effective in countering the cytotoxic responses of ethanol. Antioxidant properties of these L. coronopifolia extracts against reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and glutathione (GSH) levels induced by ethanol were investigated. Results show that pretreatment with these extracts for 24 h significantly inhibited ROS generation and LPO induced and increased the GSH levels reduced by ethanol. The data from the study suggests that LCR, LCM, LCE, and LCL extracts of L. coronopifolia showed hepatoprotective activity against ethanol-induced damage in HepG2 cells. However, a comparative study revealed that the LCE extract was found to be the most effective and LCL the least effective. The hepatoprotective effects observed in the study could be associated with the antioxidant properties of these extracts of L. coronopifolia.
Collapse
Affiliation(s)
| | | | - Mai M Al-Oqail
- College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Javed Musarrat
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maqsood A Siddiqui
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res 2013; 54:127-38. [PMID: 23137057 DOI: 10.1111/jpi.12026] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
Mitochondria and chloroplasts are major sources of free radical generation in living organisms. Because of this, these organelles require strong protection from free radicals and associated oxidative stress. Melatonin is a potent free radical scavenger and antioxidant. It meets the criteria as a mitochondrial and chloroplast antioxidant. Evidence has emerged to show that both mitochondria and chloroplasts may have the capacity to synthesize and metabolize melatonin. The activity of arylalkylamine N-acetyltransferase (AANAT), the reported rate-limiting enzyme in melatonin synthesis, has been identified in mitochondria, and high levels of melatonin have also been found in this organelle. From an evolutionary point of view, the precursor of mitochondria probably is the purple nonsulfur bacterium, particularly, Rhodospirillum rubrum, and chloroplasts are probably the descendents of cyanobacteria. These bacterial species were endosymbionts of host proto-eukaryotes and gradually transformed into cellular organelles, that is, mitochondria and chloroplasts, respectively, thereby giving rise to eukaryotic cells. Of special importance, both purple nonsulfur bacteria (R. rubrum) and cyanobacteria synthesize melatonin. The enzyme activities required for melatonin synthesis have also been detected in these primitive species. It is our hypothesis that mitochondria and chloroplasts are the original sites of melatonin synthesis in the early stage of endosymbiotic organisms; this synthetic capacity was carried into host eukaryotes by the above-mentioned bacteria. Moreover, their melatonin biosynthetic capacities have been preserved during evolution. In most, if not in all cells, mitochondria and chloroplasts may continue to be the primary sites of melatonin generation. Melatonin production in other cellular compartments may have derived from mitochondria and chloroplasts. On the basis of this hypothesis, it is also possible to explain why plants typically have higher melatonin levels than do animals. In plants, both chloroplasts and mitochondria likely synthesize melatonin, while animal cells contain only mitochondria. The high levels of melatonin produced by mitochondria and chloroplasts are used to protect these important cellular organelles against oxidative stress and preserve their physiological functions. The superior beneficial effects of melatonin in both mitochondria and chloroplasts have been frequently reported.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Liang YL, Zhang ZH, Liu XJ, Liu XQ, Tao L, Zhang YF, Wang H, Zhang C, Chen X, Xu DX. Melatonin protects against apoptosis-inducing factor (AIF)-dependent cell death during acetaminophen-induced acute liver failure. PLoS One 2012; 7:e51911. [PMID: 23272189 PMCID: PMC3525654 DOI: 10.1371/journal.pone.0051911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/07/2012] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure and is primarily caused by cytochrome P450 (CYP) 2E1-driven conversion of APAP into hepatotoxic metabolites. Several reports showed that melatonin attenuated APAP-induced acute liver failure. Nevertheless, the exact mechanism remains obscure. In the present study, we investigated the effects of melatonin on apoptosis-inducing factor (AIF)-dependent cell death in APAP-induced acute liver failure. Mice were intraperitoneally (i.p.) injected with different doses of melatonin (1.25, 5, 20 mg/kg) 30 min before APAP (300 mg/kg, i.p.). As expected, melatonin significantly alleviated APAP-induced cell death, as determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay. Further analysis showed that melatonin significantly attenuated APAP-induced activation of the serine/threonine kinase receptor interacting protein 1 (RIP1). In addition, melatonin inhibited APAP-induced hepatic c-Jun N-terminal kinase (JNK) phosphorylation and mitochondrial Bax translocation. Correspondingly, melatonin inhibited APAP-induced translocation of AIF from mitochondria to nuclei. Interestingly, no changes were induced by melatonin on hepatic CYP2E1 expression. In addition, melatonin had little effect on APAP-induced hepatic glutathione (GSH) depletion. In conclusion, melatonin protects against AIF-dependent cell death during APAP-induced acute liver failure through its direct inhibition of hepatic RIP1 and subsequent JNK phosphorylation and mitochondrial Bax translocation.
Collapse
Affiliation(s)
- Ying-Li Liang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Zhi-Hui Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Xiao-Jing Liu
- Department of Toxicology, Anhui Medical University, Hefei, China
- First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiao-Qian Liu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Li Tao
- First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ye-Fa Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Xi Chen
- First Affiliated Hospital, Anhui Medical University, Hefei, China
- * E-mail: (DXX); (XC)
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China
- * E-mail: (DXX); (XC)
| |
Collapse
|
38
|
Kireev R, Bitoun S, Cuesta S, Tejerina A, Ibarrola C, Moreno E, Vara E, Tresguerres JAF. Melatonin treatment protects liver of Zucker rats after ischemia/reperfusion by diminishing oxidative stress and apoptosis. Eur J Pharmacol 2012; 701:185-93. [PMID: 23220161 DOI: 10.1016/j.ejphar.2012.11.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022]
Abstract
Fatty livers occur in up to 20% of potential liver donors and increase cellular injury during the ischemia/reperfusion phase, so any intervention that could enable a better outcome of grafts for liver transplantation would be very useful. The effect of melatonin on liver ischemia/reperfusion injury in a rat model of obesity and hepatic steatosis has been investigated. Forty fa/fa Zucker rats were divided in 4 groups. 3 groups were subjected to 35 min of warm hepatic ischemia and 36 h of reperfusion. One experimental group remained untreated and 2 were given 10mg/kg melatonin intraperitoneally or orally. Another group was sham-operated. Plasma ALT, AST and hepatic content of ATP, MDA, hydroxyalkenals, NOx metabolites, antioxidant enzyme activity, caspase-9 and DNA fragmentation were determined in the liver. The expression of iNOS, eNOS, Bcl2, Bax, Bad and AIF were determined by RT-PCR Melatonin was effective at decreasing liver injury by both ways as assessed by liver transaminases, markers of apoptosis, of oxidative stress and improved liver ATP content. Melatonin administration decreased the activities or levels of most of the parameters measured in a beneficial way, and our study identified also some of the mechanisms of protection. We conclude that administration of melatonin improved liver function, as well as markers of pro/antioxidant status and apoptosis following ischemia/reperfusion in obese rats with fatty liver. These data suggest that this substance could improve outcome in patients undergoing liver transplantation who receive a fatty liver implant and suggest the need of clinical trials with it in liver transplantation.
Collapse
Affiliation(s)
- Roman Kireev
- Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Xia MZ, Liang YL, Wang H, Chen X, Huang YY, Zhang ZH, Chen YH, Zhang C, Zhao M, Xu DX, Song LH. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J Pineal Res 2012; 53:325-34. [PMID: 22537289 DOI: 10.1111/j.1600-079x.2012.01002.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence demonstrates that melatonin has an anti-inflammatory effect. Nevertheless, the molecular mechanisms remain obscure. In this study, we investigated the effect of melatonin on toll-like receptor 4 (TLR4)-mediated molecule myeloid differentiation factor 88 (MyD88)-dependent and TRIF-dependent signaling pathways in lipopolysaccharide (LPS)-stimulated macrophages. RAW264.7 cells were incubated with LPS (2.0 μg/mL) in the absence or presence of melatonin (10, 100, 1000 μm). As expected, melatonin inhibited TLR4-mediated tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and IL-10 in LPS-stimulated macrophages. In addition, melatonin significantly attenuated LPS-induced upregulation of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in macrophages. Further analysis showed that melatonin inhibited the expression of MyD88 in LPS-stimulated macrophages. Although it had no effect on TLR4-mediated phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular regulated protein kinase (ERK), melatonin significantly attenuated the activation of nuclear factor kappa B (NF-κB) in LPS-stimulated macrophages. In addition, melatonin inhibited TLR4-mediated Akt phosphorylation in LPS-stimulated macrophages. Moreover, melatonin significantly attenuated the elevation of interferon (IFN)-regulated factor-3 (IRF3), which was involved in TLR4-mediated TRIF-dependent signaling pathway, in LPS-stimulated macrophages. Correspondingly, melatonin significantly alleviated LPS-induced IFN-β in macrophages. In conclusion, melatonin modulates TLR4-mediated inflammatory genes through MyD88-dependent and TRIF-dependent signaling pathways.
Collapse
Affiliation(s)
- Mi-Zhen Xia
- Life Science College, Anhui Agricultural University, Hefei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The role of cytokines and inflammatory cells in perinatal brain injury. Neurol Res Int 2012; 2012:561494. [PMID: 22530124 PMCID: PMC3317045 DOI: 10.1155/2012/561494] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/25/2011] [Accepted: 12/13/2011] [Indexed: 12/25/2022] Open
Abstract
Perinatal brain injury frequently complicates preterm birth and leads to significant long-term morbidity. Cytokines and inflammatory cells are mediators in the common pathways associated with perinatal brain injury induced by a variety of insults, such as hypoxic-ischemic injury, reperfusion injury, toxin-mediated injury, and infection. This paper examines our current knowledge regarding cytokine-related perinatal brain injury and specifically discusses strategies for attenuating cytokine-mediated brain damage.
Collapse
|
41
|
Park JH, Kim KH, Lee WR, Han SM, Park KK. Protective effect of melittin on inflammation and apoptosis in acute liver failure. Apoptosis 2012; 17:61-69. [PMID: 21928088 DOI: 10.1007/s10495-011-0659-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute hepatic failure remains an extremely poor prognosis and still results in high mortality. Therefore, better treatment is urgently needed. Melittin, a major component of bee venom, is known to inhibit inflammatory reactions induced by lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α in various cell types. However, there is no evidence of the anti-inflammatory and anti-apoptotic effect of melittin on liver cells. In the present study, we investigated the effects of melittin on D: -galactosamine (GalN)/lipopolysaccharide (LPS)-induced acute hepatic failure. Acute liver injury was induced with GalN/LPS to determine in vivo efficacy of melittin. Mice were randomly divided into four groups: sterile saline treated group (NC), melittin only treated group (NM), GalN/LPS-treated group (GalN/LPS), and GalN/LPS treated with melittin group (M+GalN/LPS). Mice were given intraperitoneal GalN/LPS with or without melittin treatment. Liver injury was assessed biochemically and histologically. Inflammatory cytokines in the serum, apoptosis of hepatocytes, and cleavage of caspase-3 in the liver were determined. The expression of TNF-α and interleukin (IL)-1β were increased in the GalN/LPS group. However, treatment of melittin attenuated the increase of inflammatory cytokines. The M+GalN/LPS group showed significantly fewer apoptotic cells compared to the GalN/LPS group. Melittin significantly inhibited the expression of caspase and bax protein levels as well as cytochrome c release in vivo. In addition, melittin prevented the activation of the transcription factor nuclear factor-kappa B (NF-κB) induced by GalN/LPS. These results clearly indicate that melittin provided protection against GalN/LPS-induced acute hepatic failure through the inhibition of inflammatory cytokines and apoptosis.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daemyung Nam-gu, Daegu, Republic of Korea
| | | | | | | | | |
Collapse
|
42
|
Ji YL, Wang H, Meng C, Zhao XF, Zhang C, Zhang Y, Zhao M, Chen YH, Meng XH, Xu DX. Melatonin alleviates cadmium-induced cellular stress and germ cell apoptosis in testes. J Pineal Res 2012; 52:71-9. [PMID: 21793897 DOI: 10.1111/j.1600-079x.2011.00921.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Increasing evidence demonstrates that melatonin has an anti-apoptotic effect in somatic cells. However, whether melatonin can protect against germ cell apoptosis remains obscure. Cadmium (Cd) is a testicular toxicant and induces germ cell apoptosis. In this study, we investigated the effects of melatonin on Cd-evoked germ cell apoptosis in testes. Male ICR mice were intraperitoneally (i.p.) injected with melatonin (5 mg/kg) every 8 hr, beginning at 8 hr before CdCl(2) (2.0 mg/kg, i.p.). As expected, acute Cd exposure resulted in germ cell apoptosis in testes, as determined by terminal dUTP nick-end labeling (TUNEL) staining. Melatonin significantly alleviated Cd-induced testicular germ cell apoptosis. An additional experiment showed that spliced form of XBP-1, the target of the IRE-1 pathway, was significantly increased in testes of mice injected with CdCl(2). GRP78, an endoplasmic reticulum (ER) chaperone, and CHOP, a downstream target of the PERK pathway, were upregulated in testes of Cd-treated mice. In addition, acute Cd exposure significantly increased testicular eIF2α and JNK phosphorylation, indicating that the unfolded protein response (UPR) pathway was activated by CdCl(2). Interestingly, melatonin almost completely inhibited Cd-induced ER stress and the UPR in testes. In addition, melatonin obviously attenuated Cd-induced heme oxygenase (HO)-1 expression and protein nitration in testes. Taken together, these results suggest that melatonin alleviates Cd-induced cellular stress and germ cell apoptosis in testes. Melatonin may be useful as pharmacological agents to protect against Cd-induced testicular toxicity.
Collapse
Affiliation(s)
- Yan-Li Ji
- Department of Toxicology, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tuñón MJ, San Miguel B, Crespo I, Jorquera F, Santamaría E, Alvarez M, Prieto J, González-Gallego J. Melatonin attenuates apoptotic liver damage in fulminant hepatic failure induced by the rabbit hemorrhagic disease virus. J Pineal Res 2011; 50:38-45. [PMID: 20964705 DOI: 10.1111/j.1600-079x.2010.00807.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatocyte apoptosis plays an important role in the development of fulminant hepatic failure (FHF). The objective of this study was to investigate the antiapoptotic effect of melatonin in an animal model of FHF of viral origin induced by the rabbit hemorrhagic disease virus (RHDV). Rabbits were experimentally infected with 2 × 10(4) hemagglutination units of a RHDV isolate and received melatonin at two concentrations of 10 and 20 mg/kg at 0, 12, and 24 hr postinfection. RHDV infection induced liver apoptosis, with increased caspase-3 immunoexpression and activity and poly(ADP-ribose)polymerase-1 (PARP-1) proteolysis. These effects were attenuated by melatonin in a concentration-dependent manner. Antiapoptotic effects of melatonin were related to a reduced expression of Bax and cytosolic cytochrome c release, increased expression of Bcl-2 and Bcl-xL, and inhibition of caspase-9 activity. Increased thiobarbituric reactive acid substances concentration and oxidized-to-reduced glutathione ratio were significantly prevented by melatonin administration. Melatonin treatment also resulted in a reduction in caspase-8 activity, tumor necrosis factor receptor-1 (TNF-R1) expression, and phosphorylated Janus kinase (JNK) expression, and increased expression of cellular FLICE-inhibitory protein (c-FLIP). Our findings show that inhibition of apoptotic mechanisms contributes to the beneficial effects of melatonin in rabbits with experimental infection by RHDV and supports a potential hepatoprotective role of melatonin in FHF.
Collapse
Affiliation(s)
- María J Tuñón
- Institute of Biomedicine, University of León, León, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Melatonin, the hormone of darkness and messenger of the photoperiod, is also well known to exhibit strong direct and indirect antioxidant properties. Melatonin has previously been demonstrated to be a powerful organ protective substance in numerous models of injury; these beneficial effects have been attributed to the hormone’s intense radical scavenging capacity. The present report reviews the hepatoprotective potential of the pineal hormone in various models of oxidative stress in vivo, and summarizes the extensive literature showing that melatonin may be a suitable experimental substance to reduce liver damage after sepsis, hemorrhagic shock, ischemia/reperfusion, and in numerous models of toxic liver injury. Melatonin’s influence on hepatic antioxidant enzymes and other potentially relevant pathways, such as nitric oxide signaling, hepatic cytokine and heat shock protein expression, are evaluated. Based on recent literature demonstrating the functional relevance of melatonin receptor activation for hepatic organ protection, this article finally suggests that melatonin receptors could mediate the hepatoprotective actions of melatonin therapy.
Collapse
|
45
|
Crespo I, Miguel BS, Laliena A, Alvarez M, Culebras JM, González-Gallego J, Tuñón MJ. Melatonin prevents the decreased activity of antioxidant enzymes and activates nuclear erythroid 2-related factor 2 signaling in an animal model of fulminant hepatic failure of viral origin. J Pineal Res 2010; 49:193-200. [PMID: 20609075 DOI: 10.1111/j.1600-079x.2010.00787.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This work was undertaken to investigate whether treatment with melatonin prevents oxidative stress and changes in the expression and activity of factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant enzymes in an animal model of fulminant hepatic failure of viral origin. Rabbits were experimentally infected with 2 x 10(4) hemagglutination units of a rabbit hemorrhagic disease virus (RHDV) isolate and received melatonin at two concentrations of 10 mg/kg and 20 mg/kg at 0, 12 and 24 hr postinfection. Blood transaminases, blood lactate dehydrogenase, liver concentration of thiobarbituric reactive acid substances and the liver oxidized to reduced glutathione ratio significantly increased at 36 hr postinfection in infected animals. Significant decreases were found in the mRNA levels and in the liver activities of Mn-superoxide dismutase, glutathione peroxidase and glutathione-S-transferase in infected rabbits. These effects were prevented by melatonin administration in a concentration-dependent manner. Melatonin treatment was not accompanied by changes in protein levels of Kelch-like ECH-associating protein 1 (Keap1) but resulted in an increased protein expression of Nrf2 in the cytoplasm and the nucleus, which was confirmed by the results of Nrf2 immunostaining. Nuclear extracts from livers of melatonin-treated rats displayed an enhanced antioxidant responsive element (ARE)-binding activity of Nrf2. Our results suggest a potential hepatoprotective role of melatonin in fulminant hepatic failure, partially mediated through the abrogation of oxidative stress and the prevention of the decreased activity of antioxidant enzymes via the Nrf2 pathways.
Collapse
Affiliation(s)
- Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Sebai H, Sani M, Yacoubi MT, Aouani E, Ghanem-Boughanmi N, Ben-Attia M. Resveratrol, a red wine polyphenol, attenuates lipopolysaccharide-induced oxidative stress in rat liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1078-1083. [PMID: 20089305 DOI: 10.1016/j.ecoenv.2009.12.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/24/2009] [Accepted: 12/29/2009] [Indexed: 05/28/2023]
Abstract
Lipopolysaccharide (LPS) is a glycolipid component of the cell wall of gram-negative bacteria inducing deleterious effects on several organs including the liver and eventually leading to septic shock and death. Endotoxemia-induced hepatotoxicity is characterized by disturbed intracellular redox balance, excessive reactive oxygen species (ROS) accumulation inducing DNA, proteins and membrane lipid damages. Resveratrol (trans-3,5,4' trihydroxystilbene) is a phytoalexin polyphenol exhibiting antioxidant and anti-inflammatory properties. In this study, we investigated the effect of subacute pre-treatment with this natural compound on LPS-induced hepatotoxicity in rat. Resveratrol counteracted LPS-induced lipoperoxidation and depletion of antioxidant enzyme activities as superoxide dismutase (SOD) and catalase (CAT) but slightly glutathione peroxidase (GPx) activity. The polyphenol also abrogated LPS-induced liver and plasma nitric oxide (NO) elevation and attenuated endotoxemia-induced hepatic tissue injury. Importantly resveratrol treatment abolished LPS-induced iron sequestration from plasma to liver compartment. Our data suggest that resveratrol is capable of alleviating LPS-induced hepatotoxicity and that its mode of action may involve differential iron compartmentalization via iron shuttling proteins.
Collapse
Affiliation(s)
- Hichem Sebai
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisie.
| | | | | | | | | | | |
Collapse
|
47
|
Participation of lipid transport and fatty acid metabolism in valproate sodium-induced hepatotoxicity in HepG2 cells. Toxicol In Vitro 2010; 24:1086-91. [DOI: 10.1016/j.tiv.2010.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 03/08/2010] [Accepted: 03/25/2010] [Indexed: 11/24/2022]
|
48
|
Shinozaki S, Inoue Y, Yang W, Fukaya M, Carter EA, Yu YM, Ming-Yu Y, Fischman A, Tompkins R, Kaneki M. Farnesyltransferase inhibitor improved survival following endotoxin challenge in mice. Biochem Biophys Res Commun 2009; 391:1459-64. [PMID: 20034462 DOI: 10.1016/j.bbrc.2009.12.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 01/09/2023]
Abstract
Endotoxemia plays an important role in the pathogenesis of sepsis and is accompanied by dysregulated apoptosis of immune and non-immune cells. Treatment with statins reduces mortality in rodent models of sepsis and endotoxemia. Inhibition of protein isoprenylation, including farnesylation, has been proposed as a mechanism to mediate the lipid-lowering-independent effects of statins. Nonetheless, the effects of the inhibition of isoprenylation have not yet been studied. To investigate the role of farnesylation, we evaluated the effects of farnesyltransferase inhibitor and statin on survival following lipopolysaccharide (LPS) challenge in mice. Both simvastatin (2mg/kg BW) and FTI-277 (20mg/kg BW) treatment improved survival by twofold after LPS injection, as compared with vehicle alone (p<0.01). LPS-induced cleavage (activation) of caspase-3, an indicator of apoptotic change, and increased protein expression of proapoptotic molecules, Bax and Bim, and activation of c-Jun NH(2)-terminal kinase (JNK/SAPK) in the liver and spleen were attenuated by both simvastatin and FTI-277. These results demonstrate that farnesyltransferase inhibitor as well as statin significantly reduced LPS-induced mortality in mice. Our findings also suggest that inhibition of protein farnesylation may contribute to the lipid-lowering-independent protective effects of statins in endotoxemia, and that protein farnesylation may play a role in LPS-induced stress response, including JNK/SAPK activation, and apoptotic change. Our data argue that farnesyltransferase may be a potential molecular target for treating patients with endotoxemia.
Collapse
|
49
|
Jesse CR, Wilhelm EA, Bortolatto CF, Savegnago L, Nogueira CW. Selective blockade of mGlu5 metabotropic glutamate receptors is hepatoprotective against fulminant hepatic failure induced by lipopolysaccharide and D-galactosamine in mice. J Appl Toxicol 2009; 29:323-9. [PMID: 19153979 DOI: 10.1002/jat.1413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study was designed to investigate the influence of 2-methyl-6-phenylethynyl pyridine hydrochloride (MPEP), an antagonist of metabotropic glutamate receptor subtype 5, in lipopolysaccharide (LPS) and d-galactosamine (D-GalN)-induced fulminant hepatic failure in mice. Mice were given an intraperitoneal injection of 50 microg kg(-1) LPS and 500 mg kg(-1) D-GalN. MPEP (1, 5 and 25 mg kg(-1)) was administered intraperitoneally 1 h before LPS/D-GalN injection. Twenty-four hours after administration of LPS/D-GalN, plasma was collected and used for biochemical assays. Mice were euthanized and histological analysis and toxicological parameters were carried out in the liver. MPEP, at all doses tested, protected against the increase in aspartate and alanine aminotransferase activities induced by LPS/D-GalN exposure. Ascorbic acid levels were not altered in all experimental groups. Glutathione S-transferase activity was increased by administration of LPS/D-GalN and MPEP did not modify the enzyme activity in mice. MPEP, at the doses of 5 and 25 mg kg(-1), was effective in protecting against the decrease in catalase activity caused by LPS/D-GalN administration in mice. The histological data showed that sections of liver from LPS/D-GalN-exposed mice presented extensive injuries. MPEP, at all doses tested, reduced the scores of liver damage and markedly ameliorated the degree of liver damage. The hepatoprotective effect of MPEP on fulminant hepatic failure induced by LPS and D-GalN in mice was demonstrated.
Collapse
Affiliation(s)
- Cristiano R Jesse
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
50
|
Zahedi P, De Souza R, Piquette-Miller M, Allen C. Chitosan–phospholipid blend for sustained and localized delivery of docetaxel to the peritoneal cavity. Int J Pharm 2009; 377:76-84. [DOI: 10.1016/j.ijpharm.2009.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 05/03/2009] [Indexed: 11/28/2022]
|