1
|
Brown SM, Blaszczak JR, Shriver RK, Jones RC, Sohrab A, Goel R, Boyer GL, Wei B, Manoylov KM, Nelson TR, Zabrecky JM, Stancheva R. Growth and anatoxin-a production of Microcoleus (Cyanobacteria) strains from streams in California, USA. HARMFUL ALGAE 2025; 144:102834. [PMID: 40187799 PMCID: PMC11995789 DOI: 10.1016/j.hal.2025.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025]
Abstract
Benthic cyanobacterial proliferations are an emerging concern globally due to their potential for toxin production and subsequent negative environmental and health impacts. Microcoleus is a common mat-forming genus reported to produce potent neurotoxin, anatoxin-a, ingestion of which has been associated with animal mortalities. Six different unialgal monoclonal strains of Microcoleus were isolated from streams in California and grown in batch culture for 49 days. The four toxic strains were identified using a polyphasic approach as belonging to the species Microcoleus anatoxicus, which expands its known distribution throughout the Klamath River and Rock Creek watersheds in northern California. The non-toxic strains from the Eel River belonged to Microcoleus sp. 1. Maximum toxin production occurred during the exponential growth phase, and peaked 6-13 days later in more toxic strains, with a persistently higher fraction of extracellular toxins compared to less toxic strains, which had maximum toxin concentrations at day 13. The proposed mechanism of toxin release into culture medium was through damage to the cell walls of unhealthy filaments. Peak toxin production was energetically expensive for all M. anatoxicus strains, evidenced by reduced specific growth rates at the time of peak toxin production, followed by quick recovery of cell division. Despite this, more toxic strains achieved faster maximum growth rates than the less toxic and non-toxic strains under luxurious nutrient culture conditions. Differential toxin and growth rate responses of M. anatoxicus strains from wide geographical ranges under the same laboratory-controlled conditions suggest high intraspecific variation, which may represent challenges for harmful algal blooms mitigation. More toxic strains have the potential to proliferate and consistently release extracellular anatoxins into the environment. This study provides a baseline to understanding the growth and toxin kinetics of two commonly occurring Microcoleus species in northern California which may help benthic harmful cyanobacteria management.
Collapse
Affiliation(s)
- Sydney M Brown
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA; Potomac Environmental Research and Education Center, Woodbridge, VA 22191, USA
| | - Joanna R Blaszczak
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
| | - Robert K Shriver
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
| | - R Christian Jones
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA; Potomac Environmental Research and Education Center, Woodbridge, VA 22191, USA
| | - Abeer Sohrab
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Gregory L Boyer
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Bofan Wei
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Kalina M Manoylov
- Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, GA, USA
| | - T Reid Nelson
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA; Potomac Environmental Research and Education Center, Woodbridge, VA 22191, USA
| | - Jordan M Zabrecky
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
| | - Rosalina Stancheva
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA; Potomac Environmental Research and Education Center, Woodbridge, VA 22191, USA.
| |
Collapse
|
2
|
Martinez I Quer A, Larsson Y, Johansen A, Arias CA, Carvalho PN. Cyanobacterial blooms in surface waters - Nature-based solutions, cyanotoxins and their biotransformation products. WATER RESEARCH 2024; 251:121122. [PMID: 38219688 DOI: 10.1016/j.watres.2024.121122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/18/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Cyanobacterial blooms are expected to become more frequent and severe in surface water reservoirs due to climate change and ecosystem degradation. It is an emerging challenge that especially countries relying on surface water supplies will face. Nature-based solutions (NBS) like constructed wetlands and biofilters can be used for cyanotoxin remediation. Both technologies are reviewed and critically assessed for different types of water resources. The available information on cyanotoxins (bio)transformation products (TPs) is reviewed to point out the potential research gaps and to disclose the most reliable enzymatic degradation pathways. Knowledge gaps were found, such as information on the performance of the revised NBS in pilot and full scales, the removal processes covering different cyanotoxins (besides the most widely studied microcystin-LR), and the difficulties for real-world implementation of technologies proposed in the literature. Also, most studies focus on bacterial degradation processes while fungi have been completely overlooked. This review also presents an up-to-date overview of the transformation of cyanotoxins, where degradation product data was compiled in a unified library of 22 metabolites for microcystins (MCs), 7 for cylindrospermopsin (CYN) and 10 for nodularin (NOD), most of them reported only in a single study. Major gaps are the lack of environmentally relevant studies with TPs in pilot and full- scale treatment systems, information on TP's toxicity, as well as limited knowledge of environmentally relevant degradation pathways. NBS have the potential to mitigate cyanotoxins in recreational and irrigation waters, enabling the water-energy-food nexus and avoiding the degradability of the ecosystems.
Collapse
Affiliation(s)
- Alba Martinez I Quer
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark.
| | - Yrsa Larsson
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Carlos A Arias
- WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark; Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus C 8000, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Perri KA, Bellinger BJ, Ashworth MP, Manning SR. Environmental Factors Impacting the Development of Toxic Cyanobacterial Proliferations in a Central Texas Reservoir. Toxins (Basel) 2024; 16:91. [PMID: 38393169 PMCID: PMC10892464 DOI: 10.3390/toxins16020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Cyanobacterial harmful algal proliferations (cyanoHAPs) are increasingly associated with dog and livestock deaths when benthic mats break free of their substrate and float to the surface. Fatalities have been linked to neurotoxicosis from anatoxins, potent alkaloids produced by certain genera of filamentous cyanobacteria. After numerous reports of dog illnesses and deaths at a popular recreation site on Lady Bird Lake, Austin, Texas in late summer 2019, water and floating mat samples were collected from several sites along the reservoir. Water quality parameters were measured and mat samples were maintained for algal isolation and DNA identification. Samples were also analyzed for cyanobacterial toxins using LC-MS. Dihydroanatoxin-a was detected in mat materials from two of the four sites (0.6-133 ng/g wet weight) while water samples remained toxin-free over the course of the sampling period; no other cyanobacterial toxins were detected. DNA sequencing analysis of cyanobacterial isolates yielded a total of 11 genera, including Geitlerinema, Tyconema, Pseudanabaena, and Phormidium/Microcoleus, taxa known to produce anatoxins, including dihydroanatoxin, among other cyanotoxins. Analyses indicate that low daily upriver dam discharge, higher TP and NO3 concentrations, and day of the year were the main parameters associated with the presence of toxic floating cyanobacterial mats.
Collapse
Affiliation(s)
- Katherine A. Perri
- Department of Biological Sciences, Institute of Environment, Biscayne Bay Campus, Florida International University, 3000 NE 151st St., North Miami, FL 33181, USA;
| | - Brent J. Bellinger
- Watershed Protection Department, City of Austin, 505 Barton Springs Road, 11th Floor, Austin, TX 78704, USA;
| | - Matt P. Ashworth
- UTEX Culture Collection of Algae, College of Natural Sciences, University of Texas, Austin 204 W 24th Street, Austin, TX 78701, USA;
| | - Schonna R. Manning
- Department of Biological Sciences, Institute of Environment, Biscayne Bay Campus, Florida International University, 3000 NE 151st St., North Miami, FL 33181, USA;
| |
Collapse
|
4
|
Anatoxins from benthic cyanobacteria responsible for dog mortalities in New Brunswick, Canada. Toxicon 2023; 227:107086. [PMID: 36914100 DOI: 10.1016/j.toxicon.2023.107086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
In July 2018 three dogs died after visiting the Wolastoq (Saint John River) near Fredericton, New Brunswick, in Atlantic Canada. All showed signs of toxicosis, and necropsies revealed non-specific pulmonary edema and multiple microscopic brain hemorrhages. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis of vomitus and stomach contents as well as water and biota from the mortality sites confirmed the presence of anatoxins (ATXs), a class of potent neurotoxic alkaloids. The highest levels were measured in a dried benthic cyanobacterial mat that two of the dogs had been eating before falling ill and in a vomitus sample collected from one of the dogs. Concentrations of 357 and 785 mg/kg for anatoxin-a and dihydroanatoxin-a, respectively, were measured in the vomitus. Known anatoxin-producing species of Microcoleus were tentatively identified using microscopy and confirmed by 16S rRNA gene sequencing. The ATX synthetase gene, anaC, was detected in the samples and isolates. The pathology and experimental results confirmed the role of ATXs in these dog mortalities. Further research is required to understand drivers for toxic cyanobacteria in the Wolastoq and to develop methodology for assessing occurrence.
Collapse
|
5
|
Confirmation Using Triple Quadrupole and High-Resolution Mass Spectrometry of a Fatal Canine Neurotoxicosis following Exposure to Anatoxins at an Inland Reservoir. Toxins (Basel) 2022; 14:toxins14110804. [PMID: 36422978 PMCID: PMC9696769 DOI: 10.3390/toxins14110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Cyanobacterial blooms are often associated with the presence of harmful natural compounds which can cause adverse health effects in both humans and animals. One family of these compounds, known as anatoxins, have been linked to the rapid deaths of cattle and dogs through neurotoxicological action. Here, we report the findings resulting from the death of a dog at a freshwater reservoir in SW England. Poisoning was rapid following exposure to material at the side of the lake. Clinical signs included neurological distress, diaphragmatic paralysis and asphyxia prior to death after 45 min of exposure. Analysis by HILIC-MS/MS of urine and stomach content samples from the dog revealed the detection of anatoxin-a and dihydroanatoxin-a in both samples with higher concentrations of the latter quantified in both matrices. Detection and quantitative accuracy was further confirmed with use of accurate mass LC-HRMS. Additional anatoxin analogues were also detected by LC-HRMS, including 4-keto anatoxin-a, 4-keto-homo anatoxin-a, expoxy anatoxin-a and epoxy homo anatoxin-a. The conclusion of neurotoxicosis was confirmed with the use of two independent analytical methods showing positive detection and significantly high quantified concentrations of these neurotoxins in clinical samples. Together with the clinical signs observed, we have confirmed that anatoxins were responsible for the rapid death of the dog in this case.
Collapse
|
6
|
Puddick J, van Ginkel R, Page CD, Murray JS, Greenhough HE, Bowater J, Selwood AI, Wood SA, Prinsep MR, Truman P, Munday R, Finch SC. Acute toxicity of dihydroanatoxin-a from Microcoleus autumnalis in comparison to anatoxin-a. CHEMOSPHERE 2021; 263:127937. [PMID: 32828056 DOI: 10.1016/j.chemosphere.2020.127937] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
The cyanobacterium Microcoleus autumnalis grows as thick benthic mats in rivers and is becoming increasingly prevalent around the world. M. autumnalis can produce high concentrations of anatoxins and ingestion of benthic mats has led to multiple dog deaths over the past two decades. M. autumnalis produces a suite of different anatoxin congeners including anatoxin-a (ATX), dihydroanatoxin-a, (dhATX), homoanatoxin-a and dihydrohomoanatoxin-a. Benthic mat samples often contain high levels of dhATX, but there is little toxicology information on this congener. In the present study, natural versions of dhATX and ATX were purified from cyanobacteria to determine the acute toxicity by different routes of administration using mice. Nuclear magnetic resonance spectroscopy was used to confirm the putative structure of dhATX. By intraperitoneal (ip) injection, the median lethal dose (LD50) for dhATX was 0.73 mg/kg, indicating a reduced toxicity compared to ATX (LD50 of 0.23 mg/kg). However, by oral administration (both gavage and feeding), dhATX was more toxic than ATX (gavage LD50 of 2.5 mg/kg for dhATX and 10.6 mg/kg for ATX; feeding LD50 of 8 mg/kg for dhATX and 25 mg/kg for ATX). The relative nicotinic acetylcholine receptor-binding affinities of ATX and dhATX were determined using the Torpedo electroplaque assay which showed consistency with the relative toxicity determined by ip injection. This work highlights that toxicity studies based solely on ip injection may not yield LD50 values that are relevant to those derived via oral administration, and hence, do not provide a good estimate of the risk posed to human and animal health in situations where oral ingestion is the likely route of exposure. The high acute oral toxicity of dhATX, and its abundance in M. autumnalis proliferations, demonstrates that it is an important environmental contaminant that warrants further investigation.
Collapse
Affiliation(s)
| | - Roel van Ginkel
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Carrie D Page
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - J Sam Murray
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | - Joel Bowater
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - Penelope Truman
- Massey University, PO Box 756, Wellington, 6140, New Zealand
| | - Rex Munday
- AgResearch Limited, Ruakura Research Centre, Private Bag 3123, Hamilton, 3240, New Zealand
| | - Sarah C Finch
- AgResearch Limited, Ruakura Research Centre, Private Bag 3123, Hamilton, 3240, New Zealand
| |
Collapse
|
7
|
Understanding the Differences in the Growth and Toxin Production of Anatoxin-Producing Cuspidothrix issatschenkoi Cultured with Inorganic and Organic N Sources from a New Perspective: Carbon/Nitrogen Metabolic Balance. Toxins (Basel) 2020; 12:toxins12110724. [PMID: 33228063 PMCID: PMC7699347 DOI: 10.3390/toxins12110724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
Cyanotoxins are the underlying cause of the threat that globally pervasive Cyanobacteria Harmful algal blooms (CyanoHABs) pose to humans. Major attention has been focused on the cyanobacterial hepatotoxin microcystins (MCs); however, there is a dearth of studies on cyanobacterial neurotoxin anatoxins. In this study, we explored how an anatoxin-producing Cuspidothrix issatschenkoi strain responded to culture with inorganic and organic nitrogen sources in terms of growth and anatoxins production. The results of our study revealed that ʟ- alanine could greatly boost cell growth, and was associated with the highest cell productivity, while urea significantly stimulated anatoxin production with the maximum anatoxin yield reaching 25.86 μg/mg dry weight, which was 1.56-fold higher than that in the control group (BG11). To further understand whether the carbon/nitrogen balance in C. issatschenkoi would affect anatoxin production, we explored growth and toxin production in response to different carbon/nitrogen ratios (C/N). Anatoxin production was mildly promoted when the C/N ratio was within low range, and significantly inhibited when the C/N ratio was within high range, showing approximately a three-fold difference. Furthermore, the transcriptional profile revealed that anaC gene expression was significantly up-regulated over 2–24 h when the C/N ratio was increased, and was significantly down-regulated after 96 h. Overall, our results further enriched the evidence that urea can stimulate cyanotoxin production, and ʟ-alanine could boost C. issatschenkoi proliferation, thus providing information for better management of aquatic systems. Moreover, by focusing on the intracellular C/N metabolic balance, this study explained the anatoxin production dynamics in C. issatschenkoi in response to different N sources.
Collapse
|
8
|
Wood SA, Kelly L, Bouma-Gregson K, Humbert JF, Laughinghouse HD, Lazorchak J, McAllister T, McQueen A, Pokrzywinski K, Puddick J, Quiblier C, Reitz LA, Ryan K, Vadeboncoeur Y, Zastepa A, Davis TW. Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. FRESHWATER BIOLOGY 2020; 65:1824-1842. [PMID: 34970014 PMCID: PMC8715960 DOI: 10.1111/fwb.13532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and sampling strategies, and explores mitigation options. 2. Toxic proliferations of freshwater benthic cyanobacteria (taxa that grow attached to substrates) occur in streams, rivers, lakes, and thermal and meltwater ponds, and have been reported in 19 countries. Anatoxin- and microcystin-containing mats are most commonly reported (eight and 10 countries, respectively). 3. Studies exploring factors that promote toxic benthic cyanobacterial proliferations are limited to a few species and habitats. There is a hierarchy of importance in environmental and biological factors that regulate proliferations with variables such as flow (rivers), fine sediment deposition, nutrients, associated microbes, and grazing identified as key drivers. Regulating factors differ among colonisation, expansion, and dispersal phases. 4. New -omics-based approaches are providing novel insights into the physiological attributes of benthic cyanobacteria and the role of associated microorganisms in facilitating their proliferation. 5. Proliferations are commonly comprised of both toxic and non-toxic strains, and the relative proportion of these is the key factor contributing to the overall toxin content of each mat. 6. While these events are becoming more commonly reported globally, we currently lack standardised approaches to detect, monitor, and manage this emerging health issue. To solve these critical gaps, global collaborations are needed to facilitate the rapid transfer of knowledge and promote the development of standardised techniques that can be applied to diverse habitats and species, and ultimately lead to improved management.
Collapse
Affiliation(s)
| | | | - Keith Bouma-Gregson
- Office of Information Management and Analysis, California State Water Resources Control Board, Sacramento, California, United States of America
| | | | - H Dail Laughinghouse
- Fort Lauderdale Research and Education Center, University of Florida, Florida, USA
| | - James Lazorchak
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Monitoring and Modeling, Cincinnati, Ohio, United States of America
| | - Tara McAllister
- Te Pūnaha Matatini Centre of Research Excellence for Complex Systems, University of Auckland, Auckland, New Zealand
| | - Andrew McQueen
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | - Katyee Pokrzywinski
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | | | | | - Laura A Reitz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Ken Ryan
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Yvonne Vadeboncoeur
- Department of Biological Sciences, Wright State University, Ohio, United States of America
| | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Ontario, Canada
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
9
|
Thomson-Laing G, Puddick J, Laroche O, Fulton S, Steiner K, Heath MW, Wood SA. Broad and Fine Scale Variability in Bacterial Diversity and Cyanotoxin Quotas in Benthic Cyanobacterial Mats. Front Microbiol 2020; 11:129. [PMID: 32117151 PMCID: PMC7017413 DOI: 10.3389/fmicb.2020.00129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Benthic proliferations of Microcoleus autumnalis (basionym Phormidium autumnale) and closely related taxa are being reported with increasing frequency in streams and rivers worldwide. This species commonly produces the potent neurotoxin anatoxin, and exposure to this has resulted in animal fatalities and human health concerns. Bacterial communities within cyanobacterial assemblages can facilitate processes such as nutrient cycling and are posited to influence cyanobacterial growth and function. However, there is limited knowledge on spatial variability of bacterial communities associated with benthic cyanobacteria and anatoxin content and quotas. In this study, M. autumnalis-dominated mat samples were collected from six sites in two New Zealand streams. Associated bacterial communities were characterized using 16S rRNA metabarcoding, anatoxin content by liquid chromatography-mass spectrometry and anaC copies using droplet digital PCR. Bacterial assemblages differed significantly when amplicon sequence variants were compared between streams and most sites within streams. These differences were associated with conductivity, DRP, DIN, temperature, anatoxin concentration, and quota. Despite the differences in bacterial community composition; at phyla, class and order levels there was high similarity across spatial scales, with Bacteroidetes (ca. 67%) and Proteobacteria (ca. 25%) dominant. There was significant variability in total anatoxin concentrations between sites in both streams (p < 0.001). When the data were converted to anatoxin quotas variability was reduced, suggesting that the relative abundance of toxic genotypes is a key driver of total anatoxin concentrations in mats. This study demonstrates the complexity of microbial communities within M. autumnalis-dominated mats and highlights their likely important role in within-mat nutrient cycling processes.
Collapse
Affiliation(s)
| | | | - Olivier Laroche
- Cawthron Institute, Nelson, New Zealand.,Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | | | | | - Mark W Heath
- Greater Wellington Reginal Council, Wellington, New Zealand
| | | |
Collapse
|
10
|
Kelly LT, Ryan KG, Wood SA. Differential strain response in alkaline phosphatase activity to available phosphorus in Microcoleus autumnalis. HARMFUL ALGAE 2019; 89:101664. [PMID: 31672236 DOI: 10.1016/j.hal.2019.101664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Toxic, benthic cyanobacterial proliferations have increased in frequency and severity globally and can have negative impacts on aquatic ecosystems, recreation and human health. Microcoleus autumnalis has been associated with numerous animal fatalities and is causing increasing concern. It tends to grow in systems with moderate dissolved inorganic nitrogen and very low dissolved reactive phosphorus. Acquisition of nutrients, particularly phosphorus, from organic sources may explain how M. autumnalis can reach the high biomass in these relatively nutrient deplete environments. In the present study the effect of phosphorus concentration and source on alkaline phosphatase activity was investigated in toxic and non-toxic M. autumnalis strains. Toxic strains exhibited significantly higher alkaline phosphatase activity than non-toxic strains (p < 0.05), and alkaline phosphatase activity increased in all strains under phosphorus-depleted conditions (p < 0.05). Alkaline phosphatase activity was also present in environmental M. autumnalis mats, though at lower levels than in laboratory experiments. The presence of alkaline phosphatase activity indicates that the acquisition of phosphorus from organic phosphorus sources may contribute to the ability of M. autumnalis to grow in systems with low dissolved reactive phosphorus.
Collapse
Affiliation(s)
- Laura T Kelly
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Ken G Ryan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand.
| |
Collapse
|
11
|
Development and Application of a Quantitative PCR Assay to Assess Genotype Dynamics and Anatoxin Content in Microcoleus autumnalis-Dominated Mats. Toxins (Basel) 2018; 10:toxins10110431. [PMID: 30373141 PMCID: PMC6266952 DOI: 10.3390/toxins10110431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022] Open
Abstract
Microcoleus is a filamentous cyanobacteria genus with a global distribution. Some species form thick, cohesive mats over large areas of the benthos in rivers and lakes. In New Zealand Microcoleus autumnalis is an anatoxin producer and benthic proliferations are occurring in an increasing number of rivers nationwide. Anatoxin content in M. autumnalis-dominated mats varies spatially and temporally, making understanding and managing proliferations difficult. In this study a M. autumnalis-specific TaqMan probe quantitative PCR (qPCR) assay targeting the anaC gene was developed. The assay was assessed against 26 non-M. autumnalis species. The assay had a detection range over seven orders of magnitude, with a limit of detection of 5.14 × 10−8 ng μL−1. The anaC assay and a cyanobacterial specific 16S rRNA qPCR were then used to determine toxic genotype proportions in 122 environmental samples collected from 19 sites on 10 rivers in New Zealand. Anatoxin contents of the samples were determined using LC-MS/MS and anatoxin quota per toxic cell calculated. The percentage of toxic cells ranged from 0 to 30.3%, with significant (p < 0.05) differences among rivers. The anatoxin content in mats had a significant relationship with the percentage of toxic cells (R2 = 0.38, p < 0.001), indicating that changes in anatoxin content in M. autumnalis-dominated mats are primarily related to the dominance of toxic strains. When applied to more extensive samples sets the assay will enable new insights into how biotic and abiotic parameters influence genotype composition, and if applied to RNA assist in understanding anatoxin production.
Collapse
|
12
|
Echenique-Subiabre I, Tenon M, Humbert JF, Quiblier C. Spatial and Temporal Variability in the Development and Potential Toxicity of Phormidium Biofilms in the Tarn River, France. Toxins (Basel) 2018; 10:toxins10100418. [PMID: 30336603 PMCID: PMC6215143 DOI: 10.3390/toxins10100418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/24/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022] Open
Abstract
Proliferation of Phormidium biofilms in rivers is becoming a worldwide sanitation problem for humans and animals, due to the ability of these bacteria to produce anatoxins. To better understand the environmental conditions that favor the development of Phormidium biofilms and the production of anatoxins, we monitored the formation of these biofilms and their toxins for two years in the Tarn River, biofilms from which are known to have caused the deaths of multiple dogs. As previously observed in New Zealand, Phormidium biofilm development occurred in riffle areas. The coverage of these biofilms at the bottom of the river exhibited strong spatial and temporal variations, but was positively correlated with water temperature and depth. Anatoxin-a was detected in less than 50% of the biofilms. The concentrations of these toxins in the biofilms exhibited high spatiotemporal variability, with the highest concentrations being recorded at the end of the summer period at the upstream sampling sites. These findings suggest that the maturity of the biofilms, combined with the local environmental conditions, have an impact on the production of anatoxin, making risk assessment for these benthic proliferations challenging.
Collapse
Affiliation(s)
- Isidora Echenique-Subiabre
- INRA, Sorbonne University, iEES Paris, 4 Place Jussieu, 75252 Paris CEDEX, France.
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Case 39, 57 rue Cuvier, 75005 Paris, France.
| | - Maxime Tenon
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Case 39, 57 rue Cuvier, 75005 Paris, France.
| | | | - Catherine Quiblier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d'Histoire Naturelle, CNRS, Case 39, 57 rue Cuvier, 75005 Paris, France.
- Department Sciences du Vivant, Paris Diderot University, 5 rue T. Mann, 75013 Paris, France.
| |
Collapse
|
13
|
Chia MA, Jankowiak JG, Kramer BJ, Goleski JA, Huang IS, Zimba PV, do Carmo Bittencourt-Oliveira M, Gobler CJ. Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions. HARMFUL ALGAE 2018; 74:67-77. [PMID: 29724344 DOI: 10.1016/j.hal.2018.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/03/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Microcystis and Anabaena (Dolichospermum) are among the most toxic cyanobacterial genera and often succeed each other during harmful algal blooms. The role allelopathy plays in the succession of these genera is not fully understood. The allelopathic interactions of six strains of Microcystis and Anabaena under different nutrient conditions in co-culture and in culture-filtrate experiments were investigated. Microcystis strains significantly reduced the growth of Anabaena strains in mixed cultures with direct cell-to-cell contact and high nutrient levels. Cell-free filtrate from Microcystis cultures proved equally potent in suppressing the growth of nutrient replete Anabaena cultures while also significantly reducing anatoxin-a production. Allelopathic interactions between Microcystis and Anabaena were, however, partly dependent on ambient nutrient levels. Anabaena dominated under low N conditions and Microcystis dominated under nutrient replete and low P during which allelochemicals caused the complete suppression of nitrogen fixation by Anabaena and stimulated glutathione S-transferase activity. The microcystin content of Microcystis was lowered with decreasing N and the presence of Anabaena decreased it further under low P and high nutrient conditions. Collectively, these results indicate that strong allelopathic interactions between Microcystis and Anabaena are closely intertwined with the availability of nutrients and that allelopathy may contribute to the succession, nitrogen availability, and toxicity of cyanobacterial blooms.
Collapse
Affiliation(s)
- Mathias A Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Postal code: 13418-900, Piracicaba, SP, Brazil; School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - Jennifer G Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - Benjamin J Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - Jennifer A Goleski
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States
| | - I-Shuo Huang
- Center for Coastal Studies (CCS), Texas A&M University, Corpus Christi, TX 78412 United States
| | - Paul V Zimba
- Center for Coastal Studies (CCS), Texas A&M University, Corpus Christi, TX 78412 United States
| | - Maria do Carmo Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, Postal code: 13418-900, Piracicaba, SP, Brazil
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, United States.
| |
Collapse
|
14
|
McAllister TG, Wood SA, Atalah J, Hawes I. Spatiotemporal dynamics of Phormidium cover and anatoxin concentrations in eight New Zealand rivers with contrasting nutrient and flow regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:71-80. [PMID: 28846906 DOI: 10.1016/j.scitotenv.2017.08.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 05/12/2023]
Abstract
Toxic benthic cyanobacterial proliferations, particularly of the genus Phormidium, are a major concern in many countries due to their increasing extent and severity. The aim of this study was to improve the current understanding of the dominant physicochemical variables associated with high Phormidium cover and toxin concentrations. Phormidium cover and anatoxin concentrations were assessed weekly for 30weeks in eight predominately cobble-bed rivers in the South Island of New Zealand. Phormidium cover was highly variable both spatially (among and within sites) and temporally. Generalized additive mixed models (GAMMs) identified site, month of the year, conductivity and nutrient concentrations over the accrual period as significant variables associated with Phormidium cover. Cover was greatest under low to intermediate accrual dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP) concentrations. Accrual nutrients had a strong, negative effect on cover at concentrations>0.2mgL-1 DIN and 0.014mgL-1 DRP. The effect of flow was generally consistent across rivers, with cover accruing with time since the last flushing flow. Total anatoxins were detected at all eight study sites, at concentrations ranging from 0.008 to 662.5mgkg-1 dried weight. GAMMs predicted higher total anatoxin concentrations between November and February and during periods of accrual DRP<0.02mgL-1. This study suggests that multiple physicochemical variables may influence Phormidium proliferations and also evidenced large site-to-site variability. This result highlights a challenge from a management perspective, as it suggests that mitigation options are likely to be site-specific.
Collapse
Affiliation(s)
- Tara G McAllister
- Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson, New Zealand; Environmental Research Institute, University of Waikato, Private Bag 3105, Hamilton, New Zealand
| | - Javier Atalah
- Cawthron Institute, Private Bag 2, Nelson, New Zealand
| | - Ian Hawes
- Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, New Zealand
| |
Collapse
|
15
|
The Abundance of Toxic Genotypes Is a Key Contributor to Anatoxin Variability in Phormidium-Dominated Benthic Mats. Mar Drugs 2017; 15:md15100307. [PMID: 29019928 PMCID: PMC5666415 DOI: 10.3390/md15100307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/10/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
The prevalence of benthic proliferations of the anatoxin-producing cyanobacterium Phormidium are increasing in cobble-bed rivers worldwide. Studies to date have shown high spatial and temporal variability in anatoxin concentrations among mats. In this study we determined anatoxin quotas (toxins per cell) in field samples and compared these results to the conventionally-used concentrations (assessed per dry weight of mat). Three mats were selected at sites in two rivers and were sampled every 2–3 h for 24–26 h. The samples were lyophilized and ground to a fine homogenous powder. Two aliquots of known weights were analyzed for anatoxin congeners using liquid chromatography-mass spectrometry, or digital droplet PCR with Phormidium-specific anaC primers to measure absolute quantities of gene copies. Anatoxin concentrations in the mats varied 59- and 303-fold in the two rivers over the study periods. A similar pattern was observed among gene copies (53- and 2828-fold). When converted to anatoxin quotas there was markedly less variability (42- and 16-fold), but significantly higher anatoxin quotas were observed in mats from the second river (p < 0.001, Student’s t-test). There were no obvious temporal patterns with high and low anatoxin concentrations or quotas measured at each sampling time and across the study period. These results demonstrate that variability in anatoxin concentrations among mats is primarily due to the abundance of toxic genotypes. No consistent modulation in anatoxin production was observed during the study, although significant differences in anatoxin quotas among rivers suggest that site-specific physiochemical or biological factors may influence anatoxin production.
Collapse
|
16
|
Rodriguez I, Fraga M, Alfonso A, Guillebault D, Medlin L, Baudart J, Jacob P, Helmi K, Meyer T, Breitenbach U, Holden NM, Boots B, Spurio R, Cimarelli L, Mancini L, Marcheggiani S, Albay M, Akcaalan R, Köker L, Botana LM. Monitoring of freshwater toxins in European environmental waters by using novel multi-detection methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:645-654. [PMID: 27505279 DOI: 10.1002/etc.3577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/04/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Monitoring the quality of freshwater is an important issue for public health. In the context of the European project μAqua, 150 samples were collected from several waters in France, Germany, Ireland, Italy, and Turkey for 2 yr. These samples were analyzed using 2 multitoxin detection methods previously developed: a microsphere-based method coupled to flow-cytometry, and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The presence of microcystins, nodularin, domoic acid, cylindrospermopsin, and several analogues of anatoxin-a (ATX-a) was monitored. No traces of cylindrospermopsin or domoic acid were found in any of the environmental samples. Microcystin-LR and microcystin-RR were detected in 2 samples from Turkey and Germany. In the case of ATX-a derivatives, 75% of samples contained mainly H2 -ATX-a and small amounts of H2 -homoanatoxin-a, whereas ATX-a and homoanatoxin-a were found in only 1 sample. These results confirm the presence and wide distribution of dihydro derivatives of ATX-a toxins in European freshwaters. Environ Toxicol Chem 2017;36:645-654. © 2016 SETAC.
Collapse
Affiliation(s)
- Ines Rodriguez
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | - Maria Fraga
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Linda Medlin
- Microbia Environnement, Observatoire Océanologique, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Centre National de la Recherché Scientifique, Observatoire Océanologique Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Julia Baudart
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Centre National de la Recherché Scientifique, Observatoire Océanologique Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Pauline Jacob
- Centre de Recherche de Saint Maurice, Veolia Recherche et Innovation Immeuble le Dufy, St. Maurice, France
| | - Karim Helmi
- Centre de Recherche de Saint Maurice, Veolia Recherche et Innovation Immeuble le Dufy, St. Maurice, France
| | - Thomas Meyer
- MariLim Aquatic Research, Schoenkirchen, Germany
| | | | - Nicholas M Holden
- School of Biosystems Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Bas Boots
- School of Biosystems Engineering, Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Roberto Spurio
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Lucia Cimarelli
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Laura Mancini
- Environmental, Quality and Fishfarm Unit, Environment & Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Marcheggiani
- Environmental, Quality and Fishfarm Unit, Environment & Primary Prevention Department, Istituto Superiore di Sanità, Rome, Italy
| | - Meric Albay
- Fisheries Faculty, Istanbul University, Istanbul, Turkey
| | | | - Latife Köker
- Fisheries Faculty, Istanbul University, Istanbul, Turkey
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
17
|
Paerl HW, Otten TG, Joyner AR. Moving towards adaptive management of cyanotoxin-impaired water bodies. Microb Biotechnol 2016; 9:641-51. [PMID: 27418325 PMCID: PMC4993183 DOI: 10.1111/1751-7915.12383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
The cyanobacteria are a phylum of bacteria that have played a key role in shaping the Earth's biosphere due to their pioneering ability to perform oxygenic photosynthesis. Throughout their history, cyanobacteria have experienced major biogeochemical changes accompanying Earth's geochemical evolution over the past 2.5+ billion years, including periods of extreme climatic change, hydrologic, nutrient and radiation stress. Today, they remain remarkably successful, exploiting human nutrient over‐enrichment as nuisance “blooms.” Cyanobacteria produce an array of unique metabolites, the functions and biotic ramifications of which are the subject of diverse ecophysiological studies. These metabolites are relevant from organismal and ecosystem function perspectives because some can be toxic and fatal to diverse biota, including zooplankton and fish consumers of algal biomass, and high‐level consumers of aquatic food sources and drinking water, including humans. Given the long history of environmental extremes and selection pressures that cyanobacteria have experienced, it is likely that that these toxins serve ecophysiological functions aimed at optimizing growth and fitness during periods of environmental stress. Here, we explore the molecular and ecophysiological mechanisms underlying cyanotoxin production, with emphasis on key environmental conditions potentially controlling toxin production. Based on this information, we offer potential management strategies for reducing cyanotoxin potentials in natural waters; for cyanotoxins with no clear drivers yet elucidated, we highlight the data gaps and research questions that are still lacking. We focus on the four major classes of toxins (anatoxins, cylindrospermopsins, microcystins and saxitoxins) that have thus far been identified as relevant from environmental health perspectives, but caution there may be other harmful metabolites waiting to be elucidated.
Collapse
Affiliation(s)
- Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Timothy G Otten
- Bend Genetics, LLC, 87 Scripps Drive, Ste. 301, Sacramento, CA, USA
| | - Alan R Joyner
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| |
Collapse
|
18
|
McAllister TG, Wood SA, Hawes I. The rise of toxic benthic Phormidium proliferations: A review of their taxonomy, distribution, toxin content and factors regulating prevalence and increased severity. HARMFUL ALGAE 2016; 55:282-294. [PMID: 28073542 DOI: 10.1016/j.hal.2016.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/29/2016] [Accepted: 04/05/2016] [Indexed: 05/12/2023]
Abstract
There has been a marked increase in the distribution, intensity and frequency of proliferations of some species of the benthic mat-forming, toxin-producing genus Phormidium in rivers globally over the last decade. This review summarises current knowledge on their taxonomy, distribution, toxin content, environmental drivers of proliferations, and monitoring and management strategies in New Zealand. Although toxic Phormidium proliferation occurs in rivers worldwide little is known about these factors in most countries. Proliferations, defined as >20% cover of a riverbed, have been identified in 103 rivers across New Zealand. Morphological and molecular data indicate the main species responsible is Phormidium autumnale. In New Zealand Phormidium produces anatoxins (anatoxin-a, homoanatoxin-a, dihydroanatoxin-a, and dihydrohomoanatoxin-a) and these were detected in 67% of 771 samples from 40 rivers. The highest concentration measured was 712mgkg-1 dried weight (Oreti River, Southland), with considerable spatial and temporal variability in anatoxin concentrations between and within rivers. A synthesis of field based studies suggests that Phormidium proliferations are most likely when there is some enrichment of dissolved inorganic nitrogen but when water-column dissolved reactive phosphorus is less than 0.01mgL-1. Once established Phormidium-dominated mats trap sediment and internal mat biogeochemistry can mobilise sediment-bound phosphorus, which is then available for growth. Removal of Phormidium-dominated mats is primarily due to shear stress and substrate disturbance, although there is also evidence for autogenic detachment. A combination of factors including; changes to riparian margins, increased nitrate and fine sediment loads, and alterations in flow regimes are likely to have contributed to the rise in Phormidium proliferations.
Collapse
Affiliation(s)
- Tara G McAllister
- Waterways Centre for Freshwater Management, University of Canterbury, Christchurch, New Zealand.
| | - Susanna A Wood
- Cawthron Institute, Nelson, New Zealand; Environmental Research Institute, University of Waikato, Hamilton, New Zealand
| | - Ian Hawes
- Waterways Centre for Freshwater Management, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
19
|
Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D'Agostino PM, Neilan BA. The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. HARMFUL ALGAE 2016; 54:98-111. [PMID: 28073484 DOI: 10.1016/j.hal.2015.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 05/28/2023]
Abstract
The production of toxic metabolites by cyanobacterial blooms represents a significant threat to the health of humans and ecosystems worldwide. Here we summarize the current state of the knowledge regarding the genetics, biosynthesis and regulation of well-characterized cyanotoxins, including the microcystins, nodularin, cylindrospermopsin, saxitoxins and anatoxins, as well as the lesser-known marine toxins (e.g. lyngbyatoxin, aplysiatoxin, jamaicamides, barbamide, curacin, hectochlorin and apratoxins).
Collapse
Affiliation(s)
- Leanne A Pearson
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Elke Dittmann
- Institut für Biochemie und Biologie, Mikrobiologie, Universität Potsdam, Potsdam-Golm 14476, Germany
| | - Rabia Mazmouz
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Sarah E Ongley
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Paul M D'Agostino
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Brett A Neilan
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia.
| |
Collapse
|
20
|
Testai E, Scardala S, Vichi S, Buratti FM, Funari E. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit Rev Toxicol 2016; 46:385-419. [PMID: 26923223 DOI: 10.3109/10408444.2015.1137865] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cyanobacteria are ubiquitous photosynthetic micro-organisms forming blooms and scums in surface water; among them some species can produce cyanotoxins giving rise to some concern for human health and animal life. To date, more than 65 cyanobacterial neurotoxins have been described, of which the most studied are the groups of anatoxins and saxitoxins (STXs), comprising many different variants. In freshwaters, the hepatotoxic microcystins represent the most frequently detected cyanotoxin: on this basis, it could appear that neurotoxins are less relevant, but the low frequency of detection may partially reflect an a priori choice of target analytes, the low method sensitivity and the lack of certified standards. Cyanobacterial neurotoxins target cholinergic synapses or voltage-gated ion channels, blocking skeletal and respiratory muscles, thus leading to death by respiratory failure. This review reports and analyzes the available literature data on environmental occurrence of cyanobacterial neurotoxic alkaloids, namely anatoxins and STXs, their biosynthesis, toxicology and epidemiology, derivation of guidance values and action limits. These data are used as the basis to assess the risk posed to human health, identify critical exposure scenarios and highlight the major data gaps and research needs.
Collapse
Affiliation(s)
- Emanuela Testai
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Simona Scardala
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Susanna Vichi
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Franca M Buratti
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Enzo Funari
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|