1
|
He M, Wang H, Fu J, Ruan J, Li F, Liang X, Wei L. Oxidative stress and mitochondrial dysfunctions induced by cyanobacterial microcystin-LR in primary grass carp hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107327. [PMID: 40121739 DOI: 10.1016/j.aquatox.2025.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microcystin-LR (MC-LR), a cyclic heptapeptide produced by freshwater cyanobacteria, induces a range of liver injuries. However, the mechanisms underlying MC-LR toxicity in primary hepatocytes of aquatic organisms remains poorly understood. In this study, we investigated the effects of MC-LR on oxidative stress and mitochondrial function using primarily cultured grass carp hepatocytes. The results revealed that IC50 of MC-LR on grass carp primary liver cells for 24 hours was 2.40 μmol/L. Based on 24h-IC50, concentrations of 0, 0.30, 0.60, and 1.20 μmol/L were used in subsequent experiments. MC-LR exposure led to a significant reduction in cell viability, induced abnormal cell morphology, and caused plasma membrane rupture, as indicated by elevated LDH activity in a concentration-dependent manner. Additionally, MC-LR exposure induced oxidative stress, resulting in increased ROS levels and downregulation of genes associated with oxidative stress, including keap1, nrf2, cat, sod1, gpx, gst, and gr (P<0.05). Furthermore, the electron microscopy results showed that MC-LR caused damage to the ultrastructure of primary hepatocytes, including mitochondrial membrane rupture, vacuolation, and induction of mitochondrial autophagy. Moreover, MC-LR exposure elevated intracellular Ca2+ concentration, reduced MMP and ATP levels, and inhibited mitochondrial respiratory chain complex I activity (P<0.05). qRT-PCR analysis demonstrated that MC-LR treatment significantly decreased the transcriptional levels of genes related to mitochondrial quality control including pgc-1α, tfam, nrf1, drp1, opa1, mfn1, and mfn2 (P<0.05). Collectively, our findings highlight that MC-LR causes oxidative stress and impairs mitochondrial function, leading to further hepatocyte damage, which provides insights into the mechanisms of MC-LR-induced hepatotoxicity and offers valuable references for further investigations.
Collapse
Affiliation(s)
- Miao He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Jianping Fu
- College of life sciences, Jiangxi Normal University, Nanchang, Jiangxi Province 330022, PR China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Fugui Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| |
Collapse
|
2
|
Ferreira NDS, Costa PHD, de Sá ÍP, Bernardo VS, Torres FF, Figueiredo JG, do Amaral CDB, Nogueira ARA, Humberto da Silva DG, Gonzalez MH. Arsenic bioaccumulation and biotransformation in different tissues of Nile tilapia (Oreochromis niloticus): A comparative study between As(III) and As(V) exposure and evaluation of antagonistic effects of selenium. CHEMOSPHERE 2024; 359:142289. [PMID: 38723690 DOI: 10.1016/j.chemosphere.2024.142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
The speciation of arsenic in fish has been widely investigated, but bioaccumulation and biotransformation of inorganic As in different tissues of Nile tilapia (Oreochromis niloticus) are not fully understood. The present study aimed to investigate the bioaccumulation of As in Nile tilapia, as well as to evaluate the distribution of the main arsenic species (As(III), As(V), MMA, DMA, and AsB) in liver, stomach, gill, and muscle, after controlled exposures to As(III) and As(V) at concentrations of 5.0 and 10.0 mg L-1 during periods of 1 and 7 days. Total As was determined by inductively coupled plasma mass spectroscopy (ICP-MS). For both exposures (As(III) and As(V)), the total As levels after 7-day exposure were highest in the liver and lowest in the muscle. Overall, the Nile tilapia exposed to As(III) showed higher tissue levels of As after the treatments, compared to As(V) exposure. Speciation of arsenic present in the tissues employed liquid chromatography coupled to ICP-MS (LC-ICP-MS), revealing that the biotransformation of As included As(V) reduction to As(III), methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to nontoxic arsenobetaine (AsB), which was the predominant arsenic form. Finally, the interactions and antagonistic effects of selenium in the bioaccumulation processes were tested by the combined exposure to As(III), the most toxic species of As, together with tetravalent selenium (Se(IV)). The results indicated a 4-6 times reduction of arsenic toxicity in the tilapia.
Collapse
Affiliation(s)
- Nathalia Dos Santos Ferreira
- São Paulo State University (UNESP), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Department of Chemistry and Environmental Science, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, SP, 15054-000, Brazil
| | - Pedro Henrique da Costa
- São Paulo State University (UNESP), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Department of Chemistry and Environmental Science, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, SP, 15054-000, Brazil
| | - Ívero Pita de Sá
- Embrapa Pecuária Sudeste, Applied Instrumental Analysis Group, São Carlos, SP, 13560-970, Brazil
| | - Victoria Simões Bernardo
- São Paulo State University (UNESP), Department of Biological Sciences, São José do Rio Preto, SP, 15054-000, Brazil
| | - Flaviene Felix Torres
- São Paulo State University (UNESP), Department of Biological Sciences, São José do Rio Preto, SP, 15054-000, Brazil
| | | | | | - Ana Rita Araujo Nogueira
- Embrapa Pecuária Sudeste, Applied Instrumental Analysis Group, São Carlos, SP, 13560-970, Brazil
| | - Danilo Grünig Humberto da Silva
- São Paulo State University (UNESP), Department of Biological Sciences, São José do Rio Preto, SP, 15054-000, Brazil; Federal University of Mato Grosso Do Sul (CPTL/UFMS), Department of Biological Sciences, Três Lagoas, MS, 79600-080, Brazil
| | - Mario Henrique Gonzalez
- São Paulo State University (UNESP), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Department of Chemistry and Environmental Science, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
3
|
Bhatt S, Dasgupta S, Gupta S, Sahu NP, Kumar VJR, Varghese T. Effect of sulfate on the osmoregulatory and physio-biochemical responses of GIFT (Oreochromis niloticus) juveniles reared in potassium-deficient medium saline waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18636-18655. [PMID: 38351352 DOI: 10.1007/s11356-024-32219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
The inland saline waters were continuously observed to have low potassium concentrations compared to their seawater counterpart of the same salinity. We hypothesize that the toxic effect of sulfate may manifest in low potassium saline (LPSW) waters compared to brackish water of the same salinity. Thus, LC50 trials were performed in GIFT (genetically improved farmed tilapia) fry (0.5 ± 0.02 g) to determine the acute sulfate toxicity in freshwater (FW, 0.5 g L-1), artificial seawater (ASW, 10 g L-1), and LPSW (10 g L-1). The median lethal concentrations (96h LC50) of sulfate ion in FW, LPSW, and ASW for the GIFT were 5.30 g L-1, 2.56 g L-1, and 2.98 g L-1, respectively. A second experiment was conducted for 21 days, exposing fish to a sub-lethal level of sulfate ion (SO42-) concentration (1000 mg L-1, one-fifth of FW LC50) with different types of waters (FW, freshwater, 0.5 g L-1; ASW, artificial seawater, 10 g L-1; LPSW, low potassium saline water, 10 g L-1) with and without sulfate inclusion to constitute the treatments as follows, (FW, FW + SO4, ASW, ASW + SO4, LPSW, LPSW + SO4). The effect of sulfate on GIFT reared in sulfate-rich potassium-deficient medium saline water was evaluated by focusing on the hematological adjustments, stress-induced oxidative damage, and osmoregulatory imbalances. The survival was not altered due to the sulfate concentration and K+ deficiency; however, there were significant changes in branchial NKA (Na+/K+-ATPase) activity and osmolality. The increase in NKA was highest in LPSW treatment, suggesting that internal ionic imbalance was triggered due to an interactive effect of sulfate and K+ deficiency. The cortisol levels showed a pronounced increase due to sulfate inclusion irrespective of K+ deficiency. The antioxidant enzymes, i.e., SOD (superoxide dismutase), catalase, GST (glutathione-S-transferase), and GPX (glutathione peroxidase), reflected a similar pattern of increment in the gills and liver of the LPSW + SO4 groups, suggesting a poor antioxidant status of the exposed group. The hepatic peroxidation status, i.e. TBARS (thiobarbituric acid reactive substances), and the peroxide values were enhanced due to both K+ deficiency and sulfate inclusion, suggesting a possible lipid peroxidation in the liver due to handling the excess sulfate anion concentration. The hematological parameters, including haemoglobin, total erythrocyte count, and hematocrit level, reduced significantly in the LPSW + SO4 group, indicating a reduced blood oxygen capacity due to the sulfate exposure and water potassium deficiency. The hepatic acetylcholine esterase activity was suppressed in all the treatments with sulfate inclusion, while the highest suppression was observed in the LPSW + SO4 group. Thus, it is concluded that sulfate-induced physiological imbalances manifest more in potassium-deficient water, indicating that environmental sulfate is more detrimental to inland saline water than freshwater or brackish water of the same salinity.
Collapse
Affiliation(s)
- Shivangi Bhatt
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, India, 400061
| | - Subrata Dasgupta
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, India, 400061
| | - Subodh Gupta
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, India, 400061
| | | | | | - Tincy Varghese
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, India, 400061.
| |
Collapse
|
4
|
Yu Q, Han F, Rombenso A, Qin JG, Chen L, Li E. Dietary selenium supplementation alleviates low salinity stress in the Pacific white shrimp Litopenaeus vannamei: growth, antioxidative capacity and hepatopancreas transcriptomic responses. Br J Nutr 2023; 130:933-943. [PMID: 36573369 DOI: 10.1017/s0007114522004032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Se is an essential trace element associated with animal growth and antioxidant and metabolic processes. However, whether Se, especially organic Se with higher bioavailability, can alleviate the adverse effects of low salinity stress on marine economic crustacean species has not been investigated. Accordingly, juvenile Pacific white shrimp (Litopenaeus vannamei) were reared in two culture conditions (low and standard salinity) fed diets supplemented with increasing levels of l-selenomethionine (0·41, 0·84 and 1·14 mg/kg Se) for 56 d, resulting in four treatments: 0·41 mg/kg under standard seawater (salinity 31) and 0·41, 0·84 and 1·14 mg/kg Se under low salinity (salinity 3). The diet containing 0·84 mg/kg Se significantly improved the survival and weight gain of shrimp under low salinity stress and enhanced the antioxidant capacity of the hepatopancreas. The increased numbers of B and R cells may be a passive change in hepatopancreas histology in the 1·14 mg/kg Se group. Transcriptomic analysis found that l-selenomethionine was involved in the regulatory pathways of energy metabolism, retinol metabolism and steroid hormones. In conclusion, dietary supplementation with 0·84 mg/kg Se (twice the recommended level) effectively alleviated the effects of low salinity stress on L. vannamei by regulating antioxidant capacity, hormone regulation and energy metabolism.
Collapse
Affiliation(s)
- Qiuran Yu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
- School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Artur Rombenso
- CSIRO, Agriculture and Food, Livestock & Aquaculture Program, Bribie Island Research Centre, Bribie Island, QLD, Australia
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| |
Collapse
|
5
|
Li ZM, Wang XL, Jin XM, Huang JQ, Wang LS. The effect of selenium on antioxidant system in aquaculture animals. Front Physiol 2023; 14:1153511. [PMID: 37179840 PMCID: PMC10169727 DOI: 10.3389/fphys.2023.1153511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 05/15/2023] Open
Abstract
There will be generated some adverse conditions in the process of acquculture farming with the continuous improvement of the intensive degree of modern aquaculture, such as crowding stress, hypoxia, and malnutrition, which will easily lead to oxidative stress. Se is an effective antioxidant, participating and playing an important role in the antioxidant defense system of fish. This paper reviews the physiological functions of selenoproteins in resisting oxidative stress in aquatic animals, the mechanisms of different forms of Se in anti-oxidative stress in aquatic animals and the harmful effects of lower and higher levels of Se in aquaculture. To summarize the application and research progress of Se in oxidative stress in aquatic animals and provide scientific references for its application in anti-oxidative stress in aquaculture.
Collapse
Affiliation(s)
- Zi-Meng Li
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, China
- College of Fisheries an Life, Dalian Ocean University, Dalian, Liaoning, China
- Hebei Key Laboratory of Ocean Dynamics Resources and Environments, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiu-Li Wang
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, China
- College of Fisheries an Life, Dalian Ocean University, Dalian, Liaoning, China
| | - Xiao-Min Jin
- Hebei Key Laboratory of Ocean Dynamics Resources and Environments, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jia-Qiang Huang
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Lian-Shun Wang
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, China
- College of Fisheries an Life, Dalian Ocean University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Feng M, Gui Y, An J, Cao X, Lu W, Yang G, Jian S, Hu B, Wen C. The thioredoxin expression of Cristaria plicata is regulated by Nrf2/ARE pathway under microcystin stimulation. Int J Biol Macromol 2023; 242:124509. [PMID: 37085063 DOI: 10.1016/j.ijbiomac.2023.124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Thioredoxin plays an important role in inhibiting apoptosis and protecting cells from oxidative stress. This study was aimed to clarify how the expression of Trx from Cristaria plicata is regulated by Nrf2/ARE pathway. The expression of CpTrx mRNA was significantly up-regulated in gill and kidney tissues under microcystin stress. The Nrf2 gene of Cristaria plicata was identified to possess an auto active domain bit. While CpNrf2 was knocked down by specific small RNA, CpTrx mRNA expression was significantly down-regulated. The promoter of CpTrx gene had high transcriptional activity, and this basic transcriptional activity persisted after ARE element mutation. The region of promoter -206 to +217 bp was a core promoter region and had forward regulatory elements. Gel shift Assay exhibited that the CpTrx promoter could bind to the purified proteins CpNrf2 and CpMafK in vitro. The binding phenomenon disappeared after the ARE element mutation in promoter region. Subcellular localization experiments displayed that fluorescence overlap between CpNrf2 and Trx promoter increased under microcystin toxin stress. These results suggested that Trx expression was regulated by Nrf2/ARE pathway under oxidative stress.
Collapse
Affiliation(s)
- Maolin Feng
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Yingping Gui
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Jinhua An
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - XinYing Cao
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Wuting Lu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Shaoqing Jian
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
7
|
Veerabadhran M, Manivel N, Sarvalingam B, Seenivasan B, Srinivasan H, Davoodbasha M, Yang F. State-of-the-art review on the ecotoxicology, health hazards, and economic loss of the impact of microcystins and their ultrastructural cellular changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106417. [PMID: 36805195 DOI: 10.1016/j.aquatox.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Hunan 410078, China
| | - Nagarajan Manivel
- ICAR-Central Marine Fisheries Research Institute, Chennai 600 0028, India
| | - Barathkumar Sarvalingam
- National Centre for Coastal Research (NCCR), Ministry of Earth Science, NIOT Campus, Chennai 600100, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Hemalatha Srinivasan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| |
Collapse
|
8
|
Ghaniem S, Nassef E, Zaineldin AI, Bakr A, Hegazi S. A Comparison of the Beneficial Effects of Inorganic, Organic, and Elemental Nano-selenium on Nile Tilapia: Growth, Immunity, Oxidative Status, Gut Morphology, and Immune Gene Expression. Biol Trace Elem Res 2022; 200:5226-5241. [PMID: 35028868 DOI: 10.1007/s12011-021-03075-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 12/29/2022]
Abstract
This study investigates the effects of different sources of selenium (inorganic (SSE), organic (OSE), and elemental nano-selenium (NSE)) on the performance of Nile tilapia (Oreochromis niloticus). In total, 204 Nile tilapia fingerlings were randomly divided into 4 equal groups fed 1 of 4 diets: a control (adding no selenium) and 3 diets as selenium sources (1 mg/kg diet), After a 65-day feeding trial, the growth performance parameters of Nile tilapia were significantly enhanced by dietary selenium supplementation (P < 0.05), with the highest values recorded in the OSE- and NSE-supplemented groups. The selenium-supplemented groups had the highest packed-cell volume, hemoglobin, and red blood cell levels, with the highest values seen in the NSE-supplemented group (P < 0.05). Innate immune-related enzymes and immunoglobulin levels were significantly enhanced with selenium supplementation (P < 0.05); the NSE group demonstrated the highest significant levels of these enzyme activities (P < 0.05). In all selenium-supplemented groups, malondialdehyde levels were significantly and equally reduced (P < 0.05) compared with levels in the control. Bactericidal activity was only enhanced in the NSE group (P < 0.05) compared with other treatments. The expression of TNF-α and IL-Iβ genes was significantly upregulated in selenium-supplemented groups, with the highest expression in the OSE and NSE groups (P < 0.05). These findings support the importance of incorporating selenium in the diet of Nile tilapia. Furthermore, elementary nano-selenium is more effective than inorganic or organic selenium supplementation at improving Nile tilapia growth performance and overall health.
Collapse
Affiliation(s)
- Sameh Ghaniem
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Amr I Zaineldin
- Agriculture Research Center, Animal Health Research Institute (AHRI-DOKI), Kafrelsheikh, Egypt.
| | - Abdulnasser Bakr
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Sayed Hegazi
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
9
|
Hong H, Liu Z, Li S, Wu D, Jiang L, Li P, Wu Z, Xu J, Jiang A, Zhang Y, Wei Z, Yang Z. Zinc oxide nanoparticles (ZnO-NPs) exhibit immune toxicity to crucian carp (Carassius carassius) by neutrophil extracellular traps (NETs) release and oxidative stress. FISH & SHELLFISH IMMUNOLOGY 2022; 129:22-29. [PMID: 35932984 DOI: 10.1016/j.fsi.2022.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are widely used in sunscreens, cosmetics, paint, construction materials, and other products. ZnO-NPs released into the environment can harm aquatic creatures and pose a health risk to humans through the food chain. ZnO-NPs are toxic to fish, but there are few reports on its immunotoxicity on crucian carp (Carassius carassius). In this study, ZnO-NPs increased the biochemical indexes of the liver in serum, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). In histopathological observation, many inflammatory cells were filled in the liver's central vein stimulated by ZnO-NPs. Furthermore, ZnO-NPs could increase malondialdehyde (MDA) level, lessen superoxide dismutase (SOD) level, and elevate the level of neutrophil extracellular traps (NETs). However, deoxyribonuclease I (DNase I) alleviated all biochemical indexes and histopathological changes. Immunofluorescence in vitro confirmed that NETs were composed of citrullinated histone 3, myeloperoxidase, and neutrophil elastase. ZnO-NPs-increased NETs were dependent on reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase and were also related to partial processes of glycolysis. Our study confirms that ZnO-NPS has a toxic effect on the liver of crucian carp. DNase I can prevent liver damage caused by ZnO-NPs, which provides a new insight into the immunotoxicity of ZnO-NPs to fish.
Collapse
Affiliation(s)
- Hongrong Hong
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Ziyi Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Shuangqiu Li
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Di Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Peixuan Li
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Zhikai Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Aimin Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Yong Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China; College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin province, PR China.
| |
Collapse
|
10
|
Svirčev Z, Chen L, Sántha K, Drobac Backović D, Šušak S, Vulin A, Palanački Malešević T, Codd GA, Meriluoto J. A review and assessment of cyanobacterial toxins as cardiovascular health hazards. Arch Toxicol 2022; 96:2829-2863. [PMID: 35997789 PMCID: PMC9395816 DOI: 10.1007/s00204-022-03354-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.
Collapse
Affiliation(s)
- Zorica Svirčev
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Kinga Sántha
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Stamenko Šušak
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Vulin
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Tamara Palanački Malešević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jussi Meriluoto
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
11
|
Fan S, Yang Y, Sun L, Yu B, Dai C, Qu Y. Different toxicity to liver and gill of zebrafish by selenium nanoparticles derived from bio/chemical methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61512-61521. [PMID: 35445301 DOI: 10.1007/s11356-022-20295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
With the wide application of selenium nanoparticles (SeNPs) in pharmaceutical fields, the toxicity assessment is of great significance. In this study, zebrafish were selected as model organisms to compare the toxicity of SeNPs derived from biological and chemical methods. The results showed that the size of bio-SeNPs was about 5-fold bigger than chem-SeNPs. When exposed to SeNPs for 96 h, LC50 of bio-SeNPs and chem-SeNPs was 1.668 mg/L and 0.699 mg/L, respectively. Compared with the control, the results showed a significant increase in oxidative toxicity index (P < 0.05), such as glutathione (GSH), superoxide dismutase (SOD) of the liver, and gill in SeNPs-treated group. The neurotoxicity index, such as acetylcholinesterase (AchE) and Na+-K+-ATP enzyme activity, was significantly decreased both in the liver and gill (P < 0.05). It was found that the toxicity of bio-SeNPs to the liver and gill of zebrafish was lower than chem-SeNPs and the toxicity to the liver was higher than gill. In this study, the toxicity of chem-SeNPs and bio-SeNPs to the target organs of zebrafish were systematically evaluated, which provided the basis for the safe application of SeNPs synthesized by different pathways.
Collapse
Affiliation(s)
- Shuling Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ying Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lu Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
12
|
Liu M, Sun C, Zheng X, Zhou Q, Liu B, Zhou Y, Xu P, Liu B. Comparative Proteomic Analysis Revealed the Mechanism of Tea Tree Oil Targeting Lipid Metabolism and Antioxidant System to Protect Hepatopancreatic Health in Macrobrachium rosenbergii. Front Immunol 2022; 13:906435. [PMID: 35711420 PMCID: PMC9195101 DOI: 10.3389/fimmu.2022.906435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
Tea tree oil (TTO) is a pure natural plant essential oil. The studies evaluated the hepatopancreas lipid metabolism and antioxidant efficacy of Macrobrachium rosenbergii fed with 0 (CT group) and 100 mg/kg TTO (TT group) by label-free quantification proteomic analysis. Compared to the CT group, the TT group improved growth performance and increased the survival rate after stress. Dietary TTO also decreased hemolymph AST and ALT activities and decreased hepatopancreatic vacuolation. At the same time, hepatopancreas lipids droplets and hemolymph lipids (TG, TC, LDL-C) were decreased, and the peroxidation products content (MDA, LPO, 4-HNE) was also decreased. In addition, the levels of hepatopancreas antioxidant enzymes (T-AOC, CAT, and SOD) were increased in the TT group. With proteomic analysis, a total of 151 differentially expressed proteins (DEPs) (99 up-regulated and 52 down-regulated) were identified in the hepatopancreas. Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction analysis showed that the 16 DEPs have interactions, which are mainly involved in the pathways related to lipid metabolism (fatty acid biosynthesis, fatty acid metabolism, glycerophospholipid metabolism) and redox reaction (cytochrome P450 enzyme systems). Furthermore, the mRNA expression of 15 proteins followed the proteomic analysis with qRT-PCR validation. Pearson correlation analysis showed that fatty acids and glycerophospholipid metabolism-related proteins were highly correlated to peroxide content, glycerophospholipid metabolism, and cytochrome P450 system-related proteins (CYP1A1, GSTT1, GPX4) were highly correlated to AST and ALT. Additionally, GPX4 is closely related to peroxide content and antioxidant enzyme activity. Our results revealed that TTO plays a protective role in the hepatopancreas targeting the critical enzymes and antioxidant reactions in lipid metabolism. Provides a new perspective to elucidate the action path of TTO in protecting invertebrate hepatopancreas, highlights the influence of lipid metabolism on hepatopancreas health and the interaction between lipid metabolism and antioxidant system in the regulation of TTO.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yifan Zhou
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Pao Xu, ; Bo Liu,
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Pao Xu, ; Bo Liu,
| |
Collapse
|
13
|
Rastegar Moghaddam SH, Hosseini M, Sabzi F, Hojjati Fard F, Marefati N, Beheshti F, Darroudi M, Ebrahimzadeh Bideskan A, Anaeigoudari A. Cardiovascular protective effect of nano selenium in hypothyroid rats: protection against oxidative stress and cardiac fibrosis. Clin Exp Hypertens 2022; 44:268-279. [PMID: 35142246 DOI: 10.1080/10641963.2022.2036994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nano selenium (Nano Sel) has many therapeutic properties including antioxidant, anticancer, and anti-inflammatory actions. OBJECTIVE Impacts of Nano Sel administration against cardiac fibrosis and heart and aorta tissue oxidative damage observed in hypothyroid rats were explored. METHODS The animals were randomly grouped and treated as: 1) Control; 2) Propylthiouracil (PTU) in which PTU was added to the drinking water (0.05%) to induce hypothyroidism; 3-5) PTU-Nano Sel 50, PTU-Nano Sel 100, and PTU-Nano Sel 150 groups, which received daily PTU plus 50,100 or 150 µg/kg of Nano Sel for 6 weeks intraperitoneally. The heart and aorta tissues were removed under deep anesthesia and then biochemical parameters including malondialdehyde (MDA), total thiol groups, catalase (CAT), and superoxide dismutase (SOD), as well as cardiac fibrosis were assessed. RESULTS Hypothyroidism induced by PTU was remarkably associated with myocardial hypertrophy and perivascular fibrosis in Masson's trichrome staining. Moreover, hypothyroidism increased MDA level, while it subtracted total thiol group content and activity of SOD and CAT. Treatment with Nano Sel recovered hypothyroidism-induced cardiac fibrosis in the histological assessment. Nano Sel also promoted CAT and SOD activity and thiol content, whereas alleviated MDA levels in the heart and aorta tissues. CONCLUSION Results propose that administration of Nano Sel exerts a protective role in the cardio vascular system via preventing cardiac fibrosis and inhibiting oxidative stress.
Collapse
Affiliation(s)
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Sabzi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Hojjati Fard
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
14
|
Lin W, Hung TC, Kurobe T, Wang Y, Yang P. Microcystin-Induced Immunotoxicity in Fishes: A Scoping Review. Toxins (Basel) 2021; 13:765. [PMID: 34822549 PMCID: PMC8623247 DOI: 10.3390/toxins13110765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A). Immunity is known as one of the most important physiological functions in the neuroendocrine-immune network to prevent infections and maintain internal homoeostasis in fish. The present review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish, and put forward some suggestions for future research. The immunomodulatory effects of MCs in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous field and laboratory studies provided strong evidence of the associations between MC-induced immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic microbial pathogens.
Collapse
Affiliation(s)
- Wang Lin
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
- Department of Fisheries Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA;
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Pinhong Yang
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
| |
Collapse
|
15
|
Tseng Y, Dominguez D, Bravo J, Acosta F, Robaina L, Geraert PA, Kaushik S, Izquierdo M. Organic Selenium (OH-MetSe) Effect on Whole Body Fatty Acids and Mx Gene Expression against Viral Infection in Gilthead Seabream ( Sparus aurata) Juveniles. Animals (Basel) 2021; 11:2877. [PMID: 34679898 PMCID: PMC8532762 DOI: 10.3390/ani11102877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
The supplementation of fish diets with OH-SeMet reduces oxidative stress and modulates immune response against bacterial infection. However, despite the importance of essential polyunsaturated fatty acids in fish nutrition and their high risk of oxidation, the potential protective effect of OH-SeMet on these essential fatty acids has not been studied in detail. Moreover, while viral infection is very relevant in seabream production, no studies have focused the Se effects against viral infection. The aim of the present study was to assess the impact of dietary supplementation with OH-SeMet on gilthead seabream fatty acid profiles, growth performance and response against viral infection. Gilthead seabream juveniles (21.73 ± 0.27 g) were fed for 91 days with three experimental diets, a control diet without supplementation of Se (0.29 mg Se kg diet-1) and two diets supplemented with OH-SeMet (0.52 and 0.79 mg Se kg diet-1). A crowding stress test was performed at week 7 and an anti-viral response challenge were conducted at the end of the feeding trial. Selenium, proximate and fatty acid composition of diets and body tissues were analyzed. Although fish growth was not affected, elevation in dietary Se proportionally raised Se content in body tissues, increased lipid content in the whole body and promoted retention and synthesis of n-3 polyunsaturated fatty acids. Specifically, a net production of DHA was observed in those fish fed diets with a higher Se content. Additionally, both monounsaturated and saturated fatty acids were significantly reduced by the increase in dietary Se. Despite the elevation of dietary Se to 0.79 mg kg-1 not affecting basal cortisol levels, 2 h post-stress plasma cortisol levels were markedly increased. Finally, at 24 h post-stimulation, dietary OH-SeMet supplementation significantly increased the expression of the antiviral response myxovirus protein gene, showing, for the first time in gilthead seabream, the importance of dietary Se levels on antiviral defense.
Collapse
Affiliation(s)
- Yiyen Tseng
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - David Dominguez
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Jimena Bravo
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Felix Acosta
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Lidia Robaina
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Pierre-André Geraert
- Adisseo France S.A.S., 10 Place du General de Gaulle, Antony, 92160 Paris, France;
| | - Sadasivam Kaushik
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), Institute of Sustainable Aquaculture and Marine Ecosystems (ECOAQUA), Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (D.D.); (J.B.); (F.A.); (L.R.); (S.K.); (M.I.)
| |
Collapse
|
16
|
Assessment the using of silica nanoparticles (SiO 2NPs) biosynthesized from rice husks by Trichoderma harzianum MF780864 as water lead adsorbent for immune status of Nile tilapia ( Oreochromis niloticus). Saudi J Biol Sci 2021; 28:5119-5130. [PMID: 34466090 PMCID: PMC8381041 DOI: 10.1016/j.sjbs.2021.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/03/2022] Open
Abstract
Rice husks (RHs) was used as a substrate for biosynthesis of high-value Silica nanoparticles (SiO2NPs). An isolate of Trichoderma harzianum MF780864 (T. harzianum) was isolated and identified based on the Internal Transcribed Spacers (ITS) sequences; it showed the potentiality to induce SiO2NPs in the process of RHs biotransformation. SiO2NPs were produced extracellularly and their size was of about 89 nm. SiO2NPs characterized by oval, rod and cubical particles by using Transmission Electron Microscope (TEM).The Fourier transform infrared spectroscopy (FTIR) confirmed the presence of various functional groups of biomolecules and capping protein, encapsulating SiO2NPs. Water and fish samples were collected from private fish farms in El-Sharkia Governorate, Egypt. Lead (Pb) was detected from water and fish samples at its highest concentration at about 0.088 mg/L. The adsorption capacity of Pb by SiO2NPs was evaluated by testing different concentrations of SiO2NPs viz. 1, 2, and 3 mg/L, wherein 1 mg/L revealed the highest Pb adsorption efficiency. Within laboratory trials, the results indicated that highest Pb adsorption efficiency revealed through the increasing of SiO2NPs concentrations until 120 h. In vivo trial that lasted for 8 weeks, Nile tilapia (Oreochromis niloticus) (29.78 ± 0.36 g body weight) supplemented with 0.088 mg/L Pb was divided into four experimental groups having three replicates (15 fish/replicate; 45 fish/group). The results showed that SiO2NPs supplementation through water revealed significant increase in growth and hematological parameters of O. niloticus. Moreover, enhancement of antioxidant capacity (TAC), and immune related gene expression of IL-1β were increased in the presence of SiO2NPs compared with the groups of Pb exposure. Moreover, Pb residue level in fish muscles was noticeably decreased in the SiO2NPs treated groups. Thus, this research opens up other possibilities in the field of using SiO2NPs as a lead adsorbent for water bioremediation.
Collapse
|
17
|
El-Garawani IM, Khallaf EA, Alne-Na-Ei AA, Elgendy RG, Mersal GAM, El-Seedi HR. The role of ascorbic acid combined exposure on Imidacloprid-induced oxidative stress and genotoxicity in Nile tilapia. Sci Rep 2021; 11:14716. [PMID: 34282219 PMCID: PMC8289846 DOI: 10.1038/s41598-021-94020-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Imidacloprid (Imid), a systemic neonicotinoid insecticide, is broadly used worldwide. It is reported to contaminate aquatic systems. This study was proposed to evaluate oxidative stress and genotoxicity of Imid on Nile tilapia (Oreochromis niloticus) and the protective effect of ascorbic acid (Asc). O. niloticus juveniles (30.4 ± 9.3 g, 11.9 ± 1.3 cm) were divided into six groups (n = 10/replicate). For 21 days, two groups were exposed to sub-lethal concentrations of Imid (8.75 ppm, 1/20 of 72 h-LC50 and 17.5 ppm, 1/10 of 72 h-LC50); other two groups were exposed to Asc (50 ppm) in combination with Imid (8.75 and 17.5 ppm); one group was exposed to Asc (50 ppm) in addition to a group of unexposed fish which served as controls. Oxidative stress was assessed in the liver where the level of enzymatic activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in addition to mRNA transcripts and, Lipid peroxidation (LPO) were evaluated. Moreover, mitotic index (MI) and comet assay were performed, in addition, the erythrocytic micronucleus (MN), and nuclear abnormalities (NA) were observed to assess genotoxicity in fish. Imid exposure induced significant (p ˂ 0.05) changes in the antioxidant profile of the juveniles' liver by increasing the activities and gene expression of SOD, CAT and GPX as well as elevating the levels of LPO. DNA strand breaks in gill cells, erythrocytes and hepatocytes along with erythrocytic MN and NA were also significantly elevated in Imid-exposed groups. MI showed a significant (p ˂ 0.05) decrease associated with Imid exposure. Asc administration induced a significant amelioration towards the Imid toxicity (8.75 and 17.5 ppm). A significant protective potency against the genotoxic effects of Imid was evidenced in Asc co-treated groups. Collectively, results highlight the importance of Asc as a protective agent against Imid-induced oxidative stress and genotoxicity in O. niloticus juveniles.
Collapse
Affiliation(s)
- Islam M El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt.
| | - Elsayed A Khallaf
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt
| | - Alaa A Alne-Na-Ei
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt
| | - Rehab G Elgendy
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt
| | - Gaber A M Mersal
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt.
| |
Collapse
|
18
|
Wang K, Liu L, He Y, Qu C, Miao J. Effects of Dietary Supplementation with κ-Selenocarrageenan on the Selenium Accumulation and Intestinal Microbiota of the Sea Cucumbers Apostichopus japonicus. Biol Trace Elem Res 2021; 199:2753-2763. [PMID: 32974844 DOI: 10.1007/s12011-020-02393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
A 30-day feeding trial was conducted to investigate the effect of κ-selenocarrageenan on the growth performance, selenium accumulation, antioxidant capacity, and intestinal microbiota of sea cucumbers Apostichopus japonicus, with different sizes (70 g ± 10 g and 100 g ± 10 g). Sea cucumbers of each size were randomly assigned into two groups; a diet without supplemented κ-selenocarrageenan was referred to as a control diet, or supplemented with κ-selenocarrageenan at selenium (Se) levels of 2.0 μg/g. Selenium accumulation in the body wall and intestine was determined on days 0, 10, 20, and 30. The survival rate (SR) was significantly higher in the κ-selenocarrageenan-treated group (Se group) than in the control group. After 30 days of feeding, κ-selenocarrageenan supplementation increased the activities of glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC), and decreased malondialdehyde (MDA) levels in A. japonicus. Furthermore, the intestinal microbiota diversity of sea cucumbers was increased by dietary supplementation with κ-selenocarrageenan and the relative abundances of some probiotics (such as Sulfitobacter and Rhodobacteraceae) were also increased. It is suggested that κ-selenocarrageenan could increase the antioxidant capacity and modulate the intestinal microbiota of sea cucumbers A. japonicus. Further researches will be conducted for its optimal administration concentrations in vivo.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Lina Liu
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
19
|
Araujo JM, Fortes-Silva R, Pola CC, Yamamoto FY, Gatlin DM, Gomes CL. Delivery of selenium using chitosan nanoparticles: Synthesis, characterization, and antioxidant and growth effects in Nile tilapia (Orechromis niloticus). PLoS One 2021; 16:e0251786. [PMID: 34003829 PMCID: PMC8130939 DOI: 10.1371/journal.pone.0251786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
This study aimed to elucidate the effects of selenium-loaded chitosan nanoparticles used as a dietary supplement on Nile tilapia (Oreochromis niloticus) antioxidant and growth responses. First, chitosan-based nanoparticles containing selenium (Se) were synthesized using the ionotropic gelation method and their physicochemical characteristics, controlled release profile, and antioxidant activity properties were investigated. Thereafter, the effects on glutathione peroxidase and antioxidant activities (by radical scavenging activity), growth, and whole-body composition of Nile tilapia were evaluated when they were fed with Se-loaded chitosan nanoparticles and compared with other selenium dietary supplements. Se-loaded chitosan nanoparticles showed high entrapment efficiency (87%), spherical shape, smooth surface, and broad size distribution. The controlled release of Se consisted of an initial burst followed by a gradual release over 48 h. Se-loaded nanoparticles presented significantly higher antioxidant activity compared to free Se. A 60-day feeding trial was conducted to compare the effects of supplementing different dietary Se sources, including selenomethionine (as organic source), sodium selenite (as inorganic source), and Se-loaded chitosan nanoparticles (Se-Nano and Se-Nano x1.5) on antioxidant and growth responses of Nile tilapia. A basal diet without Se supplementation was used as the control. The dietary supplementations with different Se sources (free and encapsulated selenium) lead to significant improvements in final weight and feed efficiency of Nile tilapia fingerlings. However, dietary treatments did not affect whole-body protein and lipid content. Diets containing Se-Nano and Se-Nano x1.5 were more effective than sodium selenite and selenomethionine in preventing oxidative stress and improving antioxidant activity in Nile tilapia. Overall, Se-loaded nanoparticles presented a great potential as an efficient source for delivering dietary Se to Nile tilapia, directly affecting the growth performance, feed efficiency, oxidative stress, and antioxidant activity of this species.
Collapse
Affiliation(s)
- Juliana M. Araujo
- Department of Animal Science and Veterinary Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Rodrigo Fortes-Silva
- Department of Animal Science and Veterinary Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
- Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural, Environmental and Biological Sciences, Federal University of Bahia, Cruz das Almas, Bahia, Brazil
| | - Cícero C. Pola
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Fernando Y. Yamamoto
- Department of Wildlife and Fisheries Sciences, Texas A&M University, Texas, United States of America
| | - Delbert M. Gatlin
- Department of Wildlife and Fisheries Sciences, Texas A&M University, Texas, United States of America
| | - Carmen L. Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
20
|
Saleh N, Al-Jassabi S, Eid AH, Nau WM. Cucurbituril Ameliorates Liver Damage Induced by Microcystis aeruginosa in a Mouse Model. Front Chem 2021; 9:660927. [PMID: 33937198 PMCID: PMC8079933 DOI: 10.3389/fchem.2021.660927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Microcystis aeruginosa is a cyanobacterium that produces a variety of cyclic heptapeptide toxins in freshwater. The protective effects of the macromolecular container cucurbit[7]uril (CB7) were evaluated using mouse models of cyanotoxin-induced liver damage. Biochemical analysis of liver function was performed to gauge the extent of liver damage after exposure to cyanobacterial crude extract [CCE; LD50 = 35 mg/kg body weight; intraperitoneal (i.p.)] in the absence or presence of CB7 (35 mg/kg body weight, i.p.). CCE injection resulted in liver enlargement, potentiated the activities of alanine aminotransferase (ALT) and glutathione S-transferase (GST), increased lipid peroxidation (LPO), and reduced protein phosphatase 1 (PP1) activity. CCE-induced liver enlargement, ALT and GST activities, and LPO were significantly reduced when CB7 was coadministered. Moreover, the CCE-induced decline of PP1 activity was also ameliorated in the presence of CB7. Treatment with CB7 alone did not affect liver function, which exhibited a dose tolerance of 100 mg/kg body wt. Overall, our results illustrated that the addition of CB7 significantly reduced CCE-induced hepatotoxicity (P < 0.05).
Collapse
Affiliation(s)
- Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates (UAE) University, Al Ain, United Arab Emirates
| | - Saad Al-Jassabi
- Faculty of Medicine, Unishams University, Kuala Ketil, Malaysia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Werner M Nau
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
21
|
Chen L, Giesy JP, Adamovsky O, Svirčev Z, Meriluoto J, Codd GA, Mijovic B, Shi T, Tuo X, Li SC, Pan BZ, Chen J, Xie P. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142319. [PMID: 33069479 DOI: 10.1016/j.scitotenv.2020.142319] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 μg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Biljana Mijovic
- Faculty of Medicine, University of East Sarajevo, Studentska 5, 73 300 Foča, Republika Srpska, Bosnia and Herzegovina
| | - Ting Shi
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xun Tuo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shang-Chun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Bao-Zhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
22
|
Wang Y, Xie S, Nie Z, Li Q, Sun Y, Shao N, Gao J, Hu J, Xu P, Xu G. Optimum feeding frequency of juvenile largemouth bass (Micropterus salmoides) reared in in-pond raceway recirculating culture system. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2197-2212. [PMID: 32865717 DOI: 10.1007/s10695-020-00866-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
This study was conducted to determine the effects of feeding frequency on the growth, serum biochemical parameters, antioxidant status and hepatic growth hormone (GH), insulin-like growth factor I (IGF-I), lipoprotein lipase (LPL) and hepatic lipase (HL) gene expression levels of juvenile largemouth bass (Micropterus salmoides) reared in an in-pond raceway recirculating culture system (IPRS). Fish (initial body weight 5.0 ± 0.4 g) were hand-fed with a commercial diet under one of three different feeding frequency treatments (2, 3 or 4 meals/day) for 120 days. The results indicated that no significant differences were observed in the final body weight, weight gain and specific growth rate of fish fed different feeding frequencies on 30 days and 60 days (P > 0.05). Fish fed 2 times/day had higher growth than that fed 4 times/day on 90 days but had higher growth than those fed 3 and 4 times/day on 120 days. No significant differences were found in serum alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) activities, total protein (TP), lysozyme and triglyceride (TG) content, hepatic total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX) activities and malondialdehyde (MDA) content among fish fed different feeding frequency (P > 0.05). Serum glucose (Glu) content and catalase (CAT) activity decreased, while total cholesterol (TC) content increased with increasing feeding frequency. Fish fed 2 times/day had higher hepatic total superoxide dismutase (T-SOD) than that fed 4 times/day on 60 days, 90 days and 120 days (P < 0.05). Fish fed 2 times/day had higher IGF-1 gene mRNA expression on 30 days, 60 days and 120 days (P < 0.05), while no significant difference on 90 days. No significant difference was found in GH gene mRNA expression on 30 days and 60 days, while fish fed 4 times/day had lower values than that fed 2 times/day on 90 days and 120 days (P < 0.05). Fish fed 2 times/day had significantly higher LPL mRNA expression level than that fed 4 times/day on 60 days and 90 days and had significantly higher HL mRNA expression level on 60 days, 90 days and 120 days (P < 0.05). Based on growth, physiology, hepatic gene expression levels, labour costs and intensity, the optimal feeding frequency of largemouth bass (average body weight 5.0 ± 0.4 g) reared in IPRS is 2 times/day. These data are very necessary for the optimizing of culture conditions and feeding management strategy in IPRS culture operations.
Collapse
Affiliation(s)
- Yuyu Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Suming Xie
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhijuan Nie
- Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Nailin Shao
- Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jiancao Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jiawen Hu
- Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resource Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
23
|
Perez JL, Chu T. Effect of Zinc on Microcystis aeruginosa UTEX LB 2385 and Its Toxin Production. Toxins (Basel) 2020; 12:toxins12020092. [PMID: 32019107 PMCID: PMC7076789 DOI: 10.3390/toxins12020092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/21/2022] Open
Abstract
Cyanobacteria harmful algal blooms (CHABs) are primarily caused by man-made eutrophication and increasing climate-change conditions. The presence of heavy metal runoff in affected water systems may result in CHABs alteration to their ecological interactions. Certain CHABs produce by-products, such as microcystin (MC) cyanotoxins, that have detrimentally affected humans through contact via recreation activities within implicated water bodies, directly drinking contaminated water, ingesting biomagnified cyanotoxins in seafood, and/or contact through miscellaneous water treatment. Metallothionein (MT) is a small, metal-sequestration cysteine rich protein often upregulated within the stress response mechanism. This study focused on zinc metal resistance and stress response in a toxigenic cyanobacterium, Microcystis aeruginosa UTEX LB 2385, by monitoring cells with (0, 0.1, 0.25, and 0.5 mg/L) ZnCl2 treatment. Flow cytometry and phase contrast microscopy were used to evaluate physiological responses in cultures. Molecular assays and an immunosorbent assay were used to characterize the expression of MT and MC under zinc stress. The results showed that the half maximal inhibitory concentration (IC50) was 0.25 mg/L ZnCl2. Flow cytometry and phase contrast microscopy showed morphological changes occurred in cultures exposed to 0.25 and 0.5 mg/L ZnCl2. Quantitative PCR (qPCR) analysis of selected cDNA samples showed significant upregulation of Mmt through all time points, significant upregulation of mcyC at a later time point. ELISA MC-LR analysis showed extracellular MC-LR (µg/L) and intracellular MC-LR (µg/cell) quota measurements persisted through 15 days, although 0.25 mg/L ZnCl2 treatment produced half the normal cell biomass and 0.5 mg/L treatment largely inhibited growth. The 0.25 and 0.5 mg/L ZnCl2 treated cells demonstrated a ~40% and 33% increase of extracellular MC-LR(µg/L) equivalents, respectively, as early as Day 5 compared to control cells. The 0.5 mg/L ZnCl2 treated cells showed higher total MC-LR (µg/cell) quota yield by Day 8 than both 0 mg/L ZnCl2 control cells and 0.1 mg/L ZnCl2 treated cells, indicating release of MCs upon cell lysis. This study showed this Microcystis aeruginosa strain is able to survive in 0.25 mg/L ZnCl2 concentration. Certain morphological zinc stress responses and the upregulation of mt and mcy genes, as well as periodical increased extracellular MC-LR concentration with ZnCl2 treatment were observed.
Collapse
|
24
|
Calado SLDM, Vicentini M, Santos GS, Pelanda A, Santos H, Coral LA, Magalhães VDF, Mela M, Cestari MM, Silva de Assis HC. Sublethal effects of microcystin-LR in the exposure and depuration time in a neotropical fish: Multibiomarker approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109527. [PMID: 31400723 DOI: 10.1016/j.ecoenv.2019.109527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Eutrophication is an ecological process that results in cyanobacterial blooms. Microcystin-LR is the most toxic variant of microcystins and may cause toxic effects in the organisms, mainly in hepatic tissues. The aims of this study were to use multiple biomarkers in order to evaluate the sublethal effects of a low concentration of MC-LR (1 μg/L) in fish Geophagus brasiliensis by waterborne exposure; and evaluate the depuration of this toxin during 15 days. A group of 30 fish was exposed to 1 μg/L of MC-LR solution for 96 h in a static bioassay. After this time, blood, brain, muscle, liver, gonad and gills were collected from half of the exposed fish group in order to evaluate chemical, biochemical, histological and genotoxic biomarkers. The rest of the fish group was submitted to the depuration experiment with free MC-LR water for 15 days. After this time the same tissues were collected and evaluated using biomarkers analysis. Toxic effects were found mostly in the fish liver from depuration time as alterations on the antioxidant system and histopathologies. The results showed that even low concentrations can cause sublethal effects to aquatic organisms, and cyanotoxins monitoring and regulation tools are required.
Collapse
Affiliation(s)
- Sabrina Loise de Morais Calado
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Maiara Vicentini
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Gustavo Souza Santos
- Department of Genetics, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Ana Pelanda
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Hayanna Santos
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Lucila Andriani Coral
- Department of Chemistry and Biology, Federal Technical University of Paraná, 81280-340, Curitiba-PR, Brazil.
| | | | - Maritana Mela
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | | |
Collapse
|
25
|
Neamat-Allah ANF, Mahmoud EA, Abd El Hakim Y. Efficacy of dietary Nano-selenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:280-287. [PMID: 31499203 DOI: 10.1016/j.fsi.2019.09.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
As recently applicable, there are few studies on the impact of using nano-selenium (nano-Se) on varied fish species. Where nothing reachable focused on its impact on tilapias so, the present analysis evaluated the efficacy of using nano-Se in tilapias on immune response, antioxidant defense compared by conventional Se form. 480 O. niloticus fingerlings were haphazardly grouped firstly into three groups with four replicates of each. The control one (CT) was fed on a basal diet. The second and third one supplemented with 0.7 mg/kg-1 Se and nano-Se respectively for ten weeks. At the start day of the ninth week, two replicates from each group were injected by Streptococcus iniae where, the remaining replicates stand without challenge. Enhancement of growth performance measurements were noted in nano-Se compared to Se or CT groups. Existed anemia in S. iniae tilapias became alleviated by using nano-Se that also, improves the alteration of leucogram induced by challenge. Elevation of aminotransferases, alkaline phosphatase, lactate dehydrogenase (ALT, AST, ALP and LDH) and creatinine in Se and CT challenged replicates that seemed nearly normal by using nano-Se. Usage of nano-Se showed more powerful antioxidant activities than Se. There were an expansion of immunoglobulin M, lysozymes, glutathione peroxidase, nitric oxide, superoxide dismutase and catalase (IgM, LYZ, GPx, NO, SOD, CAT) and their related gene expression in nano-Se with contrast in Se or CT challenged groups. Nile tilapias challenged by S. iniae disclosed substantial expansion in the percentage of mortality in CT challenged fish (93.33%), followed by the group supplemented with Se (73.33%), whereas the lowermost one at fish supplemented by nano-Se (26.66%). The mortalities have been stopped from the 5th, 12th and 14th days in, nano-Se, Se and CT respectively. It can be concluded that using of Se 0.7 mg/kg-1induce immunosuppressive, antioxidant, liver and kidneys negative impact on tilapias where the same dose from nano-Se was more potent immunomodulating and antioxidant. Also it is attend in counteracting the serious impact induced by S. iniae challenge.
Collapse
Affiliation(s)
- Ahmed N F Neamat-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 1 Alzeraa Street, 44511, Zagazig City, Sharkia Province, Egypt.
| | - Essam A Mahmoud
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 1 Alzeraa Street, 44511, Zagazig City, Sharkia Province, Egypt
| | - Yasser Abd El Hakim
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
26
|
Dawood MAO, Koshio S, Zaineldin AI, Van Doan H, Moustafa EM, Abdel-Daim MM, Angeles Esteban M, Hassaan MS. Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:219-230. [PMID: 30143927 DOI: 10.1007/s10695-018-0556-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/14/2018] [Indexed: 05/21/2023]
Abstract
Dietary supplementation of selenium nanoparticles (Se-NPs) at different levels (0, 0.5, 1, and 2 mg kg-1 diet) was evaluated to find out the effects on serum and skin immune responses as well as stress resistance in the red sea bream (Pagrus major). After 45 days of experimental trial, serum and mucosal immune responses were significantly high in fish fed 1 mg Se-NPs kg-1 diet (P < 0.05). In this group, alternative complement pathway, total serum protein, antioxidant activity of catalase enzyme, serum bactericidal activity, serum lysozyme activity, and amounts of skin mucus secretions as well as stress resistance against low salinity stress increased significantly, when compared to fish fed Se-NP-free diet (P < 0.05). Furthermore, fish fed Se-NPs at 2 mg kg-1 diet exhibited higher alternative complement pathway, total serum protein, mucus lysozyme activity, serum and mucus peroxidases, amount of mucus secreted, and tolerance against low salinity stress than the fish fed Se-NP-free diet (P < 0.05). Interestingly, the nitro blue tetrazolium activity in all groups fed with diets supplemented with Se-NPs are significantly higher than Se-NP-free diet (P < 0.05). The present results demonstrate that the dietary supplementation with Se-NPs (mainly from 1 to 2 mg kg-1 level) could be useful for maintaining the overall health status of red sea bream.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima, 890-0056, Japan.
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Shunsuke Koshio
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima, 890-0056, Japan
| | - Amr I Zaineldin
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima, 890-0056, Japan
- Animal Health Research Institute(AHRI-DOKI), Cairo, Egypt
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Eman Moustafa Moustafa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - M Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Mohamed S Hassaan
- Aquaculture Division Fish Nutrition Research Laboratory, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
27
|
Złoch I, Hebel A, Mazur-Marzec H. Effect of crude extracts from Nodularia spumigena on round goby (Neogobius melanostomus). MARINE ENVIRONMENTAL RESEARCH 2018; 140:61-68. [PMID: 29861280 DOI: 10.1016/j.marenvres.2018.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Nodularia spumigena is a nitrogen-fixing filamentous cyanobacteria in the Baltic Sea. Nodularin (NOD), the hepatotoxic peptide produced by this cyanobacterium, accumulates in the organisms from different trophic levels. In this paper, the effects of N. spumigena cell extract on the round goby (Neogobius melanostomus) was investigated under laboratory conditions. This benthic fish species feed on mussels in which nodularin accumulation was well documented. In current study a sharp increase in the NOD concentration in analyzed organs was observed after 24 h (PPIA) after 72 h of exposure (LC/MS). To determine the direction and strength of the changes induced in the fish by the toxin, several biochemical markers of exposure such as concentration of glutathione and activities of catalase, guaiacol peroxidase and glutathione S-transferase were used. In analyzed organs (liver, gills and muscle) of the round goby, the activity of these enzymes were suppressed. Higher GSH/protein amount and CAT and POD activity in gills than in liver reflects the importance of gills in NOD entering into analyzed fish body when exposed to toxin. The results indicate that the round goby (Neogobius melanostomus) exposed to extracts from N. spumigena cells triggered a defense system in a time-dependent manner. The obtained results contribute to a better understanding of fish response to the presence of compounds produced by N. spumigena.
Collapse
Affiliation(s)
- Ilona Złoch
- Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Agnieszka Hebel
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Hanna Mazur-Marzec
- Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| |
Collapse
|
28
|
Abstract
Fish can be exposed to multiple stressors at the same time, including natural toxins, environmental pollutants or feed contamination. In this study, we report on the effects of controlled exposure of rainbow trout (Oncorhynchus mykiss) to multiple stressors. In doing so, we test the hypothesis that cyanobacterial biomass and arsenic in feed combine to enhance negative effects on fish, including modulation of antioxidant response. The trout (mean weight 288 ± 59 g) were divided into six experimental groups of 25 fish each (C - control group; B - 3% lyophilised toxic cyanobacterial biomass; As5 - arsenic at 5 mg·kg–1; As50 - arsenic at 50 mg·kg–1; and two combinations of cyanobacterial biomass and arsenic (B+As5 and B+As50). All indicators of oxidative stress were determined using standard methods, showing significant changes. Overall antioxidant capacity (ferric reducing antioxidant power) decreased significantly in the liver, gills and heart after 10-days, while lipid peroxidation (thiobarbituric acid reactive substances) increased in the liver of groups exposed to cyanobacterial biomass, and in the heart of groups exposed to increased concentrations of arsenic and those under combined exposure. Levels of glutathione reductase showed a significant reduction following exposure, especially in the gills and liver. Our results indicate that the antioxidant system plays an important role in the protective response of tissues to stressors, and especially arsenic.
Collapse
|
29
|
Wolf JC, Wheeler JR. A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:60-78. [PMID: 29448125 DOI: 10.1016/j.aquatox.2018.01.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
Although frequently examined as a target organ for non-endocrine toxicity, histopathological evaluation of the liver is becoming a routine component of endocrine disruption studies that utilize various fish species as test subjects. However, the interpretation of microscopic liver findings can be challenging, especially when attempting to distinguish adverse changes associated with endocrine disrupting substances from those caused by systemic or direct hepatic toxicity. The purpose of this project was to conduct a critical assessment of the available peer-reviewed and grey literature concerning the histopathologic effects of reproductive endocrine active substances (EAS) and non-endocrine acting substances in the livers of fish models, and to determine if liver histopathology can be used to reliably distinguish endocrine from non-endocrine etiologies. The results of this review suggest that few compound-specific histopathologic liver effects have been identified, among which are estrogen agonist-induced increases in hepatocyte basophilia and proteinaceous intravascular fluid in adult male teleosts, and potentially, decreased hepatocyte basophilia in female fish exposed to substances that possess androgenic, anti-estrogenic, or aromatase inhibitory activity. This review also used published standardized methodology to assess the credibility of the histopathology data in each of the 117 articles that reported liver effects of treatment, and consequently it was determined that in only 37% of those papers were the data considered either highly credible or credible. The outcome of this work highlights the value of histopathologic liver evaluation as an investigative tool for EAS studies, and provides information that may have implications for EAS hazard assessment.
Collapse
Affiliation(s)
- Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., 45600 Terminal Drive, Sterling, VA, 20166, USA.
| | - James R Wheeler
- Dow AgroSciences, 3 B Park Square, Milton Park, Abingdon, Oxfordshire, OK14 4RN, UK.
| |
Collapse
|
30
|
Kumar N, Krishnani KK, Singh NP. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8914-8927. [PMID: 29332272 DOI: 10.1007/s11356-017-1165-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/26/2017] [Indexed: 05/22/2023]
Abstract
Recent studies have demonstrated that selenium (Se) and selenium nanoparticles (Se-NPs) exhibited toxicity at a higher concentration. The lethal concentration of Se and Se-NPs was estimated as 5.29 and 3.97 mg/L at 96 h in Pangasius hypophthalmus. However, the effect of different definite concentration of Se (4.5, 5.0, 5.5, and 6.0 mg/L) and Se-NPs (2.5, 3.0, 3.5, and 4.0 mg/L) was decided for acute experiment. Selenium and Se-NPs alter the biochemical attributes such as anti-oxidative status [catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activities], neurotransmitter enzyme, cellular metabolic enzymes, stress marker, and histopathology of P. hypophthalmus in a dose- and time-dependent manner. CAT, SOD, and GST were significantly elevated (p < 0.01) when exposed to Se and Se-NPs, and similarly, a neurotransmitter enzyme (acetylcholine esterase (AChE)) was significantly inhibited in a time- and dose-dependent manner. Further, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and malate hydrogenase were noticeably (p < 0.01) affected by Se and Se-NPs from higher concentration to lower concentration. Stress markers such as cortisol and HSP 70 were drastically enhanced by exposure to Se and Se-NPs. All the cellular metabolic and stress marker parameters were elevated which might be due to hyperaccumulation of Se and Se-NPs in the vital organ and target tissues. The histopathology of liver and gill was also altered such as large vacuole, cloudy swelling, focal necrosis, interstitial edema, necrosis in liver, and thickening of primary lamellae epithelium and curling of secondary lamellae due to Se and Se-NP exposure. The study suggested that essential trace element in both forms (inorganic and nano) at higher concentration in acute exposure of Se and Se-NPs led to pronounced deleterious alteration on histopathology and cellular and metabolic activities of P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Kishore Kumar Krishnani
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Narendra Pratap Singh
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
31
|
Khan KU, Zuberi A, Fernandes JBK, Ullah I, Sarwar H. An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1689-1705. [PMID: 28712005 DOI: 10.1007/s10695-017-0402-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In the present review, the ongoing researches about selenium research in fish nutrition have been comprehensively discussed. Selenium research is getting popularity in fish nutrition as it is required for the normal growth and proper physiological and biochemical functions in fish. Its deficiency or surplus amounts create severe problems in fish. It is available as inorganic form, organic form, and nano form. In fish, most of the previous research is about the selenium requirements for fish by using only one selenium source mainly the inorganic one. Selenium shows maximum biological activity and bioavailability when it is supplied in proper form. However, to differentiate the more bioavailable and less toxic form of selenium, sufficient information is needed about the comparative bioavailability of different selenium forms in different fish species. In fish, important data about the new forms of selenoproteins is still scarce. Therefore, it is necessary to focus on the determination and elucidation of the new selenoproteins in fish through the utilization of recent approaches of molecular biology and proteomics. The adaptation of these new approaches will replace the old fashioned methodologies regarding the selenium research in fish nutrition. Moreover, the use of molecular biology and proteomics-based new approaches in combination with selenium research will help in optimizing the area of fish nutrition and will improve the feed intake, growth performance, and more importantly the flesh quality which has a promising importance in the consumer market.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Center of Aquaculture, São Paulo State University, Jaboticabal, SP, Brazil.
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Amina Zuberi
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Imdad Ullah
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Huda Sarwar
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
32
|
Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A. Proteomic analysis of liver tissue from rainbow trout (Oncorhynchus mykiss) under high rearing density after administration of dietary vitamin E and selenium nanoparticles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:10-19. [DOI: 10.1016/j.cbd.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 01/21/2023]
|
33
|
Potential Use of Chemoprotectants against the Toxic Effects of Cyanotoxins: A Review. Toxins (Basel) 2017; 9:toxins9060175. [PMID: 28545227 PMCID: PMC5488025 DOI: 10.3390/toxins9060175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022] Open
Abstract
Cyanobacterial toxins, particularly microcystins (MCs) and cylindrospermopsin (CYN), are responsible for toxic effects in humans and wildlife. In order to counteract or prevent their toxicity, various strategies have been followed, such as the potential application of chemoprotectants. A review of the main substances evaluated for this aim, as well as the doses and their influence on cyanotoxin-induced toxicity, has been performed. A search of the literature shows that research on MCs is much more abundant than research on CYN. Among chemoprotectants, antioxidant compounds are the most extensively studied, probably because it is well known that oxidative stress is one of the toxic mechanisms common to both toxins. In this group, vitamin E seems to have the strongest protectant effect for both cyanotoxins. Transport inhibitors have also been studied in the case of MCs, as CYN cellular uptake is not yet fully elucidated. Further research is needed because systematic studies are lacking. Moreover, more realistic exposure scenarios, including cyanotoxin mixtures and the concomitant use of chemoprotectants, should be considered.
Collapse
|
34
|
Wei L, Liu Y, Wang Z, Ruan J, Wu H, Zhong Q. Histopathological changes and transcriptional alterations of three coagulation factors in zebrafish ( Danio rerio ) following short-term exposure to MC-LR. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.chnaes.2016.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Paulino MG, Tavares D, Bieczynski F, Pedrão PG, Souza NES, Sakuragui MM, Luquet CM, Terezan AP, Fernandes JB, Giani A, Fernandes MN. Crude extract of cyanobacteria (Radiocystis fernandoi, strain R28) induces liver impairments in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:91-101. [PMID: 27886582 DOI: 10.1016/j.aquatox.2016.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/12/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Radiocystis fernandoi R28 strain is a cyanobacterium which produces mostly the RR and YR microcystin variants (MC-RR and MC-YR, respectively). The effects of crude extract of the R. fernandoi strain R28 were evaluated on the protein phosphatases and on the structure and ultrastructure of the liver of the Neotropical fish, Hoplias malabaricus, after acute and subchronic exposure. Concomitantly, the accumulation of the majority of MCs was determined in the liver and muscle. The fish were exposed to 120.60 MC-RR+MC-LR kg-fish-1 (=100μg MC-LReq kg-fish-1) for 12 and 96h (one single dose, acute exposure) and 30days (one similar dose every 72h, subchronic exposure). MCs did not accumulate in the muscle but, in the liver, MC-YR accumulated after acute exposure and MC-RR and MC-YR accumulation occurred after subchronic exposure. Protein phosphatase 2A (PP2A) activity was inhibited only after subchronic exposure. Acute exposure induced liver hyperemia, hemorrhage, changes in hepatocytes and cord-like disorganization. At the ultrastructural level, the decreasing of glycogen and lipid levels, the swelling of mitochondria and whirling of endoplasmic reticulum suggested hepatocyte necrosis. Subchronic exposure resulted in a complete disarrangement of cord-like hepatocytes, some recovery of mitochondria and whirling endoplasmic reticulum and extensive connective tissues containing fibrous materials in the liver parenchyma. Despite microcystin toxicity and liver alterations, no tumor was induced by MCs. In conclusion, the increased algal mass of R. fernandoi in tropical freshwater, producing mainly MC-RR and MC-YR variants, results in fish liver impairments.
Collapse
Affiliation(s)
- M G Paulino
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - D Tavares
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - F Bieczynski
- Center of Applied Ecology of Neuquen, INIBIOMA, UNCo-CONICET- Ruta Provincial 61, km 3, 8371, Junín de los Andes, Neuquén, Argentina
| | - P G Pedrão
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - N E S Souza
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - M M Sakuragui
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - C M Luquet
- Center of Applied Ecology of Neuquen, INIBIOMA, UNCo-CONICET- Ruta Provincial 61, km 3, 8371, Junín de los Andes, Neuquén, Argentina
| | - A P Terezan
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - J B Fernandes
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - A Giani
- Department of Botany, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M N Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil.
| |
Collapse
|
36
|
Guzmán-Guillén R, Prieto Ortega AI, Moyano R, Blanco A, Vasconcelos V, Cameán AM. Dietary l-carnitine prevents histopathological changes in tilapia (Oreochromis Niloticus) exposed to cylindrospermopsin. ENVIRONMENTAL TOXICOLOGY 2017; 32:241-254. [PMID: 26714798 DOI: 10.1002/tox.22229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Cylindrospermopsin (CYN) is a cytotoxin highly water-soluble, which is easily taken up by several aquatic organisms. CYN acts as a potent protein and glutathione synthesis inhibitor, as well as inducing genotoxicity, oxidative stress, and histopathological alterations. This is the first study reporting the protective effect of a l-carnitine (LC) pretreatment (400 or 880 mg LC/kg bw fish/day, for 21 days) on the histopathological alterations induced by pure CYN or Aphanizomenon ovalisporum lyophilized cells (400 µg CYN/kg bw fish) in liver, kidney, heart, intestines, and gills of tilapia (Oreochromis niloticus) acutely exposed to the toxin by oral route. The main histopathological changes induced by CYN were disorganized parenchyma with presence of glycogen and lipids in the cytoplasm (liver), glomerulonephritis, glomerular atrophy, and dilatation of Bowman's capsule (kidney), myofibrolysis, loss of myofibrils, with edema and hemorrhage (heart), intestinal villi with necrotic enterocytes and partial loss of microvilli (gastrointestinal tract), and hyperemia and hemorrhage (gills). LC pretreatment was able to totally prevent those CYN-induced alterations from 400 mg LC/kg bw fish/day in almost all organs, except in the heart, where 880 mg LC/kg bw fish/day were needed. In addition, the morphometric study indicated that LC managed to recover totally the affectation in the cross sections of the proximal and distal convoluted tubules in CYN-exposed fish. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 241-254, 2017.
Collapse
Affiliation(s)
- Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Ana I Prieto Ortega
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, University of Córdoba. Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Alfonso Blanco
- Department of Anatomy and Comparative Pathology and Anatomy, University of Córdoba, Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
- Department of Biology, Faculty of Sciences of the University of Porto, 4169-007, Portugal
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| |
Collapse
|
37
|
Ilham I, Siddik MAB, Fotedar R. Effects of Organic Selenium Supplementation on Growth, Accumulation, Haematology and Histopathology of Juvenile Barramundi (Lates calcarifer) Fed High Soybean Meal Diets. Biol Trace Elem Res 2016; 174:436-447. [PMID: 27106539 DOI: 10.1007/s12011-016-0708-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/14/2016] [Indexed: 11/29/2022]
Abstract
Soybean meal (SBM) has been commonly utilised as a substitute for fishmeal (FM) in the diets of several fish species. However, little is known regarding their effects on trace element availability and thus their importance to fish. The present study employed two feeding trials to evaluate the implications of dietary selenium (Se) on the growth, accumulation, antioxidant, and histopathological responses of juvenile barramundi (Lates calcarifer). In the first trial, each of three basal diets containing 0, 15 and 43 % SBM as replacements for 0, 25 and 75 % of FM protein on an isoproteic and isocalorific basis were either supplemented or not supplemented with 2 mg kg-1 organic Se (OS). In the second trial, the potential effect of OS supplementation in a high SBM diet was investigated in a feeding trial with five experimental diets: 75 % SBM protein as replacement of FM was supplemented with 2, 3, 4, 5 or 7 mg OS kg-1. Growth was independently influenced by the SBM level and the OS supplementation level but not by their interaction. Glutathione peroxidase (GPx) activity, haematocrit, Se accumulation and muscle tissue integrity were significantly enhanced in fish fed on OS-supplemented diets. Furthermore, when high SBM was included in diets, elevated Se tended to lower the barramundi's performance. These findings suggest that dietary supplementation of OS at 2-3 g kg-1 diet is necessary when high plant protein ingredients are incorporated in the diet, in order to maintain better growth and to afford protection against oxidative stress.
Collapse
Affiliation(s)
- Ilham Ilham
- Department of Environment and Agriculture, Curtin University, 1 Turner Ave Technology Park, Bentley, WA, 6102, Australia.
- Department of Aquatic Resources Management & Technology, Jakarta Fisheries University, Jl. AUP Pasar Minggu, Jakarta Selatan, 12520, Indonesia.
| | - Muhammad Abu Bakar Siddik
- Department of Environment and Agriculture, Curtin University, 1 Turner Ave Technology Park, Bentley, WA, 6102, Australia
| | - Ravi Fotedar
- Department of Environment and Agriculture, Curtin University, 1 Turner Ave Technology Park, Bentley, WA, 6102, Australia
| |
Collapse
|
38
|
Guzmán-Guillén R, Prieto Ortega AI, Gutiérrez-Praena D, Moreno IM, Moyano R, Blanco A, Cameán AM. Vitamin E pretreatment prevents histopathological effects in tilapia (Oreochromis niloticus) acutely exposed to cylindrospermopsin. ENVIRONMENTAL TOXICOLOGY 2016; 31:1469-1485. [PMID: 26011011 DOI: 10.1002/tox.22152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Cylindrospermopsin (CYN) is a cyanotoxin frequently involved in blooms with a predominantly extracellular availability, which makes it easily taken up by a variety of aquatic organisms. CYN is a potent protein and glutathione synthesis inhibitor, and also induces genotoxicity, oxidative stress and several histopathological lesions. The present study investigates the protective role of a vitamin E pretreatment (700 mg vit E/kg fish bw/day, for 7 days) on the histopathological alterations induced in different organs of tilapia (Oreochromis niloticus) acutely exposed to a single oral dose of 400 µg pure CYN/kg bw fish. The major histological changes observed were degenerative glucogenic process and loss of the hepatic structure in the liver, glomerulopathy and tubular tumefaction in the kidney, myofibrolysis and edema in the heart, catarrhal enteritis and necrosis in the gastrointestinal tract, hyperemic processes in the gill lamellae, and high basophilia, degeneration and tumefaction of granular neurons in the brain. Vitamin E pretreatment was effective in preventing or ameliorating the abovementioned alterations induced by CYN. In addition, a morphometric study indicated that the average nuclear diameter of hepatocytes, and cross-sections of proximal and distal convoluted tubules, together with the cardiac fiber and capillaries diameters represent a useful tool to evaluate the damage induced by CYN. This is the first study reporting vitamin E prevention of histopathological damage in tissues (liver, kidney, heart, gastrointestinal tract, gills and brain) of fish intoxicated with CYN. Therefore, vitamin E can be considered a useful chemoprotectant in the treatment of histopathological changes induced in CYN-intoxicated fish. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1469-1485, 2016.
Collapse
Affiliation(s)
- Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy. University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain.
| | - Ana I Prieto Ortega
- Area of Toxicology, Faculty of Pharmacy. University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy. University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Isabel M Moreno
- Area of Toxicology, Faculty of Pharmacy. University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, University of Córdoba, Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Alfonso Blanco
- Department of Anatomy and Comparative Pathology and Anatomy, University of Córdoba, Campus De Rabanales Carretera Madrid-Cádiz S/N, Córdoba, 14071, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy. University of Sevilla, C/Profesor García González 2, Sevilla, 41012, Spain
| |
Collapse
|
39
|
Bettim FL, Galvan GL, Cestari MM, Yamamoto CI, de Assis HCS. Biochemical responses in freshwater fish after exposure to water-soluble fraction of gasoline. CHEMOSPHERE 2016; 144:1467-1474. [PMID: 26495832 DOI: 10.1016/j.chemosphere.2015.09.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
The water-soluble fraction of gasoline (WSFG) is a complex mixture of mono-polycyclic aromatic hydrocarbons. The study aimed to evaluate the effects of WSFG diluted 1.5% on freshwater fish. Astyanax altiparanae were exposed to the WSFG for 96 h, under a semi-static system, with renewal of 25% of the gasoline test solution every 24 h. In addition, a decay of the contamination (DC) was carried out. During DC, the fish was exposed to the WSFG for 8 d, followed by another 7 d with renewal of 25% of volume aquaria with clean water every 24 h. For depuration, fish were transferred to aquaria with clean water, and in addition, 25% of the water was replaced every 24 h. The liver and kidney biotransformation, antioxidant defenses and lipid peroxidation (LPO) levels were evaluated. In the liver, the WSFG 1.5% caused reduction of glutathione S-transferase (GST) after 96 h and DC. In the kidney, only in depuration an increased GST activity was observed, and after DC a higher LPO levels. An increase of the superoxide dismutase (SOD) activity occurred at 96 h in both tissues; however, in the liver was also observed during the depuration. In WSFG 96 h, the glutathione peroxidase (GPx) activity in the kidney increased. As biomarkers of neurotoxicity, the brain and muscle acetylcholinesterase activities were measured, but the WSFG 1.5% did not change them. Therefore, this study brought forth more data about WSFG effects on freshwater fish after lower concentrations exposure and a DC, simulating an environmental contamination.
Collapse
Affiliation(s)
- Franciele Lima Bettim
- Departamento de Farmacologia, Universidade Federal do Paraná, 81531-980 Curitiba-Paraná, Brazil
| | | | | | - Carlos Itsuo Yamamoto
- Departamento de Engenharia Química, Universidade Federal do Paraná, 81531-980 Curitiba-Paraná, Brazil
| | | |
Collapse
|
40
|
Guzmán-Guillén R, Prieto Ortega AI, Martín-Caméan A, Cameán AM. Beneficial effects of vitamin E supplementation against the oxidative stress on Cylindrospermopsin-exposed tilapia (Oreochromis niloticus). Toxicon 2015; 104:34-42. [DOI: 10.1016/j.toxicon.2015.07.336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 11/15/2022]
|
41
|
Olivares Rubio HF, Martínez-Torres ML, Nájera-Martínez M, Dzul-Caamal R, Domínguez-López ML, García-Latorre E, Vega-López A. Biomarkers involved in energy metabolism and oxidative stress response in the liver of Goodea gracilis Hubbs and Turner, 1939 exposed to the microcystin-producing Microcystis aeruginosa LB85 strain. ENVIRONMENTAL TOXICOLOGY 2015; 30:1113-1124. [PMID: 24639371 DOI: 10.1002/tox.21984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/24/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
Goodea gracilis is an endemic fish that only habitats in some water bodies of Central Mexico that are contaminated with cyanobacteria-producing microcystins (MC); however, a lack of information on this topic prevails. With the aim to generate the first approximation about the physiological changes elicited by cyanobacterium that produce MC congeners in this fish species, specimens born in the laboratory was exposed for 96 h to cell densities of 572.5, 1145, 2290, 4580, and 9160 × 10(6) cells of Microcystis aeruginosa strain LB85/L, and a set of novel endpoint related to hepatic gluconeogenesis (ADH/LDH) and pro-oxidant forces O2., H2 O2 ) in addition to biomarkers of oxidative damage and antioxidant response was evaluated in the liver. Results suggest that high inhibition of protein serine/threonine phosphatase (PP) may trigger many metabolic processes, such as those related to hepatic gluconeogenesis (ADH/LDH) and pro-oxidant O2⋅, H2 O2 , TBARS, ROOH, RC=O) as well as antioxidant (SOD, CAT, GPx) response to oxidative stress. Particularly, we observed that inhibition of LDH and PP, and H2 O2 increase and TBARS production were the key damages induced by high densities of M. aeruginosa. However, changes between aerobic and anaerobic metabolism related with ROS metabolism and ADH/LDH balance are apparently an acclimation of this fish species to exposure to cyanobacteria or their MCs. Fish species living in environments potentially contaminated with cyanobacteria or their MCs possess mechanisms of acclimation that allow them to offset the damage induced, even in the case of fish that have never been exposed to MCs.
Collapse
Affiliation(s)
- Hugo F Olivares Rubio
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México, DF, México
| | - M Lysset Martínez-Torres
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México, DF, México
| | - Minerva Nájera-Martínez
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México, DF, México
| | - Ricardo Dzul-Caamal
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México, DF, México
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala s/n, Casco de Santo Tomás, CP 11340, México, DF, México
| | - Ethel García-Latorre
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala s/n, Casco de Santo Tomás, CP 11340, México, DF, México
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, IPN, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, CP 07839, México, DF, México
| |
Collapse
|
42
|
Hashish EA, Elgaml SA, El-Murr A, Khalil R. Nephroprotective and antioxidant significance of selenium and α-tocopherol on lead acetate-induced toxicity of Nile Tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:651-660. [PMID: 25682289 DOI: 10.1007/s10695-015-0035-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
The kidney plays an important physiological function, maintaining the osmoregulation and electrolyte balance of Nile tilapia (Oreochromis niloticus). Selenium and α-tocopherol (α-toc) are potent antioxidants, which improve the aquaculture health. In this study, we tested the potential ability of selenium and α-toc to alleviate the oxidative stress in the kidney induced by lead toxicity. Two hundred and twenty-five O. niloticus were divided into five groups. The control group received a basal diet. Lead nephrotoxicity was induced by daily application of 73.40 mg lead acetate/liter water for up to 10 weeks. Selenium and α-tocopherol were given 1 week before lead intoxication. Selenium was administered as sodium selenite, 4 mg/kg dry diet. Alpha-tocopherol acetate was administered as α-toc, 200 mg/kg dry diet. The last group received a mixture of selenium and α-toc in diet. Fish treated with selenium and/or α-toc (groups III-V) showed an amelioration of the adverse effects of lead toxicity and significant improvement in serum electrolytes (calcium, inorganic phosphate, and magnesium) and creatinine level compared with the positive control group (P ≤ 0.05). Treated groups showed significant decrease in superoxide dismutase (SOD) and reduced glutathione (GSH) activity with significant increase in malondialdehyde (MDA; P ≤ 0.05). It could be concluded that selenium and α-toc have a potential antioxidant effect and have the ability to improve the kidney function after lead intoxication of O. niloticus.
Collapse
Affiliation(s)
- Emad A Hashish
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | | | | |
Collapse
|
43
|
Wang Y, Li Z, Li J, Duan YF, Niu J, Wang J, Huang Z, Lin HZ. Effects of dietary chlorogenic acid on growth performance, antioxidant capacity of white shrimp Litopenaeus vannamei under normal condition and combined stress of low-salinity and nitrite. FISH & SHELLFISH IMMUNOLOGY 2015; 43:337-345. [PMID: 25600509 DOI: 10.1016/j.fsi.2015.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
An eight-week feeding trial followed by an acute combined stress test of low-salinity and nitrite were performed to evaluate effects of chlorogenic acid (CGA) on growth performance and antioxidant capacity of white shrimp Litopenaeus vannamei. Shrimp were randomly allocated in 12 tanks (30 shrimp per tank) and triplicate tanks were fed with a control diet or diets containing different levels of CGA (100, 200 and 400 mg kg(-1) feed) as treatment groups. Growth performance including weight gain (WG), biomass gain (BG), feed conversion ratio (FCR), and feed intake were determined after feeding for 56 days. Antioxidant capacity were evaluated by determining the activity of total antioxidant status (TAS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) as well as the gene expression of GSH-Px and CAT in the hepatopancreas of shrimp at the end of feeding trial and again at the end of the combined stress test. The results indicated that supplemention of CGA had no significant effects on the growth performance and the activities of TAS, SOD, GSH-Px and CAT in hepatopancreas of shrimp cultured under normal conditions for 56 days. However, compared with the control group, CGA (200, 400 mg kg(-1) feed) significantly improved the resistance of L. vannamei against the combined stress of low-salinity and nitrite, as indicated by the significant (P < 0.05) higher survival, higher activities of TAS, GSH-Px and CAT, as well as higher transcript levels of GPx and CAT gene in shrimp treated with CGA in the combined tress test. Our findings suggested that CGA possessed dual-modulatory effects on antioxidant capacity of L. vannamei and could be a potential feed additive that can enhance shrimp resistance against environmental stresses. The recommended application dosage is 200 mg kg(-1) and further studies are needed to clarify the action model of CGA efficiency.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of Aquatic Product Processing; Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zheng Li
- Kemin Industries (Zhuhai) Co., Ltd., Zhuhai 519040, PR China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Ya-Fei Duan
- Key Laboratory of Aquatic Product Processing; Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jin Niu
- Key Laboratory of Aquatic Product Processing; Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jun Wang
- Key Laboratory of Aquatic Product Processing; Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhong Huang
- Key Laboratory of Aquatic Product Processing; Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hei-Zhao Lin
- Key Laboratory of Aquatic Product Processing; Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| |
Collapse
|
44
|
Hao X, Ling Q, Hong F. Effects of dietary selenium on the pathological changes and oxidative stress in loach (Paramisgurnus dabryanus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1313-1323. [PMID: 24633928 DOI: 10.1007/s10695-014-9926-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
In this study, loach (Paramisgurnus dabryanus) were fed artificial diets containing 0.31 (control), 0.39, 0.48, 0.50 and 0.62 mg kg(-1) of selenium (Se) for 60 days, respectively. Liver histopathology, hepatocyte ultrastructure, blood indices, biochemical parameters of liver functions and oxidative stress in the Se-treated loach were then assayed. The results showed the following: histopathological and ultrastructural lesions in liver were only observed in loach fed the 0.62 mg Se kg(-1) diet; Haemoglobin and total protein were significantly increased in the 0.50 mg Se kg(-1) group; albumin and high-density lipoprotein were increased significantly in the 0.48-0.50 mg Se kg(-1) groups. However, white blood cell count was significantly decreased in the 0.48 mg Se kg(-1) group; alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase were decreased in the 0.39-0.50 mg Se kg(-1) groups. In liver tissue, the content of hydrogen peroxide was lower than that of controls in the 0.48-0.50 mg Se kg(-1) groups, and the malondialdehyde level was lowest in the 0.48 mg Se kg(-1) group. The activities of superoxide dismutase and glutathione peroxidase were significantly increased in the 0.50 mg Se kg(-1) group; catalase and total antioxidant capacity were markedly increased in the 0.48-0.50 mg Se kg(-1) group. These present results indicated that the dietary Se requirement for loach is 0.48-0.50 mg Se kg(-1) diet.
Collapse
Affiliation(s)
- Xiaofeng Hao
- School of Preclinical Medicine and Life Science, Soochow University, 199, Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | | | | |
Collapse
|
45
|
Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus). BIOMED RESEARCH INTERNATIONAL 2014; 2014:408270. [PMID: 24772422 PMCID: PMC3955621 DOI: 10.1155/2014/408270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 12/17/2022]
Abstract
Yearling common barbel (Barbus barbus L.) were fed four purified casein-based diets for 6 weeks in outdoor cages. Besides control diet, these were supplemented with 0.3 mg kg−1 dw selenium (Se) from sodium selenite, or 0.3 and 1.0 mg kg−1 from Se-enriched microalgae biomass (Chlorella), a previously untested Se source for fish. Fish mortality, growth, Se accumulation in muscle and liver, and activity of selected enzymes in blood plasma, muscle, liver, and intestine were evaluated. There was no mortality, and no differences in fish growth, among groups. Se concentrations in muscle and liver, activity of alanine aminotransferase and creatine kinase in blood plasma, glutathione reductase (GR) in muscle, and GR and catalase in muscle and liver suggested that selenium from Se-enriched Chlorella is more readily accumulated and biologically active while being less toxic than sodium selenite.
Collapse
|
46
|
Guzmán-Guillén R, Prieto AI, Vázquez CM, Vasconcelos V, Cameán AM. The protective role of l-carnitine against cylindrospermopsin-induced oxidative stress in tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:141-150. [PMID: 23501490 DOI: 10.1016/j.aquatox.2013.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 06/01/2023]
Abstract
Cylindrospermopsin (CYN) is one of the most important cyanotoxins in terms of both human health and environmental quality and is produced by several different species of cyanobacteria, including Aphanizomenon ovalisporum. The principal mechanisms of action of CYN involve inhibition of protein and glutathione synthesis. In addition, CYN-mediated genotoxicity results from DNA fragmentation. The results of both in vivo and in vitro studies suggest that oxidative stress also plays a significant role in CYN pathogenesis in fish. We investigated the protective effects of l-carnitine (LC) pre-treatment on A. ovalisporum-induced oxidative stress in cells containing CYN and deoxy-CYN, or pure standard CYN, in tilapia (Oreochromis niloticus) that had been acutely exposed via oral administration. Various oxidative stress markers, including lipid peroxidation (LPO), protein oxidation, DNA oxidation, and the ratio of reduced glutathione to oxidised glutathione (GSH/GSSG), and the activities of NADPH oxidase, superoxide dismutase (SOD), catalase (CAT), and gamma-glutamyl-cysteine synthetase (γ-GCS), were evaluated in the livers and kidneys of fish in the absence and presence of 400 or 880mgLC/kgfish/day during a 21 day period prior to CYN-intoxication. The results of our study demonstrated for the first time the beneficial antioxidant effects of LC dietary supplementation on oxidative stress status in fish. No pro-oxidant effects were detected at any of the LC doses assayed, suggesting that LC is a chemoprotectant that reduces hepatic and renal oxidative stress and may be effective when used for the prophylaxis and treatment of CYN-related intoxication in fish.
Collapse
Affiliation(s)
- R Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Professor García González n°2, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
47
|
Harisa GI, Abo-Salem OM, El-sayed ESM, Shazly G. Effects of nutritional and excessive levels of selenium on red blood cells of rats fed a high cholesterol diet. Biol Trace Elem Res 2013; 152:41-9. [PMID: 23292318 DOI: 10.1007/s12011-012-9588-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
In this study, we investigated the effects of selenium (Se) on the properties of erythrocytes and atherogenic index in the presence and absence of high cholesterol diet (HCD). The effect of selected two different doses (1 μg and 50 μg Se/kg/body weight) on HCD-induced oxidative stress was investigated. The hemolysis of the erythrocytes of the HCD rats as well as by high levels of selenium or their combination was markedly increased. Likewise, atherogenic index and plasma glutathione peroxidase (GPx) activity were significantly increased in the same groups of rats compared to control ones. In contrast, paraoxonase activity, glutathione levels and protein thiol levels, catalase, GPx, and superoxide dismutase activities were significantly decreased in rats that received the HCD, high selenium dose, or their combination. Malondialdehyde and protein carbonyl levels in the plasma and red blood cells were significantly increased by HCD and high selenium dose administration. Co-administration of selenium at low dose with or without an HCD restored all of the investigated parameters to near-normal values. The results of this study suggest that excess selenium administration with HCD worsens the atherogenic index and enhances formation of oxidized red blood cells. At dosage levels in the nutritional range such as 1 μg Se/kg body weight, selenium ameliorates the atherogenic index and preserves the antioxidant capacity of the erythrocytes.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| | | | | | | |
Collapse
|
48
|
Paskerová H, Hilscherová K, Bláha L. Oxidative stress and detoxification biomarker responses in aquatic freshwater vertebrates exposed to microcystins and cyanobacterial biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:2024-2037. [PMID: 22767295 DOI: 10.1007/s11356-012-0960-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/27/2012] [Indexed: 06/01/2023]
Abstract
Cyanobacterial blooms represent a serious threat to the aquatic environment. Among other effects, biochemical markers have been studied in aquatic vertebrates after exposures to toxic cyanobacteria. Some parameters such as protein phosphatases may serve as selective markers of exposure to microcystins, but under natural conditions, fish are exposed to complex mixtures, which affect the overall biomarker response. This review aims to provide a critical summary of biomarker responses in aquatic vertebrates (mostly fish) to toxic cyanobacteria with a special focus on detoxification and oxidative stress. Detoxification biomarkers such as glutathione (GSH) and glutathione-S-transferase (GST) showed very high variability with poor general trends. Often, stimulations and/or inhibitions and/or no effects at GSH or GST have been reported, even within a single study, depending on many variables, including time, dose, tissue, species, etc. Most of the oxidative stress biomarkers (e.g., superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) provided more consistent responses, but only lipid peroxidation (LPO) seemed to fulfill the criteria needed for biomarkers, i.e., a sufficiently long half-life and systematic response. Indeed, reviewed papers demonstrated that toxic cyanobacteria systematically elevate levels of LPO, which indicates the important role of oxidative damage in cyanobacterial toxicity. In summary, the measurement of biochemical changes under laboratory conditions may provide information on the mode of toxic action. However, comparison of different studies is very difficult, and the practical use of detoxification or oxidative stress biomarkers as diagnostic tools or early warnings of cyanobacterial toxicity is questionable.
Collapse
Affiliation(s)
- Hana Paskerová
- Faculty of Science, Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 3, 62500 Brno, Czech Republic
| | | | | |
Collapse
|
49
|
Gutiérrez-Praena D, Puerto M, Prieto AI, Jos Á, Pichardo S, Vasconcelos V, Cameán AM. Protective role of dietary N-acetylcysteine on the oxidative stress induced by cylindrospermopsin in tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1548-1555. [PMID: 22511408 DOI: 10.1002/etc.1838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/21/2011] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
Cylindrospermopsin (CYN) is a toxin produced by various cyanobacteria species. Fish can be exposed to this cyanotoxin in their natural environments and in aquaculture ponds, and toxic effects can be derived. The present study investigated the effects of dietary N-acetylcysteine (NAC) on the oxidative stress induced by pure CYN and CYN from lyophilized cells of Aphanizomenon ovalisporum in tilapia (Oreochromis niloticus). Fish were pretreated with 0, 22, and 45 mg NAC/fish/d for a week, and on day seven, they received a single dose of 200 µg/kg CYN and were killed after 24 h. Oxidative biomarkers evaluated included lipid peroxidation, protein oxidation, glutathione (GSH)/oxidized glutathione (GSSG) ratio, activity of the enzyme γ-glutamylcysteine synthetase, and activity and gene expression of glutathione-S-transferase and glutathione peroxidase. Results showed that CYN induced oxidative stress as evidenced by the increase of lipid peroxidation and protein oxidation, the decrease in GSH/GSSG, and the alteration of the enzymatic activities assayed. Moreover, exposure to cyanobacterial cells containing CYN induced higher toxic effects in comparison to pure CYN. N-acetylcysteine supplementation was effective at reducing the toxicity induced by CYN, particularly at the highest dose employed, with a recovery of some of the biomarkers assayed to basal levels. Therefore, NAC can be considered a useful chemoprotectant that reduces hepatic and renal oxidative stress in the prophylaxis and treatment of CYN-related intoxication in fish.
Collapse
|
50
|
Marie B, Huet H, Marie A, Djediat C, Puiseux-Dao S, Catherine A, Trinchet I, Edery M. Effects of a toxic cyanobacterial bloom (Planktothrix agardhii) on fish: insights from histopathological and quantitative proteomic assessments following the oral exposure of medaka fish (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:39-48. [PMID: 22414781 DOI: 10.1016/j.aquatox.2012.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/07/2012] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
Cyanobacterial toxic blooms often occur in freshwater lakes and constitute a potential health risk to human populations, as well as to fish and other aquatic organisms. Microcystin-LR (the cyanotoxin most commonly detected in the freshwater environment) is a potent hepatotoxin, deregulating the kinase pathway by inhibiting phosphatases 1 and 2A. Although toxicological effects have been clearly linked to the in vitro exposure of fish to purified microcystins, cyanotoxins are produced by the cyanobacteria together with numerous other potentially toxic molecules, and their overall and specific implications for the health of fish have still not been clearly established and remain puzzlingly difficult to assess. The medaka fish (Oryzias latipes) was chosen as an in vitro model for studying the effects of a cyanobacterial bloom on liver protein contents using a gel free quantitative approach, iTRAQ, in addition to pathology examinations on histological preparations. Fish were gavaged with 5 μL cyanobacterial extracts (Planktothrix agardhii) from a natural bloom (La Grande Paroisse, France) containing 2.5 μg equiv. MC-LR. 2h after exposure, the fish were sacrificed and livers were collected for analysis. Histological observations indicate that hepatocytes present glycogen storage loss, and cellular damages, together with immunological localization of MCs. Using a proteomic approach, 304 proteins were identified in the fish livers, 147 of them with a high degree of identification confidence. Fifteen of these proteins were statistically significantly different from those of controls (gavaged with water only). Overall, these protein regulation discrepancies clearly indicate that oxidative stress and lipid regulation had occurred in the livers of the exposed medaka fish. In contrast to previous pure microcystin-LR gavage experiments, marked induction of vitellogenin 1 protein was observed for the first time with a cyanobacterial extract. This finding was confirmed by ELISA quantification of vitellogenin liver content, suggesting that the Planktothrix bloom extract had induced the occurrence of an endocrine-disrupting effect.
Collapse
Affiliation(s)
- Benjamin Marie
- UMR 7245 CNRS Molécules de Communication et Adaptation des Microorganismes, Équipe Cyanobactéries, Cyanotoxines et Environnement, Muséum National d'Histoire Naturelle, 12 Rue Buffon, F-75231 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|