1
|
Quintana-Mejia M, Palacio-Herrera F, Olivero-Verbel J, Caballero-Gallardo K. Exposure to pesticides and cognitive function in school-age children of the Bolivar department (Colombia). Toxicol Lett 2025; 408:105-118. [PMID: 40253014 DOI: 10.1016/j.toxlet.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/28/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Joining efforts to address the interactions between social and environmental determinants of cognitive functioning allows the identification of structural barriers that guide government plans towards the fulfillment of the 2030 Agenda. This study examined the pesticide exposure and cognitive function in school-age children between the ages of 6-12 years old from Magangue, Achi, and Arjona (reference site) in the Bolivar Department (Colombia). A total of 323 school-age children participated in the study. A cross-sectional examination was conducted, including the measurement of blood serum pesticide concentrations using a gas chromatography-mass spectrometer (GC-MS) and cognitive function was assessed employing the Wechsler Intelligence Scale for Children, 4th edition. A comprehensive questionnaire was used to collect demographic information and exposure profiles. A total of fourteen organophosphate pesticides and 2 carbamates in human blood serum were detected. In Magangue, pesticides were quantified in 91 % of the participants, and in Achi in 34 %. At the comparison site, the results showed the presence of these pesticides in less than 2 % of the total samples analyzed. Interaction effects were observed between parental education, number of pesticides detected (>LOD), IQ, and verbal comprehension index, which could generate alterations in reasoning, problem solving, memory and verbal comprehension. Interaction effects were observed between parental education, the number of pesticides detected, sum of pesticide concentrations detected in blood divided by the reported LD50 of each chemical (ΣCPN/LD), and very low scores on the perceptual reasoning index, indicating compromised performance in abstract, logical, and analytical reasoning tasks. These findings underscore the magnitude of pesticide exposure as a public health concern, emphasizing the need for longitudinal studies to establish causal relationships between social determinants and neurotoxicant exposure as predictors of human development. The results contribute to governmental public health strategies aimed at protecting vulnerable populations and raising awareness of the risks associated with toxic exposures.
Collapse
Affiliation(s)
- Maria Quintana-Mejia
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Flor Palacio-Herrera
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia.
| |
Collapse
|
2
|
Alam AKM, Xiang C. Development of a Colorimetric Polydiacetylene Nanocomposite Fiber Sensor for Selective Detection of Organophosphate Pesticides. ACS OMEGA 2025; 10:12346-12356. [PMID: 40191323 PMCID: PMC11966579 DOI: 10.1021/acsomega.4c11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Exposure to organophosphate (OP) pesticides is highly hazardous to human health and well-being. It has been linked to over 250,000 annual deaths connected to various chronic diseases, including cancer, Parkinson's, Alzheimer's, depression, etc. In the absence of any solid-state sensing system suitable for integration into a clothing system, an equipment-free on-site detection system for OP insecticides is essential for mitigating the severe health risks from OP exposure. This work demonstrates the synthesis, fabrication, and naked-eye and quantitative detection of OP insecticides with a polydiacetylene (PDA) ester containing the nanocomposite fiber sensor. Ester of PDA (PDA-HBA) was synthesized via facile green chemical synthesis and incorporated into a cellulosic nanocomposite fibrous assembly via the electrospinning technique. The solid-state soft sensor exhibited a blue-to-pink/red color transition within seconds of exposure to OP pesticide diisopropylfluorophosphate (DFP), and the color change was visible to the naked eye. Nanocomposite fibers containing 10% PCDA-HBA were found to be the optimum composition for DFP detection. The limit of DFP detection was 63 ppm. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, wide-angle X-ray diffraction (XRD), small-angle XRD, nuclear magnetic resonance, and Fourier-transform infrared spectroscopy were employed for characterization. This research is a landmark study in the development of a highly sensitive and selective OP sensing system.
Collapse
Affiliation(s)
- A K M
Mashud Alam
- Department of Apparel, Events, and
Hospitality Management, Iowa State University, Ames, Iowa 50011, United States
| | - Chunhui Xiang
- Department of Apparel, Events, and
Hospitality Management, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Terry AV, Beck WD, Zona V, Itokazu Y, Tripathi A, Madeshiya AK, Pillai A. Acute exposure to diisopropylfluorophosphate in mice results in persistent cognitive deficits and alterations in senescence markers in the brain. Front Neurosci 2024; 18:1498350. [PMID: 39575097 PMCID: PMC11578986 DOI: 10.3389/fnins.2024.1498350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Organophosphates (OPs) are found in hundreds of important products used worldwide; however, they have been associated with adverse long-term health consequences ranging from neurodevelopmental deficits to age-related neurological diseases. OP exposure has also been implicated in Gulf War Illness; a cluster of medically unexplained chronic symptoms estimated to affect 25-32% of veterans of the Persian Gulf war in 1991. The development of multiple types of chronic illnesses in these veterans at an early age compared to the general population has led to the suggestion that they are experiencing signs of premature or accelerated aging. The process of cellular senescence and the development of the senescence-associated secretory phenotype (SASP) is believed to lead to chronic inflammation, chronic illnesses, as well as accelerated biological aging, and a role of environmental exposures in these processes has been suggested, but not extensively studied to date. In the studies described here, we evaluated the persistent effects of a single (acute) exposure of a representative nerve agent OP, diisopropylfluorophosphate (DFP) 4.0 mg/kg on cognitive function, noncognitive behaviors, cellular senescence markers and proinflammatory cytokines in the mouse brain. The results indicated modest, but persistent DFP-related impairments in spatial learning and working memory, but not contextual or cued fear conditioning. DFP exposure was also not associated with negative effects on weight or impairments of the various noncognitive (e.g., motor function or exploratory activity) behavioral assessments. Both histology and quantitative PCR experiments indicated that DFP was associated with persistent alterations in several senescence markers and proinflammatory cytokines in brain regions that are relevant to the performance of the memory-related tasks (e.g., hippocampus, prefrontal cortex). The results thus suggest that single acute exposures to OPs like DFP can lead to persistent impairments in specific domains of cognition that may be related to alterations in cellular senescence and inflammaging in the brain.
Collapse
Affiliation(s)
- Alvin V. Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
- Small Animal Behavior Core, Medical College of Georgia, Augusta, Georgia
| | - Wayne D. Beck
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
- Small Animal Behavior Core, Medical College of Georgia, Augusta, Georgia
| | - Victoria Zona
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
- Small Animal Behavior Core, Medical College of Georgia, Augusta, Georgia
| | - Yutaka Itokazu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
| | - Ashutosh Tripathi
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Amit Kumar Madeshiya
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Anilkumar Pillai
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Medical Research Service, Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
4
|
El Hamzaoui A, Lamtai M, El Brouzi MY, Azirar S, Rezqaoui A, Zghari O, El Aoufi M, Nouar R, El-Hessni A, Mesfioui A. Melatonin attenuates affective disorders and cognitive deficits induced by perinatal exposure to a glyphosate-based herbicide via antioxidant pathway in adult male and female rats. Int J Dev Neurosci 2024; 84:745-757. [PMID: 39224983 DOI: 10.1002/jdn.10374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The massive use of herbicides, particularly glyphosate-based herbicides (GBHs), raises several worries, notably their neurotoxic effects. Several studies have explored the consequences of developmental exposure. Our work aims to determine the impact of maternal exposure to GBH on behavioral disorders and memory deficits, as well as the involvement of oxidative stress in the hippocampus and prefrontal cortex. In addition, our study explores the neuroprotective properties of melatonin in male and female offspring. Pregnant Wistar rats were injected with GBH 75 mg/kg during gestation and lactation. After weaning, the offspring were treated with melatonin (4 mg/kg) from postnatal days 30-58. Our results show that GBH increases anxiety-like behavior levels in offspring, as well as depression-like behavior. GBH also impairs working memory in progeny. While markers of oxidative stress show a disturbance in lipid peroxidation and catalase activity, with a more pronounced effect in females, on the other hand, melatonin considerably attenuated the neurotoxic impact observed in the offspring, with higher efficacy in females. The oxidative stress results confirm the antioxidant power of melatonin to counteract the damaging effects of exposure to environmental contaminants such as glyphosate-based pesticides. It will then be interesting to further our work to fully understand the sex-dependent effect of melatonin.
Collapse
Affiliation(s)
- Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Sofia Azirar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mustapha El Aoufi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Rihab Nouar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker El-Hessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
5
|
Trentini A, Rosta V, Riccetti R, Mola G, Galletti R, Pinotti M, Senia V, Zuliani G, Cervellati C. PON1 and PON3 in Alzheimer's Disease: Similar Functions but Different Roles. Antioxidants (Basel) 2024; 13:1216. [PMID: 39456469 PMCID: PMC11505261 DOI: 10.3390/antiox13101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Paraoxonase 1 (PON1) and Paraoxonase 3 (PON3) are enzymes located on the surface of high-density lipoprotein (HDL) and share similar antioxidant properties, possibly modulated by other proteins such as Myeloperoxidase (MPO), which drives the shift from functional to dysfunctional HDL. PON1 has been extensively studied in relation to Alzheimer's Disease (AD), but the role of PON3 remains unknown. To fill this knowledge gap, the study analyzed PON3 protein levels and PON1-arylesterase activity in 99 AD patients, 100 patients with mild cognitive impairment (MCI), and 79 cognitively normal controls. The results showed that serum PON3 levels remained unchanged across all groups. In contrast, serum arylesterase activity was significantly reduced in both AD and MCI patients compared to controls (p < 0.001 for both comparisons). Surprisingly, there was no correlation between arylesterase activity and MPO protein concentration or activity. However, PON3 was found to have a significant positive correlation with both MPO concentration (r = 0.507, p < 0.0001) and MPO activity (r = 0.264, p < 0.01). In conclusion, we demonstrated for the first time that PON1 and PON3 have distinct relationships with AD, with only PON1 showing a decrease in activity in this disease, while PON3 levels remained unchanged. Another noteworthy finding was the selective correlation between PON3 and MPO, which may suggest a preferential physical association of PON3 with dysfunctional HDL.
Collapse
Affiliation(s)
- Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (V.R.); (R.R.)
| | - Valentina Rosta
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (V.R.); (R.R.)
| | - Raffaella Riccetti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (V.R.); (R.R.)
| | - Gianmarco Mola
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (G.M.); (R.G.); (M.P.); (V.S.); (G.Z.)
| | - Riccardo Galletti
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (G.M.); (R.G.); (M.P.); (V.S.); (G.Z.)
| | - Marco Pinotti
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (G.M.); (R.G.); (M.P.); (V.S.); (G.Z.)
| | - Vincenza Senia
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (G.M.); (R.G.); (M.P.); (V.S.); (G.Z.)
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (G.M.); (R.G.); (M.P.); (V.S.); (G.Z.)
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (G.M.); (R.G.); (M.P.); (V.S.); (G.Z.)
| |
Collapse
|
6
|
Montanarí C, Franco-Campos F, Taroncher M, Rodríguez-Carrasco Y, Zingales V, Ruiz MJ. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024; 192:114933. [PMID: 39147357 DOI: 10.1016/j.fct.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Chlorpyrifos (CPF), a widely used broad-spectrum organophosphate pesticide, has been associated with various adverse health effects in animals and humans. While its primary mechanism of action involves the irreversible inhibition of acetylcholinesterase, secondary mechanisms have also been suggested. The aim of the present study was to explore the secondary mechanisms of action involved in CPF-induced acute cytotoxicity using human hepatocarcinoma HepG2 cells. In particular, we investigated oxidative stress and mitochondrial function by assessing reactive oxygen species (ROS) generation, lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm) alteration. Results showed that 24-h exposure to CPF (78.125-2500 μM) decreased cell viability in a concentration-dependent manner (IC50 = 280.87 ± 26.63 μM). Sub-toxic CPF concentrations (17.5, 35 and 70 μM) induced increases in ROS generation (by 83%), mitochondrial superoxide (by 7.1%), LPO (by 11%), and decreased ΔΨm (by 20%). CPF also upregulated Nrf2 protein expression, indicating the role of the latter in modulating the cellular response to oxidative insults. Overall, our findings suggest that CPF caused hepatotoxicity through oxidative stress and mitochondrial dysfunction. Given the re-emerging use of CPF, this study emphasizes the need for comprehensive analysis to elucidate its toxicity on non-target organs and associated mechanisms.
Collapse
Affiliation(s)
- C Montanarí
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - F Franco-Campos
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - M Taroncher
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - Y Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - V Zingales
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain.
| | - M J Ruiz
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| |
Collapse
|
7
|
Wang L, Liu J, Gui W, Zhang R, Li X, Fang L, Li H, Pan D, Ye W. Molecular interaction mechanisms on (-)-epigallocatechin-3-gallate improving activities of inhibited acetylcholinesterase by selected organophosphorus pesticides in vitro & vivo. Sci Rep 2024; 14:22296. [PMID: 39333189 PMCID: PMC11436701 DOI: 10.1038/s41598-024-72637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is reported to have benefits for the treatment of Alzheimer's disease by binding with acetylcholinesterase (AChE) to enhance the cholinergic neurotransmission. Organophosphorus pesticides (OPs) inhibited AChE and damaged the nervous system. This study investigated the combined effects of EGCG and OPs on AChE activities in vitro & vivo. The results indicated that EGCG significantly reversed the inhibition of AChE caused by OPs. In vitro, EGCG reactived AChE in three group tubes incubated for 110 min, and in vivo, it increased the relative activities of AChE from less than 20% to over 70% in brain and vertebral of zebrafish during the exposure of 34 h. The study also proposed the molecular interaction mechanisms through the reactive kinetics and computational analyses of density functional theory, molecular docking, and dynamic modeling. These analyses suggested that EGCG occupied the key residues, preventing OPs from binding to the catalytic center of AChE, and interfering with the initial affinity of OPs to the central active site. Hydrogen bonding, conjugation, and steric interactions were identified as playing important roles in the molecular interactions. The work suggests that EGCG antagonized the inhibitions of OPs on AChE activities and potentially offered the neuroprotection against the induced damage.
Collapse
Affiliation(s)
- Lijun Wang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Jian Liu
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Wenqian Gui
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Rong Zhang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China.
| | - Xinmei Li
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Liancheng Fang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Hui Li
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Dandan Pan
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Wenling Ye
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| |
Collapse
|
8
|
Zambrano-Soria M, Toledo-Ibarra GA, Covantes-Rosales CE, Barajas-Carrillo VW, Rios-Jiménez I, Leyva-Morales JB, Navidad-Murrieta MS, Razura-Carmona FF, Girón-Pérez MI. Pesticide levels in shrimp on Mexican coasts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-21. [PMID: 39206834 DOI: 10.1080/09603123.2024.2393434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The present review aimed to evaluate the current situation of pesticide residues detected in shrimp (commercial species) on the Mexican coasts. The organochlorine pesticides (OC), α-endosulfan (210.01 ng g-1), endosulfan sulfate (127.5 ng g-1), heptachlor (126.04 ng g-1 and γ-HCH (121.04 ng g-1) are identified as the most common pesticides in shrimp tissues, with the Northwest area reporting the highest concentrations of these OC. Given that there is an under-evaluation of pesticide residue levels, there was a greater contribution of studies directed at the Northwest of the country considering that there are states that are among the main shrimp-producing and consumers entities. The concentrations and types of pesticides banned nationally and globally, due to their toxic effects on the population, were reported. Therefore, since the most current information is 19 years out of date, it is necessary to perform recent evaluations with sensible and precise methods.
Collapse
Affiliation(s)
- Mercedes Zambrano-Soria
- Programa de Doctorado en Ciencias Biológico Agropecuarias en el Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | | | | | | | - Isaías Rios-Jiménez
- Comité Estatal de Sanidad Acuícola del Estado de Nayarit, Tepic, Nayarit, México
| | - José Belisario Leyva-Morales
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, México
| | | | | | - Manuel Iván Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Unidad Nayarit, Tepic, Nayarit, México
| |
Collapse
|
9
|
Afsheen S, Rehman AS, Jamal A, Khan N, Parvez S. Understanding role of pesticides in development of Parkinson's disease: Insights from Drosophila and rodent models. Ageing Res Rev 2024; 98:102340. [PMID: 38759892 DOI: 10.1016/j.arr.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Parkinson's disease is a neurodegenerative illness linked to ageing, marked by the gradual decline of dopaminergic neurons in the midbrain. The exact aetiology of Parkinson's disease (PD) remains uncertain, with genetic predisposition and environmental variables playing significant roles in the disease's frequency. Epidemiological data indicates a possible connection between pesticide exposure and brain degeneration. Specific pesticides have been associated with important characteristics of Parkinson's disease, such as mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation, which are crucial for the advancement of the disease. Recently, many animal models have been developed for Parkinson's disease study. Although these models do not perfectly replicate the disease's pathology, they provide valuable insights that improve our understanding of the condition and the limitations of current treatment methods. Drosophila, in particular, has been useful in studying Parkinson's disease induced by toxins or genetic factors. The review thoroughly analyses many animal models utilised in Parkinson's research, with an emphasis on issues including pesticides, genetic and epigenetic changes, proteasome failure, oxidative damage, α-synuclein inoculation, and mitochondrial dysfunction. The text highlights the important impact of pesticides on the onset of Parkinson's disease (PD) and stresses the need for more research on genetic and mechanistic alterations linked to the condition.
Collapse
Affiliation(s)
- Saba Afsheen
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Shaney Rehman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Elser H, Kruse CFG, Schwartz BS, Casey JA. The Environment and Headache: a Narrative Review. Curr Environ Health Rep 2024; 11:184-203. [PMID: 38642284 DOI: 10.1007/s40572-024-00449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In this narrative review, we summarize the peer-reviewed literature published between 2017 and 2022 that evaluated ambient environmental risk factors for primary headache disorders, which affect more than half of the population globally. Primary headache disorders include migraine, tension-type headache (TTH), and trigeminal and autonomic cephalalgias (TAC). RECENT FINDINGS We identified 17 articles that met the inclusion criteria via PubMed or Google Scholar. Seven studies (41%) relied on data from US populations. The remaining studies were conducted in China, Taiwan, Germany, Ghana, Japan, the Netherlands, South Korea, and Turkey. Air pollution was the most frequently assessed environmental risk factor. Most studies were cross-sectional and focused on all-cause or migraine headaches; one study included TTH, and none included TAC. Short-term exposure to fine particulate matter (PM2.5) was not consistently associated with headache endpoints, but long-term exposure to PM2.5 was associated with migraine headache prevalence and severity across multiple studies. Elevated ambient temperature, changes in weather, oil and gas well exposure, and less natural greenspace, but not noise pollution, were also associated with headache. No studies considered water pollution, metal exposure, ultrafine particulate matter, or wildfire smoke exposure. There is a need for ongoing research focused on headache and the environment. Study designs with the greatest explanatory power may include longitudinal studies that capture the episodic nature of headache and case-crossover analysis, which control for time-invariant individual-level confounders by design. There is also a clear need for research that considers comorbid psychiatric illness and socioeconomic position as powerful modifiers of the effect of the environment on headache.
Collapse
Affiliation(s)
- Holly Elser
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Caroline F G Kruse
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joan A Casey
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
| |
Collapse
|
11
|
Yadav B, Kaur S, Yadav A, Verma H, Kar S, Sahu BK, Pati KR, Sarkar B, Dhiman M, Mantha AK. Implications of organophosphate pesticides on brain cells and their contribution toward progression of Alzheimer's disease. J Biochem Mol Toxicol 2024; 38:e23660. [PMID: 38356323 DOI: 10.1002/jbt.23660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
The most widespread neurodegenerative disorder, Alzheimer's disease (AD) is marked by severe behavioral abnormalities, cognitive and functional impairments. It is inextricably linked with the deposition of amyloid β (Aβ) plaques and tau protein in the brain. Loss of white matter, neurons, synapses, and reactive microgliosis are also frequently observed in patients of AD. Although the causative mechanisms behind the neuropathological alterations in AD are not fully understood, they are likely influenced by hereditary and environmental factors. The etiology and pathogenesis of AD are significantly influenced by the cells of the central nervous system, namely, glial cells and neurons, which are directly engaged in the transmission of electrical signals and the processing of information. Emerging evidence suggests that exposure to organophosphate pesticides (OPPs) can trigger inflammatory responses in glial cells, leading to various cascades of events that contribute to neuroinflammation, neuronal damage, and ultimately, AD pathogenesis. Furthermore, there are striking similarities between the biomarkers associated with AD and OPPs, including neuroinflammation, oxidative stress, dysregulation of microRNA, and accumulation of toxic protein aggregates, such as amyloid β. These shared markers suggest a potential mechanistic link between OPP exposure and AD pathology. In this review, we attempt to address the role of OPPs on altered cell physiology of the brain cells leading to neuroinflammation, mitochondrial dysfunction, and oxidative stress linked with AD pathogenesis.
Collapse
Affiliation(s)
- Bharti Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Swastitapa Kar
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Binit Kumar Sahu
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Kumari Riya Pati
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Bibekanada Sarkar
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
12
|
Mostafalou S, Abdollahi M. The susceptibility of humans to neurodegenerative and neurodevelopmental toxicities caused by organophosphorus pesticides. Arch Toxicol 2023; 97:3037-3060. [PMID: 37787774 DOI: 10.1007/s00204-023-03604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
The toxicology field is concerned with the impact of organophosphorus (OP) compounds on human health. These compounds have been linked to an increased risk of neurological disorders, including neurodegenerative and neurodevelopmental diseases. This article aims to review studies on the role of OP compounds in developing these neurological disorders and explore how genetic variations can affect susceptibility to the neurotoxicity of these pesticides. Studies have shown that exposure to OP compounds can lead to the development of various neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD), autism, intellectual disability, and other developmental neurotoxicities. Apart from inhibiting the cholinesterase enzyme, OP compounds are believed to cause other pathological mechanisms at both the extracellular level (cholinergic, serotonergic, dopaminergic, glutamatergic, and GABAergic synapses) and the intracellular level (oxidative stress, mitochondrial dysfunction, inflammation, autophagy, and apoptosis) that contribute to these disorders. Specific genetic polymorphisms, including PON1, ABCB1, NOS, DRD4, GST, CYP, and APOE, have increased the risk of developing OP-related neurological disorders.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Kaur S, Chowdhary S, Kumar D, Bhattacharyya R, Banerjee D. Organophosphorus and carbamate pesticides: Molecular toxicology and laboratory testing. Clin Chim Acta 2023; 551:117584. [PMID: 37805177 DOI: 10.1016/j.cca.2023.117584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Population and food requirements are increasing daily throughout the world. To fulfil these requirements application of pesticides is also increasing. Organophosphorous (OP) and Organocarbamate (OC) compounds are widely used pesticides. These pesticides are used for suicidal purposes too. Both inhibit Acetylcholinesterase (AChE) and cholinergic symptoms are mainly used for the diagnosis of pesticide poisoning. Although the symptoms of the intoxication of OP and OC are similar, recent research has described different targets for OP and OC pesticides. Researchers believe the distinction of OP/OC poisoning will be beneficial for the management of pesticide exposure. OP compounds produce adducts with several proteins. There is a new generation of OP compounds like glyphosate that do not inhibit AChE. Therefore, it's high time to develop biomarkers that can distinguish OP poisoning from OC poisoning.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Sheemona Chowdhary
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Deepak Kumar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| |
Collapse
|
14
|
Gaviria-Arroyave MI, Arango JP, Barrientos Urdinola K, Cano JB, Peñuela Mesa GA. Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant. Anal Chim Acta 2023; 1278:341711. [PMID: 37709453 DOI: 10.1016/j.aca.2023.341711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
Chlorpyrifos (CPF) is a commonly used insecticide found in many water sources and is related to several health and environmental effects. Biosensors based on aptamers (single-stranded nucleic acid oligonucleotides) are promising alternatives to achieve the detection of CPF and other pesticides in natural waters. However, several challenges need to be addressed to promote the real application of functional aptasensing devices. In this work, an ssDNA aptamer (S1) is combined with carbon quantum dots (CD) and graphene oxide (GO) to produce a stable fluorescent aptasensor characterized through spectrophotometric and electrophoretic techniques. For a deeper understanding of the system, the mechanism of molecular interaction was studied through docking modeling using free bioinformatic tools like HDOCK, showing that the stem-loops and the higher guanine (G) content are crucial for better interaction. The model also suggests the possibility of generating a truncated aptamer to improve the binding affinity. The biosensor was evaluated for CPF detection, showing a low LOD of 0.01 μg L-1 and good specificity in tap water, even compared to other organophosphates pesticides (OPs) like profenofos. Finally, the recovery of the proposed aptasensor was evaluated in some natural water using spiked samples and compared with UPLC MS-MS chromatography as the gold standard, showing a good recovery above 2.85 nM and evidencing the need of protecting ssDNA aptamers from an erratic interaction with the aromatic groups of dissolved organic matter (humic substances). This work paves the way for a better aptasensors design and the on-site implementation of novel devices for environmental monitoring.
Collapse
Affiliation(s)
| | - Juan Pablo Arango
- GIBEC Research Group, Life Sciences Faculty, Universidad EIA, Colombia
| | | | - Juan Bernardo Cano
- GIMEL Research Group. Engineering Faculty, Universidad de Antioquia, Colombia
| | | |
Collapse
|
15
|
Goutman SA, Savelieff MG, Jang DG, Hur J, Feldman EL. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol 2023; 19:617-634. [PMID: 37709948 PMCID: PMC11027963 DOI: 10.1038/s41582-023-00867-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration with typical survival of only 2-5 years from diagnosis. The causes of ALS are multifactorial: known genetic mutations account for only around 70% of cases of familial ALS and 15% of sporadic cases, and heritability estimates range from 8% to 61%, indicating additional causes beyond genetics. Consequently, interest has grown in environmental contributions to ALS risk and progression. The gene-time-environment hypothesis posits that ALS onset occurs through an interaction of genes with environmental exposures during ageing. An alternative hypothesis, the multistep model of ALS, suggests that several hits, at least some of which could be environmental, are required to trigger disease onset, even in the presence of highly penetrant ALS-associated mutations. Studies have sought to characterize the ALS exposome - the lifetime accumulation of environmental exposures that increase disease risk and affect progression. Identifying the full scope of environmental toxicants that enhance ALS risk raises the prospect of preventing disease by eliminating or mitigating exposures. In this Review, we summarize the evidence for an ALS exposome, discussing the strengths and limitations of epidemiological studies that have identified contributions from various sources. We also consider potential mechanisms of exposure-mediated toxicity and suggest future directions for ALS exposome research.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Arab A, Mostafalou S. Pesticides and insulin resistance-related metabolic diseases: Evidences and mechanisms. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105521. [PMID: 37666627 DOI: 10.1016/j.pestbp.2023.105521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 09/06/2023]
Abstract
The use of pesticides in the past century has lot helped humankind in improving crops' field and general hygiene level. Nevertheless, there has been countless evidences on the toxic effects of pesticides on the living systems. The link of exposure to pesticides with different human chronic diseases in the context of carcinogenicity, neurotoxicity, developmental toxicity, etc., have been evaluated in various types of studies. There are also some evidences on the link of exposure to pesticides with higher incidence of metabolic diseases associated with insulin resistance like diabetes, obesity, metabolic syndrome, hypertension, polycystic ovary syndrome and chronic kidney diseases. Physiologically, weakening intracellular insulin signaling is considered as a compensatory mechanism for cells to cope with cellular stresses like xenobiotic effects, oxidative stress and inflammatory responses, but it can pathologically lead to a defective cycle with lowered sensitivity of the cells to insulin which happens in metabolic disorders. In this work, the data related to metabolic toxicity of pesticides categorized in the mentioned metabolic diseases with a focus on the effects of pesticides on insulin signaling pathway and the mechanisms of development of insulin resistance will be systematically reviewed and presented.
Collapse
Affiliation(s)
- Ali Arab
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
17
|
Zuin M, Rosta V, Trentini A, Bosi C, Zuliani G, Cervellati C. Paraoxonase 1 activity in patients with Alzheimer disease: Systematic review and meta-analysis. Chem Biol Interact 2023; 382:110601. [PMID: 37330180 DOI: 10.1016/j.cbi.2023.110601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Cumulating evidence links environmental toxicants, such as organophosphate (OP) pesticides, to the pathogenesis of Alzheimer's disease (AD). The calcium-dependent Paraoxonase 1 (PON1) can neutralize these toxicants with good catalytic efficiency, thus protecting from OP-induced biological damage. Although different previous studies have already partially described an association between PON1 activity and AD, this intriguing relationship has not yet been comprehensively examined. To fill this gap, we performed a meta-analysis of existing data comparing the PON1 arylesterase activity in AD and healthy subjects from the general population. Data were obtained by searching MEDLINE, Embase and CENTRAL, Google Scholar, and SCOPUS electronic databases for all studies published at any time up to February 2023, reporting and comparing the PON1- paraoxonase activity between AD patients and controls. Seven studies, based on 615 subjects (281 AD and 356 controls) met the inclusion criteria and were included into the final analysis. A random effect model revealed that PON1 arylesterase activity was significantly lower in the AD group compared to controls, exhibiting low level of heterogeneity (SMD = - 1.62, 95% CI = -2.65 to -0.58, p = 0.0021, I2 = 12%). These findings suggest that PON1 activity might be reduced in AD reflecting a major susceptibility to OPs neurotoxicity. Further studies should be conducted to definitely ascertain this link and to establish the cause-effect relationship between PON1 reduction and AD onset.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Valentina Rosta
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, Italy
| | - Cristina Bosi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy; Medical Department, University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
18
|
Meyer C, Rao NS, Vasanthi SS, Pereira B, Gage M, Putra M, Holtkamp C, Huss J, Thippeswamy T. Peripheral and central effects of NADPH oxidase inhibitor, mitoapocynin, in a rat model of diisopropylfluorophosphate (DFP) toxicity. Front Cell Neurosci 2023; 17:1195843. [PMID: 37416507 PMCID: PMC10320212 DOI: 10.3389/fncel.2023.1195843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Organophosphates (OP) are highly toxic chemical nerve agents that have been used in chemical warfare. Currently, there are no effective medical countermeasures (MCMs) that mitigate the chronic effects of OP exposure. Oxidative stress is a key mechanism underlying OP-induced cell death and inflammation in the peripheral and central nervous systems and is not mitigated by the available MCMs. NADPH oxidase (NOX) is one of the leading producers of reactive oxygen species (ROS) following status epilepticus (SE). In this study, we tested the efficacy of the mitochondrial-targeted NOX inhibitor, mitoapocynin (MPO) (10 mg/kg, oral), in a rat diisopropylfluorophosphate (DFP) model of OP toxicity. In DFP-exposed animals, MPO decreased oxidative stress markers nitrite, ROS, and GSSG in the serum. Additionally, MPO significantly reduced proinflammatory cytokines IL-1β, IL-6, and TNF-α post-DFP exposure. There was a significant increase in GP91phox, a NOX2 subunit, in the brains of DFP-exposed animals 1-week post-challenge. However, MPO treatment did not affect NOX2 expression in the brain. Neurodegeneration (NeuN and FJB) and gliosis [microglia (IBA1 and CD68), and astroglia (GFAP and C3)] quantification revealed a significant increase in neurodegeneration and gliosis after DFP-exposure. A marginal reduction in microglial cells and C3 colocalization with GFAP in DFP + MPO was observed. The MPO dosing regimen used in this study at 10 mg/kg did not affect microglial CD68 expression, astroglial count, or neurodegeneration. MPO reduced DFP-induced oxidative stress and inflammation markers in the serum but only marginally mitigated the effects in the brain. Dose optimization studies are required to determine the effective dose of MPO to mitigate DFP-induced changes in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
19
|
Burdon J, Budnik LT, Baur X, Hageman G, Howard CV, Roig J, Coxon L, Furlong CE, Gee D, Loraine T, Terry AV, Midavaine J, Petersen H, Bron D, Soskolne CL, Michaelis S. Health consequences of exposure to aircraft contaminated air and fume events: a narrative review and medical protocol for the investigation of exposed aircrew and passengers. Environ Health 2023; 22:43. [PMID: 37194087 PMCID: PMC10186727 DOI: 10.1186/s12940-023-00987-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/31/2023] [Indexed: 05/18/2023]
Abstract
Thermally degraded engine oil and hydraulic fluid fumes contaminating aircraft cabin air conditioning systems have been well documented since the 1950s. Whilst organophosphates have been the main subject of interest, oil and hydraulic fumes in the air supply also contain ultrafine particles, numerous volatile organic hydrocarbons and thermally degraded products. We review the literature on the effects of fume events on aircrew health. Inhalation of these potentially toxic fumes is increasingly recognised to cause acute and long-term neurological, respiratory, cardiological and other symptoms. Cumulative exposure to regular small doses of toxic fumes is potentially damaging to health and may be exacerbated by a single higher-level exposure. Assessment is complex because of the limitations of considering the toxicity of individual substances in complex heated mixtures.There is a need for a systematic and consistent approach to diagnosis and treatment of persons who have been exposed to toxic fumes in aircraft cabins. The medical protocol presented in this paper has been written by internationally recognised experts and presents a consensus approach to the recognition, investigation and management of persons suffering from the toxic effects of inhaling thermally degraded engine oil and other fluids contaminating the air conditioning systems in aircraft, and includes actions and investigations for in-flight, immediately post-flight and late subsequent follow up.
Collapse
Affiliation(s)
- Jonathan Burdon
- Respiratory Physician, St Vincent's Private Hospital, East Melbourne, Australia
| | - Lygia Therese Budnik
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xaver Baur
- European Society for Environmental and Occupational Medicine, Berlin, Germany
- University of Hamburg, Hamburg, Germany
| | - Gerard Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, The Netherlands
| | - C Vyvyan Howard
- Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Jordi Roig
- Department of Pulmonary Medicine, Clínica Creu Blanca, Barcelona, Spain
| | - Leonie Coxon
- Clinical and Forensic Psychologist, Mount Pleasant Psychology, Perth, Australia
| | - Clement E Furlong
- Departments of Medicine (Div. Medical Genetics) and Genome Sciences, University of Washington, Seattle, USA
| | - David Gee
- Centre for Pollution Research and Policy, Visiting Fellow, Brunel University, London, UK
| | - Tristan Loraine
- Technical Consultant, Spokesperson for the Global Cabin Air Quality Executive, London, UK
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, USA
| | | | - Hannes Petersen
- Faculty of Medicine, University of Iceland, Akureyri Hospital, Akureyri, Iceland
| | - Denis Bron
- Federal Department of Defence, Civil Protection and Sport (DDPS), Aeromedical Institute (FAI)/AeMC, Air Force, Dübendorf, Switzerland
| | - Colin L Soskolne
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Susan Michaelis
- Occupational and Environmental Health Research Group, Honorary Senior Research Fellow, University of Stirling, Scotland / Michaelis Aviation Consulting, West Sussex, England.
| |
Collapse
|
20
|
Samal S, Mohanty RP, Mohanty PS, Giri MK, Pati S, Das B. Implications of biosensors and nanobiosensors for the eco-friendly detection of public health and agro-based insecticides: A comprehensive review. Heliyon 2023; 9:e15848. [PMID: 37206035 PMCID: PMC10189192 DOI: 10.1016/j.heliyon.2023.e15848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Biosensors, in particular nanobiosensors, have brought a paradigm shift in the detection approaches involved in healthcare, agricultural, and industrial sectors. In accordance with the global expansion in the world population, there has been an increase in the application of specific insecticides for maintaining public health and enhancing agriculture, such as organophosphates, organochlorines, pyrethroids, and carbamates. This has led to the contamination of ground water, besides increasing the chances of biomagnification as most of these insecticides are non-biodegradable. Hence, conventional and more advanced approaches are being devised for the routine monitoring of such insecticides in the environment. This review walks through the implications of biosensors and nanobiosensors, which could offer a wide range of benefits for the detection of the insecticides, quantifying their toxicity status, and versatility in application. Unique eco-friendly nanobiosensors such as microcantilevers, carbon nanotubes, 3D printing organic materials and nylon nano-compounds are some advanced tools that are being employed for the detection of specific insecticides under different conditions. Furthermore, in order to implement a smart agriculture system, nanobiosensors could be integrated into mobile apps and GPS systems for controlling farming in remote areas, which would greatly assist the farmer remotely for crop improvement and maintenance. This review discusses about such tools along with more advanced and eco-friendly approaches that are on the verge of development and could offer a promising alternative for analyte detection in different domains.
Collapse
Affiliation(s)
- Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Rashmi Priya Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Priti Sundar Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, 751024, India
- Corresponding author.
| | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
- Corresponding author.
| |
Collapse
|
21
|
Vargas-Zamarripa M, Rivera AA, Sierra U, Salas P, Serafín-Muñoz AH, Ramírez-García G. Improved charge-transfer resonance in graphene oxide/ZrO 2 substrates for plasmonic-free SERS determination of methyl parathion. CHEMOSPHERE 2023; 320:138081. [PMID: 36758819 DOI: 10.1016/j.chemosphere.2023.138081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
This work reports a sensitive SERS substrate based on graphene oxide (GO) and quantum-sized ZrO2 nanoparticles (GO/ZrO2) for label-free determination of the organophosphate pesticide methyl parathion (MP). The enhanced light-matter interactions and the consequent SERS effect in these substrates resulted from the effective charge transfer (CT) mechanism attributed to synergistic contributions of three main factors: i) the strong molecular adherence of the MP molecules and the ZrO2 surface which allows the first layer-effect, ii) the relatively abundant surface defects in low dimensional ZrO2 semiconductor NPs, which act as intermediate electronic states that reduce the large bandgap barrier, and iii) the hindered charge recombination derived from the transference of the photoinduced holes to the GO layer. This mechanism allowed an enhancement factor of 8.78 × 104 for GO/ZrO2-based substrates, which is more than 5-fold higher than the enhancement observed for platforms without GO. A detection limit of 0.12 μM was achieved with an outstanding repeatability (variation ≤4.5%) and a linear range up to 10 μM, which is sensitive enough to determine the maximal MP concentration permissible in drinking water according to international regulations. Furthermore, recovery rates between 97.4 and 102.1% were determined in irrigation water runoffs, strawberry and black tea extracts, demonstrating the reliability of the hybrid GO/ZrO2 substrate for the organophosphate pesticides quantification in samples related to agri-food sectors and environmental monitoring.
Collapse
Affiliation(s)
- Marlene Vargas-Zamarripa
- Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico; División de Ingenierías, Universidad de Guanajuato, Av. Juárez 77, C.P. 36000, Guanajuato, Mexico
| | - Aura A Rivera
- Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico
| | - Uriel Sierra
- Laboratorio Nacional de Materiales Grafénicos. Centro de Investigación en Química Aplicada, 140, Blvd. Enrique Reyna, Saltillo, Coahuila, 25294, Mexico
| | - Pedro Salas
- Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico
| | - Alma H Serafín-Muñoz
- División de Ingenierías, Universidad de Guanajuato, Av. Juárez 77, C.P. 36000, Guanajuato, Mexico
| | - Gonzalo Ramírez-García
- Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico.
| |
Collapse
|
22
|
Göl E, Çok İ, Battal D, Şüküroğlu AA. Assessment of Preschool Children's Exposure Levels to Organophosphate and Pyrethroid Pesticide: A Human Biomonitoring Study in Two Turkish Provinces. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:318-331. [PMID: 36877224 DOI: 10.1007/s00244-023-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are products developed to prevent, destroy, repel or control certain forms of plant or animal life that are considered to be pests. However, now they are one of the critical risk factors threatening the environment, and they create a significant threat to the health of children. Organophosphate (OP) and pyrethroid (PYR) pesticides are widely used in Turkey as well as all over the world. The main focus of this presented study was to analyze the OP and PYR exposure levels in urine samples obtained from 3- to 6-year-old Turkish preschool children who live in the Ankara (n:132) and Mersin (n:54) provinces. In order to measure the concentrations of three nonspecific metabolites of PYR insecticides and four nonspecific and one specific metabolite of OPs, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses were performed. The nonspecific PYR metabolite 3-phenoxybenzoic acid (3-PBA) found in 87.1% of samples (n = 162) and the specific OP metabolite 3,5,6-trichloro-2-pyridinol (TCPY) found in 60.2% of samples (n = 112) were the most frequently detected metabolites in all urine samples. The mean concentrations of 3-PBA and TCPY were 0.38 ± 0.8 and 0.11 ± 0.43 ng/g creatinine, respectively. Although due to the large individual variation no statistically significant differences were found between 3-PBA (p = 0.9969) and TCPY (p = 0.6558) urine levels in the two provinces, significant exposure differences were determined both between provinces and within the province in terms of gender. Risk assessment strategies performed in light of our findings do not disclose any proof of a possible health problems related to analyzed pesticide exposure in Turkish children.
Collapse
Affiliation(s)
- Ersin Göl
- Ankara Toxicology Department of the Council of Forensic Medicine, 06300, Keçiören, Ankara, Turkey
| | - İsmet Çok
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey.
| | - Dilek Battal
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| | - Ayça Aktaş Şüküroğlu
- Faculty of Pharmacy, Department of Toxicology, Mersin University, Mersin, Turkey
| |
Collapse
|
23
|
Hou Y, Ding T, Guan Z, Wang J, Yao R, Yu Z, Zhao X. Untargeted metabolomics reveals the preventive effect of quercetin on nephrotoxicity induced by four organophosphorus pesticide mixtures. Food Chem Toxicol 2023; 175:113747. [PMID: 36997054 DOI: 10.1016/j.fct.2023.113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
This research aimed to explore the protective effect of quercetin against nephrotoxicity induced by four organophosphate pesticide mixtures (PM) using untargeted metabolomics technology in rat kidneys. Sixty male Wistar rats were randomly divided into six groups: control, low-dose quercetin treated (10 mg/kg. bw), high-dose quercetin treated (50 mg/kg. bw), PM-treated, and two dosages of quercetin + PM-treated. Metabolomics results showed that 17 differential metabolites were identified in the PM-treated group, and pathway analysis revealed that renal metabolic disorders include purine metabolism, glycerophospholipid metabolism, and vitamin B6 metabolism. When high-dose quercetin and PM-treated were administered to rats concurrently, the intensities of differential metabolites were substantially restored (p < 0.01), suggesting that quercetin can improve renal metabolic disorders caused by organophosphate pesticides (OPs). Mechanistically, quercetin could regulate the purine metabolism disorder and endoplasmic reticulum stress (ERS)-mediated autophagy induced by OPs by inhibiting XOD activity. Moreover, quercetin inhibits PLA2 activity to regulate glycerophospholipid metabolism and it could also exert antioxidant and anti-inflammatory effects to correct vitamin B6 metabolism in rat kidneys. Taken together, the high dose of quercetin (50 mg/kg.bw) has a certain protective effect on OPs-induced nephrotoxicity in rats, which provides a theoretical basis for quercetin against nephrotoxicity caused by OPs.
Collapse
|
24
|
Cui J, Wei Y, Jiang J, Xiao S, Liu X, Zhou Z, Liu D, Wang P. Bioaccumulation, metabolism and toxicological effects of chiral insecticide malathion and its metabolites in zebrafish (Danio rerio). CHEMOSPHERE 2023; 318:137898. [PMID: 36702415 DOI: 10.1016/j.chemosphere.2023.137898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The bioaccumulation, metabolism, tissue-specific distribution and toxicity of the widely used organophosphorous pesticide malathion to zebrafish were investigated on an enantiomeric level for evaluating the environmental risks. The metabolites were also monitored and evaluated. Malathion was metabolized by zebrafish very fast with the half-life of 0.12 d and showed a middle accumulation capacity in zebrafish with bioaccumulation factor (BCF) of 12.9 after a 15-d exposure. Brain could enrich higher concentration of malathion than other tissues. The metabolites malaoxon, malathion/malaoxon monocarboxylic acid (DMA), malathion/malaoxon dicarboxylic acid (DCA), dimethylthiophosphate (DMTP) and dimethyldithiophosphate (DMDTP) were found, in which DMTP and DCA were in higher level, indicating the metabolism was mainly induced by carboxylesterase degradation. The accumulation of malathion and malaoxon was stereoselective in zebrafish tissues, exhibiting S-enantiomer preferentially enriched. The acute toxicity test showed rac-malathion was low toxic to zebrafish, which was 1.2 and 1.6 folds more toxic than S-malathion and R-malathion respectively. Malaoxon was highly toxic to zebrafish and approximately 32 times more toxic than malathion. The toxicity of other metabolites was lower than malathion. Malathion could cause an apparent developmental toxicity to zebrafish embryo, including bradycardia, hatchability reduction and deformity, and abnormal movement patterns in zebrafish larva. Chronic toxicity indicated that malathion and malaoxon induced oxidative damage and neurotoxicity in the liver, brain and gill of zebrafish, and malaoxon exhibited a relatively high injury to the zebrafish brain. The results can provide information for the comprehensive assessment of the potential risk of malathion to aquatic organisms and highlight the necessity of consideration of stereoselectivity and metabolites when systemically evaluating pesticides.
Collapse
Affiliation(s)
- Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Yimu Wei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jiangong Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Shouchun Xiao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No.2 West Yuanmingyuan Road, Beijing, 100193, PR China.
| |
Collapse
|
25
|
Kaur R, Bhardwaj G, Saini S, Kaur N, Singh N. A high-performance Calix@ZnO based bifunctional nanomaterial for selective detection and degradation of toxic azinphos methyl in environmental samples. CHEMOSPHERE 2023; 316:137693. [PMID: 36638927 DOI: 10.1016/j.chemosphere.2022.137693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
One of the key tenets of sustainable agriculture and food safety is the removal of toxic pesticides from the environment. However, developing reliable, affordable, and efficient methods for detecting and degrading pesticides into non-toxic degradable products remains an immediate matter of concern. Herein, we attempt to develop a strategy for the detection as well as degradation of highly toxic phosphorodithioate pesticide, Azinphos methyl (AZM), using hybrid zinc oxide nanoparticles (ZnO NPs). Considering the non-selectivity of bare ZnO and receptor R1, we have fabricated the heterocalixarene-based Calix (R1) over zinc oxide (ZnO) surface in situ via the sol-gel process. The synthesized heterocaliaxrene-modified ZnO (R1@ZnO) NPs show an excellent affinity for the selective and sensitive detection of AZM with a tremendously low limit of detection (68 mg L-1) and no interference from other pesticides. Degradation of AZM was fully supported by fluorescence spectroscopy, scanning electron microscopy (SEM), 1H NMR titrations, FTIR spectroscopy, cyclic voltammetry, and mass spectroscopy, which unequivocally confirmed the formation of non-toxic products. According to our findings, R1@ZnO NPs are sustainable nanomaterials that can be employed for environmental remediation since they operate in an aqueous medium.
Collapse
Affiliation(s)
- Randeep Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Geetika Bhardwaj
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Sanjeev Saini
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, 140001, India
| | - Navneet Kaur
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, 140001, India.
| |
Collapse
|
26
|
Fabrication of a Novel Photoelectrochemical Aptasensor Using Gold Nanoparticle-Sensitized TiO2 Film for Quantitative Determination of Diazinon in Solutions. Electrocatalysis (N Y) 2023. [DOI: 10.1007/s12678-023-00813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Duan QQ, Jiang Z, Su WM, Gu XJ, Wang H, Cheng YF, Cao B, Gao X, Wang Y, Chen YP. Risk factors of amyotrophic lateral sclerosis: a global meta-summary. Front Neurosci 2023; 17:1177431. [PMID: 37168926 PMCID: PMC10165003 DOI: 10.3389/fnins.2023.1177431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Background The etiology of amyotrophic lateral sclerosis (ALS) remains largely unknown. This study aimed to summarize the relationship between ALS and its genetic and non-genetic risk factors. Method A search of relevant literature from PubMed, Embase, and Cochrane Database from inception to December 2022 was performed. Random-effects or fixed-effects models were performed by Stata MP 15.0 to pool multivariate or adjusted ratios (OR). PROSPERO registration number: CRD42022301549. Results 230 eligible studies were included, of which 67 involved 22 non-genetic factors, and 163 involved genetic factors. Four aspects of non-genetic factors, including lifestyle, environmental and occupational exposures, pre-existing diseases/comorbidity and medical exposures, and others, were analyzed. Exposure to heavy metals (OR = 1.79), pesticides (OR = 1.46), solvents (OR = 1.37), previous head trauma (OR = 1.37), military service (OR = 1.29), stroke (OR = 1.26), magnetic field (OR = 1.22) and hypertension (OR = 1.04) are significant risk factors, but use of antidiabetics (OR = 0.52), high BMI (OR = 0.60 for obese and overweight vs. normal and underweight), living in urban (OR = 0.70), diabetes mellitus (OR = 0.83), and kidney disease (OR = 0.84) decrease the risk for ALS. In addition, eight common ALS-related genes were evaluated, the mutation frequencies of these genes were ranked from highest to lowest as SOD1 (2.2%), C9orf72 (2.1%), ATXN2 (1.7%), FUS (1.7%), TARDBP (0.8%), VCP (0.6%), UBQLN2(0.6%) and SQSTM1 (0.6%) in all the ALS patients. Conclusions Our findings suggested that effective intervention for risk exposure and timely modification of lifestyle might prevent the occurrence of ALS. Genetic mutations are important risk factors for ALS and it is essential to detect genetic mutations correctly and scientifically. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=301549, identifier: CRD42022301549.
Collapse
Affiliation(s)
- Qing-Qing Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Neurodegenerative Disorders, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Neurodegenerative Disorders, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Neurodegenerative Disorders, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Han Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yang-Fan Cheng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Neurodegenerative Disorders, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Neurodegenerative Disorders, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Gao
- Department of Geriatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Neurodegenerative Disorders, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yong-Ping Chen
| |
Collapse
|
28
|
Arab A, Mostafalou S. Neurotoxicity of pesticides in the context of CNS chronic diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2718-2755. [PMID: 34663153 DOI: 10.1080/09603123.2021.1987396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Following the introduction and application of pesticides in human life, they have always been along with health concerns both in acute poisoning and chronic toxicities. Neurotoxicity of pesticides in chronic exposures has been known as one of the most important human health problems, as most of these chemicals act through interacting with some elements of nervous system. Pesticide-induced neurotoxicity can be defined in different categories of neurological disorders including neurodegenerative (Alzheimer, Parkinson, amyotrophic lateral sclerosis, multiple sclerosis), neurodevelopmental (attention deficit hyperactivity disorder, autism spectrum disorders, developmental delay, and intellectual disability), neurobehavioral and neuropsychiatric (depression/suicide attempt, anxiety/insomnia, and cognitive impairment) disorders some of which are among the most debilitating human health problems. In this review, neurotoxicity of pesticides in the mentioned categories and sub-categories of neurological diseases have been systematically presented in relation to different route of exposures including general, occupational, environmental, prenatal, postnatal, and paternal.
Collapse
Affiliation(s)
- Ali Arab
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
29
|
Guan M, He H, Li R, Si X, Peng X, Yan X, Yang Z, Nien E, Lei Y, Luo L. Lanthanum ions assisted non-enzymatic ratiometric fluorescence probe for monitoring fenthion residues in agro-product samples. Anal Chim Acta 2022; 1236:340579. [DOI: 10.1016/j.aca.2022.340579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
30
|
Kumar R, Kumar N, Rajput VD, Mandzhieva S, Minkina T, Saharan BS, Kumar D, Sadh PK, Duhan JS. Advances in Biopolymeric Nanopesticides: A New Eco-Friendly/Eco-Protective Perspective in Precision Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223964. [PMID: 36432250 PMCID: PMC9692690 DOI: 10.3390/nano12223964] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 05/26/2023]
Abstract
Pesticides are essential to contemporary agriculture and are required to safeguard plants from hazardous pests, diseases, and weeds. In addition to harming the environment, overusing these pesticides causes pests to become resistant over time. Alternative methods and agrochemicals are therefore required to combat resistance. A potential solution to pesticide resistance and other issues may be found in nanotechnology. Due to their small size, high surface-area-to-volume ratio, and ability to offer novel crop protection techniques, nanoformulations, primarily biopolymer-based ones, can address specific agricultural concerns. Several biopolymers can be employed to load pesticides, including starch, cellulose, chitosan, pectin, agar, and alginate. Other biopolymeric nanomaterials can load pesticides for targeted delivery, including gums, carrageenan, galactomannans, and tamarind seed polysaccharide (TSP). Aside from presenting other benefits, such as reduced toxicity, increased stability/shelf life, and improved pesticide solubility, biopolymeric systems are also cost-effective; readily available; biocompatible; biodegradable; and biosafe (i.e., releasing associated active compounds gradually, without endangering the environment) and have a low carbon footprint. Additionally, biopolymeric nanoformulations support plant growth while improving soil aeration and microbial activity, which may favor the environment. The present review provides a thorough analysis of the toxicity and release behavior of biopolymeric nanopesticides for targeted delivery in precision crop protection.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Naresh Kumar
- Regional Forensic Science Laboratory, Mandi 175002, India
| | - Vishnu D. Rajput
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | | | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | | |
Collapse
|
31
|
Sweileh WM. Analysis and mapping of scientific research on human health impairment induced by occupational and residential exposure to agricultural pesticides. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2022; 14:277-290. [DOI: 10.1007/s13530-022-00141-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/09/2022] [Indexed: 01/02/2025]
|
32
|
Motataianu A, Serban G, Barcutean L, Balasa R. Oxidative Stress in Amyotrophic Lateral Sclerosis: Synergy of Genetic and Environmental Factors. Int J Mol Sci 2022; 23:ijms23169339. [PMID: 36012603 PMCID: PMC9409178 DOI: 10.3390/ijms23169339] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a grievous neurodegenerative disease whose survival is limited to only a few years. In spite of intensive research to discover the underlying mechanisms, the results are fairly inconclusive. Multiple hypotheses have been regarded, including genetic, molecular, and cellular processes. Notably, oxidative stress has been demonstrated to play a crucial role in ALS pathogenesis. In addition to already recognized and exhaustively studied genetic mutations involved in oxidative stress production, exposure to various environmental factors (e.g., electromagnetic fields, solvents, pesticides, heavy metals) has been suggested to enhance oxidative damage. This review aims to describe the main processes influenced by the most frequent genetic mutations and environmental factors concurring in oxidative stress occurrence in ALS and the potential therapeutic molecules capable of diminishing the ALS related pro-oxidative status.
Collapse
Affiliation(s)
- Anca Motataianu
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Georgiana Serban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-0724-051-516
| | - Laura Barcutean
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
33
|
Guo X, Wang H, Song Q, Li N, Liang Q, Su W, Liang M, Ding X, Sun C, Lowe S, Sun Y. Association between exposure to organophosphorus pesticides and the risk of diabetes among US Adults: Cross-sectional findings from the National Health and Nutrition Examination Survey. CHEMOSPHERE 2022; 301:134471. [PMID: 35367493 DOI: 10.1016/j.chemosphere.2022.134471] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Organophosphorus pesticides (OPPs) are commonly used pesticides across the world, however there is little epidemiological evidence linking their exposure to diabetes. Hence, this study aimed at investigating the effect of OPP exposure on the prevalence of diabetes in American adults. METHODS Adults (≥20 years old) were eligible for this study from the National Health and Nutrition Examination Survey (NHANES). Multivariate logistic regression model was employed to explore the associations of six main urinary OPPs metabolites with diabetes. Subgroup analyses were performed by age and gender. Combined effect of OPPs metabolites on the overall association with diabetes was evaluated by weighted quantile sum regression (WQS). Furthermore, Bayesian kernel machine regression (BKMR) model was implemented to explore joint effect of multiple OPPs metabolites on diabetes. RESULTS Ultimately, 6,593 adults were included in our analysis. Of them, 1,044 participants were determined as diabetes patients. The results of logistic regression shown that urinary OPPs metabolites concentrations, whether taken as continuous variables or quantiles, were in positive correlation with diabetes. Notably, the p for trend of diethylphosphate (DEP), a kind of OPPs metabolites, was less than 0.05 indicated that a linear trend may exist between levels of DEP and prevalence of diabetes among adults while this trend was not obversed in other OPPs metabolites. In the WQS model, combined exposure of OPPs metabolites had a significantly positive association with diabetes (OR: 1.057; 95% CI: 1.002, 1.114) and diethylphosphate (36.84%) made the largest contributor to the WQS index. The result of BKMR also suggested a positive trend of association between mixed OPPs metabolites and diabetes. CONCLUSION Our results add credibility to the argument that OPP exposure might trigger diabetes. Certainly, prospective data are required to corroborate our findings.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Chaohu Hospital, Anhui Medical University, Hefei, 238000, Anhui, PR China.
| |
Collapse
|
34
|
Li J, Bi H. Integrated Strategy of Network Pharmacology and in vitro Screening to Identify Mechanism of Diazinon-induced Hippocampal Neurotoxicity. Neurotoxicology 2022; 92:122-130. [DOI: 10.1016/j.neuro.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
|
35
|
Elmorsy E, Al-Ghafari A, Al Doghaither H, Salama M, Carter WG. An Investigation of the Neurotoxic Effects of Malathion, Chlorpyrifos, and Paraquat to Different Brain Regions. Brain Sci 2022; 12:975. [PMID: 35892416 PMCID: PMC9394375 DOI: 10.3390/brainsci12080975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Acute or chronic exposures to pesticides have been linked to neurotoxicity and the potential development of neurodegenerative diseases (NDDs). This study aimed to consider the neurotoxicity of three widely utilized pesticides: malathion, chlorpyrifos, and paraquat within the hippocampus (HC), corpus striatum (CS), cerebellum (CER), and cerebral cortex (CC). Neurotoxicity was evaluated at relatively low, medium, and high pesticide dosages. All pesticides inhibited acetylcholinesterase (AChE) and neuropathy target esterase (NTE) in each of the brain regions, but esterase inhibition was greatest in the HC and CS. Each of the pesticides also induced greater disruption to cellular bioenergetics within the HC and CS, and this was monitored via inhibition of mitochondrial complex enzymes I and II, reduced ATP levels, and increased lactate production. Similarly, the HC and CS were more vulnerable to redox stress, with greater inhibition of the antioxidant enzymes catalase and superoxide dismutase and increased lipid peroxidation. All pesticides induced the production of nuclear Nrf2 in a dose-dependent manner. Collectively, these results show that pesticides disrupt cellular bioenergetics and that the HC and CS are more susceptible to pesticide effects than the CER and CC.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (E.E.); (M.S.)
- Pathology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK
| | - Ayat Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.-G.); (H.A.D.)
- Scientific Research Center, Dar Al-Hekma University, Jeddah 22246, Saudi Arabia
| | - Huda Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.-G.); (H.A.D.)
- Cancer and Mutagenesis Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mohamed Salama
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (E.E.); (M.S.)
- Institute of Global Health and Human Ecology, The American University in Cairo (AUC), Cairo 11385, Egypt
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby DE22 3DT, UK
| |
Collapse
|
36
|
Saad AK, Akour A, Mahboob A, AbuRuz S, Sadek B. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals (Basel) 2022; 15:612. [PMID: 35631438 PMCID: PMC9144645 DOI: 10.3390/ph15050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.
Collapse
Affiliation(s)
- Ali K. Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Abdulla Mahboob
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein AbuRuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
37
|
Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. FRONTIERS IN TOXICOLOGY 2022; 4:837579. [PMID: 35647576 PMCID: PMC9131020 DOI: 10.3389/ftox.2022.837579] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegeneration leads to the loss of structural and functioning components of neurons over time. Various studies have related neurodegeneration to a number of degenerative disorders. Neurological repercussions of neurodegeneration can have severe impacts on the physical and mental health of patients. In the recent past, various neurodegenerative ailments such as Alzheimer’s and Parkinson’s illnesses have received global consideration owing to their global occurrence. Environmental attributes have been regarded as the main contributors to neural dysfunction-related disorders. The majority of neurological diseases are mainly related to prenatal and postnatal exposure to industrially produced environmental toxins. Some neurotoxic metals, like lead (Pb), aluminium (Al), Mercury (Hg), manganese (Mn), cadmium (Cd), and arsenic (As), and also pesticides and metal-based nanoparticles, have been implicated in Parkinson’s and Alzheimer’s disease. The contaminants are known for their ability to produce senile or amyloid plaques and neurofibrillary tangles (NFTs), which are the key features of these neurological dysfunctions. Besides, solvent exposure is also a significant contributor to neurological diseases. This study recapitulates the role of environmental neurotoxins on neurodegeneration with special emphasis on major neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| |
Collapse
|
38
|
Gao S, Yang G, Zhang X, Lu Y, Chen Y, Wu X, Song C. β-Cyclodextrin Polymer-Based Host-Guest Interaction and Fluorescence Enhancement of Pyrene for Sensitive Isocarbophos Detection. ACS OMEGA 2022; 7:12747-12752. [PMID: 35474801 PMCID: PMC9026021 DOI: 10.1021/acsomega.1c07295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/09/2022] [Indexed: 05/13/2023]
Abstract
The extensive use of organophosphorus pesticides in agriculture poses a high risk to human health and has boosted the demands for developing sensitive monitoring methods. Herein, we developed a facile and sensitive method for isocarbophos detection based on the remarkable fluorescence enhancement of pyrene during host-guest interaction of β-cyclodextrin polymer (β-CDP) and pyrene. The 3'-pyrene-labeled isocarbophos aptamer could be cleaved by exonuclease I to obtain free pyrene that was tagged on mononucleotides, which could enter the hydrophobic cavity of β-CDP, resulting in a prominent fluorescence enhancement. While the target isocarbophos was added, aptamer could undergo a conformational change into a hairpin complex, which prevented the cleavage and host-guest interaction because of the steric hindrance, leading to a weak fluorescence. The isocarbophos has been sensitively and selectively analyzed by detecting the system fluorescence intensity with a detection limit as low as 1.2 μg/L. In addition, we have verified the ability of our proposed method in real sample detection from fruit extract.
Collapse
Affiliation(s)
- Shanshan Gao
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Gege Yang
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiaohui Zhang
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Ying Lu
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Ying Chen
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- College
of Resources and Environment, Key Laboratory of Agri-food Safety of
Anhui Province, Anhui Agricultural University, Hefei 230036, China
- E-mail:
| | - Chunxia Song
- Department
of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
- E-mail:
| |
Collapse
|
39
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Zhou W, Deng Y, Zhang C, Dai H, Guan L, Luo X, He W, Tian J, Zhao L. Chlorpyrifos residue level and ADHD among children aged 1-6 years in rural China: A cross-sectional study. Front Pediatr 2022; 10:952559. [PMID: 36313880 PMCID: PMC9616114 DOI: 10.3389/fped.2022.952559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders in childhood and is caused by both genetic and environmental factors. As genetic factors are nonmodifiable, environmental factors have attracted increasing attention. OBJECTIVE To investigate the relationships between urinary chlorpyrifos (CPF) levels, blood micronutrient levels, and ADHD prevalence in children living in rural areas of China. METHODS This cross-sectional study collected data on CPF exposure (according to urinary levels), blood micronutrient levels, and ADHD prevalence in children aged 1-6 years in rural China. The CPF levels were determined by mass spectrometry. Blood levels of micronutrients, including zinc, iron, calcium, copper, magnesium, and vitamin D, were measured by professional detection kits. ADHD was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition. Descriptive statistics and univariate analysis were conducted using SPSS 21.0, and path analysis was conducted using Mplus 8.0. RESULTS Of the 738 children who met the eligibility criteria, 673 children (673/738, 91.2%) were included in the final analysis. Baseline questionnaires and urine samples were collected from all 673 subjects. A total of 672 children provided blood samples for micronutrient testing, and 651 completed the ADHD assessment. Approximately one-fifth of children (144/673, 21.4%) had detectable levels of CPF in their urine, and 6.9% (45/651) were diagnosed with ADHD. Path analysis showed that the total effect of CPF exposure on ADHD risk was 0.166 (P < 0.05), with a direct effect of 0.197 (P < 0.05) and an indirect effect of -0.031 (P < 0.05) via vitamin D. The mediating effect of urinary CPF levels on ADHD risk via vitamin D was 18.67%. CONCLUSION Higher levels of CPF exposure are associated with higher risk of ADHD. Additionally, increasing vitamin D levels may have a beneficial effect on the relationship between CPF exposure and ADHD risk. Our findings highlight the importance of modifying environmental factors to reduce ADHD risk and provide insight into future ADHD interventions.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanying Deng
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Zhang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongmei Dai
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lan Guan
- School of Public Health, Central South University, Changsha, China
| | - Xiangwen Luo
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Wei He
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Tian
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lingling Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
41
|
Friedrich K, Gurgel ADM, Sarpa M, Bedor CNG, Siqueira MTD, Gurgel IGD, Augusto LGDS. Toxicologia crítica aplicada aos agrotóxicos – perspectivas em defesa da vida. SAÚDE EM DEBATE 2022. [DOI: 10.1590/0103-11042022e220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO A toxicologia é aplicada aos processos regulatórios tendo como base central a linearidade das relações entre a dose e o efeito e a possibilidade de estabelecer condições de exposição seguras. Isso ocorre apesar das limitações apontadas pela literatura cientifica. A concepção, a definição das metodologias e a condução da avaliação de risco dos agrotóxicos acabam por atender aos interesses econômicos e à definição de cenários de segurança distantes da realidade. As limitações metodológicas dos estudos exigidos para fins de registro de um agrotóxico envolvem: a desconsideração das interações entre as misturas utilizadas; a não previsão de curvas dose-resposta não lineares (horméticas); a compartimentalização dos desfechos analisados; a exposição nos períodos críticos do desenvolvimento; e a desconsideração do contexto, das diversidades individuais, coletivas e dos territórios expostos aos agrotóxicos, entre outros aspectos discutido nesse ensaio. A toxicologia crítica propõe que a avaliação toxicológica parta da integralidade do problema no contexto apresentando propostas que podem ser adotadas nos processos de regulação de agrotóxicos e outras substâncias potencialmente perigosas.
Collapse
Affiliation(s)
| | | | - Marcia Sarpa
- Instituto Nacional de Câncer José Alencar Gomes da Silva (Inca), Brasil
| | | | | | | | | |
Collapse
|
42
|
Gong C, Fan Y, Zhao H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta 2021; 240:123145. [PMID: 34968808 DOI: 10.1016/j.talanta.2021.123145] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 02/01/2023]
Abstract
The overuse or abuse of organophosphorus pesticides (OPs) can bring about severe contamination problems in foodstuff and the environment, which will seriously threaten human health and the ecosystem's cycle. Hence, it is in high demand to establish sensitive, portable, specific, and cost-effective methods for monitoring OPs to control food safety, protect the ecosystem, and prevent disease. The optical biosensor with enzyme as bio-recognition elements has been an effective alternative for OPs detection. Herein, we firstly introduce various enzymes, sensing mechanisms, advantages and disadvantages used as bio-recognition elements in optical sensing for OPs detection. Then, we review various optical biosensing strategies based on enzymes as recognition elements that were ingeniously designed and successfully utilized for OPs detection, with a particular emphasis on photoluminescence (PL), chemiluminescence (CL), electrochemiluminescence (ECL), and colorimetric (CM) biosensing strategies. We not only highlight the state-of-art developments and the construction strategies of the enzyme-based optical biosensing method but also summarize the existing deficiencies, current challenges, and the future perspectives of OPs detection.
Collapse
Affiliation(s)
- Changbao Gong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yaofang Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
43
|
Zakharova MN, Bakulin IS, Abramova AA. Toxic Damage to Motor Neurons. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract—Amyotrophic lateral sclerosis (ALS) is a multifactor disease in the development of which both genetic and environmental factors play a role. Specifically, the effects of organic and inorganic toxic substances can result in an increased risk of ALS development and the acceleration of disease progression. It was described that some toxins can induce potentially curable ALS-like syndromes. In this case, the specific treatment for the prevention of the effects of the toxic factor may result in positive clinical dynamics. In this article, we review the main types of toxins that can damage motor neurons in the brain and spinal cord leading to the development of the clinical manifestation of ALS, briefly present historical data on studies on the role of toxic substances, and describe the main mechanisms of the pathogenesis of motor neuron disease associated with their action.
Collapse
|
44
|
Yu G, Su Q, Chen Y, Wu L, Wu S, Li H. Epigenetics in neurodegenerative disorders induced by pesticides. Genes Environ 2021; 43:55. [PMID: 34893084 PMCID: PMC8662853 DOI: 10.1186/s41021-021-00224-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are becoming major socio-economic burdens. However, most of them still have no effective treatment. Growing evidence indicates excess exposure to pesticides are involved in the development of various forms of neurodegenerative and neurological diseases through trigger epigenetic changes and inducing disruption of the epigenome. This review summaries studies on epigenetics alterations in nervous systems in relation to different kinds of pesticides, highlighting potential mechanism in the etiology, precision prevention and target therapy of various neurodegenerative diseases. In addition, the current gaps in research and future areas for study were also discussed.
Collapse
Affiliation(s)
- Guangxia Yu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qianqian Su
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yao Chen
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingyan Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Siying Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Huangyuan Li
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China. .,Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
45
|
Xu S, Yang X, Qian Y, Luo Q, Song Y, Xiao Q. Analysis of serum levels of organochlorine pesticides and related factors in Parkinson's disease. Neurotoxicology 2021; 88:216-223. [PMID: 34864106 DOI: 10.1016/j.neuro.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/31/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND There is evidence that environmental factors contribute to the onset and progression of Parkinson's disease (PD). Pesticides are a class of environmental toxins that are linked to increased risk of developing PD. However, few studies have investigated the association between specific pesticides and PD, especially in China, which was one of the first countries to adopt the use of pesticides. METHODS In this study, serum levels of 19 pesticides were measured in 90 patients with PD and 90 healthy spouse controls. We also analyzed the interaction between specific pesticides and PD. In addition, the association between pesticides and clinical features of PD was also investigated. Finally, we investigated the underlying mechanism of the association between pesticides and PD. RESULTS Serum levels of organochlorine pesticides, which included α-hexachlorocyclohexane (HCH), β-HCH, γ-HCH, δ-HCH, propanil, heptachlor, dieldrin, hexachlorobenzene, p,p'-dichlorodiphenyltrichloroethane and o,p'-dichloro-diphenyl-trichloroethane were higher in PD patients than controls. Moreover, α-HCH and propanil levels were associated with PD. Serum levels of dieldrin were associated with Hamilton Depression Scale and Montreal Cognitive Assessment scores in PD patients. In SH-SY5Y cells, α-HCH and propanil increased level of reactive oxygen species and decreased mitochondrial membrane potential. Furthermore, propanil, but not α-HCH, induced the aggregation of α-synuclein. CONCLUSIONS This study revealed that elevated serum levels of α-HCH and propanil were associated with PD. Serum levels of dieldrin were associated with depression and cognitive function in PD patients. Moreover, propanil, but not α-HCH, induced the aggregation of α-synuclein. Further research is needed to fully elucidate the effects of pesticides on PD.
Collapse
Affiliation(s)
- Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Qian Luo
- Core Facility of School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yanyan Song
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
46
|
Bicca DF, Spiazzi CC, Ramalho JB, Soares MB, Cibin FWS. A subchronic low-dose exposure of a glyphosate-based herbicide induces depressive and anxious-like behavior in mice: quercetin therapeutic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67394-67403. [PMID: 34254248 DOI: 10.1007/s11356-021-15402-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the possible role of pesticide exposure in contributing to neurological diseases such as depression. Here, we evaluated whether a subchronic low dose of a glyphosate-based herbicide (GBH) could induce alterations in the central nervous system, using the flavonoid quercetin as a therapeutic strategy. Forty mice were divided into four treatment groups: control, GBH, quercetin, and GBH+Quer groups and received 50 mg/kg of GBH solution, 30 mg/kg of quercetin, and/or vehicles for 30 days via gavage. After performing behavioral tests, such as the open field (OF), elevated plus maze (EPM), forced swim test (FST), and sucrose preference test (SPT), the mice were euthanized and their hippocampal tissues were collected to measure the levels of oxidative stress markers such as reactive species (RS), total antioxidant capacity (FRAP), reduced glutathione (GSH), and acetylcholinesterase activity (AChE), as well as for histological evaluation. The GBH group showed anxious and depressive-like behavior in the EPM and FST tests, as well as increased levels of RS and decreased GSH levels in the hippocampus. Quercetin treatment in the GBH+Quer group allowed partial or total improvement in behavioral tests (EPM and FST) and in the levels of oxidative stress markers (RS and GSH). However, the quercetin group showed similar behavior to the GBH group after treatment. The results revealed that oral exposure to a subchronic low dose of GBH was capable of promoting effects on behavior and oxidative stress in the hippocampus of mice. In addition, despite quercetin having a neuroprotective role, caution is needed when considering the possible per se effects of its continuous supplementation.
Collapse
Affiliation(s)
- Diogo Ferreira Bicca
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Cristiano Chiapinotto Spiazzi
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Juliana Bernera Ramalho
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Melina Bucco Soares
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Francielli Weber Santos Cibin
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
47
|
Weis GCC, Assmann CE, Mostardeiro VB, Alves ADO, da Rosa JR, Pillat MM, de Andrade CM, Schetinger MRC, Morsch VMM, da Cruz IBM, Costabeber IH. Chlorpyrifos pesticide promotes oxidative stress and increases inflammatory states in BV-2 microglial cells: A role in neuroinflammation. CHEMOSPHERE 2021; 278:130417. [PMID: 33839396 DOI: 10.1016/j.chemosphere.2021.130417] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/20/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The exposure to environmental stressors, such as organophosphate (OP) pesticides, has been associated with the development of neurodegenerative diseases. Chlorpyrifos (CPF) is the worldwide most used OP pesticide and one of the most hazardous pesticides as it can cross the blood-brain barrier. Since studies evaluating the effects of CPF on brain immune cells are scarce, this research investigated the oxidative and inflammatory responses of CPF exposure in murine microglial cells. BV-2 cells were exposed to different concentrations of CPF pesticide (0.3-300 μM). CPF induced activation of microglial cells, confirmed by Iba-1 and CD11b marking, and promoted microglial proliferation and cell cycle arrest at S phase. Moreover, CPF exposure increased oxidative stress production (NO, MDA, and O2∙), and upregulated pro-inflammatory cytokines (IL-1β and NLRP3) genes expression in BV-2 cells. Overall, data showed that CPF exposure, at the lowest concentrations, acted by promoting pro-oxidative and pro-inflammatory states in microglial cells. These results provide important information on the potential role of microglial activation in CPF-induced neuroinflammation and add to the expanding knowledge on the neurotoxicity of OP.
Collapse
Affiliation(s)
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | - Audrei de Oliveira Alves
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Micheli Mainardi Pillat
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Cinthia Melazzo de Andrade
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | | |
Collapse
|
48
|
Boyda J, Hawkey AB, Holloway ZR, Trevisan R, Di Giulio RT, Levin ED. The organophosphate insecticide diazinon and aging: Neurobehavioral and mitochondrial effects in zebrafish exposed as embryos or during aging. Neurotoxicol Teratol 2021; 87:107011. [PMID: 34224825 PMCID: PMC8440393 DOI: 10.1016/j.ntt.2021.107011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022]
Abstract
Organophosphate (OP) compounds comprise one of the most widely used classes of insecticides worldwide. OPs have been shown to have negative human health impacts, particularly developmental neurotoxicity. However, neurotoxic impacts in later adulthood and during the aging process are relatively uncharacterized. The present study examined diazinon (DZN), an OP, to determine the neurobehavioral consequences, in addition to mitochondrial dysfunction on a macroscale (whole organism basal respiration) and on a microscale (whole organ mitochondrial respiration), using zebrafish (ZF) as a model. One group of 14-month-old adult ZF were exposed acutely as adults (0.4, 1.25, and 4.0 μM) for five days and tested as adults, and another group was exposed developmentally 5-120 h post-fertilization (70, 210, and 700 nM) and tested at larval, adolescent, adult, and aging life stages. ZF exposed acutely as adults did not display many significant neurobehavioral impacts or mitochondrial dysfunction. Conversely, the embryonically exposed ZF showed altered behavioral functions at each stage of life which emerged and attenuated as fish transitioned from each developmental stage to the next. Mitochondrial oxygen consumptions measurement results for developmentally DZN exposed ZF showed significant increases in the low and middle dose groups in organs such as the brain and testes. Overall, there is an indication that early developmental exposure to DZN had continuing adverse neurobehavioral and cellular consequences throughout their lives well into adulthood and aging periods.
Collapse
Affiliation(s)
- Jonna Boyda
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Zade R Holloway
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Edward D Levin
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
49
|
Hawkey AB, Holloway Z, Dean C, Koburov R, Slotkin TA, Seidler FJ, Levin ED. Neurobehavioral anomalies in zebrafish after sequential exposures to DDT and chlorpyrifos in adulthood: Do multiple exposures interact? Neurotoxicol Teratol 2021; 87:106985. [PMID: 33901621 PMCID: PMC8440335 DOI: 10.1016/j.ntt.2021.106985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
A sequence of different classes of synthetic insecticides have been used over the past 70 years. Over this period, the widely-used organochlorines were eventually replaced by organophosphates, with dichlorodiphenyltrichloroethane (DDT) and chlorpyrifos (CPF) as the principal prototypes. Considerable research has characterized the risks of DDT and CPF individually, but little is known about the toxicology of transitioning from one class of insecticides to another, as has been commonplace for agricultural and pest control workers. This study used adult zebrafish to investigate neurobehavioral toxicity following 5-week chronic exposure to either DDT or CPF, to or their sequential exposure (DDT for 5 weeks followed by CPF for 5 weeks). At the end of the exposure period, a subset of fish were analyzed for brain cholinesterase activity. Behavioral effects were initially assessed one week following the end of the CPF exposure and again at 14 months of age using a behavioral test battery covering sensorimotor responses, anxiety-like functions, predator avoidance and social attraction. Adult insecticide exposures, individually or sequentially, were found to modulate multiple behavioral features, including startle responsivity, social approach, predator avoidance, locomotor activity and novel location recognition and avoidance. Locomotor activity and startle responsivity were each impacted to a greater degree by the sequential exposures than by individual compounds, with the latter being pronounced at the early (1-week post exposure) time point, but not 3-4 months later in aging. Social approach responses were similarly impaired by the sequential exposure as by CPF-alone at the aging time point. Fleeing responses in the predator test showed flee-enhancing effects of both compounds individually versus controls, and no additive impact of the two following sequential exposure. Each compound was also associated with changes in recognition or avoidance patterns in a novel place recognition task in late adulthood, but sequential exposures did not enhance these phenotypes. The potential for chemical x chemical interactions did not appear related to changes in CPF metabolism to the active oxon, as prior DDT exposure did not affect the cholinesterase inhibition resulting from CPF. This study shows that the effects of chronic adult insecticide exposures may be relevant to behavioral health initially and much later in life, and that the effects of sequential exposures may be unpredictable based on their constituent exposures.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zade Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cassandra Dean
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Reese Koburov
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
50
|
Milesi MM, Lorenz V, Durando M, Rossetti MF, Varayoud J. Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects. Front Endocrinol (Lausanne) 2021; 12:672532. [PMID: 34305812 PMCID: PMC8293380 DOI: 10.3389/fendo.2021.672532] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Glyphosate base herbicides (GBHs) are the most widely applied pesticides in the world and are mainly used in association with GBH-tolerant crop varieties. Indiscriminate and negligent use of GBHs has promoted the emergence of glyphosate resistant weeds, and consequently the rise in the use of these herbicides. Glyphosate, the active ingredient of all GBHs, is combined with other chemicals known as co-formulants that enhance the herbicide action. Nowadays, the safety of glyphosate and its formulations remain to be a controversial issue, as evidence is not conclusive whether the adverse effects are caused by GBH or glyphosate, and little is known about the contribution of co-formulants to the toxicity of herbicides. Currently, alarmingly increased levels of glyphosate have been detected in different environmental matrixes and in foodstuff, becoming an issue of social concern. Some in vitro and in vivo studies have shown that glyphosate and its formulations exhibit estrogen-like properties, and growing evidence has indicated they may disrupt normal endocrine function, with adverse consequences for reproductive health. Moreover, multigenerational effects have been reported and epigenetic mechanisms have been proved to be involved in the alterations induced by the herbicide. In this review, we provide an overview of: i) the routes and levels of human exposure to GBHs, ii) the potential estrogenic effects of glyphosate and GBHs in cell culture and animal models, iii) their long-term effects on female fertility and mechanisms of action, and iv) the consequences on health of successive generations.
Collapse
Affiliation(s)
- María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|