1
|
Choi H, Garavito-Duarte Y, Gormley AR, Kim SW. Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. Toxins (Basel) 2025; 17:43. [PMID: 39852996 PMCID: PMC11768593 DOI: 10.3390/toxins17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB1), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals. The negative impact of AFB1 on the % change in average daily gain (ΔADG) of chickens and pigs was estimated based on meta-analysis: ΔADG (%)chicken = -0.13 × AFB1 intake per body weight (ng/g·d) and ΔADG (%)pig = -0.74 × AFB1 intake per body weight (µg/kg·d), indicating that increasing AFB1 contamination linearly reduces the growth of animals. To mitigate the harmful impacts of AFB1, various dietary strategies have been effective. Mycotoxin-detoxifying agents include mycotoxin-adsorbing agents, such as clay and yeast cell wall compounds, binding to AFB1 and mycotoxin-biotransforming agents, such as specific strains of Bacillus subtilis and mycotoxin-degrading enzyme, degrading AFB1 into non-toxic metabolites such as aflatoxin D1. Multiple mycotoxin-detoxifying agents are often combined and used together to improve the intestinal health and growth of chickens and pigs fed AFB1-contaminated feeds. In summary, AFB1 negatively impacts intestinal microbiota, induces immune responses and oxidative stress, disrupts intestinal morphology, and impairs nutrient digestion in the small intestine, leading to reduced growth performance. Supplementing multi-component mycotoxin-detoxifying agents in feeds could effectively adsorb and degrade AFB1 co-contaminated with other mycotoxins prior to its absorption in the small intestine, preventing its negative impacts on the intestinal health and growth performance of chickens and pigs.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (H.C.); (Y.G.-D.); (A.R.G.)
| |
Collapse
|
2
|
Li J, Shi M, Wang Y, Liu J, Liu S, Kang W, Liu X, Chen X, Huang K, Liu Y. Probiotic-derived extracellular vesicles alleviate AFB1-induced intestinal injury by modulating the gut microbiota and AHR activation. J Nanobiotechnology 2024; 22:697. [PMID: 39529091 PMCID: PMC11555919 DOI: 10.1186/s12951-024-02979-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Aflatoxin B1 (AFB1) is a mycotoxin that widely found in the environment and mouldy foods. AFB1 initially targets the intestine, and AFB1-induced intestinal injury cannot be ignored. Lactobacillus amylovorus (LA), a predominant species of Lactobacillus, plays a role in carbohydrate metabolism. Extracellular vesicles (EVs), small lipid membrane vesicles, are widely involved in diverse cellular processes. However, the mechanism by which Lactobacillus amylovorus-QC1H-derived EVs (LA.EVs) protect against AFB1-induced intestinal injury remains unclear. RESULTS In our study, a new strain named Lactobacillus amylovorus-QC1H (LA-QC1H) was isolated from pig faeces. Then, EVs derived from LA-QC1H were extracted via ultracentrifugation. Our results showed that LA.EVs significantly alleviated AFB1-induced intestinal injury by inhibiting the production of proinflammatory cytokines, decreasing intestinal permeability and increasing the expression of tight junction proteins. Moreover, 16 S rRNA analysis revealed that LA.EVs modulated AFB1-induced gut dysbiosis in mice. However, LA.EVs did not exert beneficial effects in antibiotic-treated mice. LA.EVs treatment increased intestinal levels of indole-3-acetic acid (IAA) and activated intestinal aryl hydrocarbon receptor (AHR)/interleukin-22 (IL-22) signalling in AFB1-exposed mice. Inhibition of intestinal AHR signalling markedly weakened the protective effect of LA.EVs in AFB1-exposed mice. CONCLUSIONS LA.EVs alleviated AFB1-induced intestinal injury by modulating the gut microbiota, activating the intestinal AHR/IL-22 signalling, reducing the inflammatory response and promoting intestinal barrier repair in mice.
Collapse
Affiliation(s)
- Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengdie Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yubo Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinyan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xianjiao Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Siri-anusornsak W, Kolawole O, Soiklom S, Petchpoung K, Keawkim K, Chuaysrinule C, Maneeboon T. Innovative Use of Spirogyra sp. Biomass for the Sustainable Adsorption of Aflatoxin B 1 and Ochratoxin A in Aqueous Solutions. Molecules 2024; 29:5038. [PMID: 39519679 PMCID: PMC11547381 DOI: 10.3390/molecules29215038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
This research investigates the efficacy of Spirogyra sp. biomass as an effective adsorbent for the removal of AFB1 and OTA from aqueous solutions. Several factors, including contact time, adsorbent dosage, pH level, and initial mycotoxin concentration, were analyzed to evaluate their impact on adsorption efficacy. The optimal contact time for equilibrium was determined at 60 min, during which the TPA obtained a 91% reduction in AFB1 and 68% removal of OTA. Although increasing the adsorbent dosage improved effectiveness, excessive quantities led to particle aggregation, hence diminishing adsorption performance. The optimal dosage of 5.0 mg/mL optimized the efficacy and use of resources. Adsorption was more efficacious at acidic to neutral pH levels (5-6), enhancing the accessibility of functional groups on the biomass. Kinetic analysis indicated that adsorption process followed a pseudo second-order model, whereas isotherm studies demonstrated a heterogeneous adsorption mechanism, with the Freundlich model providing the optimal fit. The TPB exhibited enhanced adsorption capacities for both mycotoxins, offering a viable solution for mitigating mycotoxin contamination in food and feed. These findings illustrate the significance of biomass treatment techniques in improving mycotoxin removal efficacy and suggest the potential of algal biomass in food safety applications.
Collapse
Affiliation(s)
- Wipada Siri-anusornsak
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok 10900, Thailand; (S.S.); (K.P.); (C.C.); (T.M.)
| | - Oluwatobi Kolawole
- Plant Sciences Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands;
| | - Siriwan Soiklom
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok 10900, Thailand; (S.S.); (K.P.); (C.C.); (T.M.)
| | - Krittaya Petchpoung
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok 10900, Thailand; (S.S.); (K.P.); (C.C.); (T.M.)
| | - Kannika Keawkim
- Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Bang Chalong, Samut Prakan 10540, Thailand;
| | - Chananya Chuaysrinule
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok 10900, Thailand; (S.S.); (K.P.); (C.C.); (T.M.)
| | - Thanapoom Maneeboon
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok 10900, Thailand; (S.S.); (K.P.); (C.C.); (T.M.)
| |
Collapse
|
4
|
Quesada-Vázquez S, Codina Moreno R, Della Badia A, Castro O, Riahi I. Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition. Toxins (Basel) 2024; 16:434. [PMID: 39453210 PMCID: PMC11511298 DOI: 10.3390/toxins16100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, and mutagenic effects that concern the animal industry. The chronic negative effects of mycotoxins on animal health and production and the negative economic impact on the livestock industry make it crucial to develop and implement solutions to mitigate mycotoxins. In this review, we summarize the current knowledge of the mycotoxicosis effect in livestock animals as a result of their contaminated diet. In addition, we discuss the potential of five promising phytogenics (curcumin, silymarin, grape pomace, olive pomace, and orange peel extracts) with demonstrated positive effects on animal performance and health, to present them as potential anti-mycotoxin solutions. We describe the composition and the main promising characteristics of these bioactive compounds that can exert beneficial effects on animal health and performance, and how these phytogenic feed additives can help to alleviate mycotoxins' deleterious effects.
Collapse
Affiliation(s)
| | | | | | | | - Insaf Riahi
- Bionte Nutrition, 43204 Reus, Spain; (S.Q.-V.); (R.C.M.); (A.D.B.)
| |
Collapse
|
5
|
Miljanić J, Krstović S, Perović L, Kojić J, Travičić V, Bajac B. Assessment of the Nutritional Benefits and Aflatoxin B1 Adsorption Properties of Blackberry Seed Cold-Pressed Oil By-Product. Foods 2024; 13:3140. [PMID: 39410174 PMCID: PMC11476253 DOI: 10.3390/foods13193140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
This study explores the potential valorization of blackberry seed oil cake (BBSOC), a by-product of cold-pressed blackberry seed oil (Rubus fruticosus L.), as a nutritionally valuable material with aflatoxin B1 (AFB1) adsorption properties. The chemical and mineral composition, polyphenols, and antioxidant activity of BBSOC flour were assessed. BBSOC was found to be a significant source of fiber (62.09% dry weight) and essential minerals such as Fe (123.48 mg/kg), Mg (1281.40 mg/kg), K (3087.61 mg/kg), and Ca (1568.41 mg/kg). The high polyphenol content, especially ellagic acid, highlighted its biologically active potential. Moreover, BBSOC demonstrated effective biosorption of AFB1 under in vitro conditions at 37 °C, with adsorption efficiencies of 85.36% and 87.01% at pH 3 and 7, respectively. Characterization techniques including SEM, FTIR analysis, Boehm titration, and pH zero charge determination confirmed its AFB1 adsorbing properties. This valorization process reintroduces a secondary product into the food chain, supporting the circular economy and zero-waste concepts. Thus, BBSOC is nutritionally rich and effective in AFB1 biosorption, presenting potential applications as a food or feed additive.
Collapse
Affiliation(s)
- Jelena Miljanić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (J.K.)
| | - Saša Krstović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Lidija Perović
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (J.K.)
| | - Jovana Kojić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (L.P.); (J.K.)
| | - Vanja Travičić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Branimir Bajac
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia;
| |
Collapse
|
6
|
Godoy AC, Ziemniczak HM, Fantini-Hoag L, da Silva WV, Ferreira ACV, Saturnino KC, Neu DH, Gandra JR, de Padua Pereira U, Honorato CA. The effects of probiotic-based additives on aflatoxin intoxication in Piaractus mesopotamicus: a study of liver histology and metabolic performance. Vet Res Commun 2024; 48:2281-2294. [PMID: 38739261 DOI: 10.1007/s11259-024-10409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Mycotoxins, produced by fungi, can contaminate fish food and harm their health. Probiotics enhance immune balance and primarily function in the animal intestine. This study aimed to assess aflatoxin's impact on Piaractus mesopotamicus and explore probiotic-based additive (PBA) benefits in mitigating these effects, focusing on antioxidant activity, biochemical indices, and hepatic histopathology. Two experiments were conducted using P. mesopotamicus fry. The first experimental assay tested various levels of aflatoxin B1 (0.0, 25.0, 50.0, 100.0, 200.0, and 400.0 µg kg-1) over a 10-day period. The second experimental assay examined the efficacy of the probiotic (supplemented at 0.20%) in diets with different levels of aflatoxin B1 (0.0, 25.0, and 400.0 µg kg-1) for 15 days. At the end of each assay, the fish underwent a 24-hour fasting period, and the survival rate was recorded. Six liver specimens from each treatment group were randomly selected for metabolic indicator assays, including superoxide dismutase, catalase, alanine aminotransferase, aspartate aminotransferase, and albumin. Additionally, histopathological analysis was performed on six specimens. The initial study discovered that inclusion rates above 25.0 µg kg-1 resulted in decreased activity of AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALB (albumin), CAT (catalase), and SOD (superoxide dismutase), accompanied by liver histopathological lesions. In the second study, the inclusion of PBA in diets contaminated with AFB1 improved the activity of AST and ALT up to 25.0 µg kg-1 of AFB1, with no histopathological lesions observed. The study demonstrated the hepatoprotective effects of PBA in diets contaminated with AFB1. The enzyme activity and hepatic histopathology were maintained, indicating a reduction in damage caused by high concentrations of AFB1 (400.0 µg kg-1 of AFB1). The adverse effects of AFB1 on biochemical and histopathological parameters were observed from 25.0 µg kg-1 onwards. Notably, PBA supplementation enhanced enzymatic activity at a concentration of 25 µg kg-1 of AFB1 and mitigated the effects at 400.0 µg kg-1 of AFB1. The use of PBAs in pacu diets is highly recommended as they effectively neutralize the toxic effects of AFB1 when added to diets containing 25.0 µg kg-1 AFB1. Dietary inclusion of aflatoxin B1 at a concentration of 25.0 µg kg-1 adversely affects the liver of Piaractus mesopotamicus (Pacu). However, the addition of a probiotic-based additive (PBA) to the diets containing this concentration of aflatoxin neutralized its toxic effects. Therefore, the study recommends the use of PBAs in Pacu diets to mitigate the adverse effects of aflatoxin contamination.
Collapse
Affiliation(s)
- Antonio Cesar Godoy
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil.
| | - Henrique M Ziemniczak
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Leticia Fantini-Hoag
- School of Fisheries, Aquaculture and Aquatic Science, Auburn University, 203 Swingle Hall, 36849, Auburn, AL, United States of America
| | - Welinton V da Silva
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Annye C V Ferreira
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Klaus C Saturnino
- Instituto de Desenvolvimento Agrário e Regional Quadra Sete (Fl.31), Universidade Federal do Sul e Sudeste Do Pará, Rua Nova Marabá, 68507590, Marabá, Pará, Brazil
| | - Dacley H Neu
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Jeferson R Gandra
- Instituto de Desenvolvimento Agrário, Universidade Federal de Jataí, BR 364 km 195, Setor Parque Industrial nº 3800, 75801615, Jataí, Goiás, Brazil
| | - Ulisses de Padua Pereira
- Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid 445 Km, 86057970, Londrina, Paraná, Brazil
| | - Claucia A Honorato
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
7
|
Mangiapelo L, Frangiamone M, Vila-Donat P, Paşca D, Ianni F, Cossignani L, Manyes L. Grape pomace as a novel functional ingredient: Mitigating ochratoxin A bioaccessibility and unraveling cytoprotective mechanisms in vitro. Curr Res Food Sci 2024; 9:100800. [PMID: 39040226 PMCID: PMC11261260 DOI: 10.1016/j.crfs.2024.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Mycotoxins, secondary metabolites produced by molds, pose significant health risk through contamination of globally consumed cereals. Ochratoxin A (OTA), a prevalent mycotoxin in cereals, is associated with various health hazards, including immunotoxicity. This study explores the bioaccessibility of OTA in bread and its impact on the gastrointestinal barrier. A focus is placed on grape pomace (GP), a by-product of the wine industry, as a potential mitigator of OTA toxicity. Results demonstrate that GP reduces OTA bioaccessibility in the human gastrointestinal system from 94% to 81% at intestinal level, showing promise in limiting the absorption of the harmful toxin. Additionally, GP exhibits cytoprotective effects, enhancing cell viability and mitigating OTA-induced toxicity in both Caco-2 and Jurkat T cells. In view of the above, to understand the mechanisms by which OTA exhibits its toxic effects, flow cytometry was chosen as the main technique for the analysis of cell cycle, reactive oxygen species levels and mitochondrial parameters. Cytofluorimetric evaluation indicates GP's potential in limiting OTA-induced damage at cellular level. The study suggests that GP could serve as functional ingredient to reduce mycotoxin bioaccessibility and toxicity in cereal-based foods, offering a novel and promising approach to enhance food safety and protect public health. The finding highlights the potential of utilizing grape pomace in food formulations to mitigate mycotoxin contamination, providing a valuable contribution to the ongoing efforts to ensure the safety of globally consumed cereal products.
Collapse
Affiliation(s)
- Luciano Mangiapelo
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Massimo Frangiamone
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon, 1005, Lausanne, Switzerland
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
| | - Denisia Paşca
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
- Bromatology, Hygiene, Nutrition, Department 3 - Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Federica Ianni
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
| |
Collapse
|
8
|
Pożarska A, Karpiesiuk K, Kozera W, Czarnik U, Dąbrowski M, Zielonka Ł. AFB1 Toxicity in Human Food and Animal Feed Consumption: A Review of Experimental Treatments and Preventive Measures. Int J Mol Sci 2024; 25:5305. [PMID: 38791343 PMCID: PMC11121597 DOI: 10.3390/ijms25105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
AIMS The current review aims to outline and summarize the latest research on aflatoxin, with research studies describing natural, herbal and chemical compound applications in animal (pig) models and in vitro cellular studies. Aflatoxin, a carcinogenic toxin metabolite, is produced by Aspergillus flavus in humid environments, posing a threat to human health and crop production. The current treatment involves the prevention of exposure to aflatoxin and counteracting its harmful toxic effects, enabling survival and research studies on an antidote for aflatoxin. OBJECTIVES To summarize current research prospects and to outline the influence of aflatoxin on animal forage in farm production, food and crop processing. The research application of remedies to treat aflatoxin is undergoing development to pinpoint biochemical pathways responsible for aflatoxin effects transmission and actions of treatment. SIGNIFICANCE To underline the environmental stress of aflatoxin on meat and dairy products; to describe clinical syndromes associated with aflatoxicosis on human health that are counteracted with proposed treatment and preventive interventions. To understand how to improve the health of farm animals with feed conditions.
Collapse
Affiliation(s)
- Agnieszka Pożarska
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Krzysztof Karpiesiuk
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Wojciech Kozera
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|
9
|
Papatsiros VG, Papakonstantinou GI, Voulgarakis N, Eliopoulos C, Marouda C, Meletis E, Valasi I, Kostoulas P, Arapoglou D, Riahi I, Christodoulopoulos G, Psalla D. Effects of a Curcumin/Silymarin/Yeast-Based Mycotoxin Detoxifier on Redox Status and Growth Performance of Weaned Piglets under Field Conditions. Toxins (Basel) 2024; 16:168. [PMID: 38668593 PMCID: PMC11054618 DOI: 10.3390/toxins16040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
The aim of this in vivo study was to investigate the effects of a novel mycotoxin detoxifier whose formulation includes clay (bentonite and sepiolite), phytogenic feed additives (curcumin and silymarin) and postbiotics (yeast products) on the health, performance and redox status of weaned piglets under the dietary challenge of fumonisins (FUMs). The study was conducted in duplicate in the course of two independent trials on two different farms. One hundred and fifty (150) weaned piglets per trial farm were allocated into two separate groups: (a) T1 (control group): 75 weaned piglets received FUM-contaminated feed and (b) T2 (experimental group): 75 weaned piglets received FUM-contaminated feed with the mycotoxin-detoxifying agent from the day of weaning (28 days) until 70 days of age. Thiobarbituric acid reactive substances (TBARSs), protein carbonyls (CARBs) and the overall antioxidant capacity (TAC) were assessed in plasma as indicators of redox status at 45 and 70 days of age. Furthermore, mortality and performance parameters were recorded at 28, 45 and 70 days of age, while histopathological examination was performed at the end of the trial period (day 70). The results of the present study reveal the beneficial effects of supplementing a novel mycotoxin detoxifier in the diets of weaners, including improved redox status, potential hepatoprotective properties and enhanced growth performance.
Collapse
Affiliation(s)
- Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.G.P.); (N.V.)
| | - Georgios I. Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.G.P.); (N.V.)
| | - Nikolaos Voulgarakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.G.P.); (N.V.)
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Christina Marouda
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftherios Meletis
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, Terma Mavromichali St., 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Irene Valasi
- Laboratory of Physiology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Polychronis Kostoulas
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, Terma Mavromichali St., 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | | | - Georgios Christodoulopoulos
- Department of Animal Science, Agricultural University of Athens, 75 Iera Odos Street, Votanikos, 11855 Athens, Greece;
| | - Dimitra Psalla
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Ijaz MU, Ishtiaq A, Tahir A, Alvi MA, Rafique A, Wang P, Zhu GP. Antioxidant, anti-inflammatory, and anti-apoptotic effects of genkwanin against aflatoxin B 1-induced testicular toxicity. Toxicol Appl Pharmacol 2023; 481:116750. [PMID: 37980962 DOI: 10.1016/j.taap.2023.116750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
Aflatoxin B1 (AFB1) is the most hazardous aflatoxin that causes significant damage to the male reproductive system. Genkwanin (GNK) is a bioactive flavonoid that shows antioxidant and anti-inflammatory potential. Therefore, the current study was planned to evaluate the effects of GNK against AFB1-induced testicular toxicity. Forty-eight male rats were distributed into four groups (n = 12 rats). AFB1 (50 μg/kg) and GNK (20 mg/kg) were administered to the rats for eight weeks. Results of the current study revealed that AFB1 exposure induced adverse effects on the Nrf2/Keap1 pathway and reduced the expressions and activities of antioxidant enzymes. Additionally, it increased the levels of oxidative stress markers. Furthermore, expressions of steroidogenic enzymes were down-regulated by AFB1 intoxication. Besides, AFB1 exposure reduced the levels of gonadotropins and plasma testosterone, which subsequently reduced the epididymal sperm count, motility, and hypo-osmotic swelled (HOS) sperms, while increasing the number of dead sperms and causing morphological anomalies of the head, midpiece, and tail of the sperms. In addition, AFB1 decreased the activities of testicular function marker enzymes and the levels of inflammatory markers. Moreover, it severely affected the apoptotic profile by up-regulating the expressions of Bax and Casp3, while down-regulating the Bcl2 expression. Besides, AFB1 significantly damaged the histoarchitecture of testicular tissues. However, GNK treatment reversed all the AFB1-induced damages in the rats. Taken together, the current study reports the potential use of GNK as a therapeutic agent to prevent AFB1-induced testicular toxicity due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Ayesha Ishtiaq
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mughees Aizaz Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Azhar Rafique
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Guo-Ping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
11
|
Jin X, Li QH, Sun J, Zhang M, Xiang YQ. Porcine β-defensin-2 alleviates AFB1-induced intestinal mucosal injury by inhibiting oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115161. [PMID: 37356398 DOI: 10.1016/j.ecoenv.2023.115161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin contaminant, which is widely present in crops and poses a major safety hazard to animal and human health. To alleviate the cytotoxic effects of AFB1 on the intestine, we tested the protective effects of porcine β-defensin-2 (pBD-2). Results demonstrated that pBD-2 inhibited oxidative stress induced by AFB1 via decreasing the levels of ROS and enhancing the expression of antioxidant factors SOD-2 and NQO-1. In addition, pBD-2 attenuated AFB1-induced intestinal porcine epithelial cell line-J2 (IPEC-J2) injury through blocking mitochondria-mediated apoptosis. In vivo, pBD-2 treatment restored the intestinal mucosal structure and reduced the expression levels of apoptosis factors caspase-3 and Bax/Bcl-2. In conclusion, these results indicated that pBD-2 can alleviate AFB1-induced intestinal mucosal injury by inhibiting oxidative stress and mitochondria-mediated apoptosis. This study provides an effective strategy in developing pBD-2 as green feed additive to prevent AFB1 damage to animals.
Collapse
Affiliation(s)
- Xin Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Qing-Hao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Juan Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Man Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China.
| | - Yu-Qiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China.
| |
Collapse
|
12
|
Karatekeli S, Demirel HH, Zemheri-Navruz F, Ince S. Boron exhibits hepatoprotective effect together with antioxidant, anti-inflammatory, and anti-apoptotic pathways in rats exposed to aflatoxin B1. J Trace Elem Med Biol 2023; 77:127127. [PMID: 36641954 DOI: 10.1016/j.jtemb.2023.127127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND Aflatoxins are one of the important environmental factors that pose a risk to living organisms. On the other hand, it has been indicated in research that boron intake has beneficial effects on organisms. In this study, the effect of boron was disclosed in rats exposed to aflatoxin B1 (AFB1), which poses a toxicological risk. METHODS A total of 36 male Sprague Dawley rats were separated into 6 groups and 0.125 mg/kg bw AFB1 and 5, 10, or 20 mg/kg bw doses of boron were given orally for 21 days. End of the experiment, biochemical, molecular, and histopathological analyses were performed. RESULTS AFB1 treatment increased liver enzyme activities (AST, ALT, and ALP) and malondialdehyde level; on the other hand, it caused a decrease in glutathione level, superoxide dismutase and catalase activities. In addition, the mRNA expression levels of apoptotic (Bax, Caspase-3, Caspase-8, Caspase-9, and p53) and pro-inflammatory (TNF-α and NFκB) genes increased and the mRNA expression of the anti-apoptotic gene (Bcl-2) decreased in liver tissue. Also, AFB1 treatment increased DNA damage and caused histopathological alterations in the liver tissue. Additionally, boron applications at doses of 5, 10, and 20 mg/kg bw given with AFB1 reversed these negative changes. CONCLUSIONS As a result, boron exhibited hepatoprotective effect together with antioxidant, anti-inflammatory, and anti-apoptotic effects against AFB1-induced liver damage.
Collapse
Affiliation(s)
| | | | - Fahriye Zemheri-Navruz
- Bartın University, Faculty of Science, Department of Molecular Biology and Genetics, Bartın, Turkey
| | - Sinan Ince
- Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyonkarahisar, Turkey.
| |
Collapse
|
13
|
Li M, Fang Q, Xiu L, Yu L, Peng S, Wu X, Chen X, Niu X, Wang G, Kong Y. The molecular mechanisms of alpha-lipoic acid on ameliorating aflatoxin B 1-induced liver toxicity and physiological dysfunction in northern snakehead (Channa argus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106466. [PMID: 36871483 DOI: 10.1016/j.aquatox.2023.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
This research aimed to evaluate the protective mechanism of alpha-lipoic acid (α-LA) on the food-borne aflatoxin B1 (AFB1) exposure-induced liver toxicity and physiological dysfunction in the northern snakehead (Channa argus). 480 fish (9.24±0.01 g) were randomly assigned to four treatment groups and fed with four experimental diets for 56 d including the control group (CON), AFB1 group (200 ppb AFB1), 600 α-LA group (600 ppm α-LA+200 ppb AFB1), and 900 α-LA group (900 ppm α-LA+200 ppb AFB1). The results revealed that 600 and 900 ppm α-LA attenuated AFB1-induced growth inhibition and immunosuppression in northern snakehead. 600 ppm α-LA significantly decreased the serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase levels, and AFB1 bioaccumulation, and attenuated the changes of hepatic histopathological and ultrastructure induced by AFB1. Moreover, 600 and 900 ppm α-LA significantly up-regulated phase I metabolism genes (cytochrome P450-1a, 1b, and 3a) mRNA expression, inhibited the levels of malondialdehyde, 8‑hydroxy-2 deoxyguanosine and reactive oxygen species in the liver. Notably, 600 ppm α-LA significantly up-regulated the expression levels of nuclear factor E2 related factor 2 and its related downstream antioxidant molecules (heme oxygenase 1 and NAD(P)H: quinone oxidoreductase 1, etc.), increased the phase II detoxification enzyme-related molecules (glutathione-S-transferase and glutathione), antioxidant parameters (catalase and superoxide dismutase, etc.), and the expressions of Nrf2 and Ho-1 protein in the presence of AFB1 exposure. Furthermore, 600 and 900 ppm α-LA significantly reduced the characteristic indices of AFB1-induced endoplasmic reticulum stress (glucose-regulated protein 78 and inositol requiring enzyme 1, etc.), apoptosis (caspase-3 and cytochrome c, etc.) and inflammation (nuclear factor kappa B and tumor necrosis factor α, etc.), while increased the B-cell lymphoma-2 and inhibitor of κBα in the liver after being exposed to AFB1. To summarize, the above results indicate that dietary α-LA could modulate the Nrf2 signaling pathway to ameliorate AFB1-induced growth inhibition, liver toxicity, and physiological dysfunction in northern snakehead. Although the concentration of α-LA increased to 900 ppm from 600 ppm, the protective effects of the 900 ppm α-LA do not show an advantage over the 600 ppm α-LA, and even show inferiority in some respects. So that the recommended concentration of α-LA is 600 ppm. The present study provides the theoretical foundation for developing α-LA as the prevention and treatment of AFB1-induced liver toxicity in aquatic animals.
Collapse
Affiliation(s)
- Min Li
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Qiongya Fang
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Lei Xiu
- Testing Center of Quality and Safety in Aquatic Product, Changchun 130118, PR. China
| | - Linhai Yu
- Testing Center of Quality and Safety in Aquatic Product, Changchun 130118, PR. China
| | - Sibo Peng
- Jilin Academy of Fishery Sciences, Changchun 130033, PR. China
| | - Xueqin Wu
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Xiumei Chen
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Xiaotian Niu
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Guiqin Wang
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China.
| | - Yidi Kong
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China.
| |
Collapse
|
14
|
Bertocci F, Mannino G. Pearls before Swine: Plant-Derived Wastes to Produce Low-Cholesterol Meat from Farmed Pigs-A Bibliometric Analysis Combined to Meta-Analytic Studies. Foods 2023; 12:571. [PMID: 36766100 PMCID: PMC9914002 DOI: 10.3390/foods12030571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Due to environmental and human factors, there is a growing amount of agri-food waste worldwide. The European Commission is incentivizing a zero-waste policy by 2025, pushing to find a "second life" for at least the avoidable ones. In this review, after summarizing the nutritional values of pork and the importance of its inclusion in human diet, a phylogenetic analysis was conducted to investigate potential differences in the structure and activity of HMGCR, which is a key enzyme in cholesterol metabolism. In addition, a bibliometric analysis combined with visual and meta-analytical studies on 1047 scientific articles was conducted to understand whether the inclusion of agro-food waste could affect the growth performance of pigs and reduce cholesterol levels in pork. Although some critical issues were highlighted, the overall data suggest a modern and positive interest in the reuse of agri-food waste as swine feed. However, although interesting and promising results have been reported in several experimental trials, further investigation is needed, since animal health and meat quality are often given marginal consideration.
Collapse
Affiliation(s)
- Filippo Bertocci
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80134 Naples, Italy
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
15
|
Liu S, Li J, Kang W, Li Y, Ge L, Liu D, Liu Y, Huang K. Aflatoxin B1 Induces Intestinal Barrier Dysfunction by Regulating the FXR-Mediated MLCK Signaling Pathway in Mice and in IPEC-J2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:867-876. [PMID: 36579420 DOI: 10.1021/acs.jafc.2c06931] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a widespread mycotoxin in food and feed. Although the liver is the main target organ of AFB1, the intestine is the first exposure organ to AFB1. However, the mechanism by which AFB1 induced intestinal barrier dysfunction via regulating the farnesoid X receptor (FXR)-mediated myosin light chain kinase (MLCK) signaling pathway has rarely been studied. In vivo, AFB1 exposure significantly decreased the small intestine length and increased the intestinal permeability. Meanwhile, AFB1 exposure markedly suppressed the protein expressions of FXR, ZO-1, occludin, and claudin-1 and enhanced the protein expression of MLCK. In vitro, AFB1 exposure induced intestinal barrier dysfunction by the elevation in the FITC-Dextran 4 kDa flux and inhibition in the transepithelial electrical resistance in a dose-dependent manner. In addition, AFB1 exposure downregulated the mRNA and protein expressions of FXR, ZO-1, occludin, and claudin-1, redistributed the ZO-1 protein, and enhanced the protein expressions of MLCK and p-MLC. However, fexaramine (Fex, FXR agonist) pretreatment markedly reversed the AFB1-induced FXR activity reduction, MLCK protein activation, and intestinal barrier impairment in vitro and in vivo. Moreover, pretreatment with the inhibition of MLCK with ML-7 significantly alleviated the AFB1-induced intestinal barrier dysfunction and tight junction disruption in vitro. In conclusion, AFB1 induced intestinal barrier impairment via regulating the FXR-mediated MLCK signaling pathway in vitro and in vivo and provided novel insights to prevent mycotoxin poisoning in the intestine.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
16
|
Chang SY, Lee JH, Oh HJ, An JW, Song DC, Cho HA, Park SH, Jeon KH, Cho SY, Kim DJ, Kim MS, Cho JH. Effect of different ratios of phytogenic feed additives on growth performance, nutrient digestibility, intestinal barrier integrity, and immune response in weaned pigs challenged with a pathogenic Escherichia coli. J Anim Sci 2023; 101:skad148. [PMID: 37167436 PMCID: PMC10226268 DOI: 10.1093/jas/skad148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
This study was conducted to investigate the effects of supplementing different ratios of phytogenic feed additives (PFA) to weaned pigs challenged with pathogenic Escherichia coli on growth performance, nutrient digestibility, intestinal barrier integrity, and immune response, and to determine the optimal mixing ratio for post-weaning diarrhea (PWD) prevention. A total of 48 4-wk-old weaned pigs with initial body weight of 8.01 ± 0.39 kg were placed in individual metabolic cages, and then randomly assigned to eight treatment groups. The eight treatments were as follows: a basal diet without E. coli challenge (negative control, NC), a basal diet with E. coli challenge (positive control, PC), PC with supplementing 0.1% mixture of 20% bitter citrus extract (BCE), 10% microencapsulated blend of thymol and carvacrol (MEO), and 70% excipient (T1), PC with supplementing 0.1% mixture of 10% MEO, 20% premixture of grape seed and grape marc extract, green tea, and hops (PGE), and 60% excipient (T2), PC with supplementing 0.1% mixture of 10% BCE, 10% MEO, 10% PGE, and 70% excipient (T3), PC with supplementing 0.1% mixture of 20% BCE, 20% MEO, and 60% excipient (T4), PC with supplementing 0.1% mixture of 20% MEO, 20% PGE, and 60% excipient (T5), and PC with supplementing 0.1% mixture of 10% BCE, 20% MEO, 10% PGE, and 60% excipient (T6). The experiments progressed in 16 days, including 5 days before and 11 days after the first E. coli challenge (day 0). In the E. coli challenge treatments, all pigs were orally inoculated by dividing a total of 10 mL of E. coli F 18 for three consecutive days from day 0 postinoculation (PI). Compared with the PC group, the PFA2 and PFA6 groups significantly increased (P < 0.05) feed efficiency and decreased (P < 0.05) diarrhea during the entire period. At day 11 PI, the PFA6 group significantly improved (P < 0.05) gross energy digestibility compared to the PFA1 group. The PFA6 group significantly decreased (P < 0.05) tumor necrosis factor α (TNF-α) and interleukin-6 in serum and increased (P < 0.05) the villus height to crypt depth ratio (VH:CD). The PFA2 significantly decreased (P < 0.05) the relative protein expression of calprotectin in the ileum. In conclusion, improvements in growth performance, diarrhea reduction, and immunity enhancement are demonstrated when 10% BCE, 20% MEO, 10% PGE, and 60% excipient are mixed.
Collapse
Affiliation(s)
- Se Yeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| | - Ji Hwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Han Jin Oh
- Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| | - Jae Woo An
- Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| | - Dong Cheol Song
- Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| | - Hyun Ah Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| | - Se Hyun Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| | - Kyeong Ho Jeon
- Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| | | | - Dong Jun Kim
- Research Center, Eugene-Bio, Suwon 16675, South Korea
| | - Mi Suk Kim
- Research Center, Eugene-Bio, Suwon 16675, South Korea
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, South Korea
| |
Collapse
|
17
|
Pistol GC, Marin DE, Bulgaru VC, Anghel AC, Sărăcilă M, Vlassa M, Filip M, Taranu I. Grape seed meal by-product is able to counteract oxidative stress induced by lipopolysaccharide and dextran sulphate in IPEC cells and piglets after weaning. PLoS One 2023; 18:e0283607. [PMID: 37053301 PMCID: PMC10101422 DOI: 10.1371/journal.pone.0283607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/13/2023] [Indexed: 04/15/2023] Open
Abstract
Oxidative stress is a pivotal factor in the pathogenesis of intestinal inflammation, leading to cellular damage and tissue injury. Natural antioxidants compounds found in agro-industrial by-products have proven their effectiveness in treatment of intestinal inflammation and oxidative stress, exhibiting many favourable effects. The aim of this study was to evaluate the capacity of a grape seed meal byproduct (GSM) to counteract the effects induced by E. coli lipopolysaccharide (LPS, 5μg/ml) in vitro on IPEC-1 cells and by dextran sulphate sodium (DSS, 1g/b.w./day) in vivo on piglets after weaning. Reactive oxygen species (ROS), pro-oxidant markers (malondialdehyde MDA, thiobarbituric acid reactive substances TBARS, protein carbonyl, DNA oxidative damage) antioxidant enzymes (catalase -CAT, superoxide dismutase -SOD, glutathione peroxidase -GPx, endothelial and inducible nitric oxide synthases -eNOS and iNOS) and several important components of Keap1/Nrf2 signalling pathway were analysed in IPEC-1 cells as well as in piglet's colon and lymph nodes. Our results demonstrated that GSM extract or 8% dietary GSM showed anti-oxidant properties counteracting the pro-oxidant response (ROS, MDA-TBARS, protein carbonyl, DNA/RNA damage) induced by LPS or DSS and restoring the levels of endogenous antioxidant enzymes, including CAT, SOD, GPx, eNOS and iNOS in colon and mesenteric lymph nodes. These beneficial effects were modulated via Nrf2 signalling pathway in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Gina Cecilia Pistol
- Laboratory of Animal Biology, INCDBNA-IBNA, National Research-Development Institute for Animal Biology and Nutrition, Balotesti, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, INCDBNA-IBNA, National Research-Development Institute for Animal Biology and Nutrition, Balotesti, Romania
| | - Valeria Cristina Bulgaru
- Laboratory of Animal Biology, INCDBNA-IBNA, National Research-Development Institute for Animal Biology and Nutrition, Balotesti, Romania
| | - Andrei Cristian Anghel
- Laboratory of Animal Biology, INCDBNA-IBNA, National Research-Development Institute for Animal Biology and Nutrition, Balotesti, Romania
| | - Mihaela Sărăcilă
- Laboratory of Feed and Food Quality, INCDBNA-IBNA, National Research-Development Institute for Animal Biology and Nutrition, Balotesti, Romania
| | - Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Miuta Filip
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ionelia Taranu
- Laboratory of Animal Biology, INCDBNA-IBNA, National Research-Development Institute for Animal Biology and Nutrition, Balotesti, Romania
| |
Collapse
|
18
|
Glutamine supplementation moderately affects growth, plasma metabolite and free amino acid patterns in neonatal low birth weight piglets. Br J Nutr 2022; 128:2330-2340. [PMID: 35144703 PMCID: PMC9723486 DOI: 10.1017/s0007114522000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Low birth weight (LBW) neonates show impaired growth compared with normal birth weight (NBW) neonates. Glutamine (Gln) supplementation benefits growth of weaning piglets, while the effect on neonates is not sufficiently clear. We examined the effect of neonatal Gln supplementation on piglet growth, milk intake and metabolic parameters. Sow-reared pairs of newborn LBW (0·8-1·2 kg) and NBW (1·4-1·8 kg) male piglets received Gln (1 g/kg body mass (BM)/d; Gln-LBW, Gln-NBW; n 24/group) or isonitrogenous alanine (1·22 g/kg BM/d; Ala-LBW; Ala-NBW; n 24/group) supplementation at 1-5 or 1-12 d of age (daily in three equal portions at 07:00, 12:00 and 17:00 by syringe feeding). We measured piglet BM, milk intake (1, 11-12 d), plasma metabolite, insulin, amino acid (AA) and liver TAG concentrations (5, 12 d). The Gln-LBW group had higher BM (+7·5%, 10 d, P = 0·066; 11-12 d, P < 0·05) and milk intake (+14·7%, P = 0·015) than Ala-LBW. At 5 d, Ala-LBW group had higher plasma TAG (+34·7%, P < 0·1) and lower carnosine (-22·5%, P < 0·05) than Ala-NBW and Gln-LBW, and higher liver TAG (+66·9%, P = 0·029) than Ala-NBW. At 12 d, plasma urea was higher (+37·5%, P < 0·05) with Gln than Ala supplementation. Several proteinogenic AA in plasma were lower (P < 0·05) in Ala-NBW v. Gln-NBW. Plasma arginine was higher (P < 0·05) in Gln-NBW v Ala-NBW piglets (5, 12 d). Supplemental Gln moderately improved growth and milk intake and affected lipid metabolism in LBW piglets and AA metabolism in NBW piglets, suggesting effects on intestinal and liver function.
Collapse
|
19
|
Perra M, Bacchetta G, Muntoni A, De Gioannis G, Castangia I, Rajha HN, Manca ML, Manconi M. An outlook on modern and sustainable approaches to the management of grape pomace by integrating green processes, biotechnologies and advanced biomedical approaches. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Dietary effect of grape seed proanthocyanidin extract on growth performance, serum biochemical parameters, skin mucosal immune response, and antioxidant capacity in goldfish ( Carassius auratus). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A trial was conducted to evaluate the effect of dietary grape seed proanthocyanidin extract (GSPE) on gold fish, Carassius auratus. In this regard, GSPE was added to a basal diet at four levels including 0, 200, 400, and 600 mg/kg to produce four experimental diets including control, GSPE200, GSPE400, and GSPE600. Three hundred and sixty goldfish (3.75 ± 0.1 g) were stocked in twelve 100 L rectangular tanks (30 fish per tank) and fed with the experimental diets three times a day for nine weeks. During the experimental trial, water temperature was 26.7–28.5ºC. The weight gain and specific growth rate in the fish fed with GSPE supplemented diets were higher than the control, meanwhile feed conversion ratio value in these groups decreased compared to the control. Fish fed GSPE-supplemented diets had lower fillet lipid (10-19%), but higher protein levels (7–15%) compared to the control. The levels of serum triglyceride, alanine aminotransferase and aspartate aminotransferase in the fish fed GSPE-supplemented diets were decreased compared to the control group. The highest and lowest levels of serum glucose, and ALP were in the fish fed with control and GSPE600 diets, respectively. The skin mucusal lysozyme activity (24–38%) and protein level (70–96%) were higher in fish fed GSPE-supplemented diets than the control. The highest, and lowest liver antioxidant enzymes including superoxide dismutase, catalase, and gluthatione peroxidase were observed in in GSPE 600, and control groups, respectively. The findings of the present study indicated that supplementing 400 mg/kg GSPE in diet can improve growth and health condition in goldfish.
Collapse
|
21
|
Costa MM, Alfaia CM, Lopes PA, Pestana JM, Prates JAM. Grape By-Products as Feedstuff for Pig and Poultry Production. Animals (Basel) 2022; 12:ani12172239. [PMID: 36077957 PMCID: PMC9454619 DOI: 10.3390/ani12172239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Grape by-products are exceptional options for replacement of conventional and unsustainable feed sources, since large amounts are generated every year from the winery industry. However, the majority is wasted with severe environmental and economic consequences. The present review aimed to evaluate the effects of grape by-products on pig and poultry growth performance. The most recent literature was reviewed using ScienceDirect and PubMed databases and the results of a total of 16 and 38 papers for pigs and poultry, respectively, were assessed. Fewer studies are documented for pig, but the incorporation of grape by-products up to 9% feed led to an improvement in growth performance with an increase in average daily gain. Conversely, lower levels (<3% feed) are needed to achieve these results in poultry. The beneficial effects of grape by-products on animal performance are mainly due to their antioxidant, antimicrobial, and gut morphology modulator properties, but their high level of cell wall lignification and content of polyphenolic compounds (e.g., tannin) limits nutrient digestion and absorption by monogastric animals. The use of exogenous enzymes or mechanical/chemical processes can provide additional nutritional value to these products by improving nutrient bioavailability. Overall, the valorization of grape by-products is imperative to use them as feed alternatives and intestinal health promoters, thereby contributing to boost circular agricultural economy.
Collapse
Affiliation(s)
- Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Cristina M. Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José M. Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
22
|
Evaluation of a Dietary Grape Extract on Oxidative Status, Intestinal Morphology, Plasma Acute-Phase Proteins and Inflammation Parameters of Weaning Piglets at Various Points of Time. Antioxidants (Basel) 2022; 11:antiox11081428. [PMID: 35892630 PMCID: PMC9394324 DOI: 10.3390/antiox11081428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Reports of the underlying mechanisms of dietary grape extract (GE) in overcoming weaning challenges in piglets have been partly inconsistent. Furthermore, evaluations of the effects of GE at weaning in comparison to those of widely used therapeutic antibiotics have been scarce. To explore the mode of action of GE in selected tissues and plasma, we evaluated gut morphology, antioxidant and inflammation indices. Accordingly, 180 weaning piglets were allocated to three treatment groups: negative control (NC), NC and antibiotic treatment for the first 5 days of the trial (positive control, PC), and NC and GE (entire trial). The villus surface was positively affected by GE and PC on day 27/28 of the trial in the jejunum and on day 55/56 of the trial in the ileum. In the colon, NC tended (p < 0.10) to increase crypt parameters compared to PC on day 55/56. The PC group tended (p < 0.10) to increase catalase activity in the ileum and decrease Cu/Zn-SOD activity in the jejunum, both compared to NC. There were no additional effects on antioxidant measurements of tissue and plasma, tissue gene expression, or plasma acute-phase proteins. In conclusion, GE supplementation beneficially affected the villus surface of the small intestine. However, these changes were not linked to the antioxidant and anti-inflammatory properties of GE.
Collapse
|
23
|
Simultaneous Removal of Mycotoxins by a New Feed Additive Containing a Tri-Octahedral Smectite Mixed with Lignocellulose. Toxins (Basel) 2022; 14:toxins14060393. [PMID: 35737054 PMCID: PMC9229468 DOI: 10.3390/toxins14060393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Simultaneous removal of mycotoxins has been poorly addressed, and a limited number of studies have reported the efficacy of feed additives in sequestering a large spectrum of mycotoxins. In this study, a new mycotoxin-adsorbing agent was obtained by properly mixing a tri-octahedral smectite with a lignocellulose-based material. At a dosage of 1 mg mL−1, these materials simultaneously adsorbed frequently occurring mycotoxins and did not exert a cytotoxic effect on intestinal cells. Chyme samples obtained by a simulated GI digestion did not affect the viability of Caco-2TC7 cells as measured by the MTT test. In addition, the chyme of the lignocellulose showed a high content of polyphenols (210 mg mL−1 catechin equivalent) and good antioxidant activity. The properties of the individual constituents were maintained in the final composite, and were unaffected by their combination. When tested with a pool of seven mycotoxins at 1 µg mL−1 each and pH 5, the composite (5 mg mL−1) simultaneously sequestered AFB1 (95%), FB1 (99%), ZEA (93%), OTA (80%), T-2 (63%), and DON (22%). HT-2 adsorption did not occur. Mycotoxin adsorption increased exponentially as dosage increased, and occurred at physiological pH values. AFB1, ZEA and T-2 adsorption was not affected by pH in the range 3–9, whereas OTA and FB1 were adsorbed at pH values of 3–5. The adsorbed amount of AFB1, ZEA and T-2 was not released when pH rose from 3 to 7. FB1 and OTA desorption was less than 38%. Langmuir adsorption isotherms revealed high capacity and affinity for adsorption of the target mycotoxins. Results of this study are promising and show the potential of the new composite to remove mycotoxins in practical scenarios where several mycotoxins can co-occur.
Collapse
|
24
|
Vázquez-Durán A, Nava-Ramírez MDJ, Téllez-Isaías G, Méndez-Albores A. Removal of Aflatoxins Using Agro-Waste-Based Materials and Current Characterization Techniques Used for Biosorption Assessment. Front Vet Sci 2022; 9:897302. [PMID: 35651966 PMCID: PMC9149420 DOI: 10.3389/fvets.2022.897302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Aflatoxins are the most hazardous fungal-generated secondary metabolites produced by toxigenic Aspergillus species. These toxins are frequently detected in food and feed and impose either acute or chronic effects in humans and animals, causing great public concern. Because of the adverse effects of aflatoxins, many physical, chemical, and biological decontamination approaches have been developed. However, the most commonly used procedure is the addition of adsorbent materials into aflatoxin-contaminated diets to reduce toxin absorption and distribution to blood and target organs. In recent times, sorption technology with agro-waste-based materials has appeared as a promising alternative over conventional binding agents with the benefits of low cost, higher rentability, feasibility, and exceptional efficiencies. This review is mainly focused on discussing the most important agro-waste-based materials able to adsorb aflatoxins such as pomaces, seeds, stems, hulls, peels, leaves, berries, lignins, fibers, weeds, and various horticultural byproducts. Further data of the in vitro, in vivo, and in silico efficacy of these biomaterials to adsorb and then desorb aflatoxins are given. Besides, an overview of the main characterization techniques used to elucidate the most important physical and chemical mechanisms involved in the biosorption is presented. Finally, conclusions and future research necessities are also outlined.
Collapse
Affiliation(s)
- Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María de Jesús Nava-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Abraham Méndez-Albores
| |
Collapse
|
25
|
Kovács D, Palkovicsné Pézsa N, Jerzsele Á, Süth M, Farkas O. Protective Effects of Grape Seed Oligomeric Proanthocyanidins in IPEC-J2–Escherichia coli/Salmonella Typhimurium Co-Culture. Antibiotics (Basel) 2022; 11:antibiotics11010110. [PMID: 35052987 PMCID: PMC8773002 DOI: 10.3390/antibiotics11010110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Intestinal epithelium provides the largest barrier protecting mammalian species from harmful external factors; however, it can be severely compromised by the presence of bacteria in the gastrointestinal (GI) tract. Antibiotics have been widely used for the prevention and treatment of GI bacterial infections, leading to antimicrobial resistance in human and veterinary medicine alike. In order to decrease antibiotic usage, natural substances, such as flavonoids, are investigated to be used as antibiotic alternatives. Proanthocyanidins (PAs) are potential candidates for this purpose owing to their various beneficial effects in humans and animals. In this study, protective effects of grape seed oligomeric proanthocyanidins (GSOPs) were tested in IPEC-J2 porcine intestinal epithelial cells infected with Escherichia coli and Salmonella enterica ser. Typhimurium of swine origin. GSOPs were able to alleviate oxidative stress, inflammation and barrier integrity disruption inflicted by bacteria in the co-culture. Furthermore, GSOPs could decrease the adhesion of both bacteria to IPEC-J2 cells. Based on these observations, GSOPs seem to be promising candidates for the prevention and treatment of gastrointestinal bacterial infections.
Collapse
|
26
|
Li L, Sun X, Zhao D, Dai H. Pharmacological Applications and Action Mechanisms of Phytochemicals as Alternatives to Antibiotics in Pig Production. Front Immunol 2021; 12:798553. [PMID: 34956234 PMCID: PMC8695855 DOI: 10.3389/fimmu.2021.798553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotics are widely used for infectious diseases and feed additives for animal health and growth. Antibiotic resistant caused by overuse of antibiotics poses a global health threat. It is urgent to choose safe and environment-friendly alternatives to antibiotics to promote the ecological sustainable development of the pig industry. Phytochemicals are characterized by little residue, no resistance, and minimal side effects and have been reported to improve animal health and growth performance in pigs, which may become a promising additive in pig production. This paper summarizes the biological functions of recent studies of phytochemicals on growth performance, metabolism, antioxidative capacity, gut microbiota, intestinal mucosa barrier, antiviral, antimicrobial, immunomodulatory, detoxification of mycotoxins, as well as their action mechanisms in pig production. The review may provide the theoretical basis for the application of phytochemicals functioning as alternative antibiotic additives in the pig industry.
Collapse
Affiliation(s)
- Lexing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dai Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Aguilar-Zuniga K, Laurie VF, Moore-Carrasco R, Ortiz-Villeda B, Carrasco-Sánchez V. Agro-industrial Waste Products as Mycotoxin Biosorbents: A Review of in Vitro and in Vivo Studies. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2001653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - V. Felipe Laurie
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Rodrigo Moore-Carrasco
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Talca University, Talca, Chile
| | - Bryan Ortiz-Villeda
- Department of Microbiology, Faculty of Health Sciences, Talca University, Talca, Chile
| | | |
Collapse
|
28
|
López M, Madrid J, Hernández F, Ros MA, Segura JC, López MJ, Pallarés FJ, Sánchez CJ, Martínez-Miró S. Effect of Feed Supplementation with Clostridium butyricum, Alone or in Combination with Carob Meal or Citrus Pulp, on Digestive and Metabolic Status of Piglets. Animals (Basel) 2021; 11:ani11102924. [PMID: 34679945 PMCID: PMC8532904 DOI: 10.3390/ani11102924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary During the intensive production of weaned piglets, frequent digestive disorders need to be avoided, as it is a critical phase; however, there are limitations to using antibiotics and ZnO at high levels. In this study, we investigate the inclusion of a probiotic (Clostridium butyricum) in combination with sources of fiber that might have a potential prebiotic effect, generating an optimal digestive status for weaned piglets. A trial is carried out using 30 post-weaning piglets for 27 days using five dietary treatments: a negative control, a positive control with high levels of ZnO, and three dietary treatments supplemented with Clostridium butyricum (alone or in combination with carob meal or citrus pulp). Supplementation with this probiotic could improve the piglets’ intestinal wellness status by increasing butyric acid, without being altered by the inclusion of carob meal or citrus pulp at 5%, obtaining digestibility values comparable with those realized by the incorporation of high levels of ZnO in the diet. In addition, carob meal could decrease the concentration of serum interleukin-8 (a type of pro-inflammatory cytokine). However, a growth performance trial of piglets in commercial conditions needs to be developed to confirm these effects. Abstract This work studied the effects of the inclusion of Clostridium butyricum on feed, alone or with carob meal or citrus pulp, on the digestive and metabolic status of weaned piglets. A total of 30 male piglets (weaned at 21 days) is used. There are five dietary treatments: negative without ZnO at high doses (C−), a positive control supplemented with ZnO at 2500 ppm of Zn (C+), supplemented with Clostridium butyricum as a probiotic (PRO), and supplemented with probiotic and 5% carob meal (PROC) or 5% citrus pulp (PROP). During the experiment (27 days), the piglets were periodically weighed and sampled for a serum biochemical, fecal microbiological, intestine histological, and digestive status analysis. The body weight, apparent ileal digestibility of dry matter (DM), and fecal microbiology were not affected by the treatments (p ≥ 0.05). However, the apparent fecal digestibility of DM was lower for the C− treatment than for C+ (p < 0.05), and the total concentration of volatile fatty acids (VFAs) in feces with C+ was lower than that for the PROC treatment (p < 0.05). The treatments with the probiotic had a higher molar proportion of butyric acid in feces than C+, and it was found that C− reached an intermediate value (p < 0.01). No general effects of diet were found on the histological measures performed on the jejunum and ileum, and in the serum biochemical analysis (p ≥ 0.05), only the concentration of interleukin-8 was lower for the PROC treatment compared to the C−, C+, and PRO treatments (p < 0.05). In conclusion, the intestinal wellness of piglets could be improved with the supplementation of Clostridium butyricum by increasing butyric acid, and this effect was not altered with the inclusion of carob meal or citrus pulp. More studies under commercial conditions are needed, as the effects might be different in more challenging environmental circumstances.
Collapse
Affiliation(s)
- Marina López
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
| | - Josefa Madrid
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
- Correspondence: ; Tel.: +34-868-884-750
| | - Fuensanta Hernández
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
| | - Martín Antonio Ros
- Agrarian Transformation Society, Number 2439, La Hoya, 30816 Lorca, Spain; (M.A.R.); (J.C.S.)
| | - Juan Carlos Segura
- Agrarian Transformation Society, Number 2439, La Hoya, 30816 Lorca, Spain; (M.A.R.); (J.C.S.)
| | - Miguel José López
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence–ceiA3, University of Córdoba, 14014 Córdoba, Spain;
| | - Cristian Jesús Sánchez
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
| | - Silvia Martínez-Miró
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence “Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (M.L.); (F.H.); (M.J.L.); (C.J.S.); (S.M.-M.)
| |
Collapse
|
29
|
Wang X, He Y, Tian J, Muhammad I, Liu M, Wu C, Xu C, Zhang X. Ferulic acid prevents aflatoxin B1-induced liver injury in rats via inhibiting cytochrome P450 enzyme, activating Nrf2/GST pathway and regulating mitochondrial pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112624. [PMID: 34416636 DOI: 10.1016/j.ecoenv.2021.112624] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Aflatoxin B1 (AFB1) causes oxidative stress and hepatocyte apoptosis through its epoxidized metabolite AFBO, which is catalyzed by CYP450 enzymes. Ferulic acid (FA) is a phenolic acid commonly found in plants and is known for its antioxidant capacity. However, the role of FA in AFB1-induced liver injury is still elusive. In this study, rats were exposed to AFB1 and simultaneously treated with FA for 30 days. The results showed that I) FA alleviated the histopathological changes induced by AFB1, inhibited the elevation of serological indexes induced by AFB1, and reduced the production of AFBO in liver. II) AFB1-induced increase in CYP450 expression was significantly reduced by FA. The molecular docking results of FA and CYP2A6 showed high fitness score and interaction. III) FA obviously inhibited the production of MDA, and significantly activated the Nrf2/GST pathway and antioxidant enzymes (SOD and GST). IV) AFB1-induced hepatocyte apoptosis, the high expression of p53, bax, cyt-c, caspase-9, caspase-3, and the low expression of bcl-2 were all restored by FA. It has been suggested from these results that FA proved effective against AFB1-induced liver damage in rats via inhibiting CYP450 enzyme, promoting antioxidant pathway Nrf2/GST, activating antioxidant enzymes (SOD and GST), and regulating the mitochondrial pathway.
Collapse
Affiliation(s)
- Xinghe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Yang He
- Fuxin Higher Training College, Fuxin, Liaoning 123000, PR China.
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laborotary of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, PR China.
| | - Ishfaq Muhammad
- Department of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin, PR China.
| | - Mingchun Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Changde Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Chang Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Xiaohuan Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| |
Collapse
|
30
|
Discovering the Protective Effects of Resveratrol on Aflatoxin B1-Induced Toxicity: A Whole Transcriptomic Study in a Bovine Hepatocyte Cell Line. Antioxidants (Basel) 2021; 10:antiox10081225. [PMID: 34439473 PMCID: PMC8388899 DOI: 10.3390/antiox10081225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a natural feed and food contaminant classified as a group I carcinogen for humans. In the dairy industry, AFB1 and its derivative, AFM1, are of concern for the related economic losses and their possible presence in milk and dairy food products. Among its toxic effects, AFB1 can cause oxidative stress. Thus, dietary supplementation with natural antioxidants has been considered among the strategies to mitigate AFB1 presence and its toxicity. Here, the protective role of resveratrol (R) has been investigated in a foetal bovine hepatocyte cell line (BFH12) exposed to AFB1, by measuring cytotoxicity, transcriptional changes (RNA sequencing), and targeted post-transcriptional modifications (lipid peroxidation, NQO1 and CYP3A enzymatic activity). Resveratrol reversed the AFB1-dependent cytotoxicity. As for gene expression, when administered alone, R induced neglectable changes in BFH12 cells. Conversely, when comparing AFB1-exposed cells with those co-incubated with R+AFB1, greater transcriptional variations were observed (i.e., 840 DEGs). Functional analyses revealed that several significant genes were involved in lipid biosynthesis, response to external stimulus, drug metabolism, and inflammatory response. As for NQO1 and CYP3A activities and lipid peroxidation, R significantly reverted variations induced by AFB1, mostly corroborating and/or completing transcriptional data. Outcomes of the present study provide new knowledge about key molecular mechanisms involved in R antioxidant-mediated protection against AFB1 toxicity.
Collapse
|
31
|
Abdel-Daim MM, Abdeen A, Jalouli M, Abdelkader A, Megahed A, Alkahtane A, Almeer R, Alhoshani NM, Al-Johani NS, Alkahtani S, Aleya L. Fucoidan supplementation modulates hepato-renal oxidative stress and DNA damage induced by aflatoxin B1 intoxication in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144781. [PMID: 33444861 DOI: 10.1016/j.scitotenv.2020.144781] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Aflatoxins are a common food contaminant of global concern. Aflatoxin B1 (AFB1) intoxication is associated with serious health hazards. Recently, fucoidan (FUC) has gained much attention from pharmaceutical industry due to its promising therapeutic effects. The impacts of FUC on AFB1-induced liver and kidney injures have not been sufficiently addressed. This research was conducted to evaluate the ameliorative effect of FUC in AFB1-induced hepatorenal toxicity model in rats over 14 days. Five groups were assigned; control, FUC (200 mg/kg/day, orally), AFB1 (50 μg/kg, i.p.), and AFB1 plus a low or high dose of FUC. AFB1 induced marked hepatorenal injury elucidated by substantial alterations in biochemical tests and histological pictures. The oxidative distress instigated by AFB1 enhanced production of malondialdehyde (MDA) and nitric oxide (NO) along with reduction in the reduced-glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities. DNA damage in the liver and kidney tissues has been demonstrated by overexpression of proliferating cell nuclear antigen (PCNA). Unambiguously, FUC consumption alleviates the AFB1-induced mitochondrial dysfunction, oxidative harm, and apoptosis. These ameliorated effects are proposed to be attributed to fucoidan's antioxidant and anti-apoptotic activities. Our results recommend FUC supplementation to food because it exerts both preventive and therapeutic effects against AFB1-induced toxicity.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh 13736, Egypt
| | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Afaf Abdelkader
- Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh 13736, Egypt; Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Ameer Megahed
- Department of Animal Medicine, Internal Medicine, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Abdullah Alkahtane
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah M Alhoshani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah S Al-Johani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon Cedex, France
| |
Collapse
|
32
|
Fan T, Xie Y, Ma W. Research progress on the protection and detoxification of phytochemicals against aflatoxin B 1-Induced liver toxicity. Toxicon 2021; 195:58-68. [PMID: 33716068 DOI: 10.1016/j.toxicon.2021.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Aflatoxin B1 (AFB1) is a potent hepatotoxic toxin, which can cause hepatitis, cirrhosis, and liver immunological damage. It has been involved in the etiology of human hepatocellular carcinoma. AFB1 can cause oxidative stress in the body's metabolism process, and then cause cytotoxicity, such as apoptosis and DNA damage. Scientific research has discovered that phytochemicals can induce the detoxification pathway of AFB1 through its biotransformation, thereby reducing the damage of AFB1 to the human body. In clinical treatment, certain phytochemicals have been effectively used in the treatment of liver injury due to the advantages of multiple targets, multiple pathways, low toxicity and side effects. Therefore, the article summarizes the toxic mechanism of AFB1-induced hepatoxicity, and the related research progress of phytochemicals for preventing and treating its cytotoxicity and genotoxicity. We also look forward to the existing problems and application prospects of phytochemicals in the pharmaceutical industry, in order to provide theoretical reference for the prevention and treatment of AFB1 poisoning in future research work.
Collapse
Affiliation(s)
- Tingting Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
33
|
Popescu RG, Bulgaru C, Untea A, Vlassa M, Filip M, Hermenean A, Marin D, Țăranu I, Georgescu SE, Dinischiotu A. The Effectiveness of Dietary Byproduct Antioxidants on Induced CYP Genes Expression and Histological Alteration in Piglets Liver and Kidney Fed with Aflatoxin B1 and Ochratoxin A. Toxins (Basel) 2021; 13:148. [PMID: 33671978 PMCID: PMC7919288 DOI: 10.3390/toxins13020148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the potential of a byproduct mixture derived from grapeseed and sea buckthorn oil industry to mitigate the harmful damage produced by ochratoxin A and aflatoxin B1 at hepatic and renal level in piglets after weaning. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three experimental groups (E1, E2, E3) and one control group (C), and fed with experimental diets for 30 days. The basal diet was served as a control and contained normal compound feed for starter piglets without mycotoxins. The experimental groups were fed as follows: E1-basal diet plus a mixture (1:1) of two byproducts (grapeseed and sea buckthorn meal); E2-the basal diet experimentally contaminated with mycotoxins (479 ppb OTA and 62ppb AFB1); and E3-basal diet containing 5% of the mixture (1:1) of grapeseed and sea buckthorn meal and contaminated with the mix of OTA and AFB1. After 4 weeks, the animals were slaughtered, and tissue samples were taken from liver and kidney in order to perform gene expression and histological analysis. The gene expression analysis showed that when weaned piglets were fed with contaminated diet, the expression of most analyzed genes was downregulated. Among the CYP450 family, CYP1A2 was the gene with the highest downregulation. According to these results, in liver, we found that mycotoxins induced histomorphological alterations in liver and kidney and had an effect on the expression level of CYP1A2, CYP2A19, CYP2E1, and CYP3A29, but we did not detect important changes in the expression level of CY4A24, MRP2 and GSTA1 genes.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| | - Cristina Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Arabela Untea
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeş Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.V.); (M.F.)
| | - Miuta Filip
- Raluca Ripan Institute for Research in Chemistry, Babeş Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.V.); (M.F.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
| | - Daniela Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Ionelia Țăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| |
Collapse
|
34
|
Mavrommatis A, Giamouri E, Tavrizelou S, Zacharioudaki M, Danezis G, Simitzis PE, Zoidis E, Tsiplakou E, Pappas AC, Georgiou CA, Feggeros K. Impact of Mycotoxins on Animals' Oxidative Status. Antioxidants (Basel) 2021; 10:214. [PMID: 33535708 PMCID: PMC7912820 DOI: 10.3390/antiox10020214] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mycotoxins appear to be the "Achilles' heel" of the agriculture sector inducing enormous economic losses and representing a severe risk to the health of humans and animals. Although novel determination protocols have been developed and legislation has been implemented within Europe, the side effects of mycotoxins on the homeostatic mechanisms of the animals have not been extensively considered. Feed mycotoxin contamination and the effects on the antioxidant status of livestock (poultry, swine, and ruminants) are presented. The findings support the idea that the antioxidant systems in both monogastrics and ruminants are challenged under the detrimental effect of mycotoxins by increasing the toxic lipid peroxidation by-product malondialdehyde (MDA) and inhibiting the activity of antioxidant defense mechanisms. The degree of oxidative stress is related to the duration of contamination, co-contamination, the synergetic effects, toxin levels, animal age, species, and productive stage. Since the damaging effects of MDA and other by-products derived by lipid peroxidation as well as reactive oxygen species have been extensively studied on human health, a more integrated monitoring mechanism (which will take into account the oxidative stability) is urgently required to be implemented in animal products.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Savvina Tavrizelou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Maria Zacharioudaki
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - George Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.D.); (C.A.G.)
- FoodOmics GR Research Infrastructure, Agricultural University of Athens, 11855 Athens, Greece
| | - Panagiotis E. Simitzis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece; (G.D.); (C.A.G.)
- FoodOmics GR Research Infrastructure, Agricultural University of Athens, 11855 Athens, Greece
| | - Kostas Feggeros
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (E.G.); (S.T.); (M.Z.); (E.Z.); (E.T.); (K.F.)
| |
Collapse
|
35
|
Hua Z, Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Li W, Lu C, Liu Y. Contamination of Aflatoxins Induces Severe Hepatotoxicity Through Multiple Mechanisms. Front Pharmacol 2021; 11:605823. [PMID: 33505311 PMCID: PMC7830880 DOI: 10.3389/fphar.2020.605823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Aflatoxins (AFs) are commonly contaminating mycotoxins in foods and medicinal materials. Since they were first discovered to cause “turkey X” disease in the United Kingdom in the early 1960s, the extreme toxicity of AFs in the human liver received serious attention. The liver is the major target organ where AFs are metabolized and converted into extremely toxic forms to engender hepatotoxicity. AFs influence mitochondrial respiratory function and destroy normal mitochondrial structure. AFs initiate damage to mitochondria and subsequent oxidative stress. AFs block cellular survival pathways, such as autophagy that eliminates impaired cellular structures and the antioxidant system that copes with oxidative stress, which may underlie their high toxicities. AFs induce cell death via intrinsic and extrinsic apoptosis pathways and influence the cell cycle and growth via microribonucleic acids (miRNAs). Furthermore, AFs induce the hepatic local inflammatory microenvironment to exacerbate hepatotoxicity via upregulation of NF-κB signaling pathway and inflammasome assembly in the presence of Kupffer cells (liver innate immunocytes). This review addresses the mechanisms of AFs-induced hepatotoxicity from various aspects and provides background knowledge to better understand AFs-related hepatoxic diseases.
Collapse
Affiliation(s)
- Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Weifeng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Palade LM, Dore MI, Marin DE, Rotar MC, Taranu I. Assessment of Food By-Products' Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone. Toxins (Basel) 2020; 13:2. [PMID: 33374968 PMCID: PMC7822050 DOI: 10.3390/toxins13010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, eight food by-products were investigated as biosorbent approaches in removing mycotoxin load towards potential dietary inclusion in animal feed. Among these food-derived by-products, grape seed (GSM) and seabuckthorn (SBM) meals showed the most promising binding capacity for Aflatoxin B1 (AFB1) and Zearalenone (ZEA), measured as percent of adsorbed mycotoxin. Furthermore, we explored the mycotoxin sequestering potential by screening the effect of time, concentration, temperature and pH. Comparative binding efficacy was addressed by carrying out adsorption experiments in vitro. The highest mycotoxin adsorption was attained using 30 mg of by-product for both GSM (85.9% AFB1 and 83.7% ZEA) and SBM (68% AFB1 and 84.5% ZEA). Optimal settings for the experimental factors were predicted employing the response surface design. GSM was estimated to adsorb AFB1 optimally at a concentration of 29 mg/mL, pH 5.95 and 33.6 °C, and ZEA using 28 mg/mL at pH 5.76 and 31.7 °C. Favorable adsorption of AFB1 was estimated at 37.5 mg of SBM (pH 8.1; 35.6 °C), and of ZEA at 30.2 mg of SBM (pH 5.6; 29.3 °C). Overall, GSM revealed a higher binding capacity compared with SBM. In addition, the two by-products showed different specificity for the binary-mycotoxin system, with SBM having higher affinity towards ZEA than AFB1 (Kf = 0.418 and 1/n = 0.213 vs. Kf = 0.217 and 1/n = 0.341) and GSM for AFB1 in comparison with ZEA (Kf = 0.367 and 1/n = 0.248 vs. Kf = 0.343 and 1/n = 0.264). In conclusion, this study suggests that GSM and SBM represent viable alternatives to commercial biosorbent products.
Collapse
Affiliation(s)
- Laurentiu Mihai Palade
- National Research Development Institute for Animal Biology and Nutrition, 077015 IBNA Balotesti, Romania; (M.I.D.); (D.E.M.); (M.C.R.); (I.T.)
| | | | | | | | | |
Collapse
|
37
|
Marin DE, Bulgaru CV, Anghel CA, Pistol GC, Dore MI, Palade ML, Taranu I. Grape Seed Waste Counteracts Aflatoxin B1 Toxicity in Piglet Mesenteric Lymph Nodes. Toxins (Basel) 2020; 12:toxins12120800. [PMID: 33333857 PMCID: PMC7765275 DOI: 10.3390/toxins12120800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin that frequently contaminates cereals and cereal byproducts. This study investigates the effect of AFB1 on the mesenteric lymph nodes (MLNs) of piglets and evaluates if a diet containing grape seed meal (GSM) can counteract the negative effect of AFB1 on inflammation and oxidative stress. Twenty-four weaned piglets were fed the following diets: Control, AFB1 group (320 μg AFB1/kg feed), GSM group (8% GSM), and AFB1 + GSM group (8% GSM + 320 μg AFB1/kg feed) for 30 days. AFB1 has an important antioxidative effect by decreasing the activity of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) and total antioxidant status. As a result of the exposure to AFB1, an increase of MAP kinases, metalloproteinases, and cytokines, as effectors of an inflammatory response, were observed in the MLNs of intoxicated piglets. GSM induced a reduction of AFB1-induced oxidative stress by increasing the activity of GPx and SOD and by decreasing lipid peroxidation. GSM decreased the inflammatory markers increased by AFB1. These results represent an important and promising way to valorize this waste, which is rich in bioactive compounds, for decreasing AFB1 toxic effects in mesenteric lymph nodes.
Collapse
|
38
|
Antioxidant Activity of Flavonoids in LPS-Treated IPEC-J2 Porcine Intestinal Epithelial Cells and Their Antibacterial Effect against Bacteria of Swine Origin. Antioxidants (Basel) 2020; 9:antiox9121267. [PMID: 33322114 PMCID: PMC7764120 DOI: 10.3390/antiox9121267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 01/17/2023] Open
Abstract
Beneficial effects of flavonoids are widely known in human medicine, but less information is available about their veterinary usage. Based on their antioxidant and antibacterial activity, proanthocyanidins (PAs) and luteolin (LUT) might be used in the prevention and treatment of gastrointestinal infections in swine. In this study, in vitro beneficial effects of grape seed oligomeric proanthocyanidins (GSOPs) and LUT were investigated against bacterial endotoxin (LPS)-induced oxidative stress in IPEC-J2 porcine epithelial intestinal cells. Furthermore, antibacterial effects of GSOP and LUT were assessed against field isolates of Escherichia coli and Salmonella enterica ser. Typhimurium. Both GSOP and LUT were found to possess potent in vitro antioxidant activity in LPS-treated IPEC-J2 cells; furthermore, they showed a bacteriostatic effect against the tested bacterial strains of porcine origin. Both flavonoids seem to be effective in the protection of porcine intestinal epithelial cells against Gram-negative bacteria in vitro, but further in vivo studies are necessary to confirm these activities and to establish their optimal dosage regimen for future usage in veterinary practice.
Collapse
|
39
|
Pauletto M, Giantin M, Tolosi R, Bassan I, Barbarossa A, Zaghini A, Dacasto M. Curcumin Mitigates AFB1-Induced Hepatic Toxicity by Triggering Cattle Antioxidant and Anti-inflammatory Pathways: A Whole Transcriptomic In Vitro Study. Antioxidants (Basel) 2020; 9:antiox9111059. [PMID: 33137966 PMCID: PMC7692341 DOI: 10.3390/antiox9111059] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 (AFB1) toxicity in livestock and human beings is a major economic and health concern. Natural polyphenolic substances with antioxidant properties have proven to be effective in ameliorating AFB1-induced toxicity. Here we assessed the potential anti-AFB1 activity of curcumin (pure curcumin, C, and curcumin from Curcuma longa, CL) in a bovine fetal hepatocyte-derived cell line (BFH12). First, we measured viability of cells exposed to AFB1 in presence or absence of curcumin treatment. Then, we explored all the transcriptional changes occurring in AFB1-exposed cells cotreated with curcumin. Results demonstrated that curcumin is effective in reducing AFB1-induced toxicity, decreasing cells mortality by approximately 30%. C and CL induced similar transcriptional changes in BFH12 exposed to AFB1, yet C treatment resulted in a larger number of significant genes compared to CL. The mitigating effects of curcuminoids towards AFB1 toxicity were mainly related to molecular pathways associated with antioxidant and anti-inflammatory response, cancer, and drug metabolism. Investigating mRNA changes induced by curcumin in cattle BFH12 cells exposed to AFB1 will help us to better characterize possible tools to reduce its consequences in this susceptible and economically important food-producing species.
Collapse
Affiliation(s)
- Marianna Pauletto
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Mery Giantin
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Roberta Tolosi
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Irene Bassan
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.Z.)
| | - Mauro Dacasto
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
- Correspondence: ; Tel.: +39-049-827-2935
| |
Collapse
|
40
|
Taranu I, Hermenean A, Bulgaru C, Pistol GC, Ciceu A, Grosu IA, Marin DE. Diet containing grape seed meal by-product counteracts AFB1 toxicity in liver of pig after weaning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110899. [PMID: 32678747 DOI: 10.1016/j.ecoenv.2020.110899] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Liver is the earliest target for AFB1 toxicity in both human and animals. In the last decade, plant derived by-products have been used in animal feed to reduce AFB1 induced toxicity. In the present study we investigated whether the presence of 8% grape seed meal by-product is able to counteract the hepatotoxic effects produced by AFB1 in liver of pig after weaning exposed to the toxin through the contaminated feed for 28 days. Twenty four weaned cross-bred TOPIGS-40 piglets with an average body weight of 9.13±0.03 were allocated to the following experimentally treatments: control diet without AFB1 (normal compound feed for weaned pigs); contaminated diet with 320 mg kg-1 AFB1; GSM diet (compound feed plus 8% grape seed meal) and AFB1+GSM diet (320 mg kg-1 AFB1 contaminated feed plus 8% grape seed meal). Pigs fed AFB1 diet had altered performance, body weight decreasing with 25.1% (b.w.: 17.17 kg for AFB1 vs 22.92 kg for control). Exposure of piglets to AFB1 contaminated diet caused liver oxidative stress as well as liver histological damage, manly characterized by inflammatory infiltrate, fibrosis and parenchyma cells vacuolation when compared to control and GSM meal group. 94.12% of the total analysed genes (34) related to inflammation and immune response was up-regulated. The addition of GSM into the AFB1 diet diminished the gene overexpression and ameliorate histological liver injuries and oxidative stress. The protective effect of GSM diet in diminishing the AFB1 harmful effect was mediated through the decreasing of gene and protein expression of MAPKs and NF-κB signalling overexpressed by AFB1 diet. The inclusion of grape seed by-products in the diet of pigs after weaning might be used as a novel nutritional intervention to reduce aflatoxin toxicity.
Collapse
Affiliation(s)
- Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania.
| | - Anca Hermenean
- Aurel Ardelean Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cristina Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Gina Cecilia Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Alina Ciceu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Iulian Alexandru Grosu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| |
Collapse
|
41
|
The Compromised Intestinal Barrier Induced by Mycotoxins. Toxins (Basel) 2020; 12:toxins12100619. [PMID: 32998222 PMCID: PMC7600953 DOI: 10.3390/toxins12100619] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are fungal metabolites that occur in human foods and animal feeds, potentially threatening human and animal health. The intestine is considered as the first barrier against these external contaminants, and it consists of interconnected physical, chemical, immunological, and microbial barriers. In this context, based on in vitro, ex vivo, and in vivo models, we summarize the literature for compromised intestinal barrier issues caused by various mycotoxins, and we reviewed events related to disrupted intestinal integrity (physical barrier), thinned mucus layer (chemical barrier), imbalanced inflammatory factors (immunological barrier), and dysfunctional bacterial homeostasis (microbial barrier). We also provide important information on deoxynivalenol, a leading mycotoxin implicated in intestinal dysfunction, and other adverse intestinal effects induced by other mycotoxins, including aflatoxins and ochratoxin A. In addition, intestinal perturbations caused by mycotoxins may also contribute to the development of mycotoxicosis, including human chronic intestinal inflammatory diseases. Therefore, we provide a clear understanding of compromised intestinal barrier induced by mycotoxins, with a view to potentially develop innovative strategies to prevent and treat mycotoxicosis. In addition, because of increased combinatorial interactions between mycotoxins, we explore the interactive effects of multiple mycotoxins in this review.
Collapse
|
42
|
Feng Y, He L, Wang L, Mo R, Zhou C, Hong P, Li C. Detection of Aflatoxin B 1 Based on a Porous Anodized Aluminum Membrane Combined with Surface-Enhanced Raman Scattering Spectroscopy. NANOMATERIALS 2020; 10:nano10051000. [PMID: 32456270 PMCID: PMC7279531 DOI: 10.3390/nano10051000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022]
Abstract
An Aflatoxin B1 (AFB1) biosensor was fabricated via an Ag nanoparticles assembly on the surface of a porous anodized aluminum (PAA) membrane. First, the Raman reporter 4-Aminothiophenol (4-ATP) and DNA (partially complementary to AFB1 aptamer) were attached to the surface of Ag nanoparticles (AgNPs) by chemical bonding to form a 4-ATP-AgNPs-DNA complex. Similarly, the surface of a PAA membrane was functionalized with an AFB1 aptamer. Then, the PAA surface was functionalized with 4-ATP-AgNPs-DNA through base complementary pairing to form AgNPs-PAA sensor with a strong Raman signal. When AFB1 was added, AgNPs would be detached from the PAA surface because of the specific binding between AFB1 and the aptamer, resulting in a reduction in Raman signals. The detection limit of the proposed biosensor is 0.009 ng/mL in actual walnut and the linear range is 0.01-10 ng/mL. The sensor has good selectivity and repeatability; it can be applied to the rapid qualitative and quantitative detection of AFB1.
Collapse
Affiliation(s)
- Yanting Feng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.F.); (L.W.); (C.Z.); (P.H.)
| | - Lei He
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ling Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.F.); (L.W.); (C.Z.); (P.H.)
| | - Rijian Mo
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Correspondence: (R.M.); (C.L.)
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.F.); (L.W.); (C.Z.); (P.H.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.F.); (L.W.); (C.Z.); (P.H.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
- Correspondence: (R.M.); (C.L.)
| |
Collapse
|
43
|
Grosu IA, Pistol GC, Marin DE, Cişmileanu A, Palade LM, Ţăranu I. Effects of Dietary Grape Seed Meal Bioactive Compounds on the Colonic Microbiota of Weaned Piglets With Dextran Sodium Sulfate-Induced Colitis Used as an Inflammatory Model. Front Vet Sci 2020; 7:31. [PMID: 32161762 PMCID: PMC7054226 DOI: 10.3389/fvets.2020.00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
Microbiota affects host health and plays an important role in dysbiosis. The study examined the effect of diet including grape seed meal (GSM) with its mixture of bioactive compounds on the large intestine microbiota and short-chain fatty acid synthesis in weaned piglets treated with dextran sodium sulfate (DSS) as a model for inflammatory bowel diseases. Twenty-two piglets were included in four experimental groups based on their diet: control, DSS (1 g/kg/b.w.+control diet), GSM (8% grape seed meal inclusion in control diet), and DSS+GSM (1 g/kg/b.w., 8% grape seed meal in control diet). After 30 days, the colon content was isolated and used for microbiota sequencing on an Illumina MiSeq platform. QIIME 1.9.1 pipeline was used to process the raw sequences. Both GSM and DSS alone and in combination affected the diversity indices and Firmicutes:Bacteroidetes ratio, with significantly higher values in the DSS-afflicted piglets for Proteobacteria phylum, Roseburia, Megasphera and CF231 genus, and lower values for Lactobacillus. GSM with high-fiber, polyphenol and polyunsaturated fatty acid (PUFA) content increased the production of butyrate and isobutyrate, stimulated the growth of beneficial genera like Prevotella and Megasphaera, while countering the relative abundance of Roseburia, reducing it to half of the DSS value and contributing to the management of the DSS effects.
Collapse
Affiliation(s)
- Iulian A Grosu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Gina C Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Daniela E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Ana Cişmileanu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Laurenţiu M Palade
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Ionelia Ţăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| |
Collapse
|
44
|
Singh C, Prakash C, Mishra P, Tiwari KN, Mishra SK, More RS, Kumar V, Singh J. Hepatoprotective efficacy of Premna integrifolia L. leaves against aflatoxin B1-induced toxicity in mice. Toxicon 2019; 166:88-100. [DOI: 10.1016/j.toxicon.2019.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
|
45
|
de Camargo AC, Favero BT, Morzelle MC, Franchin M, Alvarez-Parrilla E, de la Rosa LA, Geraldi MV, Maróstica Júnior MR, Shahidi F, Schwember AR. Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. Int J Mol Sci 2019; 20:E2644. [PMID: 31146372 PMCID: PMC6600242 DOI: 10.3390/ijms20112644] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023] Open
Abstract
Legume seeds are rich sources of protein, fiber, and minerals. In addition, their phenolic compounds as secondary metabolites render health benefits beyond basic nutrition. Lowering apolipoprotein B secretion from HepG2 cells and decreasing the level of low-density lipoprotein (LDL)-cholesterol oxidation are mechanisms related to the prevention of cardiovascular diseases (CVD). Likewise, low-level chronic inflammation and related disorders of the immune system are clinical predictors of cardiovascular pathology. Furthermore, DNA-damage signaling and repair are crucial pathways to the etiology of human cancers. Along CVD and cancer, the prevalence of obesity and diabetes is constantly increasing. Screening the ability of polyphenols in inactivating digestive enzymes is a good option in pre-clinical studies. In addition, in vivo studies support the role of polyphenols in the prevention and/or management of diabetes and obesity. Soybean, a well-recognized source of phenolic isoflavones, exerts health benefits by decreasing oxidative stress and inflammation related to the above-mentioned chronic ailments. Similar to soybeans, chickpeas are good sources of nutrients and phenolic compounds, especially isoflavones. This review summarizes the potential of chickpea as a substitute for soybean in terms of health beneficial outcomes. Therefore, this contribution may guide the industry in manufacturing functional foods and/or ingredients by using an undervalued feedstock.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Bruno Trevenzoli Favero
- University of Copenhagen, Department of Plant and Environmental Sciences, 2630 Taastrup, Denmark.
| | - Maressa Caldeira Morzelle
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Fernando Correa Avenue, P.O. box 2367, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Marina Vilar Geraldi
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas, SP 13083-862, Brazil.
| | | | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| |
Collapse
|