1
|
Üremiş N, Üremiş MM. Oxidative/Nitrosative Stress, Apoptosis, and Redox Signaling: Key Players in Neurodegenerative Diseases. J Biochem Mol Toxicol 2025; 39:e70133. [PMID: 39799559 PMCID: PMC11725306 DOI: 10.1002/jbt.70133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression. The heterogeneity of genetic and environmental factors involved in the process of neurodegeneration makes current treatment methods inadequate. However, the existence of common molecular mechanisms in the pathogenesis of these diseases may allow the development of new targeted therapeutic strategies. Oxidative and nitrosative stress damages membrane components by accumulating ROS and RNS and disrupting redox balance. This process results in the induction of apoptosis, which is important in the pathogenesis of neurodegenerative diseases through oxidative stress. Studies conducted using postmortem human samples, animal models, and cell cultures have demonstrated that oxidative stress, nitrosative stress, and apoptosis are crucial factors in the development of diseases such as Alzheimer's, Parkinson's, Multiple Sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. The excessive production of reactive oxygen and nitrogen species, elevated levels of free radicals, heightened mitochondrial stress, disturbances in energy metabolism, and the oxidation and nitrosylation of cellular macromolecules are recognized as triggers for neuronal cell death. Challenges in managing and treating neurodegenerative diseases require a better understanding of this field at the molecular level. Therefore, this review elaborates on the molecular mechanisms by which oxidative and nitrosative stress are involved in neuronal apoptosis.
Collapse
Affiliation(s)
- Nuray Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| | - Muhammed Mehdi Üremiş
- Department of Medical BiochemistryFaculty of Medicine, Kahramanmaraş Sütçü İmam UniversityKahramanmaraşTurkey
| |
Collapse
|
2
|
Eghbali F, Dehkordi HT, Amini-Khoei H, Lorigooini Z, Rahimi-Madiseh M. The potential role of nitric oxide in the anticonvulsant effects of betulin in pentylenetetrazole (PTZ)-induced seizures in mice. IBRO Neurosci Rep 2024; 16:527-534. [PMID: 38706971 PMCID: PMC11068554 DOI: 10.1016/j.ibneur.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024] Open
Abstract
Epilepsy poses a significant challenge, especially for drug-resistant cases, necessitating novel treatment avenues. This study explores the potential interplay between nitric oxide (NO) and the anticonvulsant effects of betulin, a triterpene with promising neuroprotective properties. While betulin exhibits anticonvulsant effects, the specific involvement of NO remains inadequately understood, constituting a pivotal gap in current knowledge. One hundred NMRI mice were randomly assigned to diverse treatment groups, with seizures induced by pentylenetetrazol (PTZ). Parameters such as seizure threshold, nitrite levels, total antioxidant capacity (TAC), malondialdehyde (MDA) levels, and iNOS/nNOS gene expressions were assessed. Betulin significantly increased seizure thresholds and mitigated PTZ-induced NO levels. These findings suggest a potential modulation of NO-related pathways, emphasizing betulin's anti-inflammatory and antioxidant attributes. The study sheds light on betulin's multifaceted impact on oxidative stress, NO regulation, and iNOS/nNOS gene expressions. The ability of betulin to suppress iNOS/nNOS gene expressions, leading to reduce NO production, underscores its potential as an anticonvulsant.
Collapse
Affiliation(s)
- Fatemeh Eghbali
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Gassib N, Issa H, Loubaki L, Behaz S, Almutairi MH, Rouabhia M, Semlali A. Cellular mechanisms mediating the anti-cancer effects of carnosol on gingiva carcinoma. Sci Rep 2024; 14:12266. [PMID: 38806527 PMCID: PMC11133392 DOI: 10.1038/s41598-024-60797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
Carnosol, a rosemary polyphenol, displays anticancer properties and is suggested as a safer alternative to conventional surgery, radiotherapy, and chemotherapy. Given that its effects on gingiva carcinoma have not yet been investigated, the aim of this study was to explore its anti-tumor selectivity and to unravel its underlying mechanisms of action. Hence, oral tongue and gingiva carcinoma cell lines exposed to carnosol were analyzed to estimate cytotoxicity, cell viability, cell proliferation, and colony formation potential as compared with those of normal cells. Key cell cycle and apoptotic markers were also measured. Finally, cell migration, oxidative stress, and crucial cell signaling pathways were assessed. Selective anti-gingiva carcinoma activity was disclosed. Overall, carnosol mediated colony formation and proliferation suppression in addition to cytotoxicity induction. Cell cycle arrest was highlighted by the disruption of the c-myc oncogene/p53 tumor suppressor balance. Carnosol also increased apoptosis, oxidative stress, and antioxidant activity. On a larger scale, the alteration of cell cycle and apoptotic profiles was also demonstrated by QPCR array. This was most likely achieved by controlling the STAT5, ERK1/2, p38, and NF-ĸB signaling pathways. Lastly, carnosol reduced inflammation and invasion ability by modulating IL-6 and MMP9/TIMP-1 axes. This study establishes a robust foundation, urging extensive inquiry both in vivo and in clinical settings, to substantiate the efficacy of carnosol in managing gingiva carcinoma.
Collapse
Affiliation(s)
- Nassima Gassib
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hawraa Issa
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Lionel Loubaki
- Héma-Québec, 1070, Avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Sarah Behaz
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Abdelhabib Semlali
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
4
|
Fan X, Yu W, Wang Q, Yang H, Tan D, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Yan H, Wang J, Wang H, Wang Q, Mao X. Protective effect of Broussonetia papyrifera leaf polysaccharides on intestinal integrity in a rat model of diet-induced oxidative stress. Int J Biol Macromol 2024; 268:131589. [PMID: 38643924 DOI: 10.1016/j.ijbiomac.2024.131589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
This study aimed to investigate the effect of Broussonetia papyrifera polysaccharides (BPP) on the jejunal intestinal integrity of rats ingesting oxidized fish oil (OFO) induced oxidative stress. Polysaccharides (Mw 16,956 Da) containing carboxyl groups were extracted from Broussonetia papyrifera leaves. In vitro antioxidant assays showed that this polysaccharide possessed antioxidant capabilities. Thirty-two male weaned rats were allocated into two groups orally infused BPP solution and PBS for 26 days, respectively. From day 9 to day 26, half of the rats in each group were fed food containing OFO, where the lipid peroxidation can induce intestinal oxidative stress. OFO administration resulted in diarrhea, decreased growth performance (p < 0.01), impaired jejunal morphology (p < 0.05) and antioxidant capacity (p < 0.01), increased the levels of ROS and its related products, IL-1β and IL-17 (p < 0.01) of jejunum, as well as down-regulated Bcl-2/Bax (p < 0.01) and Nrf2 signaling (p < 0.01) of jejunum in rats. BPP gavage effectively alleviated the negative effects of OFO on growth performance, morphology, enterocyte apoptosis, antioxidant capacity and inflammation of jejunum (p < 0.05) in rats. In the oxidative stress model cell assay, the use of receptor inhibitors inhibited the enhancement of antioxidant capacity by BPP. These results suggested that BPP protected intestinal morphology, thus improving growth performance and reducing diarrhea in rats ingesting OFO. This protective effect may be attributed to scavenging free radicals and activating the Nrf2 pathway, which enhances antioxidant capacity, consequently reducing inflammation and mitigating intestinal cell death.
Collapse
Affiliation(s)
- Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Wei Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Qingxiang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Heng Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Dayan Tan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
5
|
Hsu YT, Su TY, Wu TN, Wu WT, Liou SH, Lai CH, Huang SK. Longitudinal assessment of oxidative stress markers and their relationship with exposure to PM 2.5 and its bound metals in healthy participants. Int J Hyg Environ Health 2024; 258:114348. [PMID: 38479164 DOI: 10.1016/j.ijheh.2024.114348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE Exposure to ambient PM2.5 and its bound metals poses a risk to health and disease, via, in part, oxidative stress response. A variety of oxidative stress markers have been used as markers of response, but their relevance to environmental exposure remains to be established. We evaluated, longitudinally, a battery of oxidative stress markers and their relationship with the exposure of PM2.5 and its bound metals in a panel of healthy participants. MATERIAL AND METHODS Levels of residence- and personal-based ambient air PM2.5 and its bound metals, as well as of lung function parameters, were assessed in a total of 58 questionnaire-administered healthy never smoker participants (male, 39.7%). Levels of urinary oxidative stress markers, including Nε-(hexanoyl)-lysine (HEL; an early lipid peroxidation product), 4-hydroxynonenal (4-HNE), N7-methylguanine (N7-meG), and 8-hydroxy-2-deoxyguanosine (8-OHdG), plasma antioxidants [superoxide dismutase (SOD) and glutathione peroxidase (GPx), and urinary metals were measured by ELISA, LC-MS, and ICP-MS, respectively. The results of three repeated measurements at two-month intervals were analyzed using the Generalized Estimating Equation (GEE). RESULTS After adjusting for confounders, residence- and personal-based PM2.5 levels were positively associated with HEL (β = 0.22 and 0.18) and N7-meG (β = 0.39 and 0.13). Significant correlations were observed between personal air PM2.5-Pb and urinary Pb with HEL (β = 0.08 and 0.26). While FVC, FEV1, FEV1/FVC, MMF, and PEFR predicted% were normal, a negative interaction (pollutant*time, P < 0.05) was noted for PM2.5-V, Mn, Co, Ni, Zn, As, and Pb. Additionally, a negative interaction was found for N7-meG (β = -21.35, -18.77, -23.86) and SOD (β = -26.56, -26.18, -16.48) with FEV1, FVC, and PEFR predicted%, respectively. CONCLUSION These findings emphasize potential links between environmental exposure, internal dose, and health effects, thereby offering valuable markers for future research on metal exposure, oxidative stress, and health outcomes.
Collapse
Affiliation(s)
- Yuan-Ting Hsu
- Department of National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan.
| | - Ting-Yao Su
- Department of National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Trong-Neng Wu
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Wei-Te Wu
- Department of National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.
| | - Saou-Hsing Liou
- Department of National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Shau-Ku Huang
- Department of National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
6
|
Murakami A. Impact of hormesis to deepen our understanding of the mechanisms underlying the bioactivities of polyphenols. Curr Opin Biotechnol 2024; 86:103074. [PMID: 38325232 DOI: 10.1016/j.copbio.2024.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Cells, organs, and the whole body are continuously exposed to various types of stressors, including oxidative stress, protein denaturation, hypoxia, energy starvation, and pathogen insults. Hormesis is an adaptive phenomenon in which a stressor induces cellular stress responses at low or moderate doses, while catastrophic damage is manifested at high doses. Polyphenols, as xenobiotic phytochemicals, exhibit stress responses in animal cells, as demonstrated in cellular and rodent models. In this review article, the author highlighted several molecular mechanisms underlying different types of stress adaptation and hormetic phenomena induced by bioactive polyphenols to substantially understand how and why those phytochemicals function in biological systems.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, 1-1-12, Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan.
| |
Collapse
|
7
|
Abegg VF, Panajatovic MV, Mancuso RV, Allard JA, Duthaler U, Odermatt A, Krähenbühl S, Bouitbir J. Mechanisms of hepatocellular toxicity associated with the components of St. John's Wort extract hypericin and hyperforin in HepG2 and HepaRG cells. Toxicol Lett 2024; 393:1-13. [PMID: 38219807 DOI: 10.1016/j.toxlet.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
St. John's Wort preparations are used for the treatment of mild to moderate depression. They are usually well tolerated but can cause adverse reactions including liver toxicity in rare cases. To date, the mechanism(s) underlying the hepatotoxicity of St. John's Wort extracts are poorly investigated. We studied the hepatocellular toxicity of hypericin and hyperforin as the two main ingredients of St. John's Wort extracts in HepG2 and HepaRG cells and compared the effects to citalopram (a synthetic serotonin uptake inhibitor) with a special focus on mitochondrial toxicity and oxidative stress. In HepG2 cells, hypericin was membrane-toxic at 100 µM and depleted ATP at 20 µM. In HepaRG cells, ATP depletion started at 5 µM. In comparison, hyperforin and citalopram were not toxic up to 100 µM. In HepG2 cells, hypericin decreased maximal respiration starting at 2 µM and mitochondrial ATP formation starting at 10 µM but did not affect glycolytic ATP production. Hypericin inhibited the activity of complex I, II and IV of the electron transfer system and caused mitochondrial superoxide accumulation in cells. The protein expression of mitochondrial superoxide dismutase 2 (SOD2) and thioredoxin 2 (TRX2) and total and reduced glutathione decreased in cells exposed to hypericin. Finally, hypericin diminished the mitochondrial DNA copy number and caused cell necrosis but not apoptosis. In conclusion, hypericin, but not hyperforin or citalopram, is a mitochondrial toxicant at low micromolar concentrations. This mechanism may contribute to the hepatotoxicity occasionally observed in susceptible patients treated with St. John's Wort preparations.
Collapse
Affiliation(s)
- Vanessa Fabienne Abegg
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | | | | | - Julien Arthur Allard
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland
| | - Jamal Bouitbir
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland.
| |
Collapse
|
8
|
Casoli T, Bonfigli AR, Di Rosa M, Giorgetti B, Balietti M, Giacconi R, Cardelli M, Piacenza F, Marchegiani F, Marcheselli F, Recchioni R, Galeazzi R, Vaiasicca S, Lamedica AM, Fumagalli A, Ferrara L, Lattanzio F. Association of Inflammatory Mediators with Mitochondrial DNA Variants in Geriatric COVID-19 Patients. Aging Dis 2024; 15:2665-2681. [PMID: 38377022 PMCID: PMC11567249 DOI: 10.14336/ad.2023.1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/23/2023] [Indexed: 02/22/2024] Open
Abstract
COVID-19 remains a serious concern for elderly individuals with underlying comorbidities. SARS-CoV-2 can target and damage mitochondria, potentially leading to mutations in mitochondrial DNA (mtDNA). This study aimed to evaluate single nucleotide substitutions in mtDNA and analyze their correlation with inflammatory biomarkers in elderly COVID-19 patients. A total of 30 COVID-19 patients and 33 older adult controls without COVID-19 (aged over 65 years) were enrolled. mtDNA was extracted from buffy coat samples and sequenced using a chip-based resequencing system (MitoChip v2.0) which detects both homoplasmic and heteroplasmic mtDNA variants (40-60% heteroplasmy) and allows the assessment of low-level heteroplasmy (<10% heteroplasmy). Serum concentrations of IL-6, IFN-α, TNF-α and IL-10 were determined in patients by a high-sensitivity immunoassay. We found a higher burden of total heteroplasmic variants in COVID-19 patients compared to controls with a selective increment in ND1 and COIII genes. Low-level heteroplasmy was significantly elevated in COVID-19 patients, especially in genes of the respiratory complex I. Both heteroplasmic variant burden and low-level heteroplasmy were associated with increased levels of IL-6, TNF-α, and IFN-α. These findings suggest that SARS-CoV-2 may induce mtDNA mutations that are related to the degree of inflammation.
Collapse
Affiliation(s)
- Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | | | - Mirko Di Rosa
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, Ancona, Italy.
| | | | - Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy.
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy.
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy.
| | | | | | - Rina Recchioni
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | - Roberta Galeazzi
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Mahmudur Rahman M, Sarmina Yeasmin M, Jasim Uddin M, Hasan M, Aftab Ali Shaikh M, Safiur Rahman M, Maniruzzaman M. Simultaneous abatement of Ni2+ and Cu2+ effectually from industrial wastewater by a low cost natural clay-chitosan nanocomposite filter: Synthesis, characterization and fixed bed column adsorption study. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2023; 20:100797. [DOI: 10.1016/j.enmm.2023.100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
10
|
Abdelsalam SA, Renu K, Zahra HA, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Ronsard L, Ammar RB, Vidya DS, Karuppaiya P, Al-Ramadan SY, Rajendran P. Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update. Nutrients 2023; 15:nu15051107. [PMID: 36904106 PMCID: PMC10005012 DOI: 10.3390/nu15051107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.
Collapse
Affiliation(s)
- Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Larance Ronsard
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Devanathadesikan Seshadri Vidya
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Palaniyandi Karuppaiya
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - S. Y. Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
- Correspondence: ; Tel.: +966-0135899543
| |
Collapse
|
11
|
Essential Trace Elements Prevent the Impairment in the Retention Memory, Cerebral Cortex, and Cerebellum Damage in Male Rats Exposed to Quaternary Metal Mixture by Up-regulation, of Heme Oxygynase-1 and Down-regulation of Nuclear Factor Erythroid 2-related Factor 2-NOs Signaling Pathways. Neuroscience 2023; 512:70-84. [PMID: 36646412 DOI: 10.1016/j.neuroscience.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
In the present study, we examined adverse effects of metals and metalloids in the Cerebral cortex (CC) and Cerebellum (CE). Group 1 comprised from the controls while other four groups of male Wistar rats were treated with following pattern: Group II (Heavy Metal Mixture HMM only: PbCl2, 20 mg·kg-1; CdCl2, 1.61 mg·kg-1; HgCl2, 0.40 mg·kg-1, and NaAsO3,10 mg·kg-1), Groups III (HMM + ZnCl2); Group IV (HMM + Na2SeO3) and Group V (HMM + ZnCl2 + Na2SeO3) for 60 days per os. HMM promoted oxidative stress in the CC and CE of treated rats compared to controls; moreover, exposure to HMM led to increased activity of the AChE and pro-inflammatory cytokines; also, HMM promoted accumulation of caspase 3 and other transcriptional factors such as Nrf2 and decreased levels of Hmox-1. Essential metals reduced increased bioaccumulation of Pb, Cd, As and Hg in CC and CE caused by HMM exposure. Also, all mentioned adverse effects were diminished by essential metals treatment (Se and Zn). HMM exposed rats had considerably less escape dormancy than controls. Histopathological analysis revealed moderate cell loss at the intermediate (Purkinje cell) and granular layer. Zinc and selenium supplementations could reverse adverse effects of heavy metals at various cellular levels in neurons.
Collapse
|
12
|
Dong L, Xia P, Tian L, Tian C, Zhao W, Zhao L, Duan J, Zhao Y, Zheng Y. A Review of Aspects of Synaptic Plasticity in Hippocampus via mT Extremely Low-Frequency Magnetic Fields. Bioelectromagnetics 2023; 44:63-70. [PMID: 36786476 DOI: 10.1002/bem.22437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/20/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
The subthreshold magnetic modulation technique stimulates cells with mT extremely low-frequency magnetic fields (ELF-MFs), which are insufficient to induce neuronal action potentials. Although they cannot directly induce resting neurons to discharge, mT magnetic stimulation can regulate the excitability of the nervous system, which regulates learning and memory by some unknown mechanisms. Herein, we describe the regulation of mT ELF-MFs with different parameters on synaptic plasticity in hippocampal neurons. Additionally, we summarize the latest research on the possible mechanism of the effect of ELF-MFs on synaptic plasticity. Some studies have shown that ELF-MFs are able to inhibit long-term potentiation (LTP) by increasing concentration of intracellular Ca2+ concentration ([Ca2+ ]i ), as well as concentration of reactive oxygen species. The research in this paper has significance for the comprehensive understanding of relevant neurological mechanisms of learning and memory by mT ELF-MFs stimulation. However, more high-quality research is necessary to determine the regulatory mechanism of mT ELF-MFs on synaptic plasticity in order to optimize this technique as a treatment for neurological diseases. © 2023 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Pei Xia
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Chunxiao Tian
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Wenjun Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Ling Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Jiakang Duan
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Yuhan Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| |
Collapse
|
13
|
Spagnuolo MS, Mazzoli A, Nazzaro M, Troise AD, Gatto C, Tonini C, Colardo M, Segatto M, Scaloni A, Pallottini V, Iossa S, Cigliano L. Long-Lasting Impact of Sugar Intake on Neurotrophins and Neurotransmitters from Adolescence to Young Adulthood in Rat Frontal Cortex. Mol Neurobiol 2023; 60:1004-1020. [PMID: 36394711 PMCID: PMC9849314 DOI: 10.1007/s12035-022-03115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unexplored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations (BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit an excessive consumption of sweet foods that can affect brain physiology also in the long term.
Collapse
Affiliation(s)
- Maria Stefania Spagnuolo
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Arianna Mazzoli
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Martina Nazzaro
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Antonio Dario Troise
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Cristina Gatto
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Claudia Tonini
- grid.8509.40000000121622106Department of Science, Biomedical and Technology Science Section, University Roma Tre, Rome, Italy
| | - Mayra Colardo
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Marco Segatto
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Andrea Scaloni
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Valentina Pallottini
- grid.8509.40000000121622106Department of Science, Biomedical and Technology Science Section, University Roma Tre, Rome, Italy ,grid.417778.a0000 0001 0692 3437Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Susanna Iossa
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Luisa Cigliano
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| |
Collapse
|
14
|
Song J, Qu R, Sun B, Wang Y, Chen R, Kan H, An Z, Wu H, Li J, Jiang J, Zhang Y, Wu W. Acute effects of ambient nitrogen dioxide exposure on serum biomarkers of nervous system damage in healthy older adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114423. [PMID: 36525948 DOI: 10.1016/j.ecoenv.2022.114423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Ambient nitrogen dioxide (NO2)-induced adverse health effects have been studied, but documented evidence on neural systems is limited. This study aimed to determine the acute effect of NO2 exposure on nervous system damage biomarker levels in healthy older adults. Five rounds of follow-up among 34 healthy retired people were scheduled from December 2018 to April 2019 in Xinxiang, China. The real-time NO2 concentrations were measured using a fixed site monitor. Serum samples were acquired during each round to measure nervous system damage biomarker levels: brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), neuron-specific enolase (NSE), protein gene product 9.5 (PGP9.5), and S100 calcium-binding protein B (S100B). A linear mixed-effect model was incorporated to analyze the association between short-term NO2 exposure and serum concentrations of the above-mentioned biomarkers. Stratification analysis based on sex, educational attainment, glutathione S-transferase theta 1 gene (GSTT1) polymorphism, and physical activity intensity was conducted to explore their potential modification effect. The NO2 concentration ranged from 34.7 to 59.0 µg/m3 during the study period. Acute exposure to ambient NO2 was significantly associated with elevated serum levels of NfL, PGP9.5, and BDNF. In response to a 10 µg/m3 increase in NO2 concentration, NfL and PGP9.5 levels increased by 76 % (95 % confidence interval [CI]: 12-140 %) and 54 % (95 % CI: 1-107 %) on the lag0 day, respectively, while BDNF levels increased by 49 % (95 % CI: 2-96 %) at lag4 day. The estimated effect of NO2 on NSE levels in GSTT1-sufficient participants was significantly higher than that in GSTT1-null participants. Intriguingly, the estimation of NO2 on PGP9.5 levels in females was significantly higher than that in males. Most two-pollutant models showed robust results, except for O3, which might have had confounding effects on NO2-induced BDNF stimulation. In summary, acute exposure to NO2 was associated with increased levels of serum nervous system damage biomarker levels including NFL, PGP9.5, and BDNF. The present study provided insights into NO2 exposure-induced adverse neural effects.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Beibei Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
15
|
Ba Y, Sun L, Zuo J, Yu SY, Yang S, Ding LM, Feng ZC, Li ZY, Zhou GY, Yu FF. Association of oxidative stress and Kashin-Beck disease integrated Meta and Bioinformatics analysis. Osteoarthritis Cartilage 2022; 30:1606-1615. [PMID: 36096467 DOI: 10.1016/j.joca.2022.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore the association between oxidative stress (OS) and Kashin-Beck disease (KBD). METHODS Terms associated with "KBD" and "OS" were searched in the six different databases up to October 2021. Stata 14.0 was used to pool the means and standard deviations using random-effect or fixed-effect model. The differentially expressed genes in the articular chondrocytes of KBD were identified, the OS related genes were identified by blasting with the GeneCards. The KEGG pathway and gene ontology enrichment analysis was conducted using STRING. RESULTS The pooled SMD and 95% CI showed hair selenium (-4.59; -6.99, -2.19), blood selenium (-1.65; -2.86, -0.44) and glutathione peroxidases (-4.15; -6.97, -1.33) levels were decreased in KBD, whereas the malondialdehyde (1.12; 0.60, 1.64), nitric oxide (2.29; 1.31, 3.27), nitric oxide synthase (1.07; 0.81, 1.33) and inducible nitric oxide synthase (1.69; 0.62, 2.77) were increased compared with external controls. Meanwhile, hair selenium (-2.71; -5.32, -0.10) and glutathione peroxidases (-1.00; -1.78, -0.22) in KBD were decreased, whereas the malondialdehyde (1.42; 1.04, 1.80), nitric oxide (3.08; 1.93, 4.22) and inducible nitric oxide synthase (0.81; 0.00, 1.61) were elevated compared with internal controls. Enrichment analysis revealed apoptosis was significantly correlated with KBD. The significant biological processes revealed OS induced the release of cytochrome c from mitochondria. The cellular component of OS located in the mitochondrial outer membrane. CONCLUSIONS The OS levels in KBD were significantly increased because of selenium deficiency, OS mainly occurred in mitochondrial outer membrane, released of cytochrome c from mitochondria, and induced apoptotic signaling pathway.
Collapse
Affiliation(s)
- Y Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - L Sun
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - J Zuo
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - S-Y Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - S Yang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - L-M Ding
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - Z-C Feng
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - Z-Y Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - G-Y Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| | - F-F Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
16
|
Ethylferulate-loaded nanoemulsions as a novel anti-inflammatory approach for topical application. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Boni R, Cecchini Gualandi S. Relationship between Oxidative Stress and Endometritis: Exploiting Knowledge Gained in Mares and Cows. Animals (Basel) 2022; 12:2403. [PMID: 36139263 PMCID: PMC9495037 DOI: 10.3390/ani12182403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
The etiopathogenesis of endometritis in mares and cows differs significantly; this could depend on a different sensitivity and reactivity of the uterus but also on endocrine and rearing factors and different stress sources. In both species, microorganisms and the immune system play a primary role in the generation of this pathology. Microbiological and cytological tests support clinical examination and significantly improve diagnostic accuracy. For both species, during the inflammation, immune cells invade the endometrium and release bioactive substances to contrast primary or secondary pathogen contamination. These molecules are traceable to cytokines, chemokines, and prostaglandins as well as reactive oxygen and nitrogen species (ROS and RNS), collectively known as RONS. The RONS-mediated oxidation causes morphological and functional alterations of macromolecules, such as proteins, lipids, and nucleic acids, with the consequent production of derivative compounds capable of playing harmful effects. These bioactive molecules and by-products, which have recently become increasingly popular as diagnostic biomarkers, enter the bloodstream, influencing the functionality of organs and tissues. This review has collected and compared information obtained in cows and mares related to the diagnostic potential of these biomarkers that are assessed by using different methods in samples from either blood plasma or uterine fluid.
Collapse
Affiliation(s)
- Raffaele Boni
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100 Potenza, Italy
| | | |
Collapse
|
18
|
Anti-Inflammatory and Antioxidant Effects of the Indole-Derived N-Salicyloyltryptamine on Peritonitis and Joint Disability Induced by Carrageenan in Rodents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5524107. [PMID: 35600961 PMCID: PMC9122668 DOI: 10.1155/2022/5524107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Purpose To investigate the anti-inflammatory and antioxidant activities of N-salicyloyltryptamine (NST) in experimental models of carrageenan (Cg)-induced peritonitis in mice, and evaluation of the effects of NST on Cg-induced joint disability in rats. Methods Female Swiss mice were submitted to Cg-induced peritonitis in mice or Cg-induced joint disability in rats after intraperitoneal injection of NST (100 or 200 mg/kg). Total leukocyte count, total protein concentration, myeloperoxidase (MPO) and catalase (CAT) activities, and nitrite (NO2−) and thiobarbituric acid reactive species (TBARS) levels were determined. Results NST significantly decrease the migration of leukocytes to peritoneal exudate. Cg induces inflammatory responses mediated by expression of reactive oxygen species (ROS). The results further showed that NST significantly decreased MPO and CAT activities, as well as reduced NO2− and TBARS levels, compared with the vehicle group. Animals treated with NST significantly reduced paw elevation time (PET) on the first hour after induction of joint injury, and this effect was sustained throughout the analysis. Conclusion NST presented anti-inflammatory and antioxidant effects in experimental models of carrageenan-induced peritonitis and joint disability in mice and rats, respectively, which may be related to the modulation of neutrophils migration as well as the involvement of antioxidant mechanisms.
Collapse
|
19
|
Resveratrol Inhibition of the WNT/β-Catenin Pathway following Discogenic Low Back Pain. Int J Mol Sci 2022; 23:ijms23084092. [PMID: 35456908 PMCID: PMC9024678 DOI: 10.3390/ijms23084092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Low back pain (LBP) management is an important clinical issue. Inadequate LBP control has consequences on the mental and physical health of patients. Thus, acquiring new information on LBP mechanism would increase the available therapeutic tools. Resveratrol is a natural compound with many beneficial effects. In this study, we investigated the role of resveratrol on behavioral changes, inflammation and oxidative stress induced by LBP. Ten microliters of Complete Freund’s adjuvant (CFA) was injected in the lumbar intervertebral disk of Sprague Dawley rats to induce degeneration, and resveratrol was administered daily. Behavioral analyses were performed on day zero, three, five and seven, and the animals were sacrificed to evaluate the molecular pathways involved. Resveratrol administration alleviated hyperalgesia, motor disfunction and allodynia. Resveratrol administration significantly reduced the loss of notochordal cells and degenerative changes in the intervertebral disk. From the molecular point of view, resveratrol reduced the 5th/6th lumbar (L5–6) spinal activation of the WNT pathway, reducing the expression of WNT3a and cysteine-rich domain frizzled (FZ)8 and the accumulation of cytosolic and nuclear β-catenin. Moreover, resveratrol reduced the levels of TNF-α and IL-18 that are target genes strictly downstream of the WNT/β-catenin pathway. It also showed important anti-inflammatory activities by reducing the activation of the NFkB pathway, the expression of iNOS and COX-2, and the levels of PGE2 in the lumbar spinal cord. Moreover, resveratrol reduced the oxidative stress associated with inflammation and pain, as shown by the observed reduced lipid peroxidation and increased GSH, SOD, and CAT activities. Therefore, resveratrol administration controlled the WNT/β-catenin pathway and the related inflammatory and oxidative alterations, thus alleviating the behavioral changes induced by LBP.
Collapse
|
20
|
Alipanah H, Kabi Doraghi H, Sayadi M, Nematollahi A, Soltani Hekmat A, Nejati R. Subacute toxicity of chlorpyrifos on histopathological damages, antioxidant activity, and pro-inflammatory cytokines in the rat model. ENVIRONMENTAL TOXICOLOGY 2022; 37:880-888. [PMID: 34985812 DOI: 10.1002/tox.23451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/08/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Chlorpyrifos (CPF) is an extensively used organophosphorus pesticide for agricultural, industrial, and domestic purposes. Previous studies have reported the adverse effects of CPF, such as intoxication incidents, endocrine disruption, cardiovascular diseases, as well as histopathological and oxidative damage. The aims of the present study were to elucidate short time subacute toxicity of CPF in male rats. Sprague-Dawley male rats (n = 32) were divided into four groups (n = 8) and received CPF as 3.25 mg/kg body weight (b.w) (Group A), 6.75 mg/kg b.w (Group B), 13.5 mg/kg b.w (Group C), and corn oil (control or Group D) daily via gavage for 15 days. The rats were sacrificed and oxidative damages, pro-inflammatory cytokines (TNF-α, IL-1β), and histopathological changes were determined in the lung, liver, kidney, heart, and testis tissues as well as plasma. According to our result, administration of CPF caused a significant increase in malondialdehid level and catalase activity while a significant decrease in superoxide dismutase activity in all tissues. In addition, a significant decrease in TNF-α observed in all tissues and plasma duo to the CPF. Histopathological evaluation of CPF-treated samples revealed a dose-dependent tissue toxicity in the liver, heart, lung, and kidney with less sensitivity of testicular and kidney tissues. These results suggest the potential of CPF in inducing oxidative stress at low doses and short duration time with similar trends in different tissues. As well as, due to the effects of CPF on some pro-inflammatory mediators, more comprehensive studies are recommended.
Collapse
Affiliation(s)
- Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Mehran Sayadi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Ava Soltani Hekmat
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roghayeh Nejati
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
21
|
Jiménez JA, Simon JM, Hu W, Moy SS, Harper KM, Liu CW, Lu K, Zylka MJ. Developmental pyrethroid exposure and age influence phenotypes in a Chd8 haploinsufficient autism mouse model. Sci Rep 2022; 12:5555. [PMID: 35365720 PMCID: PMC8975859 DOI: 10.1038/s41598-022-09533-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Hundreds of genes have been associated with autism spectrum disorder (ASD), including loss-of-function mutations in chromodomain helicase DNA binding protein 8 (Chd8). Environmental factors also are implicated in autism risk and have the potential to exacerbate phenotypes in genetically sensitized backgrounds. Here we investigate transcriptional and behavioral phenotypes in a Chd8 haploinsufficient (Chd8V986*/+) mouse line exposed to the pesticide deltamethrin (DM) from conception to postnatal day 22. Vehicle-exposed Chd8V986*/+ mice displayed ASD-associated phenotypes, including anxiety-like behavior and altered sociability, replicating a previous study with this mouse line. A core set of genes was altered in Chd8V986*/+ mice at multiple ages, including Usp11, Wars2, Crlf2, and Eglf6, and proximity ligation data indicated direct binding of CHD8 to the 5' region of these genes. Moreover, oligodendrocyte and neurodegenerative transcriptional phenotypes were apparent in 12 and 18 month old Chd8V986*/+ mice. Following DM exposure, the mutant mice displayed an exacerbated phenotype in the elevated plus maze, and genes associated with vascular endothelial cells were downregulated in the cerebral cortex of older Chd8V986*/+ animals. Our study reveals a gene x environment interaction with a Chd8 haploinsufficient mouse line and points to the importance of investigating phenotypes in ASD animal models across the lifespan.
Collapse
Affiliation(s)
- Jessica A Jiménez
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wenxin Hu
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kathryn M Harper
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Temiz Ö. In vivo neurotoxic effects of emamectin benzoate in male mice: evaluation with enzymatic and biomolecular multi-biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8921-8932. [PMID: 34498180 DOI: 10.1007/s11356-021-16373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The study of the toxic effects of emamectin benzoate (EMB) was conducted in male mice. Mice were randomly divided into 4 groups; control group, EMB25 group (1/30 LD50 = 25 mg/kg/day), EMB50 group (1/15 LD50 = 50 mg/kg/day), and EMB100 group (1/7.5 LD50 = 100 mg/kg/day). Control group received water (placebo), and EMB groups were administered by oral gavage for 14 days. The superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) enzyme activities, thiobarbituric acid reactive substance (TBARS) and protein carbonyl (PC) levels, and adenosine triphosphatase (ATPases) enzymes, which are ion transport enzymes (Na+/K+ ATPase, Ca+2 ATPase, Mg+2 ATPase), acetylcholinesterase (AChE, neurotoxicity biomarker), and myeloperoxidase (MPO) enzyme activities (inflammatory biomarker), were measured by spectrophotometric methods. 8-Hydroxy-2'-deoxyguanosine level (8-OHdG, DNA oxidation biomarker) was measured by enzyme-linked immunosorbent analysis (ELISA) technique. The results showed a decrease in SOD, CAT and GPx enzyme activities in the brain tissue and an increase in GST enzyme activity in the EMB groups compared to the control group. Meanwhile, the enzyme activities of the ion transport enzymes Na+/K+ ATPase, Ca+2 ATPase, and Mg+2 ATPase, and AChE enzyme activity showed significant inhibition. In addition, MPO enzyme activity, 8-OHdG, PC, and TBARS levels were increased. The results showed that dose-dependent EMB exposure induced different physiological processes with enzymatic and biomolecular multi-biomarkers in the brain tissue of male mice and caused neurotoxic effects.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey.
| |
Collapse
|
23
|
Mechanistic Insights Expatiating the Redox-Active-Metal-Mediated Neuronal Degeneration in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23020678. [PMID: 35054862 PMCID: PMC8776156 DOI: 10.3390/ijms23020678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a complicated and incapacitating neurodegenerative malady that emanates following the dopaminergic (DArgic) nerve cell deprivation in the substantia nigra pars compacta (SN-PC). The etiopathogenesis of PD is still abstruse. Howbeit, PD is hypothesized to be precipitated by an amalgamation of genetic mutations and exposure to environmental toxins. The aggregation of α-synucelin within the Lewy bodies (LBs), escalated oxidative stress (OS), autophagy-lysosome system impairment, ubiquitin-proteasome system (UPS) impairment, mitochondrial abnormality, programmed cell death, and neuroinflammation are regarded as imperative events that actively participate in PD pathogenesis. The central nervous system (CNS) relies heavily on redox-active metals, particularly iron (Fe) and copper (Cu), in order to modulate pivotal operations, for instance, myelin generation, synthesis of neurotransmitters, synaptic signaling, and conveyance of oxygen (O2). The duo, namely, Fe and Cu, following their inordinate exposure, are viable of permeating across the blood–brain barrier (BBB) and moving inside the brain, thereby culminating in the escalated OS (through a reactive oxygen species (ROS)-reliant pathway), α-synuclein aggregation within the LBs, and lipid peroxidation, which consequently results in the destruction of DArgic nerve cells and facilitates PD emanation. This review delineates the metabolism of Fe and Cu in the CNS, their role and disrupted balance in PD. An in-depth investigation was carried out by utilizing the existing publications obtained from prestigious medical databases employing particular keywords mentioned in the current paper. Moreover, we also focus on decoding the role of metal complexes and chelators in PD treatment. Conclusively, metal chelators hold the aptitude to elicit the scavenging of mobile/fluctuating metal ions, which in turn culminates in the suppression of ROS generation, and thereby prelude the evolution of PD.
Collapse
|
24
|
Alausa A, Victor UC, Celestine UO, Eweje IA, Balogun TA, Adeyemi R, Olatinwo M, Ogunlana AT, Oladipo O, Olaleke B. Phytochemical based sestrin2 pharmacological modulators in the treatment of adenocarcinomas. PHYTOMEDICINE PLUS 2021; 1:100133. [DOI: 10.1016/j.phyplu.2021.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Tijani AS, David OO, Farombi EO. Manganese mitigates against hepatorenal oxidative stress, inflammation and caspase-3 activation in rats exposed to hexachlorobenzene. Drug Chem Toxicol 2021; 45:2748-2757. [PMID: 34670467 DOI: 10.1080/01480545.2021.1986061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study investigated the individual and collective effect of organochlorinated fungicide hexachlorobenzene (HCB) and manganese (Mn), a metal, on the hepatorenal function in adult rats. Rats were divided into four groups of rats comprising of control, HCB alone (15 mg/kg), Mn alone (10 mg/kg) and co-exposure group that were orally treated for 25 consecutive days. After sacrifice, hepatorenal damage and antioxidant status markers, myeloperoxidase (MPO) activity, levels of nitric oxide, total antioxidant capacity (TAC), total oxidative stress (TOS) and lipid peroxidation (LPO) were analyzed spectrophotometrically. Levels of tumor necrosis factor alpha (TNF-α), interleukin-1 β (IL-1β) and caspase-3 activity were assessed using ELISA. Results revealed that the HCB administration significantly (p < 0.05) increased the biomarkers of hepatorenal toxicity, decreased the antioxidant status and TAC, raised the levels of TOS and LPO as well as increased the levels of TNF-α, IL-1β and caspase-3 activity. Rats co-exposed to HCB and Mn showed decreased biomarkers of hepatorenal damage, increased antioxidant status and TAC with simultaneous reduction in the levels of TOS and LPO significantly (p < 0.05). Furthermore, the increased levels of TNF-α, IL-1β and caspase-3 activity were significantly (p < 0.05) reduced in the liver and kidney of rats' co-expose to HCB and Mn. Histological examination showed that damages induced by HCB were assuaged in rats co-treated with HCB and Mn. In conclusion, the results demonstrated that co-treatment of HCB and Mn in rats' alleviated HCB-induced oxidative stress, inflammation and caspase-3 activation in the liver and kidney of the rats.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olori O David
- Department of Biochemistry, Bowen University of Iwo, Iwo, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
26
|
Álvarez-González I, Camacho-Cantera S, Gómez-González P, Barrón MJR, Morales-González JA, Madrigal-Santillán EO, Paniagua-Pérez R, Madrigal-Bujaidar E. Genotoxic and oxidative effect of duloxetine on mouse brain and liver tissues. Sci Rep 2021; 11:6897. [PMID: 33767322 PMCID: PMC7994804 DOI: 10.1038/s41598-021-86366-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
We evaluated the duloxetine DNA damaging capacity utilizing the comet assay applied to mouse brain and liver cells, as well as its DNA, lipid, protein, and nitric oxide oxidative potential in the same cells. A kinetic time/dose strategy showed the effect of 2, 20, and 200 mg/kg of the drug administered intraperitoneally once in comparison with a control and a methyl methanesulfonate group. Each parameter was evaluated at 3, 9, 15, and 21 h postadministration in five mice per group, except for the DNA oxidation that was examined only at 9 h postadministration. Results showed a significant DNA damage mainly at 9 h postexposure in both organs. In the brain, with 20 and 200 mg/kg we found 50 and 80% increase over the control group (p ≤ 0.05), in the liver, the increase of 2, 20, and 200 mg/kg of duloxetine was 50, 80, and 135% in comparison with the control level (p ≤ 0.05). DNA, lipid, protein and nitric oxide oxidation increase was also observed in both organs. Our data established the DNA damaging capacity of duloxetine even with a dose from the therapeutic range (2 mg/kg), and suggest that this effect can be related with its oxidative potential.
Collapse
Affiliation(s)
- Isela Álvarez-González
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Scarlett Camacho-Cantera
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Patricia Gómez-González
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Michael J Rendón Barrón
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - José A Morales-González
- Laboratorio de Medicina de La Conservación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Plan de San Luis Y Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Eduardo O Madrigal-Santillán
- Laboratorio de Medicina de La Conservación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Plan de San Luis Y Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rogelio Paniagua-Pérez
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación, Av. México-Xochimilco 289, Ciudad de México, 14389, México
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México.
| |
Collapse
|
27
|
Mazzoli A, Spagnuolo MS, Nazzaro M, Gatto C, Iossa S, Cigliano L. Fructose Removal from the Diet Reverses Inflammation, Mitochondrial Dysfunction, and Oxidative Stress in Hippocampus. Antioxidants (Basel) 2021; 10:487. [PMID: 33804637 PMCID: PMC8003595 DOI: 10.3390/antiox10030487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Young age is often characterized by high consumption of processed foods and fruit juices rich in fructose, which, besides inducing a tendency to become overweight, can promote alterations in brain function. The aim of this study was therefore to (a) clarify brain effects resulting from fructose consumption in juvenile age, a critical phase for brain development, and (b) verify whether these alterations can be rescued after removing fructose from the diet. Young rats were fed a fructose-rich or control diet for 3 weeks. Fructose-fed rats were then fed a control diet for a further 3 weeks. We evaluated mitochondrial bioenergetics by high-resolution respirometry in the hippocampus, a brain area that is critically involved in learning and memory. Glucose transporter-5, fructose and uric acid levels, oxidative status, and inflammatory and synaptic markers were investigated by Western blotting and spectrophotometric or enzyme-linked immunosorbent assays. A short-term fructose-rich diet induced mitochondrial dysfunction and oxidative stress, associated with an increased concentration of inflammatory markers and decreased Neurofilament-M and post-synaptic density protein 95. These alterations, except for increases in haptoglobin and nitrotyrosine, were recovered by returning to a control diet. Overall, our results point to the dangerous effects of excessive consumption of fructose in young age but also highlight the effect of partial recovery by switching back to a control diet.
Collapse
Affiliation(s)
- Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System, National Research Council, 80147 Naples, Italy;
| | - Martina Nazzaro
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| |
Collapse
|
28
|
Malekirad AA, Hassani S, Abdollahi M. Oxidative stress and copper smelter workers. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Gong L, Wang Z, Wang Z, Zhang Z. Sestrin2 as a Potential Target for Regulating Metabolic-Related Diseases. Front Endocrinol (Lausanne) 2021; 12:751020. [PMID: 34803916 PMCID: PMC8595836 DOI: 10.3389/fendo.2021.751020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions, including DNA damage, oxidative stress, endoplasmic reticulum (ER) stress, and metabolic stress. Numerous studies have shown that the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway has a crucial role in the regulation of metabolism. Sestrin2 regulates metabolism via a number of pathways, including activation of AMPK, inhibition of the mTOR complex 1 (mTORC1), activation of mTOR complex 2 (mTORC2), inhibition of ER stress, and promotion of autophagy. Therefore, modulation of Sestrin2 activity may provide a potential therapeutic target for the prevention of metabolic diseases such as insulin resistance, diabetes, obesity, non-alcoholic fatty liver disease, and myocardial ischemia/reperfusion injury. In this review, we examined the regulatory relationship between Sestrin2 and the AMPK/mTOR signaling pathway and the effects of Sestrin2 on energy metabolism.
Collapse
|
30
|
Lai SF, Liu RT, Peng WH, Huang XT, Wang XC, Qian JY, Mei WJ, Cheng MY, Wang T, Wang BG. Newly synthesized phenanthroimidazole derivatives L082 as a safe anti-tumor and anti-injury inflammation bifunctional compound. Eur J Pharmacol 2020; 889:173571. [PMID: 33031798 DOI: 10.1016/j.ejphar.2020.173571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Chemotherapy drugs exerts beneficial antitumor activity before and after cancer surgery. Post-injury complications are a potential hazard after surgical tumor resection. Inflammation caused by surgical stress is known to promote the progression of post-injury complications. Recent studies have found that chemotherapy drugs can promote post-injury inflammatory response, leading to increased post-injury complications. Imidazole derivatives have effective anticancer activity. However, the impact of post-operative inflammation caused by imidazole derivatives is unclear. In this study, two novel phenanthroimidazole derivatives (L082 and L142) were synthesized and characterized. These compounds showed significant inhibitory effects on different tumor cells. The compound L082 also inhibited liver cancer in vivo. In addition, L082 played a significant role in inhibiting the accumulation of inflammatory cells and promoting the elimination of inflammatory cells at the incision, which may be related to inhibiting the production of ROS and NO in oxidative and nitric stress. These results suggest that L082 can be used as a bifunctional drug to suppress tumors and reduce post-injury inflammation complications.
Collapse
Affiliation(s)
- Shi-Feng Lai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China.
| | - Ruo-Tong Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Wen-Hui Peng
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Xiao-Ting Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xi-Cheng Wang
- The First Affiliation Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, 510310, China.
| | - Jia-Yi Qian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangzhou, 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Biomedicine Imaging, Guangzhou, 510006, China.
| | - Meng-Ya Cheng
- The First Affiliation Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Teng Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bao-Guo Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
31
|
Stephen Inbaraj B, Chen BH. An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian J Pharm Sci 2020; 15:558-575. [PMID: 33193860 PMCID: PMC7610205 DOI: 10.1016/j.ajps.2019.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/25/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
Cerium oxide nanoparticles (CNPs) possess a great potential as therapeutic agents due to their ability to self-regenerate by reversibly switching between two valences +3 and +4. This article reviews recent articles dealing with in vivo studies of CNPs towards Alzheimer's disease, obesity, liver inflammation, cancer, sepsis, amyotrophic lateral sclerosis, acute kidney injury, radiation-induced tissue damage, hepatic ischemia reperfusion injury, retinal diseases and constipation. In vivo anti-cancer studies revealed the effectiveness of CNPs to reduce tumor growth and angiogenesis in melanoma, ovarian, breast and retinoblastoma cancer cell-induced mice, with their conjugation with folic acid, doxorubicin, CPM, or CXC receptor-4 antagonist ligand eliciting higher efficiency. After conjugation with triphenylphosphonium or magnetite nanoparticles, CNPs were shown to combat Alzheimer's disease by reducing amyloid-β, glial fibrillary acidic protein, inflammatory and oxidative stress markers in mice. By improving muscle function and longevity, the citrate/EDTA-stabilized CNPs could ameliorate amyotrophic lateral sclerosis. Also, they could effectively reduce obesity in mice by scavenging ROS and reducing adipogenesis, triglyceride synthesis, GAPDH enzyme activity, leptin and insulin levels. In CCl4-induced rats, stress signaling pathways due to inflammatory cytokines, liver enzymes, oxidative and endoplasmic reticulum messengers could be attenuated by CNPs. Commercial CNPs showed protective effects on rats with hepatic ischemia reperfusion and peritonitis-induced hepatic/cardiac injuries by decreasing oxidative stress and hepatic/cardiac inflammation. The same CNPs could improve kidney function by diminishing renal superoxide, hyperglycemia and tubular damage in peritonitis-induced acute kidney injury in rats. Radiation-induced lung and testicular tissue damage could be alleviated in mice, with the former showing improvement in pulmonary distress and bronchoconstriction and the latter exhibiting restoration in spermatogenesis rate and spermatid/spermatocyte number. Through enhancement of gastrointestinal motility, the CNPs could alleviate constipation in both young and old rats. They could also protect rat from light-induced retinal damage by slowing down neurodegenerative process and microglial activation.
Collapse
Affiliation(s)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, Taipei 242
| |
Collapse
|
32
|
Mandrell BN, Withycombe JS. Symptom Biomarkers for Children Receiving Treatment for Cancer: State of the Science. J Pediatr Oncol Nurs 2020; 36:280-286. [PMID: 31307320 PMCID: PMC7197220 DOI: 10.1177/1043454219859233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Children's Oncology Group Nursing Discipline has identified the most concerning symptoms during childhood cancer treatment and the need for continued symptom assessment and intervention during treatment trajectory. To develop appropriate interventions, symptom science strategies must explore the biological mechanisms associated with symptoms of cancer and cancer treatment. To explore the associated biological mechanisms, biomarkers have been recommended for inclusion in symptom science studies, when applicable. The biomarker assessed, as well as the method of collection and storage, can affect the reliability and validity of the study results and clinical implication. This review will describe biomarkers that have been described in pediatric oncology symptom science research and provides special considerations for specimen collection and processing.
Collapse
Affiliation(s)
| | - Janice S Withycombe
- 2 Emory University, Atlanta, GA, USA
- 3 Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
33
|
Abidar S, Boiangiu RS, Dumitru G, Todirascu-Ciornea E, Amakran A, Cioanca O, Hritcu L, Nhiri M. The Aqueous Extract from Ceratonia siliqua Leaves Protects Against 6-hydroxydopamine in Zebrafish: Understanding the Underlying Mechanism. Antioxidants (Basel) 2020; 9:antiox9040304. [PMID: 32276477 PMCID: PMC7222174 DOI: 10.3390/antiox9040304] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ceratonia siliqua L. is a Mediterranean medicinal plant traditionally cultivated for its ethnopharmacological benefits, such as antidiarrheal, antidiabetic, enhance acetylcholine, antioxidant, antiatherosclerotic, and for its possible anti-neurodegenerative potential. The aim of the present study was to evaluate the chemical composition, as well as the cognitive-enhancing, anxiolytic, and antioxidant activities of the aqueous extract from C. siliqua (CsAE) leaves against 6-hydroxydopamine (6-OHDA) zebrafish Parkinson’s disease (PD) model. CsAE (0.1, 0.3, and 1 mg/L) was administered by immersion to zebrafish (Danio rerio) for eight consecutive days and one hour before each behavioral test of each day, while 6-OHDA (250 µM) treatment was supplied one day before the novel tank diving test (NTT). Qualitative and quantitative analyses were performed by the ultra-high-performance liquid chromatography (UHPLC) analysis. The memory performance was evaluated through the NTT and Y-maze tests. Additionally, the in vitro and in vivo antioxidant status and acetylcholinesterase (AChE) activity was also assessed. Our finds demonstrated that CsAE presented positive antioxidant and anti-AChE activities, which contributed to the improvement of cognitive function in the 6-OHDA zebrafish PD model.
Collapse
Affiliation(s)
- Sara Abidar
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
- Correspondence: (G.D.); (L.H.); Tel.: +40-232-201-522 (G.D.); +40-232-201-666 (L.H.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Amina Amakran
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Lucian Hritcu
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
- Correspondence: (G.D.); (L.H.); Tel.: +40-232-201-522 (G.D.); +40-232-201-666 (L.H.)
| | - Mohamed Nhiri
- Laboratoire de Biochimie et Génétique Moléculaire, Faculté des Sciences et Techniques, Université Abdelmalek Essaadi, Tanger Principal BP 416, Morocco; (S.A.); (A.A.); (M.N.)
| |
Collapse
|
34
|
Liang Z, Xiu Q, Zhang L, Gao Y, Li S, Zhang L, Chen X, Li L, Wang C. Janus nanozyme–drug nanosystems for synergistic anti-inflammatory treatment of nasal polyps. CrystEngComm 2020. [DOI: 10.1039/d0ce00450b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The multifunctional Au–CeO2 JNPs as a nanozyme–drug nanosystem have been first explored for CT imaging and synergistic anti-inflammatory treatment of nasal polyps.
Collapse
Affiliation(s)
- Ziming Liang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Qian Xiu
- Department of Otolaryngology-Head and Neck Surgery
- China-Japan Union Hospital
- Jilin University
- Changchun
- China
| | - Leichao Zhang
- Department of Pathology
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Yuzhou Gao
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences
- Jiangsu Province
- PR China
| | - Shengnan Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Lingyu Zhang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xiangjun Chen
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Lu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Chungang Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
35
|
Rooney JP, Oshida K, Kumar R, Baldwin WS, Corton JC. Chemical Activation of the Constitutive Androstane Receptor Leads to Activation of Oxidant-Induced Nrf2. Toxicol Sci 2019; 167:172-189. [PMID: 30203046 DOI: 10.1093/toxsci/kfy231] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Exposure to environmentally relevant chemicals that activate the xenobiotic receptors aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor alpha (PPARα) in rodent test systems often leads to increases in oxidative stress (OS) that contributes to liver cancer induction. We hypothesized that activation of the oxidant-induced transcription factor Nrf2 could be used as a surrogate endpoint for increases in OS. We examined the relationships between activation of xenobiotic receptors and Nrf2 using previously characterized gene expression biomarkers that accurately predict modulation. Using a correlation approach (Running Fisher Test), the biomarkers were compared with microarray profiles in a mouse liver gene expression compendium. Out of the 163 chemicals examined, 47% from 53 studies activated Nrf2. We found consistent coupling between CAR and Nrf2 activation. Out of the 41 chemicals from 32 studies that activated CAR, 90% also activated Nrf2. CAR was activated earlier and at lower doses than Nrf2, indicating CAR activation preceded Nrf2 activation. Nrf2 activation by 2 CAR activators was abolished in CAR-null mice. We hypothesized that Nrf2 is activated by reactive oxygen species from the increased activity of enzymes encoded by Cyp2b family members. However, Nrf2 was similarly activated in the livers of both TCPOBOP-treated wild-type and Cyp2b9/10/13-null mice. This study provides evidence that Nrf2 activation (1) often occurs after exposure to xenobiotic chemicals, (2) is tightly linked to activation of CAR, and (3) does not require induction of 3 Cyp2b genes secondary to CAR activation.
Collapse
Affiliation(s)
- John P Rooney
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.,Oak Ridge Institute for Science and Education (ORISE) participant at the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Keiyu Oshida
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.,Toray Industries, Inc, Kanagawa, Japan
| | - Ramiya Kumar
- Environmental Toxicology Program and Biological Sciences Department, Clemson University, Clemson, South Carolina 29634
| | - William S Baldwin
- Environmental Toxicology Program and Biological Sciences Department, Clemson University, Clemson, South Carolina 29634
| | - J Christopher Corton
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
36
|
Ashtami J, Anju S, Mohanan P. Conformity of dextran-coated fullerene C70 with L929 fibroblast cells. Colloids Surf B Biointerfaces 2019; 184:110530. [DOI: 10.1016/j.colsurfb.2019.110530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022]
|
37
|
Functionalization of Carbon Nanomaterials for Biomedical Applications. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the past decade, carbon nanostructures (CNSs) have been widely used in a variety of biomedical applications. Examples are the use of CNSs for drug and protein delivery or in tools to locally dispense nucleic acids to fight tumor affections. CNSs were successfully utilized in diagnostics and in noninvasive and highly sensitive imaging devices thanks to their optical properties in the near infrared region. However, biomedical applications require a complete biocompatibility to avoid adverse reactions of the immune system and CNSs potentials for biodegradability. Water is one of the main constituents of the living matter. Unfortunately, one of the disadvantages of CNSs is their poor solubility. Surface functionalization of CNSs is commonly utilized as an efficient solution to both tune the surface wettability of CNSs and impart biocompatible properties. Grafting functional groups onto the CNSs surface consists in bonding the desired chemical species on the carbon nanoparticles via wet or dry processes leading to the formation of a stable interaction. This latter may be of different nature as the van Der Waals, the electrostatic or the covalent, the π-π interaction, the hydrogen bond etc. depending on the process and on the functional molecule at play. Grafting is utilized for multiple purposes including bonding mimetic agents such as polyethylene glycol, drug/protein adsorption, attaching nanostructures to increase the CNSs opacity to selected wavelengths or provide magnetic properties. This makes the CNSs a very versatile tool for a broad selection of applications as medicinal biochips, new high-performance platforms for magnetic resonance (MR), photothermal therapy, molecular imaging, tissue engineering, and neuroscience. The scope of this work is to highlight up-to-date using of the functionalized carbon materials such as graphene, carbon fibers, carbon nanotubes, fullerene and nanodiamonds in biomedical applications.
Collapse
|
38
|
Perussolo MC, Guiloski IC, Lirola JR, Fockink DH, Corso CR, Bozza DC, Prodocimo V, Mela M, Ramos LP, Cestari MM, Acco A, Silva de Assis HC. Integrated biomarker response index to assess toxic effects of environmentally relevant concentrations of paracetamol in a neotropical catfish (Rhamdia quelen). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109438. [PMID: 31310901 DOI: 10.1016/j.ecoenv.2019.109438] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 05/17/2023]
Abstract
The nonsteroidal anti-inflammatory drugs (NSAIDs) are amongst the most commonly detected classes of pharmaceuticals in freshwater environments, with paracetamol being the most abundant. The aim of this study was to evaluate the possible toxic effects of environmentally relevant concentrations (0.25, 2.5 and 25 μg.L-1) of paracetamol in Rhamdia quelen fish exposed for 14 days using different biomarkers. The total count of leukocytes and thrombocytes was reduced at the highest concentration. In the gills, all concentrations of paracetamol reduced the glutathione S-transferase (GST) activity and the reduced glutathione (GSH) levels compared to the control group. The activity of catalase (CAT) was not altered and glutathione peroxidase (GPx) activity increased at the highest concentrations. The superoxide dismutase (SOD) activity decreased at 25 μg.L-1 and the LPO levels increased at 2.5 μg.L-1 when compared to the control group. The concentration of ROS was not different among the groups. In the posterior kidney the activities of GST (2.5 μg.L-1), CAT (2.5 μg.L-1 and at 25 μg. L-1) and GPx and GSH levels increased at all concentrations when compared to the control group. The SOD activity and LPO levels did not change. Paracetamol caused genotoxicity in the blood and gills at concentrations of 2.5 μg.L-1 and in the posterior kidney at 2.5 and 25 μg.L-1. An osmoregulatory imbalance in plasma ions and a reduction in the carbonic anhydrase activity in the gills at 0.25 μg.L-1 were observed. Histopathological alterations occurred in the gills of fish exposed to 25 μg.L-1 and in the posterior kidney at 0.25 and 25 μg.L-1 of paracetamol. The integrated biomarker index showed that the stress caused by the concentration of 25 μg.L-1 was the highest one. These results demonstrated toxic effects of paracetamol on the gills and posterior kidneys of fish, compromising their physiological functions and evidencing the need for monitoring the residues of pharmaceuticals released into aquatic environment.
Collapse
Affiliation(s)
- Maiara C Perussolo
- Department of Pharmacology, Federal University of Paraná (UFPR), Box 19031, 81530-980, Curitiba, PR, Brazil.
| | - Izonete Cristina Guiloski
- Department of Pharmacology, Federal University of Paraná (UFPR), Box 19031, 81530-980, Curitiba, PR, Brazil; Department of Genetics, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, PR, Brazil.
| | - Juliana Roratto Lirola
- Department of Genetics, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, PR, Brazil.
| | - Douglas Henrique Fockink
- Department of Chemistry, Federal University of
Paraná (UFPR), P.O. Box 19032, 81531-980, Curitiba, PR, Brazil.
| | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Paraná (UFPR), Box 19031, 81530-980, Curitiba, PR, Brazil.
| | - Deivyson Cattine Bozza
- Department of Physiology, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, PR, Brazil.
| | - Viviane Prodocimo
- Department of Physiology, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, PR, Brazil.
| | - Maritana Mela
- Department of Cell Biology, Federal University of Paraná, P.O. Box 19031, 81530- 980, Curitiba, PR, Brazil.
| | - Luiz Pereira Ramos
- Department of Chemistry, Federal University of
Paraná (UFPR), P.O. Box 19032, 81531-980, Curitiba, PR, Brazil.
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, PR, Brazil.
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná (UFPR), Box 19031, 81530-980, Curitiba, PR, Brazil.
| | | |
Collapse
|
39
|
The Effects of Genistein on Renal Oxidative Stress and Inflammation of Ovariectomized Rats. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.57149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
40
|
A secret that underlies Parkinson's disease: The damaging cycle. Neurochem Int 2019; 129:104484. [PMID: 31173779 DOI: 10.1016/j.neuint.2019.104484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a movement disorder, and its common characteristics include the loss of dopaminergic neurons and the accumulation of a special type of cytoplasmic inclusions called Lewy bodies in the substantia nigra pars compacta, which are more prevalent in the elderly. However, the pathophysiology of PD is still elusive. In this review, we summarized five common factors involved in PD, namely, (i) oxidative stress, (ii) mitochondrial dysfunction, (iii) inflammation, (iv) abnormal α-synuclein, and (v) endogenous neurotoxins, and proposed a hypothesis involving a damaging cycle. Oxidative stress-triggered aldehydes react with biogenic amines to produce endogenous neurotoxins. They cause mitochondrial dysfunction and the formation of inflammasomes, which induce the activation of neuroglial cells and the infiltration of T lymphocytes. The synergistic effect of these processes fosters chronic inflammation and α-synuclein aggregation and further exacerbates the impact of oxidative stress to establish a damaging cycle that eventually results in the degeneration of dopaminergic neurons. This damaging cycle provides an explanation of progressive neuronal death during the pathogenesis of PD and provides new potential targets beneficial for developing new drugs and approaches for clinical neuroprotection.
Collapse
|
41
|
Zhang H, Jacob JA, Jiang Z, Xu S, Sun K, Zhong Z, Varadharaju N, Shanmugam A. Hepatoprotective effect of silver nanoparticles synthesized using aqueous leaf extract of Rhizophora apiculata. Int J Nanomedicine 2019; 14:3517-3524. [PMID: 31190808 PMCID: PMC6535432 DOI: 10.2147/ijn.s198895] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Liver plays a vital role in the elimination of xenobiotics that can induce hepatotoxicity in living organisms.Silver nanoparticles have evolved recently as an alternative in various industries and are used for their biomedical applications.Rhizophora apiculata is a least studied mangrove-based plant that has been used in the traditional medicine of Southeast Asia for its healing properties. It is a well-known fact that the generation of free radicals has been associated with oxidative stress. Methods: Hence, in this study we used carbon tetrachloride as a hepatotoxin to induce liver damage. The protective effects of silver nanoparticles synthesized using Rhizophora apiculata on hepatotoxin-induced liver damage in experimental mice were assessed. Results: The results of the assessment indicate that silver nanoparticles were effective in protecting the liver from damages induced by carbon tetrachloride. Conclusion: Among existing literature, this is the first ever approach for hepatoprotective effect of nanoparticles derived using plant extract from mangrove ecosystem.
Collapse
Affiliation(s)
- Hongru Zhang
- The Second Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Joe Antony Jacob
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ziyu Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, People's Republic of China
| | - Senlei Xu
- The Second Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Ke Sun
- The Second Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Zehao Zhong
- The Second Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Nithya Varadharaju
- Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Achiraman Shanmugam
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| |
Collapse
|
42
|
Owumi SE, Dim UJ. Manganese suppresses oxidative stress, inflammation and caspase-3 activation in rats exposed to chlorpyrifos. Toxicol Rep 2019; 6:202-209. [PMID: 30859069 PMCID: PMC6396099 DOI: 10.1016/j.toxrep.2019.02.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 12/18/2022] Open
Abstract
The present study investigated the individual and combined impact of organophosphorus pesticide chlorpyrifos (CPF) and manganese (Mn), a naturally occurring trace metal, on hepatorenal function in adult rats. The four experimental groups namely control, CPF alone (5 mg/kg), Mn alone (10 mg/kg) and the co-exposure group consisted of eight rats which were orally gavage for 14 consecutive days. Following sacrifice, the biomarkers of hepatorenal damage, antioxidant enzyme activities, myeloperoxidase (MPO) activity as well as levels of nitric oxide, reactive oxygen and nitrogen (RONS) species and lipid peroxidation (LPO) were analysed spectrophotometrically. Further, the concentration of tumour necrosis factor alpha (TNF-α), interleukin-1 β (IL-1β) and caspase-3 activity were assessed using ELISA. Results showed that the CPF-induced increase in biomarkers of hepatorenal toxicity were significantly (p < 0.05) alleviated in rats co-expose to CPF and Mn. Moreover, the decrease in antioxidant status as well as the elevation in RONS and LPO were significantly assuaged in rats co-treated with CPF and Mn. In addition, CPF mediated increase in TNF-α, IL-1β and caspase-3 activity were significantly diminished in the liver and kidney of rats co-exposed to CPF and Mn. Light microscopic examination evidenced that the severity of histopathological lesions induced by CPF were alleviated in rats co-exposed to CPF and Mn. In conclusion, the results highlight that co-exposure to CPF and Mn in rats assuaged CPF-induced oxidative stress, inflammation and caspase-3 activation in the liver and kidney of the rats.
Collapse
|
43
|
Al-Saleh I, Coskun S, Al-Doush I, Al-Rajudi T, Al-Rouqi R, Abduljabbar M, Al-Hassan S. Exposure to phthalates in couples undergoing in vitro fertilization treatment and its association with oxidative stress and DNA damage. ENVIRONMENTAL RESEARCH 2019; 169:396-408. [PMID: 30529141 DOI: 10.1016/j.envres.2018.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
This prospective study of 599 couples seeking fertility treatment and who were recruited between 2015 and 2017 was conducted to (a) explore the associations between phthalate exposure and in vitro fertilization (IVF) outcomes; and (b) examine the implication of oxidative stress as a mediator of these. We measured eight phthalate metabolites in two spot urine samples; oxidative stress biomarkers such as malondialdehyde, 8-hydroxy-2-deoxyguanosine, hydrogen peroxide, catalase (CAT), and total antioxidant capacity in follicular fluid and seminal plasma. We also examined DNA damage in sperm and granulosa cells. Couples were exposed to a broad range of phthalate compounds and seven metabolites were detected in over 94% of the urine samples, whereas monobenzyl phthalate was found in only 24% of women and 26% of men. Our results showed high levels of seven urinary phthalate metabolites (except monobenzyl phthalate) and a notable increase in many oxidative stress markers in both follicular fluid and seminal plasma. However, their associations with exposure were rather limited. Multivariate binomial regression modeling showed higher levels of follicular CAT levels reduced the probability of fertilization rate (≤ 50%) [Adjusted relative risk (RRadj) = 0.52, p = 0.005] and unsuccessful live birth (RRadj = 0.592, p = 0.023). We observed a 46% decrease in the probability of clinical pregnancy in association with an elevated percentage of DNA in the tail (RRadj = 0.536, p = 0.04). There was a 32% and 22% increase in the probability of clinical pregnancy and unsuccessful live birth associated with higher levels of mono-(2-ethylhexyl) phthalate (RRadj = 1.32, p = 0.049) and monoethyl phthalate (RRadj = 1.22, p = 0.032) in women, respectively. In contrast, the probability of clinical pregnancy reduced by 20% with higher levels of mono-(2-ethyl-5-carboxypentyl) phthalate (RRadj = 0.797, p = 0.037) and 19.6% with mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) (RRadj = 0.804, p = 0.041) in men. Other oxidative stress biomarkers or urinary phthalate metabolites showed suggestive relationships with certain IVF outcomes. Lastly, our results demonstrated that elevated levels of CAT in follicular fluid might have a positive impact on fertilization rate ≥ 50% and successful live birth. CAT seems to play a potential role in mediating the relationship between the risk of poor fertilization rate and MEOHP and mono-isobutyl phthalate. Additional data are required to understand the clinical implications of oxidative stress and its contribution to the reproductive toxicity of phthalate exposure.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Inaam Al-Doush
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Tahreer Al-Rajudi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Reem Al-Rouqi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mai Abduljabbar
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Saad Al-Hassan
- Reproductive Medicine Unit, Department of Obstetrics & Gynecology, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
44
|
Aruna A, Rani B, Swami S, Agarwala A, Behera D, Shrivastava R. Recent progress in development of 2,3-diaminomaleonitrile (DAMN) based chemosensors for sensing of ionic and reactive oxygen species. RSC Adv 2019; 9:30599-30614. [PMID: 35530234 PMCID: PMC9072161 DOI: 10.1039/c9ra05298d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
2,3-Diaminomaleonitrile (DAMN) has proved to be a valuable organic π-conjugated molecule having many applications in the area of chemosensors for sensing of ionic and neutral species because of its ability to act as a building block for well-defined molecular architectures and scaffolds for preorganised arrays of functionality. In this article, we discussed the utilization of 2,3-diaminomaleonitrile (DAMN) for the design and development of chemosensor molecules and their application in the area of metal ion, anion and reactive oxygen species sensing. Along with these, we present different examples of DAMN based chemosensors for multiple ion sensing. We also discuss the ion sensing mechanism and potential uses in other related areas of research. 2,3-Diamniomaleonitrile (DAMN) is valuable π-conjugated organic scaffold molecule for designing of efficient chemosensors for sensing of ionic and Reactive Oxygen Species (ROS).![]()
Collapse
Affiliation(s)
- Aruna Aruna
- Department of Chemistry
- Manipal University Jaipur
- Jaipur
- India 303007
| | - Bhawna Rani
- Department of Chemistry
- Manipal University Jaipur
- Jaipur
- India 303007
| | - Suman Swami
- Department of Chemistry
- Manipal University Jaipur
- Jaipur
- India 303007
| | - Arunava Agarwala
- Department of Chemistry
- Manipal University Jaipur
- Jaipur
- India 303007
| | - Debasis Behera
- Department of Chemistry
- Manipal University Jaipur
- Jaipur
- India 303007
| | | |
Collapse
|
45
|
Mostafalou S, Abdollahi M. The link of organophosphorus pesticides with neurodegenerative and neurodevelopmental diseases based on evidence and mechanisms. Toxicology 2018; 409:44-52. [PMID: 30053494 DOI: 10.1016/j.tox.2018.07.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Organophosphorus (OP) compounds have been known as the most widely used pesticides during the past half century and there have been a huge body of literature regarding their association with human chronic diseases. Neurodegenerative and neurodevelopmental disorders including Alzheimer, Parkinson, amyotrophic lateral sclerosis (ALS), attention deficit hyperactivity disorder (ADHD), and autism are among the afflicting neurological diseases which overshadow human life and their higher risk in relation to OP exposures have been uncovered by epidemiological studies. In addition, experimental studies exploring the underlying mechanisms have provided some evidence for involvement of cholinergic deficit, oxidative stress, neuro-inflammation, and epigenetic modifications as the processes which are common in the toxicity of the OP and pathophysiology of the mentioned diseases. In addition, genetic mutations and polymorphisms of different variants of some genes like paraoxonase have been shown to be implicated in both susceptibility to OPs toxicity and neurological diseases. In this article, we reviewed the epidemiological as well as experimental studies evidencing the association of exposure to OPs and incidence of neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Bonomini F, Borsani E, Favero G, Rodella LF, Rezzani R. Dietary Melatonin Supplementation Could Be a Promising Preventing/Therapeutic Approach for a Variety of Liver Diseases. Nutrients 2018; 10:nu10091135. [PMID: 30134592 PMCID: PMC6164189 DOI: 10.3390/nu10091135] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
In the therapeutic strategies, the role of diet is a well-established factor that can also have an important role in liver diseases. Melatonin, identified in animals, has many antioxidant properties and it was after discovered also in plants, named phytomelatonin. These substances have a positive effect during aging and in pathological conditions too. In particular, it is important to underline that the amount of melatonin produced by pineal gland in human decreases during lifetime and its reduction in blood could be related to pathological conditions in which mitochondria and oxidative stress play a pivotal role. Moreover, it has been indicated that melatonin/phytomelatonin containing foods may provide dietary melatonin, so their ingestion through balanced diets could be sufficient to confer health benefits. In this review, the classification of liver diseases and an overview of the most important aspects of melatonin/phytomelatonin, concerning the differences among their synthesis, their presence in foods and their role in health and diseases, are summarized. The findings suggest that melatonin/phytomelatonin supplementation with diet should be considered important in preventing different disease settings, in particular in liver. Currently, more studies are needed to strengthen the potential beneficial effects of melatonin/phytomelatonin in liver diseases and to better clarify the molecular mechanisms of action.
Collapse
Affiliation(s)
- Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Elisa Borsani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
47
|
Yan M, Vemu B, Veenstra J, Petiwala SM, Johnson JJ. Carnosol, a dietary diterpene from rosemary ( Rosmarinus officinalis) activates Nrf2 leading to sestrin 2 induction in colon cells. ACTA ACUST UNITED AC 2018; 5. [PMID: 30972223 DOI: 10.15761/imm.1000335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Rosemary is abundant with phytochemicals and has recently been approved as an antioxidant food preservative in the European Union. The safety of rosemary is well established, however, the benefits on gastrointestinal health are less known. Our overall hypothesis is that the phytochemicals in rosemary including carnosol have the potential to promote gastrointestinal health by activation of the antioxidant sestrin-2 when consumed in our diet. Methods Colon cells HCT116 and SW480 were treated with carnosol and evaluated by MTT, immunofluorescence, ELISA, and Western blot analysis to understand the modulation of the PERK/Nrf2/Sestrin-2 pathway. Results Carnosol was found to modulate PERK and increase the concentration of nuclear Nrf2. Furthermore, a downstream marker of Nrf2 expression, Sestrin-2 was shown to be upregulated. Conclusion Based on these observations carnosol modulates the PERK and Nrf2 pathways along with increased expression of sestrin-2, a known stress inducible antioxidant.
Collapse
Affiliation(s)
- Miao Yan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America.,Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bhaskar Vemu
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jacob Veenstra
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sakina M Petiwala
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jeremy J Johnson
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
48
|
Haegler P, Joerin L, Krähenbühl S, Bouitbir J. Hepatocellular Toxicity of Imidazole and Triazole Antimycotic Agents. Toxicol Sci 2018; 157:183-195. [PMID: 28329820 DOI: 10.1093/toxsci/kfx029] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatotoxicity has been described for all antimycotic azoles currently marketed. A possible mechanism involving mitochondrial dysfunction has been postulated for ketoconazole, but not for the other azoles. The aim of the current investigations was to study the toxicity of different azoles in human cell models and to find out mechanisms of their toxicity. In HepG2 cells, posaconazole and ketoconazole were cytotoxic starting at 20 and 50 µM and decreased the cellular ATP content starting at 5 and 10 µM, respectively. In HepaRG cells, cytotoxicity started at 20 and 100 µM for posaconazole and ketoconazole, respectively, and was slightly accentuated by cytochrome P450 3A4 induction with rifampicin and 1A2 with 3-methylcholantrene. Voriconazole and fluconazole were not cytotoxic. In isolated mouse liver mitochondria, ketoconazole impaired membrane potential and complex I activity, whereas the other azoles were not toxic. In HepG2 cells exposed for 24 h, both posaconazole and ketoconazole (but not fluconazole or voriconazole) decreased the mitochondrial membrane potential, impaired the function of enzyme complexes of the electron transport chain, were associated with mitochondrial superoxide accumulation, decreased mitochondrial DNA and induced apoptosis. In HepG2 cells with mitochondrial dysfunction induced by the vitamin B12 antagonist hydroxy-cobalamin[c-lactam], cytotoxicity and/or ATP depletion was more accentuated than in untreated cells. We conclude that ketoconazole and posaconazole are mitochondrial toxicants starting at concentrations, which can be reached in vivo. Cytotoxicity and ATP depletion are more accentuated in cells with mitochondrial damage, suggesting that preexisting mitochondrial dysfunction is a susceptibility factor for hepatotoxicity associated with these drugs.
Collapse
Affiliation(s)
- Patrizia Haegler
- Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lorenz Joerin
- Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stephan Krähenbühl
- Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Swiss Centre of Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland
| | - Jamal Bouitbir
- Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Swiss Centre of Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland
| |
Collapse
|
49
|
Sangomla S, Saifi MA, Khurana A, Godugu C. Nanoceria ameliorates doxorubicin induced cardiotoxicity: Possible mitigation via reduction of oxidative stress and inflammation. J Trace Elem Med Biol 2018; 47:53-62. [PMID: 29544808 DOI: 10.1016/j.jtemb.2018.01.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
Abstract
Doxorubicin (DOX) is one of the most commonly used anticancer drugs but its use has been limited due to constraints of cardiotoxic side effects. The precise mechanism underlying cardiotoxicity is not yet fully understood but oxidative stress has been found to be a primary mechanism behind this. In addition, DOX induced cardiotoxicity also shows involvement of proinflammatory cytokines such as IL-6 and TNF-α. Since oxidative stress plays major role in DOX induced cardiotoxicity, different antioxidants have been tried to prevent cardiotoxicity of DOX. Nanoparticles have risen up as a promising material with a wide variety of actions, and cerium oxide nanoparticles or nanoceria (NC) is one of such kind with great antioxidant potential. NC has emerged as a promising antioxidant in different pathological conditions. The present study was aimed to investigate possible protective effects of NC in DOX induced cardiotoxicity. Cardiotoxicity was induced in Swiss mice by DOX administration through i.p. route at a dose level of 15 mg/kg in two divided doses on alternate days. In our study, NC was found to mitigate cardiotoxic potential of DOX and prevented weight loss. NC restored the levels of cardiac injury markers lactate dehydrogenase (LDH) and creatinine kinase MB (CK-MB). Moreover, NC reduced malondialdehyde (MDA) levels and increased endogenous antioxidants such as reduced glutathione (GSH) and catalase levels. In addition, NC decreased proinflammatory cytokine levels and also prevented the alteration in normal structure of heart samples. Our study showed protective effects of NC in DOX induced cardiotoxicity which can become a potential therapeutic intervention against DOX induced cardiotoxicity.
Collapse
Affiliation(s)
- Swetha Sangomla
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
50
|
Hockenberry MJ, Moore IMK, Scheurer ME, Hooke MC, Taylor OA, Koerner KM, Gundy PM, Pan W. Influence of Nitrosative Stress on Fatigue During Childhood Leukemia Treatment. Biol Res Nurs 2018; 20:403-409. [PMID: 29716390 DOI: 10.1177/1099800418772907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The focus on a cure for childhood leukemia over the last three decades has resulted in survival rates of more than 80%. However, efforts to manage leukemia-treatment symptoms have not kept pace with new therapies. Symptom toxicity during treatment can result in complications, treatment delays, and therapy dose reductions. Compromise in therapy can negatively influence the quality of life and, even more notably, jeopardize chances for long-term survival. This study examined biologic mechanisms that influence fatigue caused by increased reactive oxidative species (ROS) or actual failure of the antioxidant defense system due to genetic variation by investigating reactive nitrosative species, a "downstream" consequence of ROS. The specific aims of this study were to characterize the trajectory of nitrosative stress during acute lymphoblastic leukemia treatment and evaluate the influence of nitrosative stress on fatigue. A repeated measures design was used to evaluate the fatigue experienced by 186 children and adolescents, 3-18 years of age, with a diagnosis of leukemia during the most intense phase of treatment. An established biomarker of nitrosative stress, protein 3-nitrotyrosine (3NT) residues in the cerebral spinal fluid, was evaluated at diagnosis, postinduction, and consolidation phases of treatment. Higher fatigue was associated with higher 3NT levels at the beginning of treatment. Two distinct groups of children experienced either consistently high or consistently low 3NT levels across the treatment trajectory, from diagnosis to 12 months postinduction. Findings from this study support continued exploration into the phenotypic biochemical mechanisms that influence a reactive response to childhood cancer treatment.
Collapse
Affiliation(s)
| | - Ida M Ki Moore
- 2 Biobehavioral Health Science Division, College of Nursing, The University of Arizona, Tucson, AZ, USA
| | - Michael E Scheurer
- 3 Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA.,4 Population Sciences Biorepository, Baylor College of Medicine, Houston, TX, USA
| | - Mary C Hooke
- 5 School of Nursing, University of Minnesota, Minneapolis, MN, USA
| | - Olga A Taylor
- 3 Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - Kari M Koerner
- 6 College of Nursing, The University of Arizona, Tucson, AZ, USA
| | - Patricia M Gundy
- 6 College of Nursing, The University of Arizona, Tucson, AZ, USA
| | - Wei Pan
- 1 School of Nursing, Duke University, Durham, NC, USA
| |
Collapse
|