1
|
Ferreira E Ferreira AA, Santana HM, Dos Reis VP, Magalhães JGDS, Silva MDS, da Silva CP, Paloschi MV, Silva AA, de Sousa MN, Soares AM, Zamuner SR, Zuliani JP. LED photobiomodulation reduces myonecrosis and hemorrhage caused by PI metalloproteinase isolated from Bothrops jararacussu venom. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 267:113163. [PMID: 40215865 DOI: 10.1016/j.jphotobiol.2025.113163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Bothrops jararacussu is one of the species most frequently involved in snakebite incidents. The metalloproteinase, which constitutes 26.2 % of the venom composition of this species, is a key factor responsible for severe tissue damage, including hemorrhage and myonecrosis. While antivenom treatment effectively addresses systemic effects, its efficacy in mitigating local damage remains limited. In this context, the present study aimed to investigate the effects of photobiomodulation using a 945 nm LED following experimental envenomation with a PI class metalloproteinase, BjussuMP-II, isolated from B. jararacussu venom. Experimental envenoming was induced in male Swiss mice (18-22 g) after an injection of BjussuMP-II (50 μg) or PBS (50 μL) into the gastrocnemius muscles or dorsal skin. After 30 min, treatments with antivenom, LED, or a combination of both were administered. Three hours later, blood and muscle samples were collected for myotoxicity and histological analyses, and the dorsal skin was excised for hemorrhagic halo analysis. Results demonstrate that antivenom treatment alone is insufficient to mitigate the effects caused by BjussuMP-II, highlighting its ineffectiveness against the local damage induced by snakebite envenomation. In contrast, LED photobiomodulation, both as a standalone treatment and in combination with antivenom, effectively reduced myotoxicity, tissue damage, and hemorrhage induced by BjussuMP-II, both in the muscle and dorsal skin. In conclusion, LED treatment significantly reduces myotoxicity, tissue damage, and hemorrhage when applied independently. The combined application of antivenom and LED was also equally effective in mitigating these effects, demonstrating an advantage in the association of these two resources, as antivenom is essential for the reversal of systemic damage.
Collapse
Affiliation(s)
| | - Hallison Mota Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Valdison Pereira Dos Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Milena Daniela Souza Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Carolina Pereira da Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - André Alves Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Marlei Novaes de Sousa
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental (LaBioProt), Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental (LaBioProt), Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondonia (UNIR), Porto Velho, RO, Brazil.
| |
Collapse
|
2
|
Sonavane M, Alqallaf A, Mitchell RD, Almeida JR, Gilabadi S, Richards NJ, Adeyemi S, Williams J, Ritvos O, Vaiyapuri S, Patel K. Soluble Activin Receptor Type IIB Improves Muscle Regeneration Following Crotalus atrox Venom-Induced Damage. Toxins (Basel) 2025; 17:59. [PMID: 39998076 PMCID: PMC11861606 DOI: 10.3390/toxins17020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Viper bite envenoming often results in prominent skeletal muscle damage. According to our previous studies, the prolonged presence of Crotalus atrox venom toxins induced extensive muscle damage, which mimicked the outcome of chronic muscle damage often seen in human muscular dystrophies. In the case of chronic muscle damage, two critical processes occur: muscle regeneration is impaired, and fibrosis develops. Myostatin/activin signalling is a key regulator of both of these processes. Myostatin and its closely related molecules, in particular activin, inhibit the proliferation and differentiation of myocytes while promoting proliferation of fibroblasts and expression of extracellular matrix proteins. Thus, attenuating myostatin/activin signalling offers an attractive means of promoting muscle development while decreasing fibrosis. Hence, we have used the soluble activin receptor type IIb, which acts as a ligand trap for both myostatin and activin, to dampen signalling and assessed whether this intervention could alter the pathological trajectory of C. atrox venom-induced muscle damage in mice. We report that the soluble activin receptor type IIb treatment increased the size of regenerating fibres while reducing the level of fibrotic tissues in venom-damaged muscle.
Collapse
Affiliation(s)
- Medha Sonavane
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (S.G.); (J.W.)
| | - Ali Alqallaf
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.A.); (N.J.R.); (S.A.)
- Medical Services Authority, Ministry of Defence, Kuwait City 13012, Kuwait
| | | | - José R. Almeida
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (S.G.); (J.W.)
| | - Soheil Gilabadi
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (S.G.); (J.W.)
| | - Nicholas J. Richards
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.A.); (N.J.R.); (S.A.)
| | - Sodiq Adeyemi
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.A.); (N.J.R.); (S.A.)
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (S.G.); (J.W.)
| | - Olli Ritvos
- Department of Physiology, Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (S.G.); (J.W.)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.A.); (N.J.R.); (S.A.)
| |
Collapse
|
3
|
Castro-Amorim J, Pinto AV, Mukherjee AK, Ramos MJ, Fernandes PA. Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A 2 toxin. Chem Sci 2025; 16:1974-1985. [PMID: 39759936 PMCID: PMC11694569 DOI: 10.1039/d4sc06511e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Snake venom-secreted phospholipases A2 (svPLA2s) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLA2s hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLA2s is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease. We study a member of the svPLA2 family, the Myotoxin-I, which is part of the venom of the Central American pit viper terciopelo (Bothrops asper), a ubiquitous but highly aggressive and dangerous species responsible for the most problematic snakebites in its habitat. Furthermore, PLA2 enzymes are a paradigm of interfacial enzymology, as the complex membrane-enzyme interaction is as important as is crucial for its catalytic process. Here, we explore the detailed interaction between svPLA2 and a 1 : 1 POPC/POPS membrane, and how enzyme binding affects membrane structure and dynamics. We further investigated the two most widely accepted reaction mechanisms for svPLA2s: the 'single-water mechanism' and the 'assisted-water mechanism', using umbrella sampling simulations at the PBE/MM level of theory. We demonstrate that both pathways are catalytically viable. While both pathways occur in two steps, the single-water mechanism yielded a lower activation free energy barrier (20.14 kcal mol-1) for POPC hydrolysis, consistent with experimental and computational values obtained for human PLA2. The reaction mechanisms are similar, albeit not identical, and can be generalized to svPLA2 from most viper species. Furthermore, our findings demonstrate that the sole small molecule inhibitor currently undergoing clinical trials for snakebite is a perfect transition state analog. Thus, understanding snake venom sPLA2 chemistry will help find new, effective small molecule inhibitors with anti-snake venom efficacy.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Alexandre V Pinto
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Ashis K Mukherjee
- Institute of Advanced Study in Science and Technology Vigyan Path Garchuk, Paschim Boragaon Guwahati-781035 Assam India
| | - Maria J Ramos
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Pedro A Fernandes
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| |
Collapse
|
4
|
Salvador GHM, Cardoso FF, Lomonte B, Fontes MRM. Inhibitors and activators for myotoxic phospholipase A 2-like toxins from snake venoms - A structural overview. Biochimie 2024; 227:231-247. [PMID: 39089640 DOI: 10.1016/j.biochi.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Snakebite envenomations result in acute and chronic physical and psychological health effects on their victims, leading to a substantial socio-economic burden in tropical and subtropical countries. Local necrosis is one of the serious effects caused by envenomation, primarily induced by snake venoms from the Viperidae family through the direct action of components collectively denominated as myotoxins, including the phopholipase A2-like (PLA2-like) toxins. Considering the limitations of antivenoms in preventing the rapid development of local tissue damage caused by envenomation, the use of small molecule therapeutics has been suggested as potential first-aid treatments or as adjuvants to antivenom therapy. In this review, we provide an overview of the structural interactions of molecules exhibiting inhibitory activity toward PLA2-like toxins. Additionally, we discuss the implications for the myotoxic mechanism of PLA2-like toxins and the molecules involved in their activation, highlighting key differences between activators and inhibitors. Finally, we integrate all these results to propose a classification of inhibitors into three different classes and five sub-classes. Taking into account the structural and affinity information, we compare the different inhibitors/ligands to gain a deeper understanding of the structural basis for the effective inhibition of PLA2-like toxins. By offering these insights, we aim to contribute to the search for new and efficient inhibitor molecules to complement and improve current therapy by conventional antivenoms.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP, Brazil
| | - Fábio F Cardoso
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu-SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente-SP, Brazil.
| |
Collapse
|
5
|
Chowdhury A, Fry BG, Samuel SP, Bhalla A, Vaiyapuri S, Bhargava P, Carter RW, Lewin MR. In vitro anticoagulant effects of Bungarus venoms on human plasma which are effectively neutralized by the PLA 2-inhibitor varespladib. Toxicon 2024; 252:108178. [PMID: 39547452 DOI: 10.1016/j.toxicon.2024.108178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Bungarus (krait) envenomings are well-known for their life-threatening neurotoxic effects. However, their impact on coagulation remains largely unexplored experimentally or clinically. This study, examined the effect of begins to examine venoms from four Bungarus species-B. caeruleus, B. candidus, B. fasciatus, and B. flaviceps on human platelet poor plasma coagulation parameters using thromboelastography and coagulation inhibition assays. B. flaviceps completely inhibited clotting, while B. caeruleus only delayed clot formation. In contrast, B. candidus and B. fasciatus did not affect clotting. Subsequent examinations into the anticoagulant biochemical mechanisms demonstrated divergent pathophysiological pathways. B. caeruleus venom anticoagulant effects were prevented by the addition of an excess of phospholipids, with anticoagulation thereby the result of phospholipid depletion. In contrast B. flaviceps anticoagulation was not affected by the addition of an excess of phospholipids. Further investigations demonstrated that B. flaviceps mediates its anticoagulant toxicity through the inactivation of coagulation enzymes. The anticoagulant effects of both B. flaviceps and B. caeruleus were nullified by varespladib, a phospholipase A2 (PLA2) inhibitor, revealing the toxin class involved. These results uncover previously unrecognized and unexplored anticoagulant effects of Bungarus venoms.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia; Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Stephen P Samuel
- Ophirex, Inc., Corte Madera, CA, 94925, USA; California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Ashish Bhalla
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Parul Bhargava
- Department of Pathology and Laboratory Medicine, University of San Francisco, California, USA
| | | | - Matthew R Lewin
- Ophirex, Inc., Corte Madera, CA, 94925, USA; California Academy of Sciences, San Francisco, CA, 94118, USA.
| |
Collapse
|
6
|
Wiezel GA, Oliveira IS, Ferreira IG, Bordon KCF, Arantes EC. Hyperglycosylation impairs the inhibitory activity of rCdtPLI2, the first recombinant beta-phospholipase A 2 inhibitor. Int J Biol Macromol 2024; 280:135581. [PMID: 39270892 DOI: 10.1016/j.ijbiomac.2024.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Crotoxin, a phospholipase A2 (PLA2) complex and the major Crotalus venom component, is responsible for the main symptoms described in crotalic snakebite envenomings and a key target for PLA2 inhibitors (PLIs). PLIs comprise the alpha, beta and gamma families, and, due to a lack of reports on beta-PLIs, this study aimed to heterologously express CdtPLI2 from Crotalus durissus terrificus venom gland to improve the knowledge of the neglected beta-PLI family. Thereby, recombinant CdtPLI2 (rCdtPLI2) was produced in the eukaryotic Pichia pastoris system to keep some native post-translational modifications. rCdtPLI2 (~41 kDa) presents both N- and O-linked glycans. Alpha-mannosidase digested-rCdtPLI2 (1 mol) strongly inhibited (73%) CB-Cdc catalytic activity (5 moles), demonstrating that glycosylations performed by P. pastoris affect rCdtPLI2 action. Digested-rCdtPLI2 also inhibited PLA2s from diverse Brazilian snake venoms. Furthermore, rCdtPLI2 (1 mol) abolished the catalytic activity of Lmr-PLA2 (5 moles) and reduced the CTx-Cdc (5 moles) enzyme activity by 65%, suppressing basic and acidic snake venom PLA2s. Additionally, crotalic antivenom did not recognize rCdtPLI2, suggesting a lack of neutralization by antivenom antibodies. These findings demonstrate that studying snake venom components may reveal interesting novel molecules to be studied in the snakebite treatment and help to understand these underexplored inhibitors.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Karla C F Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Jones L, Lay M, Neri-Castro E, Zarzosa V, Hodgson WC, Lewin M, Fry BG. Breaking muscle: neurotoxic and myotoxic effects of Central American snake venoms and the relative efficacies of antivenom and varespladib. BMC Biol 2024; 22:243. [PMID: 39443999 PMCID: PMC11515554 DOI: 10.1186/s12915-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The snake genera Atropoides, Cerrophidion, and Metlapilcoatlus form a clade of neotropical pit vipers distributed across Mexico and Central America. This study evaluated the myotoxic and neurotoxic effects of nine species of Atropoides, Cerrophidion, and Metlapilcoatlus, and the neutralising efficacy of the ICP antivenom from Costa Rica against these effects, in the chick biventer cervicis nerve-muscle preparation. Given the prominence of PLA2s within the venom proteomes of these species, we also aimed to determine the neutralising potency of the PLA2 inhibitor, varespladib. RESULTS All venoms showed myotoxic and potential neurotoxic effects, with differential intra-genera and inter-genera potency. This variation was also seen in the antivenom ability to neutralise the muscle damaging pathophysiological effects observed. Variation was also seen in the relative response to the PLA2 inhibitor varespladib. While the myotoxic effects of M. mexicanus and M. nummifer venoms were effectively neutralised by varespladib, indicating myotoxicity is PLA2 mediated, those of C. godmani and M. olmec venoms were not, revealing that the myotoxicity is driven by non-PLA2 toxin types. CONCLUSIONS This study characterises the myotoxic and neurotoxic venom activity, as well as neutralisation of venom effects from the Atropoides, Cerrophidion, and Metlapilcoatlus clade of American crotalids. Our findings contribute significant clinical and evolutionary knowledge to a clade of poorly researched snakes. In addition, these results provide a platform for future research into the reciprocal interaction between ecological niche specialisation and venom evolution, as well as highlighting the need to test purified toxins to accurately evaluate the potential effects observed in these venoms.
Collapse
Affiliation(s)
- Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mimi Lay
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Investigador Por México, CONAHCYT, Universidad Juárez del Estado de Durango, Avenida Universidad S/N. Fracc. Filadelfia, Gómez Palacio, Dgo.,, C.P. 35010, México
| | - Vanessa Zarzosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Mexico
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | | | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
8
|
Silva GMD, Chowdhury A. Enhancing snakebite management: The role of small molecule therapeutics in complementing antivenom strategies. Toxicon 2024; 249:108081. [PMID: 39197595 DOI: 10.1016/j.toxicon.2024.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The variability in snake composition presents a significant challenge in accessing an effective broad-spectrum antivenom. These highly complex mixtures can result in numerous deleterious effects affecting thousands of individuals worldwide, particularly in Asia, sub-Saharan Africa, and Latin America. While the administration of antivenom remains a recommended treatment for snakebite envenomation and is the primary means to prevent systemic damage, there are limitations concerning specificity, reversal of local effects, and economic factors that hinder the availability of these antibodies. In this review, we have compiled information on the use of small molecule therapeutics in initial first-aid treatments before antivenom administration. These enzyme inhibitors have shown promise as viable candidates to broaden our treatment approaches, simplify procedures, reduce costs, and improve the clinical outcomes of affected patients.
Collapse
Affiliation(s)
- Glória Maria da Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas-ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of Environment, University of Queensland, St. Lucia, QLD, 4072, Australia; Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|
9
|
Bittenbinder MA, Wachtel E, Pereira DDC, Slagboom J, Casewell NR, Jennings P, Kool J, Vonk FJ. Development of a membrane-disruption assay using phospholipid vesicles as a proxy for the detection of cellular membrane degradation. Toxicon X 2024; 22:100197. [PMID: 38633504 PMCID: PMC11021370 DOI: 10.1016/j.toxcx.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Snakebite envenoming is a global health issue that affects millions of people worldwide, and that causes morbidity rates surpassing 450,000 individuals annually. Patients suffering from snakebite morbidities may experience permanent disabilities such as pain, blindness and amputations. The (local) tissue damage that causes these life-long morbidities is the result of cell- and tissue-damaging toxins present in the venoms. These compounds belong to a variety of toxin classes and may affect cells in various ways, for example, by affecting the cell membrane. In this study, we have developed a high-throughput in vitro assay that can be used to study membrane disruption caused by snake venoms using phospholipid vesicles from egg yolk as a substrate. Resuspended chicken egg yolk was used to form these vesicles, which were fluorescently stained to allow monitoring of the degradation of egg yolk vesicles on a plate reader. The assay proved to be suitable for studying phospholipid vesicle degradation of crude venoms and was also tested for its applicability for neutralisation studies of varespladib, which is a PLA2 inhibitor. We additionally made an effort to identify the responsible toxins using liquid chromatography, followed by post-column bioassaying and protein identification using high-throughput venomics. We successfully identified various toxins in the venoms of C. rhodostoma and N. mossambica, which are likely to be involved in the observed vesicle-degrading effect. This indicates that the assay can be used for screening the membrane degrading activity of both crude and fractionated venoms as well as for neutralisation studies.
Collapse
Affiliation(s)
- Mátyás A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, the Netherlands
- AIMMS Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Eric Wachtel
- AIMMS Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Daniel Da Costa Pereira
- AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Julien Slagboom
- AIMMS Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Paul Jennings
- AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Kool
- AIMMS Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, the Netherlands
- AIMMS Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| |
Collapse
|
10
|
Smith CF, Modahl CM, Ceja Galindo D, Larson KY, Maroney SP, Bahrabadi L, Brandehoff NP, Perry BW, McCabe MC, Petras D, Lomonte B, Calvete JJ, Castoe TA, Mackessy SP, Hansen KC, Saviola AJ. Assessing Target Specificity of the Small Molecule Inhibitor MARIMASTAT to Snake Venom Toxins: A Novel Application of Thermal Proteome Profiling. Mol Cell Proteomics 2024; 23:100779. [PMID: 38679388 PMCID: PMC11154231 DOI: 10.1016/j.mcpro.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.
Collapse
Affiliation(s)
- Cara F Smith
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Cassandra M Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Ceja Galindo
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Keira Y Larson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Sean P Maroney
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Lilyrose Bahrabadi
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Nicklaus P Brandehoff
- Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, Colorado, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Daniel Petras
- CMFI Cluster of Excellence, University of Tuebingen, Tuebingen, Germany; Department of Biochemistry, University of California Riverside, Riverside, California, USA
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Todd A Castoe
- Department of Biology, The University of Texas Arlington, Texas, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA.
| |
Collapse
|
11
|
Bartlett KE, Hall SR, Rasmussen SA, Crittenden E, Dawson CA, Albulescu LO, Laprade W, Harrison RA, Saviola AJ, Modahl CM, Jenkins TP, Wilkinson MC, Gutiérrez JM, Casewell NR. Dermonecrosis caused by a spitting cobra snakebite results from toxin potentiation and is prevented by the repurposed drug varespladib. Proc Natl Acad Sci U S A 2024; 121:e2315597121. [PMID: 38687786 PMCID: PMC11087757 DOI: 10.1073/pnas.2315597121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 05/02/2024] Open
Abstract
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.
Collapse
Affiliation(s)
- Keirah E. Bartlett
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Steven R. Hall
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Sean A. Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NSB3H 1V8, Canada
| | - Edouard Crittenden
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Charlotte A. Dawson
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - William Laprade
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens LyngbyDK-2800, Denmark
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO80045
| | - Cassandra M. Modahl
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens LyngbyDK-2800, Denmark
| | - Mark C. Wilkinson
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José11501–2060, Costa Rica
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| |
Collapse
|
12
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Bin Haidar H, Almeida JR, Williams J, Guo B, Bigot A, Senthilkumaran S, Vaiyapuri S, Patel K. Differential effects of the venoms of Russell's viper and Indian cobra on human myoblasts. Sci Rep 2024; 14:3184. [PMID: 38326450 PMCID: PMC10850160 DOI: 10.1038/s41598-024-53366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Local tissue damage following snakebite envenoming remains a poorly researched area. To develop better strategies to treat snakebites, it is critical to understand the mechanisms through which venom toxins induce envenomation effects including local tissue damage. Here, we demonstrate how the venoms of two medically important Indian snakes (Russell's viper and cobra) affect human skeletal muscle using a cultured human myoblast cell line. The data suggest that both venoms affect the viability of myoblasts. Russell's viper venom reduced the total number of cells, their migration, and the area of focal adhesions. It also suppressed myogenic differentiation and induced muscle atrophy. While cobra venom decreased the viability, it did not largely affect cell migration and focal adhesions. Cobra venom affected the formation of myotubes and induced atrophy. Cobra venom-induced atrophy could not be reversed by small molecule inhibitors such as varespladib (a phospholipase A2 inhibitor) and prinomastat (a metalloprotease inhibitor), and soluble activin type IIb receptor (a molecule used to promote regeneration of skeletal muscle), although the antivenom (raised against the Indian 'Big Four' snakes) has attenuated the effects. However, all these molecules rescued the myotubes from Russell's viper venom-induced atrophy. This study demonstrates key steps in the muscle regeneration process that are affected by both Indian Russell's viper and cobra venoms and offers insights into the potential causes of clinical features displayed in envenomed victims. Further research is required to investigate the molecular mechanisms of venom-induced myotoxicity under in vivo settings and develop better therapies for snakebite-induced muscle damage.
Collapse
Affiliation(s)
- Husain Bin Haidar
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
- Kuwait Cancer Control Centre, Ministry of Health, Kuwait City, Kuwait
| | - José R Almeida
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Bokai Guo
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Anne Bigot
- INSERM, CNRS, Institute of Myology, Centre of Research in Myology, Sorbonne Universities, UPMC University Paris, Paris, France
| | | | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK.
| |
Collapse
|
14
|
Wang CR, Harlington AC, Snel MF, Pukala TL. Characterisation of the forest cobra (Naja melanoleuca) venom using a multifaceted mass spectrometric-based approach. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140992. [PMID: 38158032 DOI: 10.1016/j.bbapap.2023.140992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Snake venoms consist of highly biologically active proteins and peptides that are responsible for the lethal physiological effects of snakebite envenomation. In order to guide the development of targeted antivenom strategies, comprehensive understanding of venom compositions and in-depth characterisation of various proteoforms, often not captured by traditional bottom-up proteomic workflows, is necessary. Here, we employ an integrated 'omics' and intact mass spectrometry (MS)-based approach to profile the heterogeneity within the venom of the forest cobra (Naja melanoleuca), adopting different analytical strategies to accommodate for the dynamic molecular mass range of venom proteins present. The venom proteome of N. melanoleuca was catalogued using a venom gland transcriptome-guided bottom-up proteomics approach, revealing a venom consisting of six toxin superfamilies. The subtle diversity present in the venom components was further explored using reversed phase-ultra performance liquid chromatography (RP-UPLC) coupled to intact MS. This approach showed a significant increase in the number of venom proteoforms within various toxin families that were not captured in previous studies. Furthermore, we probed at the higher-order structures of the larger venom proteins using a combination of native MS and mass photometry and revealed significant structural heterogeneity along with extensive post-translational modifications in the form of glycosylation in these larger toxins. Here, we show the diverse structural heterogeneity of snake venom proteins in the venom of N. melanoleuca using an integrated workflow that incorporates analytical strategies that profile snake venom at the proteoform level, complementing traditional venom characterisation approaches.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Alix C Harlington
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Marten F Snel
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia; Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
15
|
de Oliveira ALN, Lacerda MT, Ramos MJ, Fernandes PA. Viper Venom Phospholipase A2 Database: The Structural and Functional Anatomy of a Primary Toxin in Envenomation. Toxins (Basel) 2024; 16:71. [PMID: 38393149 PMCID: PMC10893444 DOI: 10.3390/toxins16020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Viper venom phospholipase A2 enzymes (vvPLA2s) and phospholipase A2-like (PLA2-like) proteins are two of the principal toxins in viper venom that are responsible for the severe myotoxic and neurotoxic effects caused by snakebite envenoming, among other pathologies. As snakebite envenoming is the deadliest neglected tropical disease, a complete understanding of these proteins' properties and their mechanisms of action is urgently needed. Therefore, we created a database comprising information on the holo-form, cofactor-bound 3D structure of 217 vvPLA2 and PLA2-like proteins in their physiologic environment, as well as 79 membrane-bound viper species from 24 genera, which we have made available to the scientific community to accelerate the development of new anti-snakebite drugs. In addition, the analysis of the sequenced, 3D structure of the database proteins reveals essential aspects of the anatomy of the proteins, their toxicity mechanisms, and the conserved binding site areas that may anchor universal interspecific inhibitors. Moreover, it pinpoints hypotheses for the molecular origin of the myotoxicity of the PLA2-like proteins. Altogether, this study provides an understanding of the diversity of these toxins and how they are conserved, and it indicates how to develop broad, interspecies, efficient small-molecule inhibitors to target the toxin's many mechanisms of action.
Collapse
Affiliation(s)
| | | | | | - Pedro A. Fernandes
- Requimte-Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-000 Porto, Portugal; (A.L.N.d.O.); (M.T.L.); (M.J.R.)
| |
Collapse
|
16
|
Albulescu LO, Westhorpe A, Clare RH, Woodley CM, James N, Kool J, Berry NG, O’Neill PM, Casewell NR. Optimizing drug discovery for snakebite envenoming via a high-throughput phospholipase A2 screening platform. Front Pharmacol 2024; 14:1331224. [PMID: 38273832 PMCID: PMC10808766 DOI: 10.3389/fphar.2023.1331224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Snakebite envenoming is a neglected tropical disease that causes as many as 1.8 million envenomings and 140,000 deaths annually. To address treatment limitations that exist with current antivenoms, the search for small molecule drug-based inhibitors that can be administered as early interventions has recently gained traction. Snake venoms are complex mixtures of proteins, peptides and small molecules and their composition varies substantially between and within snake species. The phospholipases A2 (PLA2) are one of the main pathogenic toxin classes found in medically important viper and elapid snake venoms, yet varespladib, a drug originally developed for the treatment of acute coronary syndrome, remains the only PLA2 inhibitor shown to effectively neutralise venom toxicity in vitro and in vivo, resulting in an extremely limited drug portfolio. Here, we describe a high-throughput drug screen to identify novel PLA2 inhibitors for repurposing as snakebite treatments. We present method optimisation of a 384-well plate, colorimetric, high-throughput screening assay that allowed for a throughput of ∼2,800 drugs per day, and report on the screening of a ∼3,500 post-phase I repurposed drug library against the venom of the Russell's viper, Daboia russelii. We further explore the broad-spectrum inhibitory potential and efficacy of the resulting top hits against a range of medically important snake venoms and demonstrate the utility of our method in determining drug EC50s. Collectively, our findings support the future application of this method to fully explore the chemical space to discover novel PLA2-inhibiting drugs of value for preventing severe pathology caused by snakebite envenoming.
Collapse
Affiliation(s)
- Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Adam Westhorpe
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Rachel H. Clare
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Nivya James
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
17
|
Hall SR, Rasmussen SA, Crittenden E, Dawson CA, Bartlett KE, Westhorpe AP, Albulescu LO, Kool J, Gutiérrez JM, Casewell NR. Repurposed drugs and their combinations prevent morbidity-inducing dermonecrosis caused by diverse cytotoxic snake venoms. Nat Commun 2023; 14:7812. [PMID: 38097534 PMCID: PMC10721902 DOI: 10.1038/s41467-023-43510-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
Morbidity from snakebite envenoming affects approximately 400,000 people annually. Tissue damage at the bite-site often leaves victims with catastrophic life-long injuries and is largely untreatable by current antivenoms. Repurposed small molecule drugs that inhibit specific snake venom toxins show considerable promise for tackling this neglected tropical disease. Using human skin cell assays as an initial model for snakebite-induced dermonecrosis, we show that the drugs 2,3-dimercapto-1-propanesulfonic acid (DMPS), marimastat, and varespladib, alone or in combination, inhibit the cytotoxicity of a broad range of medically important snake venoms. Thereafter, using preclinical mouse models of dermonecrosis, we demonstrate that the dual therapeutic combinations of DMPS or marimastat with varespladib significantly inhibit the dermonecrotic activity of geographically distinct and medically important snake venoms, even when the drug combinations are delivered one hour after envenoming. These findings strongly support the future translation of repurposed drug combinations as broad-spectrum therapeutics for preventing morbidity caused by snakebite.
Collapse
Affiliation(s)
- Steven R Hall
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sean A Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, 7th Floor of MacKenzie Building, 5788 University Avenue, Halifax, NS, B3H 1V8, Canada
| | - Edouard Crittenden
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Charlotte A Dawson
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Keirah E Bartlett
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adam P Westhorpe
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, PO Box 11501-2060, San José, Costa Rica
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
18
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
19
|
Werner RM, Soffa AN. Considerations for the development of a field-based medical device for the administration of adjunctive therapies for snakebite envenoming. Toxicon X 2023; 20:100169. [PMID: 37661997 PMCID: PMC10474190 DOI: 10.1016/j.toxcx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
The timely administration of antivenom is the most effective method currently available to reduce the burden of snakebite envenoming (SBE), a neglected tropical disease that most often affects rural agricultural global populations. There is increasing interest in the development of adjunctive small molecule and biologic therapeutics that target the most problematic venom components to bridge the time-gap between initial SBE and the administration antivenom. Unique combinations of these therapeutics could provide relief from the toxic effects of regional groupings of medically relevant snake species. The application a PRISMA/PICO literature search methodology demonstrated an increasing interest in the rapid administration of therapies to improve patient symptoms and outcomes after SBE. Advice from expert interviews and considerations regarding the potential routes of therapy administration, anatomical bite location, and species-specific venom delivery have provided a framework to identify ideal metrics and potential hurdles for the development of a field-based medical device that could be used immediately after SBE to deliver adjunctive therapies. The use of subcutaneous (SC) or intramuscular (IM) injection were identified as potential routes of administration of both small molecule and biologic therapies. The development of a field-based medical device for the delivery of adjunctive SBE therapies presents unique challenges that will require a collaborative and transdisciplinary approach to be successful.
Collapse
|
20
|
Salvador GHM, Pinto ÊKR, Ortolani PL, Fortes-Dias CL, Cavalcante WLG, Soares AM, Lomonte B, Lewin MR, Fontes MRM. Structural basis of the myotoxic inhibition of the Bothrops pirajai PrTX-I by the synthetic varespladib. Biochimie 2023; 207:1-10. [PMID: 36403756 DOI: 10.1016/j.biochi.2022.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Varespladib (LY315920) is a potent inhibitor of human group IIA phospholipase A2 (PLA2) originally developed to control inflammatory cascades of diseases associated with high or dysregulated levels of endogenous PLA2. Recently, varespladib was also found to inhibit snake venom PLA2 and PLA2-like toxins. Herein, ex vivo neuromuscular blocking activity assays were used to test the inhibitory activity of varespladib. The binding affinity between varespladib and a PLA2-like toxin was quantified and compared with other potential inhibitors for this class of proteins. Crystallographic and bioinformatic studies showed that varespladib binds to PrTX-I and BthTX-I into their hydrophobic channels, similarly to other previously characterized PLA2-like myotoxins. However, a new finding is that an additional varespladib binds to the MDiS region, a particular site that is related to muscle cell disruption by these toxins. The present results further advance the characterization of the molecular interactions of varespladib with PLA2-like myotoxins and provide additional evidence for this compound as a promising inhibitor candidate for different PLA2 and PLA2-like toxins.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Êmylle K R Pinto
- Departmento de Farmacologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Paula L Ortolani
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias (FUNED), Brazil
| | | | - Walter L G Cavalcante
- Departmento de Farmacologia, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, LABIOPROT, Fundação Oswaldo Cruz, FIOCRUZ, unidade Rondônia e Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT EPIAMO, Porto Velho, RO, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Matthew R Lewin
- Ophirex, Inc. Corte Madera, CA, 94925, USA; Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
21
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
22
|
Cardiac Effects of Micrurus corallinus and Micrurus dumerilii carinicauda (Elapidae) Venoms and Neutralization by Brazilian Coralsnake Antivenom and Varespladib. Cardiovasc Toxicol 2023; 23:132-146. [PMID: 36813862 DOI: 10.1007/s12012-023-09786-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In this work, we examined the action of two South American coralsnake (Micrurus corallinus and Micrurus dumerilii carinicauda) venoms on rat heart function in the absence and presence of treatment with Brazilian coralsnake antivenom (CAV) and varespladib (VPL), a potent phospholipase A2 inhibitor. Anesthetized male Wistar rats were injected with saline (control) or a single dose of venom (1.5 mg/kg, i.m.) and monitored for alterations in echocardiographic parameters, serum CK-MB levels and cardiac histomorphology, the latter using a combination of fractal dimension and histopathological methods. Neither of the venoms caused cardiac functional alterations 2 h after venom injection; however, M. corallinus venom caused tachycardia 2 h after venom injection, with CAV (given i.p. at an antivenom:venom ratio of 1:1.5, v/w), VPL (0.5 mg/kg, i.p.) and CAV + VPL preventing this increase. Both venoms increased the cardiac lesional score and serum CK-MB levels compared to saline-treated rats, but only the combination of CAV + VPL prevented these alterations, although VPL alone was able to attenuate the increase in CK-MB caused by M. corallinus venom. Micrurus corallinus venom increased the heart fractal dimension measurement, but none of the treatments prevented this alteration. In conclusion, M. corallinus and M. d. carinicauda venoms caused no major cardiac functional alterations at the dose tested, although M. corallinus venom caused transient tachycardia. Both venoms caused some cardiac morphological damage, as indicated by histomorphological analyses and the increase in circulating CK-MB levels. These alterations were consistently attenuated by a combination of CAV and VPL.
Collapse
|
23
|
In Vitro Efficacy of Antivenom and Varespladib in Neutralising Chinese Russell's Viper ( Daboia siamensis) Venom Toxicity. Toxins (Basel) 2023; 15:toxins15010062. [PMID: 36668882 PMCID: PMC9864994 DOI: 10.3390/toxins15010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The venom of the Russell's viper (Daboia siamensis) contains neurotoxic and myotoxic phospholipase A2 toxins which can cause irreversible damage to motor nerve terminals. Due to the time delay between envenoming and antivenom administration, antivenoms may have limited efficacy against some of these venom components. Hence, there is a need for adjunct treatments to circumvent these limitations. In this study, we examined the efficacy of Chinese D. siamensis antivenom alone, and in combination with a PLA2 inhibitor, Varespladib, in reversing the in vitro neuromuscular blockade in the chick biventer cervicis nerve-muscle preparation. Pre-synaptic neurotoxicity and myotoxicity were not reversed by the addition of Chinese D. siamensis antivenom 30 or 60 min after venom (10 µg/mL). The prior addition of Varespladib prevented the neurotoxic and myotoxic activity of venom (10 µg/mL) and was also able to prevent further reductions in neuromuscular block and muscle twitches when added 60 min after venom. The addition of the combination of Varespladib and antivenom 60 min after venom failed to produce further improvements than Varespladib alone. This demonstrates that the window of time in which antivenom remains effective is relatively short compared to Varespladib and small-molecule inhibitors may be effective in abrogating some activities of Chinese D. siamensis venom.
Collapse
|
24
|
Carter RW, Gerardo CJ, Samuel SP, Kumar S, Kotehal SD, Mukherjee PP, Shirazi FM, Akpunonu PD, Bammigatti C, Bhalla A, Manikath N, Platts-Mills TF, Lewin MR. The BRAVO Clinical Study Protocol: Oral Varespladib for Inhibition of Secretory Phospholipase A2 in the Treatment of Snakebite Envenoming. Toxins (Basel) 2022; 15:22. [PMID: 36668842 PMCID: PMC9862656 DOI: 10.3390/toxins15010022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Snakebite is an urgent, unmet global medical need causing significant morbidity and mortality worldwide. Varespladib is a potent inhibitor of venom secretory phospholipase A2 (sPLA2) that can be administered orally via its prodrug, varespladib-methyl. Extensive preclinical data support clinical evaluation of varespladib as a treatment for snakebite envenoming (SBE). The protocol reported here was designed to evaluate varespladib-methyl for SBE from any snake species in multiple geographies. METHODS AND ANALYSIS BRAVO (Broad-spectrum Rapid Antidote: Varespladib Oral for snakebite) is a multicenter, randomized, double-blind, placebo-controlled, phase 2 study to evaluate the safety, tolerability, and efficacy of oral varespladib-methyl plus standard of care (SoC) vs. SoC plus placebo in patients presenting with acute SBE by any venomous snake species. Male and female patients 5 years of age and older who meet eligibility criteria will be randomly assigned 1:1 to varespladib-methyl or placebo. The primary outcome is the Snakebite Severity Score (SSS) that has been modified for international use. This composite outcome is based on the sum of the pulmonary, cardiovascular, nervous, hematologic, and renal systems components of the updated SSS. ETHICS AND DISSEMINATION This protocol was submitted to regulatory authorities in India and the US. A Clinical Trial No Objection Certificate from the India Central Drugs Standard Control Organisation, Drug Controller General-India, and a Notice to Proceed from the US Food and Drug Administration have been obtained. The study protocol was approved by properly constituted, valid institutional review boards or ethics committees at each study site. This study is being conducted in compliance with the April 1996 ICH Guidance for Industry GCP E6, the Integrated Addendum to ICH E6 (R2) of November 2016, and the applicable regulations of the country in which the study is conducted. The trial is registered on Clinical trials.gov, NCT#04996264 and Clinical Trials Registry-India, 2021/07/045079 000062.
Collapse
Affiliation(s)
| | - Charles J. Gerardo
- Department of Emergency Medicine, Duke University, Durham, NC 27708, USA
| | | | - Surendra Kumar
- Department of Medicine, Sardar Patel Medical College, PBM Hospital, Bikaner 334001, India
| | - Suneetha D. Kotehal
- Department of Medicine, Mysore Medical College and Research Institute, Mysore 570001, India
| | - Partha P. Mukherjee
- Department of General Medicine, Calcutta National Medical College, Kolkata 700014, India
| | - Farshad M. Shirazi
- Arizona Poison & Drug Information Center, College of Pharmacy and University of Arizona College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Peter D. Akpunonu
- Department of Emergency Medicine and Medical Toxicology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Chanaveerappa Bammigatti
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Ashish Bhalla
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Neeraj Manikath
- Department of Emergency Medicine, Government Medical College, Kozhikode 673008, India
| | | | | |
Collapse
|
25
|
Quiroz S, Henao Castañeda IC, Granados J, Patiño AC, Preciado LM, Pereañez JA. Inhibitory Effects of Varespladib, CP471474, and Their Potential Synergistic Activity on Bothrops asper and Crotalus durissus cumanensis Venoms. Molecules 2022; 27:8588. [PMID: 36500682 PMCID: PMC9737558 DOI: 10.3390/molecules27238588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Snakebite is a neglected tropical disease that causes extensive mortality and morbidity in rural communities. Antivenim sera are the currently approved therapy for snake bites; however, they have some therapeutic limitations that have been extensively documented. Recently, small molecule toxin inhibitors have received significant attention as potential alternatives or co-adjuvant to immunoglobulin-based snakebite therapies. Thus, in this study, we evaluated the inhibitory effects of the phospholipase A2 inhibitor varespladib and the metalloproteinase inhibitor CP471474 and their synergistic effects on the lethal, edema-forming, hemorrhagic, and myotoxic activities of Bothrops asper and Crotalus durissus cumanensis venoms from Colombia. Except for the preincubation assay of the lethal activity with B. asper venom, the mixture showed the best inhibitory activity. Nevertheless, the mix did not display statistically significant differences to varespladib and CP471474 used separately in all assays. In preincubation assays, varespladib showed the best inhibitory activity against the lethal effect induced by B. asper venom. However, in independent injection assays, the mix of the compounds partially inhibited the lethal activity of both venoms (50%). In addition, in the assays to test the inhibition of edema-forming activity, the mixture exhibited the best inhibitory activity, followed by Varespladib, but without statistically significant differences (p > 0.05). The combination also decreased the myotoxic activity of evaluated venoms. In these assays, the mix showed statistical differences regarding CP471474 (p < 0.05). The mixture also abolished the hemorrhagic activity of B. asper venom in preincubation assays, with no statistical differences to CP471474. Finally, the mixture showed inhibition in studies with independent administration in a time-dependent manner. To propose a mode of action of varespladib and CP471474, molecular docking was performed. PLA2s and SVMPs from tested venoms were used as targets. In all cases, our molecular modeling results suggested that inhibitors may occupy the substrate-binding cleft of the enzymes, which was supported by specific interaction with amino acids from the active site, such as His48 for PLA2s and Glu143 for the metalloproteinase. In addition, varespladib and CP471474 also showed interaction with residues from the hydrophobic channel in PLA2s and substrate binding subsites in the SVMP. Our results suggest a synergistic action of the mixed inhibitors and show the potential of varespladib, CP471474, and their mixture to generate new treatments for snakebite envenoming with application in the field or as antivenom co-adjuvants.
Collapse
Affiliation(s)
- Sara Quiroz
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Isabel C. Henao Castañeda
- Research Group in Marine Natural Products, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 050010, Colombia
| | - Johan Granados
- Research Group in Pharmaceutical Promotion and Prevention, Universidad de Antioquia, Medellín 050010, Colombia
| | - Arley Camilo Patiño
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Lina María Preciado
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Jaime Andrés Pereañez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| |
Collapse
|
26
|
Lewin MR, Carter RW, Matteo IA, Samuel SP, Rao S, Fry BG, Bickler PE. Varespladib in the Treatment of Snakebite Envenoming: Development History and Preclinical Evidence Supporting Advancement to Clinical Trials in Patients Bitten by Venomous Snakes. Toxins (Basel) 2022; 14:783. [PMID: 36422958 PMCID: PMC9695340 DOI: 10.3390/toxins14110783] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
The availability of effective, reliably accessible, and affordable treatments for snakebite envenoming is a critical and long unmet medical need. Recently, small, synthetic toxin-specific inhibitors with oral bioavailability used in conjunction with antivenom have been identified as having the potential to greatly improve outcomes after snakebite. Varespladib, a small, synthetic molecule that broadly and potently inhibits secreted phospholipase A2 (sPLA2s) venom toxins has renewed interest in this class of inhibitors due to its potential utility in the treatment of snakebite envenoming. The development of varespladib and its oral dosage form, varespladib-methyl, has been accelerated by previous clinical development campaigns to treat non-envenoming conditions related to ulcerative colitis, rheumatoid arthritis, asthma, sepsis, and acute coronary syndrome. To date, twenty-nine clinical studies evaluating the safety, pharmacokinetics (PK), and efficacy of varespladib for non-snakebite envenoming conditions have been completed in more than 4600 human subjects, and the drugs were generally well-tolerated and considered safe for use in humans. Since 2016, more than 30 publications describing the structure, function, and efficacy of varespladib have directly addressed its potential for the treatment of snakebite. This review summarizes preclinical findings and outlines the scientific support, the potential limitations, and the next steps in the development of varespladib's use as a snakebite treatment, which is now in Phase 2 human clinical trials in the United States and India.
Collapse
Affiliation(s)
- Matthew R. Lewin
- Division of Research, Ophirex, Inc., Corte Madera, CA 94925, USA
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Isabel A. Matteo
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Sunita Rao
- Division of Research, Ophirex, Inc., Corte Madera, CA 94925, USA
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip E. Bickler
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
27
|
Wang R, Gao D, Yu F, Han J, Yuan H, Hu F. Phospholipase A 2 inhibitor varespladib prevents wasp sting-induced nephrotoxicity in rats. Toxicon 2022; 215:69-76. [PMID: 35724947 DOI: 10.1016/j.toxicon.2022.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023]
Abstract
This study aimed to clarify whether varespladib, a phospholipase A2 (PLA2) inhibitor, can be used as a therapeutic agent for wasp sting-induced acute kidney injury (AKI). Rats were divided into control, AKI, and AKI + varespladib groups. The AKI model was established by subcutaneously injecting wasp venom at five different sites in rats. Varespladib treatment showed a significant inhibitory effect on wasp venom PLA2in vitro and in vivo. Moreover, we observed that varespladib decreased the levels of rhabdomyolysis and hemolysis markers compared with that in the AKI group. Histopathological changes in the kidney decreased significantly, and rat serum creatinine levels were reduced after varespladib administration. The significantly regulated genes in the kidney of the AKI group were mostly involved in inflammatory response pathway, and the administration of varespladib remarkably attenuated the expression of these genes. Therefore, varespladib inhibited wasp sting-induced functional and pathological damage to the kidneys. We propose that the PLA2 inhibitor varespladib protects the kidney tissue in a wasp sting-induced AKI model by inhibiting PLA2 activity.
Collapse
Affiliation(s)
- Rui Wang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Dan Gao
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Fanglin Yu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Jiamin Han
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| |
Collapse
|
28
|
Menzies SK, Clare RH, Xie C, Westhorpe A, Hall SR, Edge RJ, Alsolaiss J, Crittenden E, Marriott AE, Harrison RA, Kool J, Casewell NR. In vitro and in vivo preclinical venom inhibition assays identify metalloproteinase inhibiting drugs as potential future treatments for snakebite envenoming by Dispholidus typus. Toxicon X 2022; 14:100118. [PMID: 35321116 PMCID: PMC8935517 DOI: 10.1016/j.toxcx.2022.100118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Snakebite envenoming affects more than 250,000 people annually in sub-Saharan Africa. Envenoming by Dispholidus typus (boomslang) results in venom-induced consumption coagulopathy (VICC), whereby highly abundant prothrombin-activating snake venom metalloproteinases (SVMPs) consume clotting factors and deplete fibrinogen. The only available treatment for D. typus envenoming is the monovalent SAIMR Boomslang antivenom. Treatment options are urgently required because this antivenom is often difficult to source and, at US$6000/vial, typically unaffordable for most snakebite patients. We therefore investigated the in vitro and in vivo preclinical efficacy of four SVMP inhibitors to neutralise the effects of D. typus venom; the matrix metalloproteinase inhibitors marimastat and prinomastat, and the metal chelators dimercaprol and DMPS. The venom of D. typus exhibited an SVMP-driven procoagulant phenotype in vitro. Marimastat and prinomastat demonstrated equipotent inhibition of the SVMP-mediated procoagulant activity of the venom in vitro, whereas dimercaprol and DMPS showed considerably lower potency. However, when tested in preclinical murine models of envenoming using mixed sex CD1 mice, DMPS and marimastat demonstrated partial protection against venom lethality, demonstrated by prolonged survival times of experimental animals, whereas dimercaprol and prinomastat failed to confer any protection at the doses tested. The preclinical results presented here demonstrate that DMPS and marimastat show potential as novel small molecule-based therapeutics for D. typus snakebite envenoming. These two drugs have been previously shown to be effective against Echis ocellatus VICC in preclinical models, and thus we conclude that marimastat and DMPS should be further explored as potentially valuable early intervention therapeutics to broadly treat VICC following snakebite envenoming in sub-Saharan Africa.
Collapse
Affiliation(s)
- Stefanie K. Menzies
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Rachel H. Clare
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Chunfang Xie
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Adam Westhorpe
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Steven R. Hall
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Rebecca J. Edge
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Jaffer Alsolaiss
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Edouard Crittenden
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Amy E. Marriott
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Robert A. Harrison
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, England, UK
| |
Collapse
|
29
|
de Souza J, Oliveira IC, Yoshida EH, Cantuaria NM, Cogo JC, Torres-Bonilla KA, Hyslop S, Silva Junior NJ, Floriano RS, Gutiérrez JM, Oshima-Franco Y. Effect of the phospholipase A2 inhibitor Varespladib, and its synergism with crotalic antivenom, on the neuromuscular blockade induced by Crotalus durissus terrificus venom (with and without crotamine) in mouse neuromuscular preparations. Toxicon 2022; 214:54-61. [DOI: 10.1016/j.toxicon.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
30
|
Silva-Carvalho R, Gaspar MZ, Quadros LHB, Lobo LGG, Giuffrida R, Santarém CL, Silva EO, Gerez JR, Silva NJ, Hyslop S, Lomonte B, Floriano RS. Partial efficacy of a Brazilian coralsnake antivenom and varespladib in neutralizing distinct toxic effects induced by sublethal Micrurus dumerilii carinicauda envenoming in rats. Toxicon 2022; 213:99-104. [PMID: 35489427 DOI: 10.1016/j.toxicon.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
In this work, we report the efficacy of a combination of Brazilian therapeutic coralsnake antivenom (CAV) and varespladib (phospholipase A2 inhibitor - VPL) in partially neutralizing selected toxic effects of Micrurus dumerilii carinicauda coralsnake venom in rats. Venom caused local myonecrosis and systemic neurotoxicity, nephrotoxicity, and hepatotoxicity within 2 h of injection. CAV and VPL administered separately failed to prevent most of these alterations. However, a combination of CAV plus VPL offered variable protection against venom-induced coagulation disturbances, leukocytosis, and renal and hepatic morphological alterations.
Collapse
Affiliation(s)
- Rosimeire Silva-Carvalho
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Matheus Z Gaspar
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Luiz H B Quadros
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Luís G G Lobo
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Rogério Giuffrida
- Graduate Program in Animal Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Cecília L Santarém
- Graduate Program in Animal Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Elisangela O Silva
- Graduate Program in Animal Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Juliana R Gerez
- Department of Histology, State University of Londrina (UEL), Rodovia Celso Garcia Cid Km 380, 86057-970, Londrina, PR, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás (PUC-Goiás), 74605-140, Goiânia, GO, Brazil
| | - Stephen Hyslop
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 11501, San José, Costa Rica.
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo, Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil.
| |
Collapse
|
31
|
Gutierres PG, Pereira DR, Vieira NL, Arantes LF, Silva NJ, Torres-Bonilla KA, Hyslop S, Morais-Zani K, Nogueira RMB, Rowan EG, Floriano RS. Action of Varespladib (LY-315920), a Phospholipase A 2 Inhibitor, on the Enzymatic, Coagulant and Haemorrhagic Activities of Lachesis muta rhombeata (South-American Bushmaster) Venom. Front Pharmacol 2022; 12:812295. [PMID: 35095526 PMCID: PMC8790531 DOI: 10.3389/fphar.2021.812295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Varespladib (VPL) was primarily developed to treat inflammatory disturbances associated with high levels of serum phospholipase A2 (PLA2). VPL has also demonstrated to be a potential antivenom support agent to prevent PLA2-dependent effects produced by snake venoms. In this study, we examined the action of VPL on the coagulant, haemorrhagic and enzymatic activities of Lachesis muta rhombeata (South-American bushmaster) venom. Conventional colorimetric enzymatic assays were performed for PLA2, caseinolytic and esterasic activities; in vitro coagulant activities for prothrombin time (PT) and activated partial thromboplastin time (aPTT) were performed in rat citrated plasma through a quick timer coagulometer, whereas the dimensions of haemorrhagic haloes obtained after i.d. injections of venom in Wistar rats were determined using ImageJ software. Venom (1 mg/ml) exhibited accentuated enzymatic activities for proteases and PLA2in vitro, with VPL abolishing the PLA2 activity from 0.01 mM; VPL did not affect caseinolytic and esterasic activities at any tested concentrations (0.001–1 mM). In rat citrated plasma in vitro, VPL (1 mM) alone efficiently prevented the venom (1 mg/ml)-induced procoagulant disorder associated to extrinsic (PT) pathway, whereas its association with a commercial antivenom successfully prevented changes in both intrinsic (aPTT) and extrinsic (PT) pathways; commercial antivenom by itself failed to avoid the procoagulant disorders by this venom. Venom (0.5 mg/kg)-induced hemorrhagic activity was slightly reduced by VPL (1 mM) alone or combined with antivenom (antivenom:venom ratio 1:3 ‘v/w’) in rats, with antivenom alone producing no protective action on this parameter. In conclusion, VPL does not inhibit other major enzymatic groups of L. m. rhombeata venom, with its high PLA2 antagonize activity efficaciously preventing the venom-induced coagulation disturbances.
Collapse
Affiliation(s)
- Pamella G Gutierres
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Diego R Pereira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Nataly L Vieira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Lilian F Arantes
- Graduate Program in Zootechnics, Rural Federal University of Pernambuco, Recife, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Kristian A Torres-Bonilla
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Rosa M B Nogueira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| |
Collapse
|
32
|
In vivo treatment with varespladib, a phospholipase A 2 inhibitor, prevents the peripheral neurotoxicity and systemic disorders induced by Micrurus corallinus (coral snake) venom in rats. Toxicol Lett 2021; 356:54-63. [PMID: 34774704 DOI: 10.1016/j.toxlet.2021.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022]
Abstract
In this study, we investigated the action of varespladib (VPL) alone or in combination with a coral snake antivenom (CAV) on the local and systemic effects induced by Micrurus corallinus venom in rats. Adult male Wistar rats were exposed to venom (1.5 mg/kg - i.m.) and immediately treated with CAV (antivenom:venom ratio 1:1.5 'v/w' - i.p.), VPL (0.5 mg/kg - i.p.), or both of these treatments. The animals were monitored for 120 min and then anesthetized to collect blood samples used for haematological and serum biochemical analysis; after euthanasia, skeletal muscle, renal and hepatic tissue samples were collected for histopathological analysis. M. corallinus venom caused local oedema without subcutaneous haemorrhage or apparent necrosis formation, although there was accentuated muscle morphological damage; none of the treatments prevented oedema formation but the combination of CAV and VPL reduced venom-induced myonecrosis. Venom caused neuromuscular paralysis and respiratory impairment in approximately 60 min following envenomation; CAV alone did not prevent the neurotoxic action, whereas VPL alone prevented neurotoxic symptoms developing as did the combination of CAV and VPL. Venom induced significant increase of serum CK and AST release, mostly due to local and systemic myotoxicity, which was partially prevented by the combination of CAV and VPL. The release of hepatotoxic serum biomarkers (LDH and ALP) induced by M. corallinus venom was not prevented by CAV and VPL when individually administered; their combination effectively prevented ALP release. The venom-induced nephrotoxicity (increase in serum creatinine concentration) was prevented by all the treatments. VPL alone or in combination with CAV significantly prevented the venom-induced lymphocytosis. In conclusion, VPL shows to be effective at preventing the neurotoxic, nephrotoxic, and inflammatory activities of M. corallinus venom. In addition, VPL acts synergistically with antivenom to prevent a number of systemic effects caused by M. corallinus venom.
Collapse
|
33
|
Maciel FV, Ramos Pinto ÊK, Valério Souza NM, Gonçalves de Abreu TA, Ortolani PL, Fortes-Dias CL, Garrido Cavalcante WL. Varespladib (LY315920) prevents neuromuscular blockage and myotoxicity induced by crotoxin on mouse neuromuscular preparations. Toxicon 2021; 202:40-45. [PMID: 34562493 DOI: 10.1016/j.toxicon.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Varespladib (LY315920) is a synthetic phospholipase A2 (PLA2) inhibitor that has been demonstrating antiophidic potential against snake venoms that present PLA2 neurotoxins. In this study, we evaluate the capacity of Varespladib to inhibit the neuromuscular effects of crotoxin (CTX), the main toxic component of Crotalus durissus terrificus snake venom, and its PLA2 subunit (CB). We performed a myographic study to compare the neuromuscular effects of CTX or CB and the mixture of these substances plus Varespladib in mice phrenic nerve-diaphragm muscle preparations. CTX (5 μg/mL), CB (20 μg/mL), or toxin-inhibitor mixtures pre-incubated with different concentration ratios of Varespladib (1:0.25; 1:0.5; 1:1; w/w) were added to the preparations and maintained throughout the experimentation period. Myotoxicity was assessed by light microscopic analysis of diaphragm muscle after myographic study. CTX and CB blocked the nerve-evoked twitches, and only CTX induced histological alterations in diaphragm muscle. Pre-incubation with Varespladib abolished the muscle-paralyzing activity of CTX and CB, and also the muscle-damaging activity of CTX. These findings emphasize the clinical potential of Varespladib in mitigating the toxic effects of C. d. terrificus snakebites and as a research tool to advance the knowledge of the mechanism of action of snake toxins.
Collapse
Affiliation(s)
- Fernanda Valadares Maciel
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais (UFMG), Brazil
| | - Êmylle Karoline Ramos Pinto
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais (UFMG), Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Puzari U, Fernandes PA, Mukherjee AK. Advances in the Therapeutic Application of Small-Molecule Inhibitors and Repurposed Drugs against Snakebite. J Med Chem 2021; 64:13938-13979. [PMID: 34565143 DOI: 10.1021/acs.jmedchem.1c00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization has declared snakebite as a neglected tropical disease. Antivenom administration is the sole therapy against venomous snakebite; however, several limitations of this therapy reinforce the dire need for an alternative and/or additional treatment against envenomation. Inhibitors against snake venoms have been explored from natural resources and are synthesized in the laboratory; however, repurposing of small-molecule therapeutics (SMTs) against the principal toxins of snake venoms to inhibit their lethality and/or obnoxious effect of envenomation has been garnering greater attention owing to their established pharmacokinetic properties, low-risk attributes, cost-effectiveness, ease of administration, and storage stability. Nevertheless, SMTs are yet to be approved and commercialized for snakebite treatment. Therefore, we have systematically reviewed and critically analyzed the scenario of small synthetic inhibitors and repurposed drugs against snake envenomation from 2005 to date and proposed novel approaches and commercialization strategies for the development of efficacious therapies against snake envenomation.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India.,Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| |
Collapse
|
35
|
Mukherjee AK, Mackessy SP. Prevention and improvement of clinical management of snakebite in Southern Asian countries: A proposed road map. Toxicon 2021; 200:140-152. [PMID: 34280412 DOI: 10.1016/j.toxicon.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
In the Southern Asian countries, snakebite takes a substantial toll in terms of human life, inflicts acute morbidity and long term disability both physical and psychological, and therefore represents a neglected socio-economic problem and severe health issue that requires immediate medical attention. The 'Big Four' venomous snakes, viz. Daboia russelii, Naja naja, Bungarus caeruleus and Echis carinatus, are prominent, medically important species and are the most dangerous snakes of this region; therefore, the commercial polyvalent antivenom (PAV) contains antibodies against the venoms of these snakes. However, envenomations by species other than the 'Big Four' snakes are grossly neglected, and PAV is only partially effective in neutralizing the venom of these snakes. Many issues confounding effective treatment of snakebite are discussed in this review, and these hurdles preventing successful treatment of snakebite must be addressed. However, in South Asian countries, the pre-hospital treatment and appropriate first aid are equally important to mitigate the problem of snakebite and therefore, these issues are also highlighted here. Further, this review suggests a roadmap and guidelines for the prevention of snakebite and improvement of hospital management of snakebite in these Southern Asian countries.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India; Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 78028, Assam, India; School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, USA.
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, USA
| |
Collapse
|
36
|
Xie C, Bittenbinder MA, Slagboom J, Arrahman A, Bruijns S, Somsen GW, Vonk FJ, Casewell NR, García-Vallejo JJ, Kool J. Erythrocyte haemotoxicity profiling of snake venom toxins after nanofractionation. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122586. [PMID: 33839052 PMCID: PMC7613003 DOI: 10.1016/j.jchromb.2021.122586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Snakebite is classified as a priority Neglected Tropical Disease by the World Health Organization. Understanding the pathology of individual snake venom toxins is of great importance when developing more effective snakebite therapies. Snake venoms may induce a range of pathologies, including haemolytic activity. Although snake venom-induced erythrocyte lysis is not the primary cause of mortality, haemolytic activity can greatly debilitate victims and contributes to systemic haemotoxicity. Current assays designed for studying haemolytic activity are not suitable for rapid screening of large numbers of toxic compounds. Consequently, in this study, a high-throughput haemolytic assay was developed that allows profiling of erythrocyte lysis, and was validated using venom from a number of medically important snake species (Calloselasma rhodostoma, Daboia russelii, Naja mossambica, Naja nigricollis and Naja pallida). The assay was developed in a format enabling direct integration into nanofractionation analytics, which involves liquid chromatographic separation of venom followed by high-resolution fractionation and subsequent bioassaying (and optional proteomics analysis), and parallel mass spectrometric detection. Analysis of the five snake venoms via this nanofractionation approach involving haemolytic assaying provided venom-cytotoxicity profiles and enabled identification of the toxins responsible for haemolytic activity. Our results show that the elapid snake venoms (Naja spp.) contained both direct and indirect lytic toxins, while the viperid venoms (C. rhodostoma and D. russelii) only showed indirect lytic activities, which required the addition of phospholipids to exert cytotoxicity on erythrocytes. The haemolytic venom toxins identified were mainly phospholipase A2s and cytotoxic three finger toxins. Finally, the applicability of this new analytical method was demonstrated using a conventional snakebite antivenom treatment and a small-molecule drug candidate to assess neutralisation of venom cytotoxins.
Collapse
Affiliation(s)
- Chunfang Xie
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands
| | - Matyas A Bittenbinder
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands
| | - Arif Arrahman
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands
| | - Sven Bruijns
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, the Netherlands
| | - Govert W Somsen
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands
| | - Freek J Vonk
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, the Netherlands
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, Rucavado A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel) 2021; 13:451. [PMID: 34209691 PMCID: PMC8309910 DOI: 10.3390/toxins13070451] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Rachel H. Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Teresa Escalante
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| |
Collapse
|
38
|
Clare RH, Hall SR, Patel RN, Casewell NR. Small Molecule Drug Discovery for Neglected Tropical Snakebite. Trends Pharmacol Sci 2021; 42:340-353. [DOI: 10.1016/j.tips.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022]
|
39
|
Salvador GHM, Borges RJ, Lomonte B, Lewin MR, Fontes MRM. The synthetic varespladib molecule is a multi-functional inhibitor for PLA 2 and PLA 2-like ophidic toxins. Biochim Biophys Acta Gen Subj 2021; 1865:129913. [PMID: 33865953 DOI: 10.1016/j.bbagen.2021.129913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The treatment for snakebites is early administration of antivenom, which can be highly effective in inhibiting the systemic effects of snake venoms, but is less effective in the treatment of extra-circulatory and local effects. To complement standard-of-care treatments such as antibody-based antivenoms, natural and synthetic small molecules have been proposed for the inhibition of key venom components such as phospholipase A2 (PLA2) and PLA2-like toxins. Varespladib (compound LY315920) is a synthetic molecule developed and clinically tested aiming to block inflammatory cascades of several diseases associated with high PLA2s. Recent studies have demonstrated this molecule is able to potently inhibit snake venom catalytic PLA2 and PLA2-like toxins. METHODS In vivo and in vitro techniques were used to evaluate the inhibitory effect of varespladib against MjTX-I. X-ray crystallography was used to reveal details of the interaction between these molecules. A new methodology that combines crystallography, mass spectroscopy and phylogenetic data was used to review its primary sequence. RESULTS Varespladib was able to inhibit the myotoxic and cytotoxic effects of MjTX-I. Structural analysis revealed a particular inhibitory mechanism of MjTX-I when compared to other PLA2-like myotoxin, presenting an oligomeric-independent function. CONCLUSION Results suggest the effectiveness of varespladib for the inhibition of MjTX-I, in similarity with other PLA2 and PLA2-like toxins. GENERAL SIGNIFICANCE Varespladib appears to be a promissory molecule in the treatment of local effects led by PLA2 and PLA2-like toxins (oligomeric dependent and independent), indicating that this is a multifunctional or broadly specific inhibitor for different toxins within this superfamily.
Collapse
Affiliation(s)
- Guilherme H M Salvador
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Rafael J Borges
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Matthew R Lewin
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
40
|
Xie C, Slagboom J, Albulescu LO, Somsen GW, Vonk FJ, Casewell NR, Kool J. Neutralising effects of small molecule toxin inhibitors on nanofractionated coagulopathic Crotalinae snake venoms. Acta Pharm Sin B 2020; 10:1835-1845. [PMID: 33163338 PMCID: PMC7606088 DOI: 10.1016/j.apsb.2020.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022] Open
Abstract
Repurposing small molecule drugs and drug candidates is considered as a promising approach to revolutionise the treatment of snakebite envenoming. In this study, we investigated the inhibiting effects of the small molecules varespladib (nonspecific phospholipase A2 inhibitor), marimastat (broad spectrum matrix metalloprotease inhibitor) and dimercaprol (metal ion chelator) against coagulopathic toxins found in Crotalinae (pit vipers) snake venoms. Venoms from Bothrops asper, Bothrops jararaca, Calloselasma rhodostoma and Deinagkistrodon acutus were separated by liquid chromatography, followed by nanofractionation and mass spectrometry identification undertaken in parallel. Nanofractions of the venom toxins were then subjected to a high-throughput coagulation assay in the presence of different concentrations of the small molecules under study. Anticoagulant venom toxins were mostly identified as phospholipases A2, while procoagulant venom activities were mainly associated with snake venom metalloproteinases and snake venom serine proteases. Varespladib was found to effectively inhibit most anticoagulant venom effects, and also showed some inhibition against procoagulant toxins. Contrastingly, marimastat and dimercaprol were both effective inhibitors of procoagulant venom activities but showed little inhibitory capability against anticoagulant toxins. The information obtained from this study aids our understanding of the mechanisms of action of toxin inhibitor drug candidates, and highlights their potential as future snakebite treatments.
Collapse
Key Words
- ACN, acetonitrile
- Antivenom
- CTL, C-type lectins
- Chelators
- DMSO, dimethyl sulfoxide
- Dimercaprol
- FA, formic acid
- HTS, high-throughput screening
- LC, liquid chromatography
- MS, mass spectrometry
- Marimastat
- NOI, no observed inhibition
- Nanofractionation
- PBS, phosphate buffered saline
- PLA2, phospholipase A2
- PN, partly neutralised at 20 μmol/L inhibitor concentrations
- SVMP, snake venom metalloproteinase
- SVSP, snake venom serine protease
- Snakebite
- TIC, total ion current
- Varespladib
- WHO, World Health Organization
- XIC, extracted ion current
Collapse
Affiliation(s)
- Chunfang Xie
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam 1098 XH, The Netherlands
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam 1098 XH, The Netherlands
| | - Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Govert W. Somsen
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam 1098 XH, The Netherlands
| | - Freek J. Vonk
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam 1098 XH, The Netherlands
- Naturalis Biodiversity Center, Leiden 2333 CR, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
41
|
Xie C, Albulescu LO, Bittenbinder MA, Somsen GW, Vonk FJ, Casewell NR, Kool J. Neutralizing Effects of Small Molecule Inhibitors and Metal Chelators on Coagulopathic Viperinae Snake Venom Toxins. Biomedicines 2020; 8:E297. [PMID: 32825484 PMCID: PMC7555180 DOI: 10.3390/biomedicines8090297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Animal-derived antivenoms are the only specific therapies currently available for the treatment of snake envenoming, but these products have a number of limitations associated with their efficacy, safety and affordability for use in tropical snakebite victims. Small molecule drugs and drug candidates are regarded as promising alternatives for filling the critical therapeutic gap between snake envenoming and effective treatment. In this study, by using an advanced analytical technique that combines chromatography, mass spectrometry and bioassaying, we investigated the effect of several small molecule inhibitors that target phospholipase A2 (varespladib) and snake venom metalloproteinase (marimastat, dimercaprol and DMPS) toxin families on inhibiting the activities of coagulopathic toxins found in Viperinae snake venoms. The venoms of Echis carinatus, Echis ocellatus, Daboia russelii and Bitis arietans, which are known for their potent haemotoxicities, were fractionated in high resolution onto 384-well plates using liquid chromatography followed by coagulopathic bioassaying of the obtained fractions. Bioassay activities were correlated to parallel recorded mass spectrometric and proteomics data to assign the venom toxins responsible for coagulopathic activity and assess which of these toxins could be neutralized by the inhibitors under investigation. Our results showed that the phospholipase A2-inhibitor varespladib neutralized the vast majority of anticoagulation activities found across all of the tested snake venoms. Of the snake venom metalloproteinase inhibitors, marimastat demonstrated impressive neutralization of the procoagulation activities detected in all of the tested venoms, whereas dimercaprol and DMPS could only partially neutralize these activities at the doses tested. Our results provide additional support for the concept that combinations of small molecules, particularly the combination of varespladib with marimastat, serve as a drug-repurposing opportunity to develop new broad-spectrum inhibitor-based therapies for snakebite envenoming.
Collapse
Affiliation(s)
- Chunfang Xie
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; (C.X.); (M.A.B.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.-O.A.); (N.R.C.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Mátyás A. Bittenbinder
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; (C.X.); (M.A.B.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Govert W. Somsen
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; (C.X.); (M.A.B.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Freek J. Vonk
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; (C.X.); (M.A.B.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.-O.A.); (N.R.C.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; (C.X.); (M.A.B.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
42
|
Xie C, Albulescu LO, Still KBM, Slagboom J, Zhao Y, Jiang Z, Somsen GW, Vonk FJ, Casewell NR, Kool J. Varespladib Inhibits the Phospholipase A 2 and Coagulopathic Activities of Venom Components from Hemotoxic Snakes. Biomedicines 2020; 8:E165. [PMID: 32560391 PMCID: PMC7345350 DOI: 10.3390/biomedicines8060165] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022] Open
Abstract
Phospholipase A2 (PLA2) enzymes are important toxins found in many snake venoms, and they can exhibit a variety of toxic activities including causing hemolysis and/or anticoagulation. In this study, the inhibiting effects of the small molecule PLA2 inhibitor varespladib on snake venom PLA2s was investigated by nanofractionation analytics, which combined chromatography, mass spectrometry (MS), and bioassays. The venoms of the medically important snake species Bothrops asper, Calloselasma rhodostoma, Deinagkistrodon acutus, Daboia russelii, Echis carinatus, Echis ocellatus, and Oxyuranus scutellatus were separated by liquid chromatography (LC) followed by nanofractionation and interrogation of the fractions by a coagulation assay and a PLA2 assay. Next, we assessed the ability of varespladib to inhibit the activity of enzymatic PLA2s and the coagulopathic toxicities induced by fractionated snake venom toxins, and identified these bioactive venom toxins and those inhibited by varespladib by using parallel recorded LC-MS data and proteomics analysis. We demonstrated here that varespladib was not only capable of inhibiting the PLA2 activities of hemotoxic snake venoms, but can also effectively neutralize the coagulopathic toxicities (most profoundly anticoagulation) induced by venom toxins. While varespladib effectively inhibited PLA2 toxins responsible for anticoagulant effects, we also found some evidence that this inhibitory molecule can partially abrogate procoagulant venom effects caused by different toxin families. These findings further emphasize the potential clinical utility of varespladib in mitigating the toxic effects of certain snakebites.
Collapse
Affiliation(s)
- Chunfang Xie
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (K.B.M.S.); (J.S.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.-O.A.); (N.R.C.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Kristina B. M. Still
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (K.B.M.S.); (J.S.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (K.B.M.S.); (J.S.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Yumei Zhao
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Huangpu Avenue West 601, Guangzhou 510632, China; (Y.Z.); (Z.J.)
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Huangpu Avenue West 601, Guangzhou 510632, China; (Y.Z.); (Z.J.)
| | - Govert W. Somsen
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (K.B.M.S.); (J.S.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Freek J. Vonk
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (K.B.M.S.); (J.S.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.-O.A.); (N.R.C.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.X.); (K.B.M.S.); (J.S.); (G.W.S.); (F.J.V.)
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
43
|
Kini RM. Toxinology provides multidirectional and multidimensional opportunities: A personal perspective. Toxicon X 2020; 6:100039. [PMID: 32550594 PMCID: PMC7285919 DOI: 10.1016/j.toxcx.2020.100039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023] Open
Abstract
In nature, toxins have evolved as weapons to capture and subdue the prey or to counter predators or competitors. When they are inadvertently injected into humans, they cause symptoms ranging from mild discomfort to debilitation and death. Toxinology is the science of studying venoms and toxins that are produced by a wide variety of organisms. In the past, the structure, function and mechanisms of most abundant and/or most toxic components were characterized to understand and to develop strategies to neutralize their toxicity. With recent technical advances, we are able to evaluate and determine the toxin profiles using transcriptomes of venom glands and proteomes of tiny amounts of venom. Enormous amounts of data from these studies have opened tremendous opportunities in many directions of basic and applied research. The lower costs for profiling venoms will further fuel the expansion of toxin database, which in turn will provide greater exciting and bright opportunities in toxin research.
Collapse
Affiliation(s)
- R. Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
44
|
Zdenek CN, Youngman NJ, Hay C, Dobson J, Dunstan N, Allen L, Milanovic L, Fry BG. Anticoagulant activity of black snake (Elapidae: Pseudechis) venoms: Mechanisms, potency, and antivenom efficacy. Toxicol Lett 2020; 330:176-184. [PMID: 32442717 DOI: 10.1016/j.toxlet.2020.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
Venoms from Pseudechis species (Australian black snakes) within the Elapidae family are rich in anticoagulant PLA2 toxins, with the exception of one species (P. porphyriacus) that possesses procoagulant mutated forms of the clotting enzyme Factor Xa. Previously the mechanism of action of the PLA2 toxins' anticoagulant toxicity was said to be due to inhibition of Factor Xa, but this statement was evidence free. We conducted a series of anticoagulation assays to elucidate the mechanism of anticoagulant action produced by P. australis venom. Our results revealed that, rather than targeting FXa, the PLA2 toxins inhibited the prothrombinase complex, with FVa-alone or as part of the prothrombinase complex-as the primary target; but with significant thrombin inhibition also noted. In contrast, FXa, and other factors inhibited only to a lesser degree were minor targets. We quantified coagulotoxic effects upon human plasma caused by all nine anticoagulant Pseudechis species, including nine localities of P. australis across Australia, and found similar anticoagulant potency across all Pseudechis species, with greater potency in P. australis and the undescribed Pseudechis species in the NT. In addition, the northern localities and eastern of P. australis were significantly more potent than the central, western, and southern localities. All anticoagulant venoms responded well to Black Snake Antivenom, except P. colletti which was poorly neutralised by Black Snake Antivenom and also Tiger Snake Antivenom (the prescribed antivenom for this species). However, we found LY315920 (trade name: Varespladib), a small molecule inhibitor of PLA2 proteins, exhibited strong potency against P. colletti venom. Thus, Varespladib may be a clinically viable treatment for anticoagulant toxicity exerted by this species that is not neutralised by available antivenoms. Our results provide insights into coagulotoxic venom function, and suggest future in vivo work be conducted to progress the development of a cheaper, first-line treatment option to treat PLA2-rich snake venoms globally.
Collapse
Affiliation(s)
- Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Nicholas J Youngman
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Chris Hay
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; Australian School of Herpetology, Southport, QLD, Australia
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Nathan Dunstan
- Venom Supplies Pty Ltd, Stonewell Rd, Tanunda, SA, 5352, Australia
| | - Luke Allen
- Venom Supplies Pty Ltd, Stonewell Rd, Tanunda, SA, 5352, Australia
| | - Leontina Milanovic
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
45
|
Diagnostic and Therapeutic Value of Aptamers in Envenomation Cases. Int J Mol Sci 2020; 21:ijms21103565. [PMID: 32443562 PMCID: PMC7278915 DOI: 10.3390/ijms21103565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
It is now more than a century since Albert Calmette from the Institut Pasteur changed the world of envenomation by demonstrating that antibodies raised against animal venoms have the ability to treat human victims of previously fatal bites or stings. Moreover, the research initiated at that time effectively launched the discipline of toxicology, first leading to the search for toxic venom components, followed by the demonstration of venoms that also contained compounds of therapeutic value. Interest from pharmaceutical companies to treat envenomation is, however, declining, mainly for economic reasons, and hence, the World Health Organization has reclassified this public health issue to be a highest priority concern. While the production, storage, and safety of antivenom sera suffer from major inconveniences, alternative chemical and technological approaches to the problem of envenomation need to be considered that bypass the use of antibodies for toxin neutralization. Herein, we review an emerging strategy that relies on the use of aptamers and discuss how close—or otherwise—we are to finding a viable alternative to the use of antibodies for the therapy of human envenomation.
Collapse
|
46
|
Slagboom J, Mladić M, Xie C, Kazandjian TD, Vonk F, Somsen GW, Casewell NR, Kool J. High throughput screening and identification of coagulopathic snake venom proteins and peptides using nanofractionation and proteomics approaches. PLoS Negl Trop Dis 2020; 14:e0007802. [PMID: 32236099 PMCID: PMC7153897 DOI: 10.1371/journal.pntd.0007802] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/13/2020] [Accepted: 03/01/2020] [Indexed: 11/19/2022] Open
Abstract
Snakebite is a neglected tropical disease that results in a variety of systemic and local pathologies in envenomed victims and is responsible for around 138,000 deaths every year. Many snake venoms cause severe coagulopathy that makes victims vulnerable to suffering life-threating haemorrhage. The mechanisms of action of coagulopathic snake venom toxins are diverse and can result in both anticoagulant and procoagulant effects. However, because snake venoms consist of a mixture of numerous protein and peptide components, high throughput characterizations of specific target bioactives is challenging. In this study, we applied a combination of analytical and pharmacological methods to identify snake venom toxins from a wide diversity of snake species that perturb coagulation. To do so, we used a high-throughput screening approach consisting of a miniaturised plasma coagulation assay in combination with a venom nanofractionation approach. Twenty snake venoms were first separated using reversed-phase liquid chromatography, and a post-column split allowed a small fraction to be analyzed with mass spectrometry, while the larger fraction was collected and dispensed onto 384-well plates. After fraction collection, any solvent present in the wells was removed by means of freeze-drying, after which it was possible to perform a plasma coagulation assay in order to detect coagulopathic activity. Our results demonstrate that many snake venoms simultaneously contain both procoagulant and anticoagulant bioactives that contribute to coagulopathy. In-depth identification analysis from seven medically-important venoms, via mass spectrometry and nanoLC-MS/MS, revealed that phospholipase A2 toxins are frequently identified in anticoagulant venom fractions, while serine protease and metalloproteinase toxins are often associated with procoagulant bioactivities. The nanofractionation and proteomics approach applied herein seems likely to be a valuable tool for the rational development of next-generation snakebite treatments by facilitating the rapid identification and fractionation of coagulopathic toxins, thereby enabling specific targeting of these toxins by new therapeutics such as monoclonal antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marija Mladić
- Animal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Chunfang Xie
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Taline D. Kazandjian
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Freek Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Govert W. Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Varespladib (LY315920) and Methyl Varespladib (LY333013) Abrogate or Delay Lethality Induced by Presynaptically Acting Neurotoxic Snake Venoms. Toxins (Basel) 2020; 12:toxins12020131. [PMID: 32093386 PMCID: PMC7076770 DOI: 10.3390/toxins12020131] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/21/2022] Open
Abstract
The phospholipase A2 (PLA2) inhibitor Varespladib (LY315920) and its orally bioavailable prodrug, methyl-Varespladib (LY333013) inhibit PLA2 activity of a wide variety of snake venoms. In this study, the ability of these two forms of Varespladib to halt or delay lethality of potent neurotoxic snake venoms was tested in a mouse model. The venoms of Notechis scutatus, Crotalus durissus terrificus, Bungarus multicinctus, and Oxyuranus scutellatus, all of which have potent presynaptically acting neurotoxic PLA2s of variable quaternary structure, were used to evaluate simple dosing regimens. A supralethal dose of each venom was injected subcutaneously in mice, followed by the bolus intravenous (LY315920) or oral (LY333013) administration of the inhibitors, immediately and at various time intervals after envenoming. Control mice receiving venom alone died within 3 h of envenoming. Mice injected with O. scutellatus venom and treated with LY315920 or LY333013 survived the 24 h observation period, whereas those receiving C. d. terrificus and B. multicinctus venoms survived at 3 h or 6 h with a single dose of either form of Varespladib, but not at 24 h. In contrast, mice receiving N. scutatus venom and then the inhibitors died within 3 h, similarly to the control animals injected with venom alone. LY315920 was able to reverse the severe paralytic manifestations in mice injected with venoms of O. scutellatus, B. multicinctus, and C. d. terrificus. Overall, results suggest that the two forms of Varespladib are effective in abrogating, or delaying, neurotoxic manifestations induced by some venoms whose neurotoxicity is mainly dependent on presynaptically acting PLA2s. LY315920 is able to reverse paralytic manifestations in severely envenomed mice, but further work is needed to understand the significance of species-specific differences in animal models as they compare to clinical syndromes in human and for potential use in veterinary medicine.
Collapse
|
48
|
Structural basis for phospholipase A 2-like toxin inhibition by the synthetic compound Varespladib (LY315920). Sci Rep 2019; 9:17203. [PMID: 31748642 PMCID: PMC6868273 DOI: 10.1038/s41598-019-53755-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023] Open
Abstract
The World Health Organization recently listed snakebite envenoming as a Neglected Tropical Disease, proposing strategies to significantly reduce the global burden of this complex pathology by 2030. In this context, effective adjuvant treatments to complement conventional antivenom therapy based on inhibitory molecules for specific venom toxins have gained renewed interest. Varespladib (LY315920) is a synthetic molecule clinically tested to block inflammatory cascades of several diseases associated with elevated levels of secreted phospholipase A2 (sPLA2). Most recently, Varespladib was tested against several whole snake venoms and isolated PLA2 toxins, demonstrating potent inhibitory activity. Herein, we describe the first structural and functional study of the complex between Varespladib and a PLA2-like snake venom toxin (MjTX-II). In vitro and in vivo experiments showed this compound’s capacity to inhibit the cytotoxic and myotoxic effects of MjTX-II from the medically important South American snake, Bothrops moojeni. Crystallographic and bioinformatics analyses revealed interactions of Varespladib with two specific regions of the toxin, suggesting inhibition occurs by physical blockage of its allosteric activation, preventing the alignment of its functional sites and, consequently, impairing its ability to disrupt membranes. Furthermore, based on the analysis of several crystallographic structures, a distinction between toxin activators and inhibitors is proposed.
Collapse
|
49
|
Knudsen C, Ledsgaard L, Dehli RI, Ahmadi S, Sørensen CV, Laustsen AH. Engineering and design considerations for next-generation snakebite antivenoms. Toxicon 2019; 167:67-75. [DOI: 10.1016/j.toxicon.2019.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
|
50
|
Pucca MB, Cerni FA, Janke R, Bermúdez-Méndez E, Ledsgaard L, Barbosa JE, Laustsen AH. History of Envenoming Therapy and Current Perspectives. Front Immunol 2019; 10:1598. [PMID: 31354735 PMCID: PMC6635583 DOI: 10.3389/fimmu.2019.01598] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
Each year, millions of humans fall victim to animal envenomings, which may either be deadly or cause permanent disability to the effected individuals. The Nobel Prize-winning discovery of serum therapy for the treatment of bacterial infections (tetanus and diphtheria) paved the way for the introduction of antivenom therapies for envenomings caused by venomous animals. These antivenoms are based on polyclonal antibodies derived from the plasma of hyperimmunized animals and remain the only specific treatment against animal envenomings. Following the initial development of serum therapy for snakebite envenoming by French scientists in 1894, other countries with high incidences of animal envenomings, including Brazil, Australia, South Africa, Costa Rica, and Mexico, started taking up antivenom production against local venomous animals over the course of the twentieth century. These undertakings revolutionized envenoming therapy and have saved innumerous patients worldwide during the last 100 years. This review describes in detail the above-mentioned historical events surrounding the discovery and the application of serum therapy for envenomings, as well as it provides an overview of important developments and scientific breakthroughs that were of importance for antibody-based therapies in general. This begins with discoveries concerning the characterization of antibodies, including the events leading up to the elucidation of the antibody structure. These discoveries further paved the way for other milestones in antibody-based therapies, such as the introduction of hybridoma technology in 1975. Hybridoma technology enabled the expression and isolation of monoclonal antibodies, which in turn formed the basis for the development of phage display technology and transgenic mice, which can be harnessed to directly obtain fully human monoclonal antibodies. These developments were driven by the ultimate goal of producing potent neutralizing monoclonal antibodies with optimal pharmacokinetic properties and low immunogenicity. This review then provides an outline of the most recent achievements in antivenom research, which include the application of new biotechnologies, the development of the first human monoclonal antibodies that can neutralize animal toxins, and efforts toward creating fully recombinant antivenoms. Lastly, future perspectives in the field of envenoming therapies are discussed, including rational engineering of antibody cross-reactivity and the use of oligoclonal antibody mixtures.
Collapse
Affiliation(s)
- Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rahel Janke
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - José E. Barbosa
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|