1
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
2
|
Aglanu LM, Amuasi JH, Prokesh E, Beyuo A, Dari CD, Ravensbergen SJ, Agbogbatey MK, Adobasom-Anane AG, Abass KM, Lalloo DG, Blessmann J, Kreuels B, Stienstra Y. Community members and healthcare workers' priorities for the control and prevention of snakebite envenoming in Ghana. PLoS Negl Trop Dis 2023; 17:e0011504. [PMID: 37478151 PMCID: PMC10395900 DOI: 10.1371/journal.pntd.0011504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/02/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION Snakebite is one of the most neglected tropical diseases. In Ghana, there has been a limited interest in snakebite envenoming research despite evidence of high human-snake conflicts. In an effort to meet the World Health Organisation's (WHO) 2030 snakebite targets, the need for research evidence to guide policy interventions is evident. However, in setting the research agenda, community and healthcare workers' priorities are rarely considered. METHODS Three categories of focus groups were formed in the Ashanti and Upper West regions of Ghana, comprising of community members with and without a history of snakebite and healthcare workers who manage snakebite patients. Two separate focus group discussions were conducted with each group in each region. Using the thematic content analysis approach, the framework method was adopted for the data analysis. A predefined 15-item list of potential snakebite-associated difficulties and the WHO's 2030 snakebite strategic key activities were ranked in order of priority based on the participants' individual assessment. RESULTS Both acute and chronic effects of snakebite such as bite site management, rehabilitation and mental health were prioritised by the community members. Health system challenges including training, local standard treatment protocols and clinical investigations on the efficacy of available antivenoms were identified as priorities by the healthcare workers. Notably, all the participant groups highlighted the need for research into the efficacy of traditional medicines and how to promote collaborative strategies between traditional and allopathic treatment practices. CONCLUSION The prioritisation of chronic snakebite envenoming challenges by community members and how to live and cope with such conditions accentuate the lack of post-hospital treatment follow-ups for both mental and physical rehabilitation. To improve the quality of life of patients, it is essential to involve grassroots stakeholders in the process of developing and prioritising future research agenda.
Collapse
Affiliation(s)
- Leslie Mawuli Aglanu
- University Medical Centre Groningen, Department of Internal Medicine/Infectious Diseases, University of Groningen, Groningen, The Netherlands
- Global Health and Infectious Diseases Research Group, Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - John Humphrey Amuasi
- Global Health and Infectious Diseases Research Group, Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Global Health, School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Evie Prokesh
- University Medical Centre Groningen, Department of Internal Medicine/Infectious Diseases, University of Groningen, Groningen, The Netherlands
| | - Alexis Beyuo
- Department of Development Studies, Simon Diedong Dombo University of Business and Integrated Development Studies, Upper West Region, Wa, Ghana
| | | | - Sofanne J. Ravensbergen
- University Medical Centre Groningen, Department of Internal Medicine/Infectious Diseases, University of Groningen, Groningen, The Netherlands
| | - Melvin Katey Agbogbatey
- Global Health and Infectious Diseases Research Group, Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Research Group Snakebite Envenoming, Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Austin Gideon Adobasom-Anane
- Global Health and Infectious Diseases Research Group, Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Global Health, School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - David G. Lalloo
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jörg Blessmann
- Research Group Snakebite Envenoming, Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Benno Kreuels
- Research Group Snakebite Envenoming, Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Division for Tropical Medicine, Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ymkje Stienstra
- University Medical Centre Groningen, Department of Internal Medicine/Infectious Diseases, University of Groningen, Groningen, The Netherlands
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
3
|
León G, Herrera M, Vargas M, Arguedas M, Sánchez A, Segura Á, Gómez A, Solano G, Corrales-Aguilar E, Risner K, Narayanan A, Bailey C, Villalta M, Hernández A, Sánchez A, Cordero D, Solano D, Durán G, Segura E, Cerdas M, Umaña D, Moscoso E, Estrada R, Gutiérrez J, Méndez M, Castillo AC, Sánchez L, Sánchez R, Gutiérrez JM, Díaz C, Alape A. Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. Sci Rep 2021; 11:9825. [PMID: 33972631 PMCID: PMC8110969 DOI: 10.1038/s41598-021-89242-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
In the current global emergency due to SARS-CoV-2 outbreak, passive immunotherapy emerges as a promising treatment for COVID-19. Among animal-derived products, equine formulations are still the cornerstone therapy for treating envenomations due to animal bites and stings. Therefore, drawing upon decades of experience in manufacturing snake antivenom, we developed and preclinically evaluated two anti-SARS-CoV-2 polyclonal equine formulations as potential alternative therapy for COVID-19. We immunized two groups of horses with either S1 (anti-S1) or a mixture of S1, N, and SEM mosaic (anti-Mix) viral recombinant proteins. Horses reached a maximum anti-viral antibody level at 7 weeks following priming, and showed no major adverse acute or chronic clinical alterations. Two whole-IgG formulations were prepared via hyperimmune plasma precipitation with caprylic acid and then formulated for parenteral use. Both preparations had similar physicochemical and microbiological quality and showed ELISA immunoreactivity towards S1 protein and the receptor binding domain (RBD). The anti-Mix formulation also presented immunoreactivity against N protein. Due to high anti-S1 and anti-RBD antibody content, final products exhibited high in vitro neutralizing capacity of SARS-CoV-2 infection, 80 times higher than a pool of human convalescent plasma. Pre-clinical quality profiles were similar among both products, but clinical efficacy and safety must be tested in clinical trials. The technological strategy we describe here can be adapted by other producers, particularly in low- and middle-income countries.
Collapse
Affiliation(s)
- Guillermo León
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica.
| | - Mauricio Arguedas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Aarón Gómez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Solano
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Eugenia Corrales-Aguilar
- Virology-CIET (Research Center for Tropical Diseases), Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Kenneth Risner
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Mauren Villalta
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Hernández
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Cordero
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Eduardo Segura
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Maykel Cerdas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Deibid Umaña
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Edwin Moscoso
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Estrada
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Jairo Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Marcos Méndez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ana Cecilia Castillo
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Laura Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ronald Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
4
|
Quality-Related Properties of Equine Immunoglobulins Purified by Different Approaches. Toxins (Basel) 2020; 12:toxins12120798. [PMID: 33327454 PMCID: PMC7764988 DOI: 10.3390/toxins12120798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Whole IgG antivenoms are prepared from hyperimmune animal plasma by various refinement strategies. The ones most commonly used at industrial scale are precipitation by sodium or ammonium sulphate (ASP), and caprylic acid precipitation (CAP) of non-immunoglobulin proteins. The additional procedures, which have so far been used for experimental purposes only, are anion-exchange (AEX) and cation-exchange chromatography (CEX), as well as affinity chromatography (AC) using IgG’s Fc-binding ligands. These protocols extract the whole IgG fraction from plasma, which contains both venom-specific and therapeutically irrelevant antibodies. Such preparations represent a complex mixture of various IgG subclasses whose functional and/or structural properties, as well as relative distribution, might be affected differently, depending on employed purification procedure. The aim of this work was to compare the influence of aforementioned refinement strategies on the IgG subclass distribution, venom-specific protective efficacy, thermal stability, aggregate formation and retained impurity profile of the final products. A unique sample of Vipera ammodytes ammodytes specific hyperimmune horse plasma was used as a starting material, enabling direct comparison of five purification approaches. The highest purity was achieved by CAP and AC (above 90% in a single step), while the lowest aggregate content was present in samples from AEX processing. Albumin was the main contaminant in IgG preparations obtained by ASP and CEX, while transferrin dominantly contaminated IgG sample from AEX processing. Alpha-1B-glycoprotein was present in CAP IgG fraction, as well as in those from ASP- and AEX-based procedures. AC approach induced the highest loss of IgG(T) subclass. CEX and AEX showed the same tendency, while CAP and ASP had almost no impact on subclass distribution. The shift in IgG subclass composition influenced the specific protective efficacy of the respective final preparation as measured in vivo. AC and CEX remarkably affected drug’s venom-neutralization activity, in contrary to the CAP procedure, that preserved protective efficacy of the IgG fraction. Presented data might improve the process of designing and establishing novel downstream processing strategies and give guidance for optimization of the current ones by providing information on potency-protecting and purity-increasing properties of each purification principle.
Collapse
|
5
|
Simon N, Sperber C, Voigtländer C, Born J, Gilbert DF, Seyferth S, Lee G, Kappes B, Friedrich O. Improved stability of polyclonal antibodies: A case study with lyophilization-conserved antibodies raised against epitopes from the malaria parasite Plasmodium falciparum. Eur J Pharm Sci 2020; 142:105086. [PMID: 31626961 DOI: 10.1016/j.ejps.2019.105086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/29/2022]
Abstract
Antibodies can be produced as polyclonal (pAb) or monoclonal (mAb) liquid formulations with limited shelf-life. For pAbs, unlike mAbs, only little is known about excipients and lyophilization affecting antibody stability upon reconstitution. We used a model pAb directed against Plasmodium falciparum (Pf) pyridoxal 5'-phosphate synthase 2 (Pdx2) to systemically study effects of bulking agents (amino acids, phosphate buffers, salt solutions), sugar(alcohols), surfactants and protein additions (bovine serum albumin, BSA) in liquid pAb formulations (isolated or in combinations) on the activity to detect the antigen in Pf extracts by Western blots. Repeated freeze-thaw cycles (20x) and extended room temperature storage markedly compromised pAb stability, the former being ameliorated by addition of cryoprotectants (glycerol, sucrose). Lyophilization of pure liquid pAb formulation markedly decreased antibody reactivity upon reconstitution which was not preserved by most bulking agents tested (e.g., histidine, arginine, acetate). Among the tested salt solutions (NaCl, Ringer, PBS), phosphate buffered saline had the largest lyoprotective potential, alongside sucrose, but not trehalose or maltitol. Among combinations of excipients, PBS, sucrose, low concentration BSA and Tween potently preserved PfPdx2 stability. Results for PBS were transferable to PfEnolase pAb, indicating that some of the formulations investigated here might be a low-cost solution for more general applicability to pAbs.
Collapse
Affiliation(s)
- Nina Simon
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany.
| | - Christine Sperber
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany; Division of Pharmaceutics, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Cornelia Voigtländer
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany
| | - Julia Born
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany
| | - Stefan Seyferth
- Division of Pharmaceutics, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Geoffrey Lee
- Division of Pharmaceutics, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany.
| |
Collapse
|
6
|
Interactions between Triterpenes and a P-I Type Snake Venom Metalloproteinase: Molecular Simulations and Experiments. Toxins (Basel) 2018; 10:toxins10100397. [PMID: 30274214 PMCID: PMC6215199 DOI: 10.3390/toxins10100397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 12/28/2022] Open
Abstract
Small molecule inhibitors of snake venom metalloproteinases (SVMPs) could provide a means to rapidly halt the progression of local tissue damage following viperid snake envenomations. In this study, we examine the ability of candidate compounds based on a pentacyclic triterpene skeleton to inhibit SVMPs. We leverage molecular dynamics simulations to estimate the free energies of the candidate compounds for binding to BaP1, a P-I type SVMP, and compare these results with experimental assays of proteolytic activity inhibition in a homologous enzyme (Batx-I). Both simulation and experiment suggest that betulinic acid is the most active candidate, with the simulations predicting a standard binding free energy of ΔG∘=−11.0±1.4 kcal/mol. The simulations also reveal the atomic interactions that underlie binding between the triterpenic acids and BaP1, most notably the electrostatic interaction between carboxylate groups of the compounds and the zinc cofactor of BaP1. Together, our simulations and experiments suggest that occlusion of the S1′ subsite is essential for inhibition of proteolytic activity. While all active compounds make hydrophobic contacts in the S1′ site, β-boswellic acid, with its distinct carboxylate position, does not occlude the S1′ site in simulation and exhibits negligible activity in experiment.
Collapse
|
7
|
León G, Vargas M, Segura Á, Herrera M, Villalta M, Sánchez A, Solano G, Gómez A, Sánchez M, Estrada R, Gutiérrez JM. Current technology for the industrial manufacture of snake antivenoms. Toxicon 2018; 151:63-73. [DOI: 10.1016/j.toxicon.2018.06.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
8
|
Squaiella-Baptistão CC, Magnoli FC, Marcelino JR, Sant'Anna OA, Tambourgi DV. Quality of horse F(ab') 2 antitoxins and anti-rabies immunoglobulins: protein content and anticomplementary activity. J Venom Anim Toxins Incl Trop Dis 2018; 24:16. [PMID: 29946337 PMCID: PMC6006770 DOI: 10.1186/s40409-018-0153-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Background Among other applications, immunotherapy is used for the post-exposure treatment and/or prophylaxis of important infectious diseases, such as botulism, diphtheria, tetanus and rabies. The effectiveness of serum therapy is widely proven, but improvements on the immunoglobulin purification process and on the quality control are necessary to reduce the amount of protein aggregates. These may trigger adverse reactions in patients by activating the complement system and inducing the generation of anaphylatoxins. Herein, we used immunochemical methods to predict the quality of horse F(ab’)2 anti-botulinum AB, anti-diphtheric, antitetanic and anti-rabies immunoglobulins, in terms of amount of proteins and protein aggregates. Methods Samples were submitted to protein quantification, SDS-PAGE, Western blot analysis and molecular exclusion chromatography. The anticomplementary activity was determined in vitro by detecting the production of C5a/C5a desArg, the most potent anaphylatoxin. Data were analyzed by one-way ANOVA followed by Tukey’s post-test, and differences were considered statistically significant when p < 0.05. Results Horse F(ab’)2 antitoxins and anti-rabies immunoglobulin preparations presented different amounts of protein. SDS-PAGE and Western blot analyses revealed the presence of protein aggregates, non-immunoglobulin contaminants and, unexpectedly, IgG whole molecules in the samples, indicating the non-complete digestion of immunoglobulins. The chromatographic profiles of antitoxins and anti-rabies immunoglobulins allowed to estimate the percentage of contaminants and aggregates in the samples. Although protein aggregates were present, the samples were not able to induce the generation of C5a/C5a desArg in vitro, indicating that they probably contain acceptable levels of aggregates. Conclusions Anti-botulinum AB (bivalent), anti-diphtheric, antitetanic and anti-rabies horse F(ab’)2 immunoglobulins probably contain acceptable levels of aggregates, although other improvements on the preparations must be carried out. Protein profile analysis and in vitro anticomplementary activity of F(ab’)2 immunoglobulin preparations should be included as quality control steps, to ensure acceptable levels of aggregates, contaminants and whole IgG molecules on final products, reducing the chances of adverse reactions in patients.
Collapse
Affiliation(s)
| | - Fábio Carlos Magnoli
- 1Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - José Roberto Marcelino
- 2Seção de Processamento de Plasmas Hiperimunes, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Osvaldo Augusto Sant'Anna
- 1Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Denise V Tambourgi
- 1Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
9
|
|
10
|
Fry BG. Snakebite: When the Human Touch Becomes a Bad Touch. Toxins (Basel) 2018; 10:E170. [PMID: 29690533 PMCID: PMC5923336 DOI: 10.3390/toxins10040170] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Many issues and complications in treating snakebite are a result of poor human social, economic and clinical intervention and management. As such, there is scope for significant improvements for reducing incidence and increasing patient outcomes. Snakes do not target humans as prey, but as our dwellings and farms expand ever farther and climate change increases snake activity periods, accidental encounters with snakes seeking water and prey increase drastically. Despite its long history, the snakebite crisis is neglected, ignored, underestimated and fundamentally misunderstood. Tens of thousands of lives are lost to snakebites each year and hundreds of thousands of people will survive with some form of permanent damage and reduced work capacity. These numbers are well recognized as being gross underestimations due to poor to non-existent record keeping in some of the most affected areas. These underestimations complicate achieving the proper recognition of snakebite’s socioeconomic impact and thus securing foreign aid to help alleviate this global crisis. Antivenoms are expensive and hospitals are few and far between, leaving people to seek help from traditional healers or use other forms of ineffective treatment. In some cases, cheaper, inappropriately manufactured antivenom from other regions is used despite no evidence for their efficacy, with often robust data demonstrating they are woefully ineffective in neutralizing many venoms for which they are marketed for. Inappropriate first-aid and treatments include cutting the wound, tourniquets, electrical shock, immersion in ice water, and use of ineffective herbal remedies by traditional healers. Even in the developed world, there are fundamental controversies including fasciotomy, pressure bandages, antivenom dosage, premedication such as adrenalin, and lack of antivenom for exotic snakebites in the pet trade. This review explores the myriad of human-origin factors that influence the trajectory of global snakebite causes and treatment failures and illustrate that snakebite is as much a sociological and economic problem as it is a medical one. Reducing the incidence and frequency of such controllable factors are therefore realistic targets to help alleviate the global snakebite burden as incremental improvements across several areas will have a strong cumulative effect.
Collapse
Affiliation(s)
- Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Laptoš T, Omersel J. The importance of handling high-value biologicals: Physico-chemical instability and immunogenicity of monoclonal antibodies. Exp Ther Med 2018; 15:3161-3168. [PMID: 29556253 DOI: 10.3892/etm.2018.5821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 11/05/2022] Open
Abstract
The present review specifies the various chemical and physical factors that can influence drug stability and immunogenicity, and the treatment outcomes of antibody biologicals. Although monoclonal antibodies (mAbs) are known to be more resistant to environmental changes compared with other proteins, the molecules themselves can be subjected to chemical and physical processes that promote their degradation and transformation into their specific amino-acid moieties. With increasing use of medicinal products that contain mAbs, and their self-administration by the patients, the issue of the correct manipulation of these drugs is of increasing importance. This review summarises the correct handling of mAb biologicals from the point of view of the pharmacist, clinical biochemist and patient, as is supported by relevant cases from the literature and our own data and experience. In particular, if there is a break in the cold chain, both healthcare professionals and patients need to be aware of the potential pharmacokinetics and pharmacodynamics alterations to these biologicals. Furthermore, any alterations in the protein structure can induce harmful immune reactions, including anaphylaxis and cytokine storms, or result in the production of neutralising or blocking Abs. Overall, considering also that treatment costs usually remain high, drug stability can have a tremendous effect on the clinical, humanistic and economic outcomes of such treatments.
Collapse
Affiliation(s)
- Tomislav Laptoš
- Pharmacy Unit, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Jasna Omersel
- Chair of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Mendonça-da-Silva I, Magela Tavares A, Sachett J, Sardinha JF, Zaparolli L, Gomes Santos MF, Lacerda M, Monteiro WM. Safety and efficacy of a freeze-dried trivalent antivenom for snakebites in the Brazilian Amazon: An open randomized controlled phase IIb clinical trial. PLoS Negl Trop Dis 2017; 11:e0006068. [PMID: 29176824 PMCID: PMC5720814 DOI: 10.1371/journal.pntd.0006068] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/07/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In tropical areas, a major concern regarding snakebites treatment effectiveness relates to the failure in liquid antivenom (AV) distribution due to the lack of an adequate cold chain in remote areas. To minimize this problem, freeze-drying has been suggested to improve AV stability. METHODS AND FINDINGS This study compares the safety and efficacy of a freeze-dried trivalent antivenom (FDTAV) and the standard liquid AV provided by the Brazilian Ministry of Health (SLAV) to treat Bothrops, Lachesis and Crotalus snakebites. This was a prospective, randomized, open, phase IIb trial, carried out from June 2005 to May 2008 in the Brazilian Amazon. Primary efficacy endpoints were the suppression of clinical manifestations and return of hemostasis and renal function markers to normal ranges within the first 24 hours of follow-up. Primary safety endpoint was the presence of early adverse reactions (EAR) in the first 24 hours after treatment. FDTAV thermal stability was determined by estimating AV potency over one year at 56°C. Of the patients recruited, 65 and 51 were assigned to FDTAV and SLAV groups, respectively. Only mild EARs were reported, and they were not different between groups. There were no differences in fibrinogen (p = 0.911) and clotting time (p = 0.982) recovery between FDTAV and SLAV treated groups for Bothrops snakebites. For Lachesis and Crotalus snakebites, coagulation parameters and creatine phosphokinase presented normal values 24 hours after AV therapy for both antivenoms. CONCLUSIONS/SIGNIFICANCE Since promising results were observed for efficacy, safety and thermal stability, our results indicate that FDTAV is suitable for a larger phase III trial. TRIAL REGISTRATION ISRCTNregistry: ISRCTN12845255; DOI: 10.1186/ISRCTN12845255 (http://www.isrctn.com/ISRCTN12845255).
Collapse
Affiliation(s)
- Iran Mendonça-da-Silva
- Escola Superior de Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto de Biologia do Exército, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Magela Tavares
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Jacqueline Sachett
- Escola Superior de Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - José Felipe Sardinha
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Lilian Zaparolli
- Instituto de Biologia do Exército, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcus Lacerda
- Escola Superior de Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Escola Superior de Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| |
Collapse
|
13
|
Herrera M, Segura Á, Sánchez A, Sánchez A, Vargas M, Villalta M, Harrison RA, Gutiérrez JM, León G. Freeze-dried EchiTAb+ICP antivenom formulated with sucrose is more resistant to thermal stress than the liquid formulation stabilized with sorbitol. Toxicon 2017; 133:123-126. [PMID: 28478057 DOI: 10.1016/j.toxicon.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 01/01/2023]
Abstract
EchiTAb + ICP is a pan-African antivenom used for the treatment of snakebite envenomation in rural sub-Saharan African communities, where the cold chain can be difficult to maintain. To develop a formulation of EchiTAb + ICP that can be distributed and stored without refrigeration, we submitted three different formulations of EchiTAb + ICP: control (i.e. liquid antivenom formulated without stabilizer), liquid antivenom stabilized with sorbitol, and freeze-dried antivenom formulated with sucrose, to an accelerated stability study (i.e. 38 ± 2 °C and 75% relative humidity for 6 months). We analyzed changes in color, residual humidity, reconstitution time (for freeze-dried preparation), pH, osmolality, total protein concentration, antibody monomers content, turbidity, bacterial endotoxins, and pre-clinical neutralizing efficacy of the lethal effect of Echis ocellatus venom at 0, 3 and 6 months. In the control formulation, instability was evidenced by the development of a yellow coloration and an increment in aggregation and turbidity, without change in its neutralizing activity. The sorbitol-stabilized formulation did not develop marked aggregation or turbidity, but instability was evidenced by the development of yellow coloration and a drop in the neutralizing potency. The freeze-dried formulation maintained its neutralizing potency and did not show marked signs of instability, thus indicating that freeze-drying could confer EchiTAb + ICP with improved thermal stability required for distribution and storage at room temperature in sub-Saharan Africa.
Collapse
Affiliation(s)
- María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Sección de Química Analítica, Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
14
|
Herrera M, Solano D, Gómez A, Villalta M, Vargas M, Sánchez A, Gutiérrez JM, León G. Physicochemical characterization of commercial freeze-dried snake antivenoms. Toxicon 2017; 126:32-37. [DOI: 10.1016/j.toxicon.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|
15
|
Kaale E, Manyanga V, Chambuso M, Liana J, Rutta E, Embrey M, Layloff T, Johnson K. The Quality of Selected Essential Medicines Sold in Accredited Drug Dispensing Outlets and Pharmacies in Tanzania. PLoS One 2016; 11:e0165785. [PMID: 27846216 PMCID: PMC5112905 DOI: 10.1371/journal.pone.0165785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/18/2016] [Indexed: 12/02/2022] Open
Abstract
Introduction The purpose of this study was to investigate the quality of a select group of medicines sold in accredited drug dispensing outlets (ADDOs) and pharmacies in different regions of Tanzania as part of an in-depth cross-sectional assessment of community access to medicines and community use of medicines. Methods We collected 242 samples of amoxicillin trihydrate, artemether-lumefantrine (ALu), co-trimoxazole, ergometrine maleate, paracetamol, and quinine from selected ADDOs and pharmacies in Mbeya, Morogoro, Singida, and Tanga regions. The analysis included physical examination and testing with validated analytical techniques. Assays for eight of nine products were conducted using high-performance thin-layer chromatography (HPTLC). For ALu tablets, we used a two-tiered approach, where tier 1 was a semi-quantitative Global Pharma Health Fund-Minilab® method and tier 2 was high-performance liquid chromatography (HPLC) as described in The International Pharmacopoeia’s monograph for artemether-lumefantrine. Results and Discussion The physical examination of samples revealed no defects in the solid and oral liquid dosage forms, but unusual discoloration in an injectable solution, ergometrine maleate. For ALu, the results showed that of 38 samples, 31 (81.6%) passed tier 1 testing and 7 (18.4%) gave inconclusive drug content results. The inconclusive ALu samples were submitted for tier 2 testing and all met the quality standards. The pass rate using the HPTLC and TLC/HPLC assays was 93.8%; the failures were the ergometrine maleate samples purchased from both ADDOs and pharmacies. The disintegration testing of the solid dosage forms was conducted in accordance with US Pharmacopeia monographs. Only two samples of paracetamol, 1.2% of the solid dosage forms, failed to comply to standards. The study revealed a high overall rate of 92.6% of samples that met the quality standards. Although the overall failure rate was 7.4%, it is important to note that this was largely limited to one product and likely due to poor distribution and storage rather than poor manufacturing practices. Conclusions Over 90% of the medicines sold in ADDOs and pharmacies met quality standards. Policy makers need to reconsider ergometrine maleate’s place on the list of medicines that ADDOs are allowed to dispense, by either substituting a more temperature-stable therapeutically equivalent product or requiring those sites to have refrigerators, which is not a feasible option for rural Tanzania.
Collapse
Affiliation(s)
- Eliangiringa Kaale
- School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- * E-mail:
| | - Vicky Manyanga
- School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Mhina Chambuso
- School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Jafary Liana
- Pharmaceuticals & Health Technologies Group, Management Sciences for Health, Dar es Salaam, Tanzania
| | - Edmund Rutta
- Pharmaceuticals & Health Technologies Group, Management Sciences for Health, Arlington, VA, United States of America
| | - Martha Embrey
- Pharmaceuticals & Health Technologies Group, Management Sciences for Health, Arlington, VA, United States of America
| | - Thomas Layloff
- Pharmaceuticals & Health Technologies Group, Management Sciences for Health, Arlington, VA, United States of America
| | - Keith Johnson
- Pharmaceuticals & Health Technologies Group, Management Sciences for Health, Arlington, VA, United States of America
| |
Collapse
|
16
|
Gutiérrez JM. Understanding and confronting snakebite envenoming: The harvest of cooperation. Toxicon 2015; 109:51-62. [PMID: 26615826 DOI: 10.1016/j.toxicon.2015.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 01/14/2023]
Abstract
During 45 years, the Instituto Clodomiro Picado (ICP, University of Costa Rica) has developed an ambitious scientific, technological, productive, and social program aimed at providing a better understanding of snakes and their venoms, contributing to the development, production and distribution of antivenoms, improving the prevention and management of snakebite envenomings, and strengthening human resources in science and technology. Among other topics, its research agenda has focused on the local tissue alterations induced by viperid snake venoms, i.e. myonecrosis, hemorrhage, dermonecrosis, extracellular matrix degradation, lymphatic vessel damage, and inflammation. In addition, the preclinical efficacy of antivenoms has been thoroughly investigated, together with the technological development of novel antivenoms. ICP's project has been based on a philosophical frame characterized by: (a) An integrated approach for confronting the problem of snakebites, involving research, production, extension activities, and teaching; (b) a cooperative and team work perspective in the pursuit of scientific, technological, productive, and social goals; (c) a search for excellence and continuous improvement in the quality of its activities; and (d) a vision of solidarity and compassion, based on the realization that snakebite envenomings mostly affect impoverished vulnerable populations in the rural settings of developing countries. A key aspect in this program has been the consolidation of international partnerships with groups of all continents, within a frame of academic and social cooperation, some of which are described in this review.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
17
|
Vargas M, Segura Á, Villalta M, Herrera M, Gutiérrez JM, León G. Purification of equine whole IgG snake antivenom by using an aqueous two phase system as a primary purification step. Biologicals 2015; 43:37-46. [DOI: 10.1016/j.biologicals.2014.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/12/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022] Open
|
18
|
Herrera M, Tattini V, Pitombo RN, Gutiérrez JM, Borgognoni C, Vega-Baudrit J, Solera F, Cerdas M, Segura Á, Villalta M, Vargas M, León G. Freeze-dried snake antivenoms formulated with sorbitol, sucrose or mannitol: Comparison of their stability in an accelerated test. Toxicon 2014; 90:56-63. [DOI: 10.1016/j.toxicon.2014.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 11/29/2022]
|
19
|
Bhattacharya S, Chakraborty M, Mukhopadhyay P, Kundu PP, Mishra R. Viper and cobra venom neutralization by alginate coated multicomponent polyvalent antivenom administered by the oral route. PLoS Negl Trop Dis 2014; 8:e3039. [PMID: 25102172 PMCID: PMC4125299 DOI: 10.1371/journal.pntd.0003039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 06/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background Snake bite causes greater mortality than most of the other neglected tropical diseases. Snake antivenom, although effective in minimizing mortality in developed countries, is not equally so in developing countries due to its poor availability in remote snake infested areas as, and when, required. An alternative approach in this direction could be taken by making orally deliverable polyvalent antivenom formulation, preferably under a globally integrated strategy, for using it as a first aid during transit time from remote trauma sites to hospitals. Methodology/Principal Findings To address this problem, multiple components of polyvalent antivenom were entrapped in alginate. Structural analysis, scanning electron microscopy, entrapment efficiency, loading capacity, swelling study, in vitro pH sensitive release, acid digestion, mucoadhesive property and venom neutralization were studied in in vitro and in vivo models. Results showed that alginate retained its mucoadhesive, acid protective and pH sensitive swelling property after entrapping antivenom. After pH dependent release from alginate beads, antivenom (ASVS) significantly neutralized phospholipaseA2 activity, hemolysis, lactate dehydrogenase activity and lethality of venom. In ex vivo mice intestinal preparation, ASVS was absorbed significantly through the intestine and it inhibited venom lethality which indicated that all the components of antivenom required for neutralization of venom lethality were retained despite absorption across the intestinal layer. Results from in vivo studies indicated that orally delivered ASVS can significantly neutralize venom effects, depicted by protection against lethality, decreased hemotoxicity and renal toxicity caused by russell viper venom. Conclusions/Significance Alginate was effective in entrapping all the structural components of ASVS, which on release and intestinal absorption effectively reconstituted the function of antivenom in neutralizing viper and cobra venom. Further research in this direction can strategize to counter such dilemma in snake bite management by promoting control release and oral antivenom rendered as a first aid. Antivenom, the only effective therapy against snake bite in practice, is successful in controlling mortality in developed countries, but not in developing countries. Unavailability of antivenom at the proper time and place of snake bite in developing countries is a major factor in this account, which results not only from production deficit but also from dependence on hospitals located too faraway for intravenous administration. It lengthens the period between bite and treatment, and thereby worsens the outcome. To make antivenom available immediately after bite, we need to develop an oral formulation which, by its property of controlled release, can supply antivenom as first aid until further hospitalization. In this work, multiple components of antivenom were entrapped in alginate, an economic, biodegradable polymer, which retained the functional property of the antivenom even after intestinal absorption and showed in vivo and in vitro venom neutralization effects. This study promises the development of an effective first aid against snake envenomation, thereby increasing chances of survival of the victim.
Collapse
Affiliation(s)
- Sourav Bhattacharya
- Department of Physiology, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| | | | - Piyasi Mukhopadhyay
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, India
| | - P. P. Kundu
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, India
| | - Roshnara Mishra
- Department of Physiology, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
- * E-mail:
| |
Collapse
|
20
|
Al-Abdulla I, Casewell NR, Landon J. Long-term physicochemical and immunological stability of a liquid formulated intact ovine immunoglobulin-based antivenom. Toxicon 2013; 64:38-42. [DOI: 10.1016/j.toxicon.2012.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
|
21
|
Gutiérrez JM. Improving antivenom availability and accessibility: science, technology, and beyond. Toxicon 2012; 60:676-87. [PMID: 22781134 DOI: 10.1016/j.toxicon.2012.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/23/2012] [Indexed: 01/15/2023]
Abstract
Snakebite envenomings constitute a serious and neglected public health problem. Despite the fact that effective treatment exists, i.e. administration of animal-derived antivenoms, the availability and accessibility of these life-saving immunobiologicals is deficitary in various parts of the world, particularly in sub-Saharan Africa and some regions of Asia. This article discusses some of the problems that need to be circumvented in order to improve the availability and accessibility of antivenoms. The conglomerate of antivenom manufacturers is highly heterogeneous in terms of technological base, qualification of staff, implementation of Good Manufacturing Practices (GMPs), and volume of production. Therefore, improvements in antivenom quality and availability should be based on strategies tailored to the situation of each region or country; in this context, three different scenarios are discussed. Accessibility of antivenoms demands concerted efforts at multiple levels, including raising the awareness of public health authorities on the relevance of the problem, implementing innovative antivenom purchasing schemes, strengthening national distribution channels on the basis of robust epidemiological information, improving the cold chain and the provision of health services in remote rural settings, supporting the correct use of antivenoms, and promoting the involvement of local community organizations in various aspects of prevention and management. These tasks should be envisaged in terms of synergistic, interprogrammatic and intersectorial interventions, with the participation of many players.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
22
|
Harrison RA, Cook DA, Renjifo C, Casewell NR, Currier RB, Wagstaff SC. Research strategies to improve snakebite treatment: challenges and progress. J Proteomics 2011; 74:1768-80. [PMID: 21723969 DOI: 10.1016/j.jprot.2011.06.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022]
Abstract
Antivenom is an effective treatment of snakebite but, because of the complex interplay of fiscal, epidemiological, therapeutic efficacy and safety issues, the mortality of snakebite remains unacceptably high. Efficiently combating this high level of preventable death amongst the world's most disadvantaged communities requires the globally-coordinated action of multiple intervention programmes. This is the overall objective of the Global Snakebite Initiative. This paper describes the challenges facing the research community to develop snakebite treatments that are more efficacious, safe and affordable than current therapy.
Collapse
Affiliation(s)
- Robert A Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals 2011; 39:129-42. [DOI: 10.1016/j.biologicals.2011.02.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
|
24
|
Solano G, Segura Á, Herrera M, Gómez A, Villalta M, Gutiérrez JM, León G. Study of the design and analytical properties of the lethality neutralization assay used to estimate antivenom potency against Bothrops asper snake venom. Biologicals 2010; 38:577-85. [DOI: 10.1016/j.biologicals.2010.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/06/2010] [Accepted: 05/12/2010] [Indexed: 11/25/2022] Open
|
25
|
Gutiérrez JM, Williams D, Fan HW, Warrell DA. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon 2009; 56:1223-35. [PMID: 19951718 DOI: 10.1016/j.toxicon.2009.11.020] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/11/2009] [Accepted: 11/24/2009] [Indexed: 11/29/2022]
Abstract
Snakebite envenoming is a neglected public health challenge of compelling importance in many regions of the world, particularly sub-Saharan Africa, Asia, Latin America and Papua-New Guinea. Addressing the problem of snakebite effectively demands an integrated multifocal approach, targeting complex problems and involving many participants. It must comprise: (a) Acquisition of reliable information on the incidence and mortality attributable to snakebite envenoming, and the number of people left with permanent sequelae. (b) Improvements in production of effective and safe antivenoms, through strategies aimed at strengthening the technological capacity of antivenom manufacturing laboratories. (c) Increasing the capacity of low-income countries to produce specific immunogens(snake venoms) locally, and to perform their own quality control of antivenoms. (d) Commitments from regional producers to manufacture antivenoms for countries where antivenom production is not currently feasible. (e) Implementation of financial initiatives guaranteeing the acquisition of adequate volumes of antivenom at affordable prices in low-income countries. (f) Performance of collaborative studies on the safety and effectiveness of antivenoms assessed preclinically and by properly designed clinical trials. (g) Development of antivenom distribution programmes tailored to the real needs and epidemiological situations of rural areas in each country. (h) Permanent training programmes for health staff, particularly in rural areas where snakebites are frequent.(i) Implementation of programmes to support those people whose snakebites resulted in chronic disabilities. (j) Preventive and educational programmes at the community level, with the active involvement of local organizations and employing modern methods of health promotion. Such an integrated approach, currently being fostered by the Global Snake Bite Initiative of the International Society on Toxinology and by the World Health Organization, will help to alleviate the enormous burden of human suffering inflicted by snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 1000 San José, Costa Rica.
| | | | | | | |
Collapse
|