1
|
Scheinkman R, Gwillim E, Barbota K, Tordjman L, Houk G, Latta S, Jean-Pierre P, Nouri K. The Dermatology of Recreational Scuba Diving: A Narrative Review. Int J Dermatol 2025; 64:1005-1012. [PMID: 39934957 DOI: 10.1111/ijd.17677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
Scuba diving is a popular watersport in the United States, with over 9 million certified divers. This activity uses specialized equipment that enables swimmers to explore deeper into the ocean for a more extended period than free diving. This popularity has led to the development of diving medicine, a multidisciplinary field that includes dermatologic management. An extensive literature review was conducted on PubMed and Google Scholar, using key search terms related to diving and dermatology to compile relevant peer-reviewed articles. This review examines the dermatological impacts of recreational and commercial diving. We explore hyperbaric oxygen therapy, its effects on the skin, and its potential benefits in wound healing. Furthermore, we present how environmental factors such as ultraviolet (UV) exposure and marine water toxins may increase skin cancer risk. We also discuss the risk of direct injury and envenomation from marine organisms and the risk of bacterial wound infections from different pathogens in marine water. We also reviewed the cutaneous manifestations of decompression sickness. As more people engage in recreational and commercial diving for extended periods, further research on potential dermatological implications is needed. Dermatologists could provide counseling on the use of sun-protective clothing and sunscreen to minimize cancer risk from UV exposure, on self-cleaning wounds to minimize infection risk from marine pathogens and identifying cutaneous infections, signs of decompression sickness, and methods of treating and preventing marine envenomation and bites.
Collapse
Affiliation(s)
- Ryan Scheinkman
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eran Gwillim
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kristiana Barbota
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lea Tordjman
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Garrett Houk
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Steven Latta
- Florida International University Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Phillippe Jean-Pierre
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Keyvan Nouri
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Hérnández-Elizárraga VH, Vega-Tamayo JE, Olguín-López N, Ibarra-Alvarado C, Rojas-Molina A. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis. J Proteomics 2023; 288:104984. [PMID: 37536522 DOI: 10.1016/j.jprot.2023.104984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Millepora alcicornis is a reef-forming cnidarian widely distributed in the Mexican Caribbean. Millepora species or "fire corals" inflict a painful stinging reaction in humans when touched. Even though hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, there are few reports regarding the diversity of toxins synthesized by fire corals. Here, based on transcriptomic analysis of M. alcicornis, several predicted proteins that show amino acid sequence similarity to toxins were identified, including neurotoxins, metalloproteases, hemostasis-impairing toxins, serin proteases, cysteine-rich venom proteins, phospholipases, complement system-impairing toxins, phosphodiesterases, pore-forming toxins, and L-aminoacid oxidases. The soluble nematocyst proteome of this organism was shown to induce hemolytic, proteolytic, and phospholipase A2 effects by gel zymography. Protein bands or spots on 1D- and 2D-PAGE gels corresponding to zones of hemolytic and enzymatic activities were excised, subjected to in-gel digestion with trypsin, and analyzed by mass spectrometry. These proteins exhibited sequence homology to PLA2s, metalloproteinases, pore-forming toxins, and neurotoxins, such as actitoxins and CrTX-A. The complex array of venom-related transcripts that were identified in M. alcicornis, some of which are first reported in "fire corals", provide novel insight into the structural richness of Cnidarian toxins and their distribution among species. SIGNIFICANCE: Marine organisms are a promising source of bioactive compounds with valuable contributions in diverse fields such as human health, pharmaceuticals, and industrial application. Currently, not much attention has been paid to the study of fire corals, which possess a variety of molecules that exhibit diverse toxic effects and therefore have great pharmaceutical and biotechnological potential. The isolation and identification of novel marine-derived toxins by classical approaches are time-consuming and have low yields. Thus, next-generation strategies, like base-'omics technologies, are essential for the high-throughput characterization of venom compounds such as those synthesized by fire corals. This study moves the field forward because it provides new insights regarding the first occurrence of diverse toxin groups in Millepora alcicornis. The findings presented here will contribute to the current understanding of the mechanisms of action of Millepora toxins. This research also reveals important information related to the potential role of toxins in the defense and capture of prey mechanisms and for designing appropriate treatments for fire coral envenomation. Moreover, due to the lack of information on the taxonomic identification of Millepora, the insights presented here can advise the taxonomic classification of the species of this genus.
Collapse
Affiliation(s)
- Víctor Hugo Hérnández-Elizárraga
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; University of Minnesota Genomics Center, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Norma Olguín-López
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; División Química y Energías Renovables, Universidad Tecnológica de San Juan del Río. Av La Palma No 125 Vista Hermosa, 76800 San Juan del Río, Qro, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico.
| |
Collapse
|
3
|
Hwang DH, Koh PO, Mohan Prakash RL, Chae J, Kang C, Kim E. Comparative Study of Toxic Effects and Pathophysiology of Envenomations Induced by Carybdea brevipedalia (Cnidaria: Cubozoa) and Nemopilema nomurai (Cnidaria: Scyphozoa) Jellyfish Venoms. Toxins (Basel) 2022; 14:toxins14120831. [PMID: 36548728 PMCID: PMC9785312 DOI: 10.3390/toxins14120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Jellyfish stings can result in local tissue damage and systemic pathophysiological sequelae. Despite constant occurrences of jellyfish stings in oceans throughout the world, the toxinological assessment of these jellyfish envenomations has not been adequately reported in quantitative as well as in qualitative measurements. Herein, we have examined and compared the in vivo toxic effects and pathophysiologic alterations using experimental animal models for two representative stinging jellyfish classes, i.e., Cubozoa and Scyphozoa. For this study, mice were administered with venom extracts of either Carybdea brevipedalia (Cnidaria: Cubozoa) or Nemopilema nomurai (Cnidaria: Scyphozoa). From the intraperitoneal (IP) administration study, the median lethal doses leading to the deaths of mice 24 h post-treatment after (LD50) for C. brevipedalia venom (CbV) and N. nomurai venom (NnV) were 0.905 and 4.4697 mg/kg, respectively. The acute toxicity (i.e., lethality) of CbV was much higher with a significantly accelerated time to death value compared with those of NnV. The edematogenic activity induced by CbV was considerably (83.57/25 = 3.343-fold) greater than NnV. For the evaluation of their dermal toxicities, the epidermis, dermis, subcutaneous tissues, and skeletal muscles were evaluated toxinologically/histopathologically following the intradermal administration of the venoms. The minimal hemorrhagic doses (MHD) of the venoms were found to be 55.6 and 83.4 μg/mouse for CbV and NnV, respectively. Furthermore, the CbV injection resulted in extensive alterations of mouse dermal tissues, including severe edema, and hemorrhagic/necrotic lesions, with the minimum necrotizing dose (MND) of 95.42 µg/kg body weight. The skin damaging effects of CbV appeared to be considerably greater, compared with those of NnV (MND = 177.99 µg/kg). The present results indicate that the toxicities and pathophysiologic effects of jellyfish venom extracts may vary from species to species. As predicted from the previous reports on these jellyfish envenomations, the crude venom extracts of C. brevipedalia exhibit much more potent toxicity than that of N. nomurai in the present study. These observations may contribute to our understanding of the toxicities of jellyfish venoms, as well as their mode of toxinological actions, which might be helpful for establishing the therapeutic strategies of jellyfish stings.
Collapse
Affiliation(s)
- Du Hyeon Hwang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | | | - Jinho Chae
- Marine Environmental Research and Information Laboratory, Gunpo 5850, Republic of Korea
| | - Changkeun Kang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Euikyung Kim
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Correspondence: ; Tel.: +82-55-772-2355; Fax: +82-55-772-2349
| |
Collapse
|
4
|
Ranasinghe RASN, Wijesekara WLI, Perera PRD, Senanayake SA, Pathmalal MM, Marapana RAUJ. Nutritional Value and Potential Applications of Jellyfish. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2060717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- R. A. S. N. Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - W. L. I. Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - P. R. D. Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - S. A. Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M. M. Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - R. A. U. J. Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
5
|
Yang F, Ye R, Ma C, Wang Y, Wang Y, Chen J, Yang J, Höfer J, Zhu Y, Xiao L, Zhang J, Xu Y. Toxicity evaluation, toxin screening and its intervention of the jellyfish Phacellophora camtschatica based on a combined transcriptome-proteome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113315. [PMID: 35189521 DOI: 10.1016/j.ecoenv.2022.113315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The application of multi-omics technologies provides a new perspective to solve three main problems including species identification, toxin screening and effective antagonist conformation in the studies of marine toxic jellyfish. METHODS A series of transcriptome-proteome based analysis accompanied with toxicity evaluations were performed for the ornamental jellyfish Phacellophora camtschatica. RESULTS Through combined morphological observation and Cytochrome c oxidase subunit Ⅰ (CO1) molecular alignment, the sample jellyfish was identified as P. camtschatica. A total of 25,747 unigenes and 3058 proteins were obtained from the successfully constructed transcriptome and proteome, in which 6869 (26.68%) and 6618 (25.70%) unigenes, as well as 2536 (82.93%) and 2844 (93.00%) proteins were annotated against the databases of Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), respectively. The jellyfish displayed obvious in vivo lethal effects with significant increases of multi-organ functional indexes as well as in vitro activities. Total of 62 toxins from 120 toxin-related unigenes were screened including 16 metalloproteases, 11 phospholipases and others. Moreover, 11 toxins were further screened by using the erythrocyte model, where the zinc metalloproteinase nas-15-like (1) was the most abundant. Finally, Diltiazem greatly improved the survival rate while EDTA slightly prolonged the survival time in ICR mice. CONCLUSION P. camtschatica is a poisonous jellyfish with diversified toxic components, in which metalloproteinase probably plays an important role in toxicities, and excessive Ca2+ entry may be the main mechanism of systemic lethal toxicity.
Collapse
Affiliation(s)
- Fengling Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Ruiwei Ye
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Chaoqun Ma
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai 200433, China.
| | - Yichao Wang
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Department of Clinical Laboratory, Taizhou Central Hospital, Taizhou 318000, China.
| | - Yi Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Jianmei Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Jishun Yang
- Medical Insurance Center, Navy Medical Center, Navy Medical Center of PLA, Shanghai 200050, China.
| | - Juan Höfer
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Yina Zhu
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Jing Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Yinghe Xu
- Department of Intensive Care Unit, Taizhou Central Hospital, Taizhou 318000, China.
| |
Collapse
|
6
|
Klompen AML, Kayal E, Collins AG, Cartwright P. Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa). Genome Biol Evol 2021; 13:6248095. [PMID: 33892512 PMCID: PMC8214413 DOI: 10.1093/gbe/evab081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Many jellyfish species are known to cause a painful sting, but box jellyfish (class Cubozoa) are a well-known danger to humans due to exceptionally potent venoms. Cubozoan toxicity has been attributed to the presence and abundance of cnidarian-specific pore-forming toxins called jellyfish toxins (JFTs), which are highly hemolytic and cardiotoxic. However, JFTs have also been found in other cnidarians outside of Cubozoa, and no comprehensive analysis of their phylogenetic distribution has been conducted to date. Here, we present a thorough annotation of JFTs from 147 cnidarian transcriptomes and document 111 novel putative JFTs from over 20 species within Medusozoa. Phylogenetic analyses show that JFTs form two distinct clades, which we call JFT-1 and JFT-2. JFT-1 includes all known potent cubozoan toxins, as well as hydrozoan and scyphozoan representatives, some of which were derived from medically relevant species. JFT-2 contains primarily uncharacterized JFTs. Although our analyses detected broad purifying selection across JFTs, we found that a subset of cubozoan JFT-1 sequences are influenced by gene-wide episodic positive selection compared with homologous toxins from other taxonomic groups. This suggests that duplication followed by neofunctionalization or subfunctionalization as a potential mechanism for the highly potent venom in cubozoans. Additionally, published RNA-seq data from several medusozoan species indicate that JFTs are differentially expressed, spatially and temporally, between functionally distinct tissues. Overall, our findings suggest a complex evolutionary history of JFTs involving duplication and selection that may have led to functional diversification, including variability in toxin potency and specificity.
Collapse
Affiliation(s)
- Anna M L Klompen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA
| | - Ehsan Kayal
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Allen G Collins
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,National Systematics Laboratory of NOAA's Fisheries Service, Silver Spring, Maryland, USA
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA
| |
Collapse
|
7
|
Riyas A, Kumar A, Chandran M, Jaleel A, Biju Kumar A. The venom proteome of three common scyphozoan jellyfishes (Chrysaora caliparea, Cyanea nozakii and Lychnorhiza malayensis) (Cnidaria: Scyphozoa) from the coastal waters of India. Toxicon 2021; 195:93-103. [PMID: 33741399 DOI: 10.1016/j.toxicon.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/22/2023]
Abstract
The jellyfish venom stored in nematocysts contains highly toxic compounds comprising of polypeptides, enzymes and other proteins, which form their chemical defence armoury against predators. We have characterized the proteome of crude venom extract from three bloom-forming scyphozoan jellyfish along the south-west coast of India, Chrysaora caliparea, Cyanea nozakii and Lychnorhiza malayensis using a Quadrupole-Time of Flight (Q/TOF) mass spectrometry analysis. The most abundant toxin identified from Chrysaora caliparea and Lychnorhiza malayensis is similar to the pore-forming toxins and metalloproteinases. A protective antioxidant enzyme called peroxiredoxin was found abundantly in Cyanea nozakii. Metalloproteinase identified from the C. caliparea shows similarity with the venom of pit viper (Bothrops pauloensis), while that of L. malayensis was similar to the venom of snakes such as the Bothrops insularis and Bothrops asper. Kininogen-1 is a secreted protein, identified for the first time from the jellyfish L. malayensis. The proteome analysis of Cyanea nozakii, Chrysaora caliparea and Lychnorhiza malayensis contained 20, 12, 8 unique proteins, respectively. Our study characterized the proteome map of crude venom extract from L. malayensis and C. caliparea for the first time, and the venom profile is compared with published information elsewhere. Proteomic data from this study has been made available in the public domain.
Collapse
Affiliation(s)
- Abdul Riyas
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, 695581, Kerala, India
| | - Aneesh Kumar
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Mahesh Chandran
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Abdul Jaleel
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
8
|
Jafari H, Tamadoni Jahromi S, Zargan J, Zamani E, Ranjbar R, Honari H. Cloning and Expression of N-CFTX-1 Antigen from Chironex fleckeri in Escherichia coli and Determination of Immunogenicity in Mice. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:376-383. [PMID: 33748002 PMCID: PMC7956099 DOI: 10.18502/ijph.v50i2.5355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Most jellyfish species are poisonous. Human victims of jellyfish sting each year are 120 million. Chironex fleckeri is a venomous box jellyfish that inflicts painful and potentially fatal stings to humans. The CfTX-1 is one of the antigenic proteins of venom that is suggested to stimulate the immune system for treatment and vaccine. This study aimed to clone and express the CfTX-1 antigen in E. coli and then to determine the synthesis of related antibody in the mice. Methods: The study was performed in the Persian Gulf and Oman Sea Ecology Research Center, Bandar Abbas, Iran in autumn 2016. The synthetic CfTX-1 gene in PUC57 plasmid was purchased from Nedaye Fan Company. The 723 bp fragment of N-CfTX-1 was amplified by PCR, PUC57 plasmid containing CfTX-1 with BamHI SalI restriction enzyme sites were subcloned in pET28a [+] expression vector and transformed into E. coli BL21 (DE3). The CfTX-1 gene expression was induced by IPTG. Then antibody produced from the mice serum were isolated and confirmed by ELISA. After protein purification, resulted antigen was injected to mice in 4 repeats and then evaluated the rate of antibody in mice serum. Mice were challenged by the Carybdea alata. Results: The 726 bp of N-CfTX-1 were cloned in a vector of expression pET28a [+] and confirmed by PCR, sequencing and enzymatic analysis. Moreover, the recombinant protein was confirmed by SDS-PAGE and Western blotting. Then the antibody was isolated from mice serum and confirmed by ELISA test. The results showed that immunized mice tolerated 50x LD501 of jellyfish venom. Conclusion: The CfTX-1 recombinant protein was able to protect the BALB/c mice against jellyfish venom. The produced protein can be used as a candidate for vaccine against jellyfish venom.
Collapse
Affiliation(s)
- Hossein Jafari
- Department of Biology, Faculty of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Jamil Zargan
- Department of Biology, Faculty of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran
| | - Ehsan Zamani
- Department of Biology, Faculty of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Honari
- Department of Biology, Faculty of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran
| |
Collapse
|
9
|
Amreen Nisa S, Vinu D, Krupakar P, Govindaraju K, Sharma D, Vivek R. Jellyfish venom proteins and their pharmacological potentials: A review. Int J Biol Macromol 2021; 176:424-436. [PMID: 33581202 DOI: 10.1016/j.ijbiomac.2021.02.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Several research in the organisms of marine invertebrates to assess the medicinal ability of its bio-active molecules have yielded very positive results in recent times. Jellyfish secreted venoms are rich sources of toxins intended to catch prey or deter predators among invertebrate species, but they may also have harmful effects on humans. The nematocyst, a complex intracellular system that injects a venomous mixture into prey or predators that come into contact with the tentacles or other parts of the body of cnidarians, determines the venomous existence of cnidarians. Nematocyst venoms are mixtures of peptides, proteins and other components that in laboratory animals can induce cytotoxicity, blockade of ion channels, membrane pore formation, in vivo cardiovascular failure and lethal effects. There are also valuable pharmacological and biological aspects of jellyfish venoms. In the present review, overviews of the variety of possible toxin families in cnidarian venoms are addressed in this analysis and these potential toxins are surveyed with those from other cnidarians that offer insight into their potential functions such as anti-oxidant, anti-cancer activity and much more. This research review will provide awareness of the growing repertoire of jellyfish venom proteins and will help to further isolate and classify particular proteins to understand its structure and functional relationship.
Collapse
Affiliation(s)
- S Amreen Nisa
- Centre for Ocean Research, MoES - Earth Science and Technology Cell (ESTC), Sathyabama Institute of Science and Technology, Chennai 600 119, India.
| | - D Vinu
- Centre for Ocean Research, MoES - Earth Science and Technology Cell (ESTC), Sathyabama Institute of Science and Technology, Chennai 600 119, India.
| | - P Krupakar
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, India.
| | - K Govindaraju
- Centre for Ocean Research, MoES - Earth Science and Technology Cell (ESTC), Sathyabama Institute of Science and Technology, Chennai 600 119, India.
| | - D Sharma
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India.
| | - Rahul Vivek
- Department of Biochemistry, University of Wisconsin-, Madison, WI, USA.
| |
Collapse
|
10
|
Functional and Structural Variation among Sticholysins, Pore-Forming Proteins from the Sea Anemone Stichodactyla helianthus. Int J Mol Sci 2020; 21:ijms21238915. [PMID: 33255441 PMCID: PMC7727798 DOI: 10.3390/ijms21238915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Venoms constitute complex mixtures of many different molecules arising from evolution in processes driven by continuous prey-predator interactions. One of the most common compounds in these venomous cocktails are pore-forming proteins, a family of toxins whose activity relies on the disruption of the plasmatic membranes by forming pores. The venom of sea anemones, belonging to the oldest lineage of venomous animals, contains a large amount of a characteristic group of pore-forming proteins known as actinoporins. They bind specifically to sphingomyelin-containing membranes and suffer a conformational metamorphosis that drives them to make pores. This event usually leads cells to death by osmotic shock. Sticholysins are the actinoporins produced by Stichodactyla helianthus. Three different isotoxins are known: Sticholysins I, II, and III. They share very similar amino acid sequence and three-dimensional structure but display different behavior in terms of lytic activity and ability to interact with cholesterol, an important lipid component of vertebrate membranes. In addition, sticholysins can act in synergy when exerting their toxin action. The subtle, but important, molecular nuances that explain their different behavior are described and discussed throughout the text. Improving our knowledge about sticholysins behavior is important for eventually developing them into biotechnological tools.
Collapse
|
11
|
Cantoni JL, Andreosso A, Seymour J. An in vitro comparison of venom recovery methods and results on the box jellyfish, Chironex fleckeri. Toxicon 2020; 184:94-98. [PMID: 32533959 DOI: 10.1016/j.toxicon.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/22/2023]
Abstract
The emergence of novel venom extraction techniques over the last half-century has greatly facilitated advances in the field of cnidarian research. A new recovery protocol utilizing ethanol as the primary stimulant in nematocyst discharge was recently published, however in vitro examination of the venom on organic models was not performed. This present study reports an original comparison of the chemically-induced discharge technique in vitro with a commonly used saltwater extraction method. Size-exclusion chromatography revealed distinct differences in venom profiles between the two methods: the saltwater recovery method FPLC profile and SDS-PAGE gel were similar to previously published results, whereas the ethanol-induced method was not. SDS-PAGE gel revealed distinct 40-55 kDa bands of previously identified cardiotoxic proteins recovered from the saltwater method, whereas the ethanol-induced method yielded degraded venom protein bands. A concentration-response curve generated through xCELLigence Real-Time Cell Analysis (RTCA) revealed a dramatic decrease in human cardiomyocyte activity when venom recovered via saltwater discharge was applied to these cells. With the exception of one sample, all ethanol-induced recovered venom failed to prompt a concentration-dependent decrease in cell survival when applied to human cardiomyocytes, resulting in a significant difference in IC50 concentrations between the compared venom samples. The data presented here facilitates an improved understanding of the parameters and analyses that are essential when developing and utilizing novel techniques for future cnidarian venom extraction research and supports the conclusion that recovery of venom from the tentacles of the box jellyfish Chironex fleckeri by ethanol is not an effective, efficient, or comprehensive extraction method compared to the published method of saltwater degradation of tentacles and bead mill extraction.
Collapse
Affiliation(s)
- Jamie L Cantoni
- Australian Institute of Tropical Health and Medicine, Faculty of Medicine, Health and Molecular Sciences, James Cook University, McGregor Road, 4878, Cairns, Australia
| | - Athena Andreosso
- Australian Institute of Tropical Health and Medicine, Faculty of Medicine, Health and Molecular Sciences, James Cook University, McGregor Road, 4878, Cairns, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine, Faculty of Medicine, Health and Molecular Sciences, James Cook University, McGregor Road, 4878, Cairns, Australia.
| |
Collapse
|
12
|
The pathology of Chironex fleckeri venom and known biological mechanisms. Toxicon X 2020; 6:100026. [PMID: 32550582 PMCID: PMC7285912 DOI: 10.1016/j.toxcx.2020.100026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
The large box jellyfish Chironex fleckeri is found in northern Australian waters. A sting from this cubozoan species can kill within minutes. From clinical and animal studies, symptoms comprise severe pain, welts, scarring, hypotension, vasospasms, cardiac irregularities and cardiac arrest. At present, there is no cure and opioids are used to manage pain. Antivenom is available but controversy exists over its effectiveness. Experimental and combination therapies performed in vitro and in vivo have shown varied efficacy. These inconsistent results are likely a consequence of the different methods used to extract venom. Recent omics analysis has shed light on the systems of C. fleckeri venom action, including new toxin classes that use pore formation, cell membrane collapse and ion channel modulation. This review covers what is known on C. fleckeri pathomechanisms and highlights current gaps in knowledge. A more complete understanding of the mechanisms of C. fleckeri venom-induced pathology may lead to novel treatments and possibly, the discovery of novel cell pathways, novel drug scaffolds and novel drug targets for human disease.
Collapse
|
13
|
Reinicke J, Kitatani R, Masoud SS, Galbraith KK, Yoshida W, Igarashi A, Nagasawa K, Berger G, Yanagihara A, Nagai H, Horgen FD. Isolation, Structure Determination, and Synthesis of Cyclic Tetraglutamic Acids from Box Jellyfish Species Alatina alata and Chironex yamaguchii. Molecules 2020; 25:molecules25040883. [PMID: 32079282 PMCID: PMC7070617 DOI: 10.3390/molecules25040883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Cubozoan nematocyst venoms contain known cytolytic and hemolytic proteins, but small molecule components have not been previously reported from cubozoan venom. We screened nematocyst extracts of Alatina alata and Chironex yamaguchii by LC-MS for the presence of small molecule metabolites. Three isomeric compounds, cnidarins 4A (1), 4B (2), and 4C (3), were isolated from venom extracts and characterized by NMR and MS, which revealed their planar structure as cyclic γ-linked tetraglutamic acids. The full configurational assignments were established by syntheses of all six possible stereoisomers, comparison of spectral data and optical rotations, and stereochemical analysis of derivatized degradation products. Compounds 1-3 were subsequently detected by LC-MS in tissues of eight other cnidarian species. The most abundant of these compounds, cnidarin 4A (1), showed no mammalian cell toxicity or hemolytic activity, which may suggest a role for these cyclic tetraglutamates in nematocyst discharge.
Collapse
Affiliation(s)
- Justin Reinicke
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA; (J.R.); (K.K.G.)
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Ryuju Kitatani
- Department of Marine Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (R.K.); (A.I.)
| | - Shadi Sedghi Masoud
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (S.S.M.); (K.N.)
| | - Kelly Kawabata Galbraith
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA; (J.R.); (K.K.G.)
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Wesley Yoshida
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 98622, USA;
| | - Ayako Igarashi
- Department of Marine Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (R.K.); (A.I.)
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (S.S.M.); (K.N.)
| | - Gideon Berger
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA; (J.R.); (K.K.G.)
- Correspondence: (G.B.); (A.Y.); (H.N.); (F.D.H.); Tel.: +1-808-236-3551 (G.B.); +1-808- 956-8328 (A.Y.); +81-3-5463-0454 (H.N.); +1-808-236-5864 (F.D.H.)
| | - Angel Yanagihara
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, and Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Correspondence: (G.B.); (A.Y.); (H.N.); (F.D.H.); Tel.: +1-808-236-3551 (G.B.); +1-808- 956-8328 (A.Y.); +81-3-5463-0454 (H.N.); +1-808-236-5864 (F.D.H.)
| | - Hiroshi Nagai
- Department of Marine Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (R.K.); (A.I.)
- Correspondence: (G.B.); (A.Y.); (H.N.); (F.D.H.); Tel.: +1-808-236-3551 (G.B.); +1-808- 956-8328 (A.Y.); +81-3-5463-0454 (H.N.); +1-808-236-5864 (F.D.H.)
| | - F. David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI 96744, USA; (J.R.); (K.K.G.)
- Correspondence: (G.B.); (A.Y.); (H.N.); (F.D.H.); Tel.: +1-808-236-3551 (G.B.); +1-808- 956-8328 (A.Y.); +81-3-5463-0454 (H.N.); +1-808-236-5864 (F.D.H.)
| |
Collapse
|
14
|
Wang B, Liu G, Wang C, Ruan Z, Wang Q, Wang B, Qiu L, Zou S, Zhang X, Zhang L. Molecular cloning and functional characterization of a Cu/Zn superoxide dismutase from jellyfish Cyanea capillata. Int J Biol Macromol 2019; 144:1-8. [PMID: 31836391 DOI: 10.1016/j.ijbiomac.2019.12.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/22/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
We identified and characterized a novel superoxide dismutase (SOD), designated as CcSOD1, from the cDNA library from the tentacle tissue of the jellyfish Cyanea capillata. The full-length cDNA sequence of CcSOD1 consists of 745 nucleotides with an open reading frame encoding a mature protein of 154 amino acids, sharing a predicted structure similar to the typical Cu/Zn-SODs. The CcSOD1 coding sequence was cloned into the expression vector pET-24a and successfully expressed in Escherichia coli Rosetta (DE3) pLysS. The recombinant protein rCcSOD1 was purified by HisTrap High Performance chelating column chromatography and analyzed for its biological function. Our results showed that the purified rCcSOD1 could inhibit superoxide anion and keep active in a pH interval of 4.5-9 and a temperature interval of 10-70°C. Even when heated at 70°C for 60 min, rCcSOD1 retained 100% activity, indicating a relatively high thermostability. These results suggest that CcSOD1 protein may play an important role in protecting jellyfish from oxidative damage and can serve as a new resource for antioxidant products.
Collapse
Affiliation(s)
- Bo Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Xiangyin Road No.800, Shanghai 200433, China
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Xiangyin Road No.800, Shanghai 200433, China
| | - Chao Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Xiangyin Road No.800, Shanghai 200433, China
| | - Zengliang Ruan
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Zhongshan Road 2 No.74, Guangzhou 510080, China
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Xiangyin Road No.800, Shanghai 200433, China
| | - Beilei Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Xiangyin Road No.800, Shanghai 200433, China
| | - Leilei Qiu
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Xiangyin Road No.800, Shanghai 200433, China
| | - Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Xiangyin Road No.800, Shanghai 200433, China
| | - Xiping Zhang
- Department of Traumatic Orthopaedics, the Affiliated Zhuzhou Hospital, Xiangya Medical College CSU, South Changjiang Road No.116, Changsha 412007, China.
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Xiangyin Road No.800, Shanghai 200433, China.
| |
Collapse
|
15
|
Merquiol L, Romano G, Ianora A, D'Ambra I. Biotechnological Applications of Scyphomedusae. Mar Drugs 2019; 17:E604. [PMID: 31653064 PMCID: PMC6891278 DOI: 10.3390/md17110604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
As people across the world live longer, chronic illness and diminished well-being are becoming major global public health challenges. Marine biotechnology may help overcome some of these challenges by developing new products and know-how derived from marine organisms. While some products from marine organisms such as microalgae, sponges, and fish have already found biotechnological applications, jellyfish have received little attention as a potential source of bioactive compounds. Nevertheless, recent studies have highlighted that scyphomedusae (Cnidaria, Scyphozoa) synthesise at least three main categories of compounds that may find biotechnological applications: collagen, fatty acids and components of crude venom. We review what is known about these compounds in scyphomedusae and their current biotechnological applications, which falls mainly into four categories of products: nutraceuticals, cosmeceuticals, biomedicals, and biomaterials. By defining the state of the art of biotechnological applications in scyphomedusae, we intend to promote the use of these bioactive compounds to increase the health and well-being of future societies.
Collapse
Affiliation(s)
- Louise Merquiol
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Isabella D'Ambra
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
16
|
Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote. Nat Commun 2019; 10:1655. [PMID: 31040274 PMCID: PMC6491561 DOI: 10.1038/s41467-019-09681-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/25/2019] [Indexed: 01/11/2023] Open
Abstract
The box jellyfish Chironex fleckeri is extremely venomous, and envenoming causes tissue necrosis, extreme pain and death within minutes after severe exposure. Despite rapid and potent venom action, basic mechanistic insight is lacking. Here we perform molecular dissection of a jellyfish venom-induced cell death pathway by screening for host components required for venom exposure-induced cell death using genome-scale lenti-CRISPR mutagenesis. We identify the peripheral membrane protein ATP2B1, a calcium transporting ATPase, as one host factor required for venom cytotoxicity. Targeting ATP2B1 prevents venom action and confers long lasting protection. Informatics analysis of host genes required for venom cytotoxicity reveal pathways not previously implicated in cell death. We also discover a venom antidote that functions up to 15 minutes after exposure and suppresses tissue necrosis and pain in mice. These results highlight the power of whole genome CRISPR screening to investigate venom mechanisms of action and to rapidly identify new medicines. Box jellyfish venom causes tissue damage, pain, and death through unknown molecular mechanisms. Here, Lau et al. perform a CRISPR screen to identify genes required for venom action and use this information to develop an antidote that blocks venom-induced pain and tissue damage in vivo.
Collapse
|
17
|
Proteomic Analysis of Novel Components of Nemopilema nomurai Jellyfish Venom: Deciphering the Mode of Action. Toxins (Basel) 2019; 11:toxins11030153. [PMID: 30857234 PMCID: PMC6468547 DOI: 10.3390/toxins11030153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
Nowadays, proliferation of jellyfish has become a severe matter in many coastal areas around the world. Jellyfish Nemopilema nomurai is one of the most perilous organisms and leads to significant deleterious outcomes such as harm to the fishery, damage the coastal equipment, and moreover, its envenomation can be hazardous to the victims. Till now, the components of Nemopilema nomurai venom (NnV) are unknown owing to scant transcriptomics and genomic data. In the current research, we have explored a proteomic approach to identify NnV components and their interrelation with pathological effects caused by the jellyfish sting. Altogether, 150 proteins were identified, comprising toxins and other distinct proteins that are substantial in nematocyst genesis and nematocyte growth by employing two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI/TOF/MS). The identified toxins are phospholipase A2, phospholipase D Li Sic Tox beta IDI, a serine protease, putative Kunitz-type serine protease inhibitor, disintegrin and metalloproteinase, hemolysin, leukotoxin, three finger toxin MALT0044C, allergens, venom prothrombin activator trocarin D, tripeptide Gsp 9.1, and along with other toxin proteins. These toxins are relatively well characterized in the venoms of other poisonous species to induce pathogenesis, hemolysis, inflammation, proteolysis, blood coagulation, cytolysis, hemorrhagic activity, and type 1 hypersensitivity, suggesting that these toxins in NnV can also cause similar deleterious consequences. Our proteomic works indicate that NnV protein profile represents valuable source which leads to better understanding the clinical features of the jellyfish stings. As one of the largest jellyfish in the world, Nemopilema nomurai sting is considered to be harmful to humans due to its potent toxicity. The identification and functional characterization of its venom components have been poorly described and are beyond our knowledge. Here is the first report demonstrating the methodical overview of NnV proteomics research, providing significant information to understand the mechanism of NnV envenomation. Our proteomics findings can provide a platform for novel protein discovery and development of practical ways to deal with jellyfish stings on human beings.
Collapse
|
18
|
De Domenico S, De Rinaldis G, Paulmery M, Piraino S, Leone A. Barrel Jellyfish ( Rhizostoma pulmo) as Source of Antioxidant Peptides. Mar Drugs 2019; 17:md17020134. [PMID: 30813405 PMCID: PMC6410228 DOI: 10.3390/md17020134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
The jellyfish Rhizostoma pulmo, Macrì 1778 (Cnidaria, Rhizostomae) undergoes recurrent outbreaks in the Mediterranean coastal waters, with large biomass populations representing a nuisance or damage for marine and maritime activities. A preliminary overview of the antioxidant activity (AA) of R. pulmo proteinaceous compounds is provided here based on the extraction and characterization of both soluble and insoluble membrane-fractioned proteins, the latter digested by sequential enzymatic hydrolyses with pepsin and collagenases. All jellyfish proteins showed significant AA, with low molecular weight (MW) proteins correlated with greater antioxidant activity. In particular, collagenase-hydrolysed collagen resulted in peptides with MW lower than 3 kDa, ranging 3⁻10 kDa or 10⁻30 kDa, with AA inversely proportional to MW. No cytotoxic effect was detected on cultured human keratinocytes (HEKa) in a range of protein concentration 0.05⁻20 μg/mL for all tested protein fractions except for soluble proteins higher than 30 kDa, likely containing the jellyfish venom compounds. Furthermore, hydrolyzed jellyfish collagen peptides showed a significantly higher AA and provided a greater protective effect against oxidative stress in HEKa than the hydrolyzed collagen peptides from vertebrates. Due to a high reproductive potential, jellyfish may represent a potential socioeconomic opportunity as a source of natural bioactive compounds, with far-reaching beneficial implications. Eventually, improvements in processing technology will promote the use of untapped marine biomasses in nutraceutical, cosmeceutical, and pharmaceutical fields, turning marine management problems into a more positive perspective.
Collapse
Affiliation(s)
- Stefania De Domenico
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche (CNR-ISPA) Unit of Lecce, Via Monteroni, 73100 Lecce, Italy.
| | - Gianluca De Rinaldis
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche (CNR-ISPA) Unit of Lecce, Via Monteroni, 73100 Lecce, Italy.
- Dipartimento di Biotecnologia, Chimica e Farmacia (DBCF), Università Degli Studi Di Siena, Via A. Moro, 2, 53100 Siena, Italy.
| | - Mélanie Paulmery
- Département des Sciences et Technologies, Université de Lille, Cité Scientifique, F-59655 Villeneuve d'Ascq, France.
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, 73100 Lecce, Italy.
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Monteroni, 73100 Lecce, Italy.
| | - Antonella Leone
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche (CNR-ISPA) Unit of Lecce, Via Monteroni, 73100 Lecce, Italy.
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
19
|
Wang C, Wang B, Wang B, Wang Q, Liu G, Wang T, He Q, Zhang L. Unique Diversity of Sting-Related Toxins Based on Transcriptomic and Proteomic Analysis of the Jellyfish Cyanea capillata and Nemopilema nomurai (Cnidaria: Scyphozoa). J Proteome Res 2018; 18:436-448. [PMID: 30481029 DOI: 10.1021/acs.jproteome.8b00735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The scyphozoan jellyfish Cyanea capillata and Nemopilema nomurai are common blooming species in China. They possess heterogeneous nematocysts and produce various types of venom that can elicit diverse sting symptoms in humans. However, the differences in venom composition between the two species remain unclear. In this study, a combined transcriptomic and proteomic approach was used to identify and compare putative toxins in penetrant nematocysts isolated from C. capillata and N. nomurai. A total of 53 and 69 putative toxins were identified in C. capillata nematocyst venom (CnV) and N. nomurai nematocyst venom (NnV), respectively. These sting-related toxins from both CnV and NnV could be grouped into 10 functional categories, including proteinases, phospholipases, neurotoxins, cysteine-rich secretory proteins (CRISPs), lectins, pore-forming toxins (PFTs), protease inhibitors, ion channel inhibitors, insecticidal components, and other toxins, but the constituent ratio of each toxin category varied between CnV and NnV. Metalloproteinases, proteases, and pore-forming toxins were predominant in NnV, representing 27.5%, 18.8%, and 8.7% of the identified venom proteins, respectively, while phospholipases, neurotoxins, and proteases were the top three identified venom proteins in CnV, accounting for 22.6%, 17.0%, and 11.3%, respectively. Our findings provide comprehensive information on the molecular diversity of toxins from two common blooming and stinging species of jellyfish in China. Furthermore, the results reveal a possible relationship between venom composition and sting consequences, guiding the development of effective treatments for different jellyfish stings.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Wang
- Department of Nuclear Medicine , Changhai Hospital, Navy Medical University , Shanghai 200433 , China
| | | | | |
Collapse
|
20
|
Yap WY, Hwang JS. Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules 2018; 23:E2537. [PMID: 30287801 PMCID: PMC6222686 DOI: 10.3390/molecules23102537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. Since PFTs represent potential candidates for targeted toxin therapy for the treatment of numerous cancers, we also address the challenge to overcoming the immunogenicity of these toxins when used as therapeutics.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
21
|
Liu W, Mo F, Jiang G, Liang H, Ma C, Li T, Zhang L, Xiong L, Mariottini GL, Zhang J, Xiao L. Stress-Induced Mucus Secretion and Its Composition by a Combination of Proteomics and Metabolomics of the Jellyfish Aurelia coerulea. Mar Drugs 2018; 16:E341. [PMID: 30231483 PMCID: PMC6165293 DOI: 10.3390/md16090341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Jellyfish respond quickly to external stress that stimulates mucus secretion as a defense. Neither the composition of secreted mucus nor the process of secretion are well understood. METHODS Aurelia coerulea jellyfish were stimulated by removing them from environmental seawater. Secreted mucus and tissue samples were then collected within 60 min, and analyzed by a combination of proteomics and metabolomics using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), respectively. RESULTS Two phases of sample collection displayed a quick decrease in volume, followed by a gradual increase. A total of 2421 and 1208 proteins were identified in tissue homogenate and secreted mucus, respectively. Gene Ontology (GO) analysis showed that the mucus-enriched proteins are mainly located in extracellular or membrane-associated regions, while the tissue-enriched proteins are distributed throughout intracellular compartments. Tryptamine, among 16 different metabolites, increased with the largest-fold change value of 7.8 in mucus, which is consistent with its involvement in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 'tryptophan metabolism'. We identified 11 metalloproteinases, four serpins, three superoxide dismutases and three complements, and their presence was speculated to be related to self-protective defense. CONCLUSIONS Our results provide a composition profile of proteins and metabolites in stress-induced mucus and tissue homogenate of A. coerulea. This provides insight for the ongoing endeavors to discover novel bioactive compounds. The large increase of tryptamine in mucus may indicate a strong stress response when jellyfish were taken out of seawater and the active self-protective components such as enzymes, serpins and complements potentially play a key role in innate immunity of jellyfish.
Collapse
Affiliation(s)
- Wenwen Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Fengfeng Mo
- Department of Ship Hygiene, Faculty of Navy Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Guixian Jiang
- Clinical Medicine, Grade 2015, Second Military Medical University, Shanghai 200433, China.
| | - Hongyu Liang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Chaoqun Ma
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Tong Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Lulu Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Liyan Xiong
- Department of Traditional Chinese Medicine Identification, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, I-16132 Genova, Italy.
| | - Jing Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Liang Xiao
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
22
|
Mohebbi G, Nabipour I, Vazirizadeh A, Vatanpour H, Farrokhnia M, Maryamabadi A, Bargahi A. Acetylcholinesterase inhibitory activity of a neurosteroidal alkaloid from the upside-down jellyfish Cassiopea andromeda venom. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Structural Characterisation of Predicted Helical Regions in the Chironex fleckeri CfTX-1 Toxin. Mar Drugs 2018; 16:md16060201. [PMID: 29880743 PMCID: PMC6024933 DOI: 10.3390/md16060201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022] Open
Abstract
The Australian jellyfish Chironex fleckeri, belongs to a family of cubozoan jellyfish known for their potent venoms. CfTX-1 and -2 are two highly abundant toxins in the venom, but there is no structural data available for these proteins. Structural information on toxins is integral to the understanding of the mechanism of these toxins and the development of an effective treatment. Two regions of CfTX-1 have been predicted to have helical structures that are involved with the mechanism of action. Here we have synthesized peptides corresponding to these regions and analyzed their structures using NMR spectroscopy. The peptide corresponding to the predicted N-terminal amphiphilic helix appears unstructured in aqueous solution. This lack of structure concurs with structural disorder predicted for this region of the protein using the Protein DisOrder prediction System PrDOS. Conversely, a peptide corresponding to a predicted transmembrane region is very hydrophobic, insoluble in aqueous solution and predicted to be structured by PrDOS. In the presence of SDS-micelles both peptides have well-defined helical structures showing that a membrane mimicking environment stabilizes the structures of both peptides and supports the prediction of the transmembrane region in CfTX-1. This is the first study to experimentally analyze the structure of regions of a C. fleckeri protein.
Collapse
|
24
|
Cnidarian Jellyfish: Ecological Aspects, Nematocyst Isolation, and Treatment Methods of Sting. Results Probl Cell Differ 2018; 65:477-513. [PMID: 30083932 DOI: 10.1007/978-3-319-92486-1_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cnidarians play an important role in ecosystem functioning, in the competition among species, and for possible utilization of several active compounds against cardiovascular, nervous, endocrine, immune, infective, and inflammatory disorders or having antitumoral properties, which have been extracted from these organisms. Nevertheless, notwithstanding these promising features, the main reason for which cnidarians are known is due to their venomousness as they have a serious impact on public health as well as in economy being able to affect some human activities. For this reason a preeminent subject of the research about cnidarians is the organization of proper systems and methods of care and treatment of stinging. This chapter aims to present the data about the morphological, ecological, toxicological, epidemiological, and therapeutic aspects regarding cnidarians with the purpose to summarize the existing knowledge and to stimulate future perspectives in the research on these organisms.
Collapse
|
25
|
Wang Q, Zhang H, Wang B, Wang C, Xiao L, Zhang L. β adrenergic receptor/cAMP/PKA signaling contributes to the intracellular Ca 2+ release by tentacle extract from the jellyfish Cyanea capillata. BMC Pharmacol Toxicol 2017; 18:60. [PMID: 28743285 PMCID: PMC5526252 DOI: 10.1186/s40360-017-0167-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/19/2017] [Indexed: 01/22/2023] Open
Abstract
Background Intracellular Ca2+ overload induced by extracellular Ca2+ entry has previously been confirmed to be an important mechanism for the cardiotoxicity as well as the acute heart dysfunction induced by jellyfish venom, while the underlying mechanism remains to be elucidated. Methods Under extracellular Ca2+-free or Ca2+-containing conditions, the Ca2+ fluorescence in isolated adult mouse cardiomyocytes pre-incubated with tentacle extract (TE) from the jellyfish Cyanea capillata and β blockers was scanned by laser scanning confocal microscope. Then, the cyclic adenosine monophosphate (cAMP) concentration and protein kinase A (PKA) activity in primary neonatal rat ventricular cardiomyocytes were determined by ELISA assay. Furthermore, the effect of propranolol against the cardiotoxicity of TE was evaluated in Langendorff-perfused rat hearts and intact rats. Results The increase of intracellular Ca2+ fluorescence signal by TE was significantly attenuated and delayed when the extracellular Ca2+ was removed. The β adrenergic blockers, including propranolol, atenolol and esmolol, partially inhibited the increase of intracellular Ca2+ in the presence of 1.8 mM extracellular Ca2+ and completely abolished the Ca2+ increase under an extracellular Ca2+-free condition. Both cAMP concentration and PKA activity were stimulated by TE, and were inhibited by the β adrenergic blockers. Cardiomyocyte toxicity of TE was antagonized by β adrenergic blockers and the PKA inhibitor H89. Finally, the acute heart dysfuction by TE was antagonized by propranolol in Langendorff-perfused rat hearts and intact rats. Conclusions Our findings indicate that β adrenergic receptor/cAMP/PKA signaling contributes to the intracellular Ca2+ overload through intracellular Ca2+ release by TE from the jellyfish C. capillata.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Hui Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Bo Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Chao Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Liang Xiao
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Liming Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
26
|
Zhang H, Wang Q, Xiao L, Zhang L. Intervention effects of five cations and their correction on hemolytic activity of tentacle extract from the jellyfish Cyanea capillata. PeerJ 2017; 5:e3338. [PMID: 28503385 PMCID: PMC5426461 DOI: 10.7717/peerj.3338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/20/2017] [Indexed: 11/26/2022] Open
Abstract
Cations have generally been reported to prevent jellyfish venom-induced hemolysis through multiple mechanisms by spectrophotometry. Little attention has been paid to the potential interaction between cations and hemoglobin, potentially influencing the antagonistic effect of cations. Here, we explored the effects of five reported cations, La3+, Mn2+, Zn2+, Cu2+ and Fe2+, on a hemolytic test system and the absorbance of hemoglobin, which was further used to measure their effects on the hemolysis of tentacle extract (TE) from the jellyfish Cyanea capillata. All the cations displayed significant dose-dependent inhibitory effects on TE-induced hemolysis with various dissociation equilibrium constant (Kd) values as follows: La3+ 1.5 mM, Mn2+ 93.2 mM, Zn2+ 38.6 mM, Cu2+ 71.9 μM and Fe2+ 32.8 mM. The transparent non-selective pore blocker La3+ did not affect the absorbance of hemoglobin, while Mn2+ reduced it slightly. Other cations, including Zn2+, Cu2+ and Fe2+, greatly decreased the absorbance with Kd values of 35.9, 77.5 and 17.6 mM, respectively. After correction, the inhibitory Kd values were 1.4 mM, 45.8 mM, 128.5 μM and 53.1 mM for La3+, Zn2+, Cu2+ and Fe2+, respectively. Mn2+ did not inhibit TE-induced hemolysis. Moreover, the inhibitory extent at the maximal given dose of all cations except La3+ was also diminished. These corrected results from spectrophotometry were further confirmed by direct erythrocyte counting under microscopy. Our results indicate that the cations, except for La3+, can interfere with the absorbance of hemoglobin, which should be corrected when their inhibitory effects on hemolysis by jellyfish venoms are examined. The variation in the inhibitory effects of cations suggests that the hemolysis by jellyfish venom is mainly attributed to the formation of non-selective cation pore complexes over other potential mechanisms, such as phospholipases A2 (PLA2), polypeptides, protease and oxidation. Blocking the pore-forming complexes may be a primary strategy to improve the in vivo damage and mortality from jellyfish stings due to hemolytic toxicity.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qianqian Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Liang Xiao
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Liming Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
27
|
Frazão B, Campos A, Osório H, Thomas B, Leandro S, Teixeira A, Vasconcelos V, Antunes A. Analysis of Pelagia noctiluca proteome Reveals a Red Fluorescent Protein, a Zinc Metalloproteinase and a Peroxiredoxin. Protein J 2017; 36:77-97. [PMID: 28258523 DOI: 10.1007/s10930-017-9695-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pelagia noctiluca is the most venomous jellyfish in the Mediterranean Sea where it forms dense blooms. Although there is several published research on this species, until now none of the works has been focused on a complete protein profile of the all body constituents of this organism. Here, we have performed a detailed proteomics characterization of the major protein components expressed by P. noctiluca. With that aim, we have considered the study of jellyfish proteins involved in defense, body constituents and metabolism, and furthered explore the significance and potential application of such bioactive molecules. P. noctiluca body proteins were separated by1D SDS-PAGE and 2DE followed by characterization by nanoLC-MS/MS and MALDI-TOF/TOF techniques. Altogether, both methods revealed 68 different proteins, including a Zinc Metalloproteinase, a Red Fluorescent Protein (RFP) and a Peroxiredoxin. These three proteins were identified for the first time in P. noctiluca. Zinc Metalloproteinase was previously reported in the venom of other jellyfish species. Besides the proteins described above, the other 65 proteins found in P. noctiluca body content were identified and associated with its clinical significance. Among all the proteins identified in this work we highlight: Zinc metalloproteinase, which has a ShK toxin domain and therefore should be implicated in the sting toxicity of P. noctiluca.; the RFP which are a very important family of proteins due to its possible application as molecular markers; and last but not least the discovery of a Peroxiredoxin in this organism makes it a new natural resource of antioxidant and anti-UV radiation agents.
Collapse
Affiliation(s)
- Bárbara Frazão
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Hugo Osório
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Benjamin Thomas
- Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sérgio Leandro
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641, Peniche, Portugal
| | - Alexandre Teixeira
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal
- Department of Genetics, Faculty of Medical Sciences, Human Molecular Genetics Research Center (CIGMH), Universidade Nova de Lisboa, 1349-008, Lisbon, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
28
|
Functional Elucidation of Nemopilema nomurai and Cyanea nozakii Nematocyst Venoms' Lytic Activity Using Mass Spectrometry and Zymography. Toxins (Basel) 2017; 9:toxins9020047. [PMID: 28134758 PMCID: PMC5331427 DOI: 10.3390/toxins9020047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
Background: Medusozoans utilize explosively discharging penetrant nematocysts to inject venom into prey. These venoms are composed of highly complex proteins and peptides with extensive bioactivities, as observed in vitro. Diverse enzymatic toxins have been putatively identified in the venom of jellyfish, Nemopilema nomurai and Cyanea nozakii, through examination of their proteomes and transcriptomes. However, functional examination of putative enzymatic components identified in proteomic approaches to elucidate potential bioactivities is critically needed. Methods: In this study, enzymatic toxins were functionally identified using a combined approach consisting of in gel zymography and liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential roles of metalloproteinases and lipases in hemolytic activity were explored using specific inhibitors. Results: Zymography indicated that nematocyst venom possessed protease-, lipase- and hyaluronidase-class activities. Further, proteomic approaches using LC-MS/MS indicated sequence homology of proteolytic bands observed in zymography to extant zinc metalloproteinase-disintegrins and astacin metalloproteinases. Moreover, pre-incubation of the metalloproteinase inhibitor batimastat with N. nomurai nematocyst venom resulted in an approximate 62% reduction of hemolysis compared to venom exposed sheep erythrocytes, suggesting that metalloproteinases contribute to hemolytic activity. Additionally, species within the molecular mass range of 14–18 kDa exhibited both egg yolk and erythrocyte lytic activities in gel overlay assays. Conclusion: For the first time, our findings demonstrate the contribution of jellyfish venom metalloproteinase and suggest the involvement of lipase species to hemolytic activity. Investigations of this relationship will facilitate a better understanding of the constituents and toxicity of jellyfish venom.
Collapse
|
29
|
Crude venom from nematocysts of Pelagia noctiluca (Cnidaria: Scyphozoa) elicits a sodium conductance in the plasma membrane of mammalian cells. Sci Rep 2017; 7:41065. [PMID: 28112211 PMCID: PMC5253680 DOI: 10.1038/srep41065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/14/2016] [Indexed: 01/25/2023] Open
Abstract
Cnidarians may negatively impact human activities and public health but concomitantly their venom represents a rich source of bioactive substances. Pelagia noctiluca is the most venomous and abundant jellyfish of the Mediterranean Sea and possesses a venom with hemolytic and cytolytic activity for which the mechanism is largely unknown. Here we show that exposure of mammalian cells to crude venom from the nematocysts of P. noctiluca profoundly alters the ion conductance of the plasma membrane, therefore affecting homeostatic functions such as the regulation and maintenance of cellular volume. Venom-treated cells exhibited a large, inwardly rectifying current mainly due to permeation of Na+ and Cl−, sensitive to amiloride and completely abrogated following harsh thermal treatment of crude venom extract. Curiously, the plasma membrane conductance of Ca2+ and K+ was not affected. Current-inducing activity was also observed following delivery of venom to the cytosolic side of the plasma membrane, consistent with a pore-forming mechanism. Venom-induced NaCl influx followed by water and consequent cell swelling most likely underlie the hemolytic and cytolytic activity of P. noctiluca venom. The present study underscores unique properties of P. noctiluca venom and provides essential information for a possible use of its active compounds and treatment of envenomation.
Collapse
|
30
|
Lazcano-Pérez F, Arellano RO, Garay E, Arreguín-Espinosa R, Sánchez-Rodríguez J. Electrophysiological activity of a neurotoxic fraction from the venom of box jellyfish Carybdea marsupialis. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:177-182. [PMID: 27815048 DOI: 10.1016/j.cbpc.2016.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 11/23/2022]
Abstract
Carybdea marsupialis is a widely distributed box jellyfish found in the Mediterranean and in the tropical waters of the Caribbean Sea. Its venom is a complex mixture of biologically active compounds that are used to catch prey. In order to evaluate the activity of the neurotoxins in the venom, bioassays were carried out using the marine crab Ocypode quadrata. The proteins with neurotoxic effect were partially purified using low-pressure liquid chromatography techniques. Gel filtration (Sephadex G-50M) was used as the first step and the active fraction in crabs was passed through a QAE Sephadex A-25 column. Finally, the active fraction was run onto a Fractogel EMD SO3- column. No further purification step could be carried out due to the loss of neurotoxic activity. The Fractogel EMD SO3- fraction was analyzed electrophysiologically using the voltage-clamp technique in Xenopus laevis oocytes expressing membrane proteins from rat brain through mRNA injection. The crude venom and a fraction were observed to affect crustaceans and showed at least two types of bioactivity in oocytes expressing brain proteins. The effects were dose-dependent and completely reversible. These results evidence the presence of neurotoxins in Carybdea marsupialis venom that act on membrane proteins of the vertebrate nervous system.
Collapse
Affiliation(s)
- Fernando Lazcano-Pérez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes s/n, Domicilio conocido, Puerto Morelos, Quintana Roo, C.P. 77580, Mexico; Instituto de Química, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Campus Iztapalapa, 09340 Ciudad de México, Mexico
| | - Rogelio O Arellano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76001, Mexico
| | - Edith Garay
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76001, Mexico
| | - Roberto Arreguín-Espinosa
- Instituto de Química, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Judith Sánchez-Rodríguez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes s/n, Domicilio conocido, Puerto Morelos, Quintana Roo, C.P. 77580, Mexico.
| |
Collapse
|
31
|
Biochemical and kinetic evaluation of the enzymatic toxins from two stinging scyphozoans Nemopilema nomurai and Cyanea nozakii. Toxicon 2017; 125:1-12. [DOI: 10.1016/j.toxicon.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023]
|
32
|
Evolution of the Cytolytic Pore-Forming Proteins (Actinoporins) in Sea Anemones. Toxins (Basel) 2016; 8:toxins8120368. [PMID: 27941639 PMCID: PMC5198562 DOI: 10.3390/toxins8120368] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022] Open
Abstract
Sea anemones (Cnidaria, Anthozoa, and Actiniaria) use toxic peptides to incapacitate and immobilize prey and to deter potential predators. Their toxin arsenal is complex, targeting a variety of functionally important protein complexes and macromolecules involved in cellular homeostasis. Among these, actinoporins are one of the better characterized toxins; these venom proteins form a pore in cellular membranes containing sphingomyelin. We used a combined bioinformatic and phylogenetic approach to investigate how actinoporins have evolved across three superfamilies of sea anemones (Actinioidea, Metridioidea, and Actinostoloidea). Our analysis identified 90 candidate actinoporins across 20 species. We also found clusters of six actinoporin-like genes in five species of sea anemone (Nematostella vectensis, Stomphia coccinea, Epiactis japonica, Heteractis crispa, and Diadumene leucolena); these actinoporin-like sequences resembled actinoporins but have a higher sequence similarity with toxins from fungi, cone snails, and Hydra. Comparative analysis of the candidate actinoporins highlighted variable and conserved regions within actinoporins that may pertain to functional variation. Although multiple residues are involved in initiating sphingomyelin recognition and membrane binding, there is a high rate of replacement for a specific tryptophan with leucine (W112L) and other hydrophobic residues. Residues thought to be involved with oligomerization were variable, while those forming the phosphocholine (POC) binding site and the N-terminal region involved with cell membrane penetration were highly conserved.
Collapse
|
33
|
Whitelaw BL, Strugnell JM, Faou P, da Fonseca RR, Hall NE, Norman M, Finn J, Cooke IR. Combined Transcriptomic and Proteomic Analysis of the Posterior Salivary Gland from the Southern Blue-Ringed Octopus and the Southern Sand Octopus. J Proteome Res 2016; 15:3284-97. [PMID: 27427999 DOI: 10.1021/acs.jproteome.6b00452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study provides comprehensive proteomic profiles from the venom producing posterior salivary glands of octopus (superorder Octopodiformes) species. A combined transcriptomic and proteomic approach was used to identify 1703 proteins from the posterior salivary gland of the southern blue-ringed octopus, Hapalochlaena maculosa and 1300 proteins from the posterior salivary gland of the southern sand octopus, Octopus kaurna. The two proteomes were broadly similar; clustering of proteins into orthogroups revealed 937 that were shared between species. Serine proteases were particularly diverse and abundant in both species. Other abundant proteins included a large number of secreted proteins, many of which had no known conserved domains, or homology to proteins with known function. On the basis of homology to known venom proteins, 23 putative toxins were identified in H. maculosa and 24 in O. kaurna. These toxins span nine protein families: CAP (cysteine rich secretory proteins, antigen 5, parthenogenesis related), chitinase, carboxylesterase, DNase, hyaluronidase, metalloprotease, phospholipase, serine protease and tachykinin. Serine proteases were responsible for 70.9% and 86.3% of putative toxin expression in H. maculosa and O. kaurna, respectively, as determined using intensity based absolute quantification (iBAQ) measurements. Phylogenetic analysis of the putative toxin serine proteases revealed a similar suite of diverse proteins present in both species. Posterior salivary gland composition of H. maculosa and O. kaurna differ in several key aspects. While O. kaurna expressed the proteinaceous neurotoxin, tachykinin, this was absent from H. maculosa, perhaps reflecting the acquisition of a potent nonproteinaceous neurotoxin, tetrodotoxin (TTX) produced by bacteria in the salivary glands of that species. The dispersal factor, hyaluronidase was particularly abundant in H. maculosa. Chitinase was abundant in both species and is believed to facilitate envenomation in chitinous prey such as crustaceans. Cephalopods represent a largely unexplored source of novel proteins distinct from all other venomous taxa and are of interest for further inquiry, as novel proteinaceous toxins derived from venoms may contribute to pharmaceutical design.
Collapse
Affiliation(s)
- Brooke L Whitelaw
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University , Melbourne, Victoria 3086, Australia.,Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative , Carlton, Victoria 3053, Australia
| | - Jan M Strugnell
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Rute R da Fonseca
- The Bioinformatics Centre, Department of Biology, University of Copenhagen , Ole Maaløes Vej 5, 2200 København N, Denmark
| | - Nathan E Hall
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia.,Sciences, Museum Victoria , Carlton, Victoria 3053, Australia
| | - Mark Norman
- Sciences, Museum Victoria , Carlton, Victoria 3053, Australia
| | - Julian Finn
- Sciences, Museum Victoria , Carlton, Victoria 3053, Australia
| | - Ira R Cooke
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia.,Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University , Townsville, Queensland 4811, Australia
| |
Collapse
|
34
|
Jellyfish Bioactive Compounds: Methods for Wet-Lab Work. Mar Drugs 2016; 14:md14040075. [PMID: 27077869 PMCID: PMC4849079 DOI: 10.3390/md14040075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 11/17/2022] Open
Abstract
The study of bioactive compounds from marine animals has provided, over time, an endless source of interesting molecules. Jellyfish are commonly targets of study due to their toxic proteins. However, there is a gap in reviewing successful wet-lab methods employed in these animals, which compromises the fast progress in the detection of related biomolecules. Here, we provide a compilation of the most effective wet-lab methodologies for jellyfish venom extraction prior to proteomic analysis-separation, identification and toxicity assays. This includes SDS-PAGE, 2DE, gel chromatography, HPLC, DEAE, LC-MS, MALDI, Western blot, hemolytic assay, antimicrobial assay and protease activity assay. For a more comprehensive approach, jellyfish toxicity studies should further consider transcriptome sequencing. We reviewed such methodologies and other genomic techniques used prior to the deep sequencing of transcripts, including RNA extraction, construction of cDNA libraries and RACE. Overall, we provide an overview of the most promising methods and their successful implementation for optimizing time and effort when studying jellyfish.
Collapse
|
35
|
Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa). Toxins (Basel) 2016; 8:102. [PMID: 27058558 PMCID: PMC4848628 DOI: 10.3390/toxins8040102] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/07/2016] [Accepted: 03/22/2016] [Indexed: 12/26/2022] Open
Abstract
Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms.
Collapse
|
36
|
Liu G, Zhou Y, Liu D, Wang Q, Ruan Z, He Q, Zhang L. Global Transcriptome Analysis of the Tentacle of the Jellyfish Cyanea capillata Using Deep Sequencing and Expressed Sequence Tags: Insight into the Toxin- and Degenerative Disease-Related Transcripts. PLoS One 2015; 10:e0142680. [PMID: 26551022 PMCID: PMC4638339 DOI: 10.1371/journal.pone.0142680] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/26/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Jellyfish contain diverse toxins and other bioactive components. However, large-scale identification of novel toxins and bioactive components from jellyfish has been hampered by the low efficiency of traditional isolation and purification methods. RESULTS We performed de novo transcriptome sequencing of the tentacle tissue of the jellyfish Cyanea capillata. A total of 51,304,108 reads were obtained and assembled into 50,536 unigenes. Of these, 21,357 unigenes had homologues in public databases, but the remaining unigenes had no significant matches due to the limited sequence information available and species-specific novel sequences. Functional annotation of the unigenes also revealed general gene expression profile characteristics in the tentacle of C. capillata. A primary goal of this study was to identify putative toxin transcripts. As expected, we screened many transcripts encoding proteins similar to several well-known toxin families including phospholipases, metalloproteases, serine proteases and serine protease inhibitors. In addition, some transcripts also resembled molecules with potential toxic activities, including cnidarian CfTX-like toxins with hemolytic activity, plancitoxin-1, venom toxin-like peptide-6, histamine-releasing factor, neprilysin, dipeptidyl peptidase 4, vascular endothelial growth factor A, angiotensin-converting enzyme-like and endothelin-converting enzyme 1-like proteins. Most of these molecules have not been previously reported in jellyfish. Interestingly, we also characterized a number of transcripts with similarities to proteins relevant to several degenerative diseases, including Huntington's, Alzheimer's and Parkinson's diseases. This is the first description of degenerative disease-associated genes in jellyfish. CONCLUSION We obtained a well-categorized and annotated transcriptome of C. capillata tentacle that will be an important and valuable resource for further understanding of jellyfish at the molecular level and information on the underlying molecular mechanisms of jellyfish stinging. The findings of this study may also be used in comparative studies of gene expression profiling among different jellyfish species.
Collapse
Affiliation(s)
- Guoyan Liu
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai 200433, China
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yonghong Zhou
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai 200433, China
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Dan Liu
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai 200433, China
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Qianqian Wang
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai 200433, China
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Zengliang Ruan
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai 200433, China
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Qian He
- Department of Gynecology, Third Affiliated Hospital, Second Military Medical University, Shanghai 200433, China
| | - Liming Zhang
- Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai 200433, China
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
37
|
Ponce D, Brinkman DL, Luna-Ramírez K, Wright CE, Dorantes-Aranda JJ. Comparative study of the toxic effects of Chrysaora quinquecirrha (Cnidaria: Scyphozoa) and Chironex fleckeri (Cnidaria: Cubozoa) venoms using cell-based assays. Toxicon 2015; 106:57-67. [PMID: 26385314 DOI: 10.1016/j.toxicon.2015.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
The venoms of jellyfish cause toxic effects in diverse biological systems that can trigger local and systemic reactions. In this study, the cytotoxic and cytolytic effects of Chrysaora quinquecirrha and Chironex fleckeri venoms were assessed and compared using three in vitro assays. Venoms from both species were cytotoxic to fish gill cells and rat cardiomyocytes, and cytolytic in sheep erythrocytes. Both venoms decreased cell viability in a concentration-dependent manner; however, the greatest difference in venom potencies was observed in the fish gill cell line, wherein C. fleckeri was 12.2- (P = 0.0005) and 35.7-fold (P < 0.0001) more potently cytotoxic than C. quinquecirrha venom with 30 min and 120 min cell exposure periods, respectively. Gill cells and rat cardiomyocytes exposed to venoms showed morphological changes characterised by cell shrinkage, clumping and detachment. The cytotoxic effects of venoms may be caused by a group of toxic proteins that have been previously identified in C. fleckeri and other cubozoan jellyfish species. In this study, proteins homologous to CfTX-1 and CfTX-2 toxins from C. fleckeri and CqTX-A toxin from Chironex yamaguchii were identified in C. quinquecirrha venom using tandem mass spectrometry. The presence and relative abundance of these proteins may explain the differences in venom potency between cubozoan and scyphozoan jellyfish and may reflect their importance in the action of venoms.
Collapse
Affiliation(s)
- Dalia Ponce
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia; Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Diane L Brinkman
- Australian Institute of Marine Science, P. M. B. No 3, Townsville Mail Centre, Townsville, Queensland 4810, Australia.
| | - Karen Luna-Ramírez
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Christine E Wright
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia; Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Juan José Dorantes-Aranda
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
38
|
Horiike T, Nagai H, Kitani S. Identification of Allergens in the Box Jellyfish Chironex yamaguchii That Cause Sting Dermatitis. Int Arch Allergy Immunol 2015. [DOI: 10.1159/000434721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
39
|
Abstract
The venom of certain jellyfish has long been known to be potentially fatal to humans, but it is only recently that details of the proteomes of these fascinating creatures are emerging. The molecular contents of the nematocysts from several jellyfish species have now been analyzed using proteomic MS approaches and include the analysis of Chironex fleckeri, one of the most venomous jellyfish known. These studies suggest that some species contain toxins related to peptides and proteins found in other venomous creatures. The detailed characterization of jellyfish venom is likely to provide insight into the diversification of toxins and might be a valuable resource in drug design.
Collapse
|
40
|
Jouiaei M, Yanagihara AA, Madio B, Nevalainen TJ, Alewood PF, Fry BG. Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins (Basel) 2015; 7:2251-71. [PMID: 26094698 PMCID: PMC4488701 DOI: 10.3390/toxins7062251] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023] Open
Abstract
Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or "venom" that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design.
Collapse
Affiliation(s)
- Mahdokht Jouiaei
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia 4072, QLD, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Angel A Yanagihara
- Pacific Cnidaria Research Lab, Department of Tropical Medicine, University of Hawaii, Honolulu, HI 96822, USA.
| | - Bruno Madio
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Timo J Nevalainen
- Department of Pathology, University of Turku, Turku FIN-20520, Finland.
| | - Paul F Alewood
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia 4072, QLD, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| |
Collapse
|
41
|
Brinkman DL, Jia X, Potriquet J, Kumar D, Dash D, Kvaskoff D, Mulvenna J. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genomics 2015; 16:407. [PMID: 26014501 PMCID: PMC4445812 DOI: 10.1186/s12864-015-1568-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The box jellyfish, Chironex fleckeri, is the largest and most dangerous cubozoan jellyfish to humans. It produces potent and rapid-acting venom and its sting causes severe localized and systemic effects that are potentially life-threatening. In this study, a combined transcriptomic and proteomic approach was used to identify C. fleckeri proteins that elicit toxic effects in envenoming. RESULTS More than 40,000,000 Illumina reads were used to de novo assemble ∼ 34,000 contiguous cDNA sequences and ∼ 20,000 proteins were predicted based on homology searches, protein motifs, gene ontology and biological pathway mapping. More than 170 potential toxin proteins were identified from the transcriptome on the basis of homology to known toxins in publicly available sequence databases. MS/MS analysis of C. fleckeri venom identified over 250 proteins, including a subset of the toxins predicted from analysis of the transcriptome. Potential toxins identified using MS/MS included metalloproteinases, an alpha-macroglobulin domain containing protein, two CRISP proteins and a turripeptide-like protease inhibitor. Nine novel examples of a taxonomically restricted family of potent cnidarian pore-forming toxins were also identified. Members of this toxin family are potently haemolytic and cause pain, inflammation, dermonecrosis, cardiovascular collapse and death in experimental animals, suggesting that these toxins are responsible for many of the symptoms of C. fleckeri envenomation. CONCLUSIONS This study provides the first overview of a box jellyfish transcriptome which, coupled with venom proteomics data, enhances our current understanding of box jellyfish venom composition and the molecular structure and function of cnidarian toxins. The generated data represent a useful resource to guide future comparative studies, novel protein/peptide discovery and the development of more effective treatments for jellyfish stings in humans. (Length: 300).
Collapse
Affiliation(s)
- Diane L Brinkman
- Australian Institute of Marine Science, Townsville, QLD, Australia.
| | - Xinying Jia
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Jeremy Potriquet
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Dhirendra Kumar
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,G.N. Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Debasis Dash
- G.N. Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - David Kvaskoff
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
| | - Jason Mulvenna
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,The University of Queensland, School of Biomedical Sciences, Brisbane, QLD, Australia.
| |
Collapse
|
42
|
Wang J, Du X, Pan W, Wang X, Wu W. Photoactivation of the cryptochrome/photolyase superfamily. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Badré S. Bioactive toxins from stinging jellyfish. Toxicon 2014; 91:114-25. [PMID: 25286397 DOI: 10.1016/j.toxicon.2014.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 01/22/2023]
Abstract
Jellyfish blooms occur throughout the world. Human contact with a jellyfish induces a local reaction of the skin, which can be painful and leave scaring. Systemic symptoms are also observed and contact with some species is lethal. A number of studies have evaluated the in vitro biological activity of whole jellyfish venom or of purified fractions. Hemolytic, cytotoxic, neurotoxic or enzymatic activities are commonly observed. Some toxins have been purified and characterized. A family of pore forming toxins specific to Medusozoans has been identified. There remains a need for detailed characterization of jellyfish toxins to fully understand the symptoms observed in vivo.
Collapse
Affiliation(s)
- Sophie Badré
- Prevor, Moulin de Verville, 95760 Valmondois, France.
| |
Collapse
|
44
|
First report of a peroxiredoxin homologue in jellyfish: molecular cloning, expression and functional characterization of CcPrx4 from Cyanea capillata. Mar Drugs 2014; 12:214-31. [PMID: 24413803 PMCID: PMC3917271 DOI: 10.3390/md12010214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 01/11/2023] Open
Abstract
We first identified and characterized a novel peroxiredoxin (Prx), designated as CcPrx4, from the cDNA library of the tentacle of the jellyfish Cyanea capillata. The full-length cDNA sequence of CcPrx4 consisted of 884 nucleotides with an open reading frame encoding a mature protein of 247 amino acids. It showed a significant homology to peroxiredoxin 4 (Prx4) with the highly conserved F-motif (93FTFVCPTEI101), hydrophobic region (217VCPAGW222), 140GGLG143 and 239YF240, indicating that it should be a new member of the Prx4 family. The deduced CcPrx4 protein had a calculated molecular mass of 27.2 kDa and an estimated isoelectric point of 6.3. Quantitative real-time PCR analysis showed that CcPrx4 mRNA could be detected in all the jellyfish tissues analyzed. CcPrx4 protein was cloned into the expression vector, pET-24a, and expressed in Escherichia coli Rosetta (DE3) pLysS. Recombinant CcPrx4 protein was purified by HisTrap High Performance chelating column chromatography and analyzed for its biological function. The results showed that the purified recombinant CcPrx4 protein manifested the ability to reduce hydrogen peroxide and protect supercoiled DNA from oxidative damage, suggesting that CcPrx4 protein may play an important role in protecting jellyfish from oxidative damage.
Collapse
|
45
|
Brinkman DL, Konstantakopoulos N, McInerney BV, Mulvenna J, Seymour JE, Isbister GK, Hodgson WC. Chironex fleckeri (box jellyfish) venom proteins: expansion of a cnidarian toxin family that elicits variable cytolytic and cardiovascular effects. J Biol Chem 2014; 289:4798-812. [PMID: 24403082 DOI: 10.1074/jbc.m113.534149] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The box jellyfish Chironex fleckeri produces extremely potent and rapid-acting venom that is harmful to humans and lethal to prey. Here, we describe the characterization of two C. fleckeri venom proteins, CfTX-A (∼40 kDa) and CfTX-B (∼42 kDa), which were isolated from C. fleckeri venom using size exclusion chromatography and cation exchange chromatography. Full-length cDNA sequences encoding CfTX-A and -B and a third putative toxin, CfTX-Bt, were subsequently retrieved from a C. fleckeri tentacle cDNA library. Bioinformatic analyses revealed that the new toxins belong to a small family of potent cnidarian pore-forming toxins that includes two other C. fleckeri toxins, CfTX-1 and CfTX-2. Phylogenetic inferences from amino acid sequences of the toxin family grouped CfTX-A, -B, and -Bt in a separate clade from CfTX-1 and -2, suggesting that the C. fleckeri toxins have diversified structurally and functionally during evolution. Comparative bioactivity assays revealed that CfTX-1/2 (25 μg kg(-1)) caused profound effects on the cardiovascular system of anesthetized rats, whereas CfTX-A/B elicited only minor effects at the same dose. Conversely, the hemolytic activity of CfTX-A/B (HU50 = 5 ng ml(-1)) was at least 30 times greater than that of CfTX-1/2. Structural homology between the cubozoan toxins and insecticidal three-domain Cry toxins (δ-endotoxins) suggests that the toxins have a similar pore-forming mechanism of action involving α-helices of the N-terminal domain, whereas structural diversification among toxin members may modulate target specificity. Expansion of the cnidarian toxin family therefore provides new insights into the evolutionary diversification of box jellyfish toxins from a structural and functional perspective.
Collapse
Affiliation(s)
- Diane L Brinkman
- From the Australian Institute of Marine Science, P.M.B. No 3, Townsville Mail Centre, Townsville, Queensland 4810, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel) 2013; 6:108-51. [PMID: 24379089 PMCID: PMC3920253 DOI: 10.3390/toxins6010108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 01/20/2023] Open
Abstract
The toxicity of Cnidaria is a subject of concern for its influence on human activities and public health. During the last decades, the mechanisms of cell injury caused by cnidarian venoms have been studied utilizing extracts from several Cnidaria that have been tested in order to evaluate some fundamental parameters, such as the activity on cell survival, functioning and metabolism, and to improve the knowledge about the mechanisms of action of these compounds. In agreement with the modern tendency aimed to avoid the utilization of living animals in the experiments and to substitute them with in vitro systems, established cell lines or primary cultures have been employed to test cnidarian extracts or derivatives. Several cnidarian venoms have been found to have cytotoxic properties and have been also shown to cause hemolytic effects. Some studied substances have been shown to affect tumour cells and microorganisms, so making cnidarian extracts particularly interesting for their possible therapeutic employment. The review aims to emphasize the up-to-date knowledge about this subject taking in consideration the importance of such venoms in human pathology, the health implications and the possible therapeutic application of these natural compounds.
Collapse
Affiliation(s)
- Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| | - Luigi Pane
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| |
Collapse
|
47
|
Lipid peroxidation is another potential mechanism besides pore-formation underlying hemolysis of tentacle extract from the jellyfish Cyanea capillata. Mar Drugs 2013; 11:67-80. [PMID: 23303301 PMCID: PMC3564158 DOI: 10.3390/md11010067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/02/2012] [Accepted: 12/12/2012] [Indexed: 11/16/2022] Open
Abstract
This study was performed to explore other potential mechanisms underlying hemolysis in addition to pore-formation of tentacle extract (TE) from the jellyfish Cyanea capillata. A dose-dependent increase of hemolysis was observed in rat erythrocyte suspensions and the hemolytic activity of TE was enhanced in the presence of Ca2+, which was attenuated by Ca2+ channel blockers (Diltiazem, Verapamil and Nifedipine). Direct intracellular Ca2+ increase was observed after TE treatment by confocal laser scanning microscopy, and the Ca2+ increase could be depressed by Diltiazem. The osmotic protectant polyethylenglycol (PEG) significantly blocked hemolysis with a molecular mass exceeding 4000 Da. These results support a pore-forming mechanism of TE in the erythrocyte membrane, which is consistent with previous studies by us and other groups. The concentration of malondialdehyde (MDA), an important marker of lipid peroxidation, increased dose-dependently in rat erythrocytes after TE treatment, while in vitro hemolysis of TE was inhibited by the antioxidants ascorbic acid-Vitamin C (Vc)-and reduced glutathione (GSH). Furthermore, in vivo hemolysis and electrolyte change after TE administration could be partly recovered by Vc. These results indicate that lipid peroxidation is another potential mechanism besides pore-formation underlying the hemolysis of TE, and both Ca2+ channel blockers and antioxidants could be useful candidates against the hemolytic activity of jellyfish venoms.
Collapse
|
48
|
Multiple organ dysfunction: A delayed envenomation syndrome caused by tentacle extract from the jellyfish Cyanea capillata. Toxicon 2013; 61:54-61. [DOI: 10.1016/j.toxicon.2012.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 10/26/2012] [Accepted: 11/01/2012] [Indexed: 01/22/2023]
|
49
|
Brinkman DL, Aziz A, Loukas A, Potriquet J, Seymour J, Mulvenna J. Venom proteome of the box jellyfish Chironex fleckeri. PLoS One 2012; 7:e47866. [PMID: 23236347 PMCID: PMC3517583 DOI: 10.1371/journal.pone.0047866] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
The nematocyst is a complex intracellular structure unique to Cnidaria. When triggered to discharge, the nematocyst explosively releases a long spiny, tubule that delivers an often highly venomous mixture of components. The box jellyfish, Chironex fleckeri, produces exceptionally potent and rapid-acting venom and its stings to humans cause severe localized and systemic effects that are potentially life-threatening. In an effort to identify toxins that could be responsible for the serious health effects caused by C. fleckeri and related species, we used a proteomic approach to profile the protein components of C. fleckeri venom. Collectively, 61 proteins were identified, including toxins and proteins important for nematocyte development and nematocyst formation (nematogenesis). The most abundant toxins identified were isoforms of a taxonomically restricted family of potent cnidarian proteins. These toxins are associated with cytolytic, nociceptive, inflammatory, dermonecrotic and lethal properties and expansion of this important protein family goes some way to explaining the destructive and potentially fatal effects of C. fleckeri venom. Venom proteins and their post-translational modifications (PTMs) were further characterized using toxin-specific antibodies and phosphoprotein/glycoprotein-specific stains. Results indicated that glycosylation is a common PTM of the toxin family while a lack of cross-reactivity by toxin-specific antibodies infers there is significant divergence in structure and possibly function among family members. This study provides insight into the depth and diversity of protein toxins produced by harmful box jellyfish and represents the first description of a cubozoan jellyfish venom proteome.
Collapse
Affiliation(s)
- Diane L. Brinkman
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Ammar Aziz
- Queensland Tropical Health Alliance, James Cook University, Queensland, Australia
| | - Alex Loukas
- Queensland Tropical Health Alliance, James Cook University, Queensland, Australia
| | - Jeremy Potriquet
- Queensland Tropical Health Alliance, James Cook University, Queensland, Australia
| | - Jamie Seymour
- Queensland Tropical Health Alliance, James Cook University, Queensland, Australia
- Queensland Emergency Medical Research Foundation, Queensland, Australia
| | - Jason Mulvenna
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
50
|
Liang X, Beilei W, Ying L, Qianqian W, Sihua L, Yang W, Guoyan L, Jia L, Xuting Y, Liming Z. Cardiovascular effect is independent of hemolytic toxicity of tentacle-only extract from the jellyfish Cyanea capillata. PLoS One 2012; 7:e43096. [PMID: 22905209 PMCID: PMC3419651 DOI: 10.1371/journal.pone.0043096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/18/2012] [Indexed: 11/19/2022] Open
Abstract
Our previous studies have confirmed that the crude tentacle-only extract (cTOE) from the jellyfish Cyanea capillata (Cyaneidae) exhibits hemolytic and cardiovascular toxicities simultaneously. So, it is quite difficult to discern the underlying active component responsible for heart injury caused by cTOE. The inactivation of the hemolytic toxicity from cTOE accompanied with a removal of plenty of precipitates would facilitate the separation of cardiovascular component and the investigation of its cardiovascular injury mechanism. In our research, after the treatment of one-step alkaline denaturation followed by twice dialysis, the protein concentration of the treated tentacle-only extract (tTOE) was about 1/3 of cTOE, and SDS-PAGE showed smaller numbers and lower density of protein bands in tTOE. The hemolytic toxicity of tTOE was completely lost while its cardiovascular toxicity was well retained. The observations of cardiac function, histopathology and ultrastructural pathology all support tTOE with significant cardiovascular toxicity. Blood gas indexes and electrolytes changed far less by tTOE than those by cTOE, though still with significant difference from normal. In summary, the cardiovascular toxicity of cTOE can exist independently of the hemolytic toxicity and tTOE can be employed as a better venom sample for further purification and mechanism research on the jellyfish cardiovascular toxic proteins.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Chemical Defense Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Wang Beilei
- Department of Chemical Defense Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Li Ying
- School of Nursing, Second Military Medical University, Shanghai, China
| | - Wang Qianqian
- Department of Chemical Defense Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Liu Sihua
- Department of Chemical Defense Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Wang Yang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Liu Guoyan
- Department of Chemical Defense Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Lu Jia
- Department of Chemical Defense Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ye Xuting
- Department of Biophysics, School of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- * E-mail: (YX); (ZL)
| | - Zhang Liming
- Department of Chemical Defense Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
- * E-mail: (YX); (ZL)
| |
Collapse
|