1
|
Yang M, Sun J, Cao X, Liu H, Wu X, Mao W, Hao L. Comparative toxicity analysis of benzo[a]pyrene and PAH4 on HepG2 cells using transcriptomics and metabolomics. Food Chem Toxicol 2025; 201:115473. [PMID: 40280401 DOI: 10.1016/j.fct.2025.115473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants posing potential health risks. PAH4 (sum of benzo[a]pyrene (BaP), chrysene, benz[a]anthracene and benzo[b]fluoranthene) has been proposed as a marker to evaluate the occurrence of total PAHs. However, toxicity effects of exposure to PAH4 mixture and its toxicity differences with single PAH are little-known. Here, we systematically investigated the hepatotoxicity mechanisms of PAH4 and compare its toxicity with BaP using HepG2 cell model. Our results showed that BaP and PAH4 exposure induced cytotoxicity and oxidative stress. Furthermore, both BaP and PAH4 activated P53 signaling pathway, leading to cell apoptosis, and disrupted peroxisome proliferator-activated receptor (PPAR) signaling and induced lipid metabolism disorder. Integrated analysis of transcriptomics and metabolomics indicated that BaP and PAH4 shared similar toxicity mechanisms, commonly affecting the metabolic pathways including glycerolipid and glycerophospholipid metabolism. Moreover, the integrated biomarker response (IBR) analysis demonstrated that BaP and PAH4 exhibited similar global toxicity on HepG2 cells. We further found that the toxicity effects of PAH4 could be partially alleviated by an aryl hydrocarbon receptor (AHR) antagonist, indicating a potential role of AHR signaling in PAH4-induced hepatotoxicity. Overall, these findings provided insights into the toxicological mechanisms and interaction effects of PAHs mixtures.
Collapse
Affiliation(s)
- Miao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jialin Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xudong Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing, 100022, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Zeb R, Yin X, Chen F, Wang KJ. Sex-specific divergent responses of marine medaka (Oryzias melastigma) towards long-term benzo[a]pyrene exposure revealed stronger resilience and recoverability in female fish. CHEMOSPHERE 2024; 364:143077. [PMID: 39134182 DOI: 10.1016/j.chemosphere.2024.143077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Benzo[a]pyrene (BaP), a representative five-membered polycyclic aromatic hydrocarbon, has been extensively studied as a pollutant for decades. Despite this, sex-specific responses to BaP exposure remain poorly understood. This study employed a life-cycle exposure approach to investigate the effects of prolonged BaP exposure on marine medaka (Oryzias melastigma), highlighting sex-specific responses. After a 90-day exposure period, significant variations in biometric measurements and oxidative stress markers were observed between male and female fish. BaP exposure resulted in weak detoxification defense in males, while females exhibited an opposite response. Transcriptomic analysis revealed 13 significantly enriched pathways in males and 11 in females, with varying numbers of differentially expressed genes between the sexes, highlighting distinct biological responses. Host resistance assay showed higher mortality rates among BaP-exposed males, and suppressed immune gene expressions and lysozyme activity, while females demonstrated enhanced immune genes and lysozyme activity post-challenge, indicating a more resilient defense response. Furthermore, after a one-month depuration period following BaP exposure, male medaka demonstrated slower recoverability compared to females. These findings underscore sex-specific effects of BaP exposure on fish, with females displaying stronger resilience. Understanding these distinctions are crucial for accurately assessing the impact of environmental pollutants on the aquatic population and ecosystem maintenance.
Collapse
Affiliation(s)
- Rabia Zeb
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Hardin LT, Abid N, Vang D, Han X, Thor D, Ojcius DM, Xiao N. miRNAs mediate the impact of smoking on dental pulp stem cells via the p53 pathway. Toxicol Sci 2024; 200:47-56. [PMID: 38636493 DOI: 10.1093/toxsci/kfae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Cigarette smoke changes the genomic and epigenomic imprint of cells. In this study, we investigated the biological consequences of extended cigarette smoke exposure on dental pulp stem cells (DPSCs) and the potential roles of miRNAs. DPSCs were treated with various doses of cigarette smoke condensate (CSC) for up to 6 weeks. Cell proliferation, survival, migration, and differentiation were evaluated. Cytokine and miRNA expression were profiled. The results showed that extended exposure to CSC significantly impaired the regenerative capacity of the DPSCs. Bioinformatic analysis showed that the cell cycle pathway, cancer pathways (small cell lung cancer, pancreatic, colorectal, and prostate cancer), and pathways for TNF, TGF-β, p53, PI3K-Akt, mTOR, and ErbB signal transduction, were associated with altered miRNA profiles. In particular, 3 miRNAs has-miR-26a-5p, has-miR-26b-5p, and has-miR-29b-3p fine-tune the p53 and cell cycle signaling pathways to regulate DPSC cellular activities. The work indicated that miRNAs are promising targets to modulate stem cell regeneration and understanding miRNA-targeted genes and their associated pathways in smoking individuals have significant implications for disease control and prevention.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Nabil Abid
- Department of Molecular and Cellular Biology, High Institute of Biotechnology of Monastir, University of Monastir, Monastir, 5000, Tunisia
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, 5000, Tunisia
| | - David Vang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Der Thor
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| |
Collapse
|
4
|
Chambers BA, Basili D, Word L, Baker N, Middleton A, Judson RS, Shah I. Searching for LINCS to Stress: Using Text Mining to Automate Reference Chemical Curation. Chem Res Toxicol 2024; 37:878-893. [PMID: 38736322 PMCID: PMC11447707 DOI: 10.1021/acs.chemrestox.3c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Adaptive stress response pathways (SRPs) restore cellular homeostasis following perturbation but may activate terminal outcomes like apoptosis, autophagy, or cellular senescence if disruption exceeds critical thresholds. Because SRPs hold the key to vital cellular tipping points, they are targeted for therapeutic interventions and assessed as biomarkers of toxicity. Hence, we are developing a public database of chemicals that perturb SRPs to enable new data-driven tools to improve public health. Here, we report on the automated text-mining pipeline we used to build and curate the first version of this database. We started with 100 reference SRP chemicals gathered from published biomarker studies to bootstrap the database. Second, we used information retrieval to find co-occurrences of reference chemicals with SRP terms in PubMed abstracts and determined pairwise mutual information thresholds to filter biologically relevant relationships. Third, we applied these thresholds to find 1206 putative SRP perturbagens within thousands of substances in the Library of Integrated Network-Based Cellular Signatures (LINCS). To assign SRP activity to LINCS chemicals, domain experts had to manually review at least three publications for each of 1206 chemicals out of 181,805 total abstracts. To accomplish this efficiently, we implemented a machine learning approach to predict SRP classifications from texts to prioritize abstracts. In 5-fold cross-validation testing with a corpus derived from the 100 reference chemicals, artificial neural networks performed the best (F1-macro = 0.678) and prioritized 2479/181,805 abstracts for expert review, which resulted in 457 chemicals annotated with SRP activities. An independent analysis of enriched mechanisms of action and chemical use class supported the text-mined chemical associations (p < 0.05): heat shock inducers were linked with HSP90 and DNA damage inducers to topoisomerase inhibition. This database will enable novel applications of LINCS data to evaluate SRP activities and to further develop tools for biomedical information extraction from the literature.
Collapse
Affiliation(s)
- Bryant A. Chambers
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Danilo Basili
- Unilever, Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Laura Word
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | - Alistair Middleton
- Unilever, Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Martins C, de Oliveira Galvão MF, Costa PM, Dreij K. Antagonistic effects of a COX1/2 inhibitor drug in human HepG2 cells exposed to an environmental carcinogen. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104453. [PMID: 38642625 DOI: 10.1016/j.etap.2024.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Understanding interactions between legacy and emerging environmental contaminants has important implications for risk assessment, especially when mutagens and carcinogens are involved, whose critical effects are chronic and therefore difficult to predict. The current work aimed to investigate potential interactions between benzo[a]pyrene (B[a]P), a carcinogenic polycyclic aromatic hydrocarbon and legacy pollutant, and diclofenac (DFC), a non-steroidal anti-inflammatory drug and pollutant of emerging concern, and how DFC affects B[a]P toxicity. Exposure to binary mixtures of these chemicals resulted in substantially reduced cytotoxicity in human HepG2 cells compared to single-chemical exposures. Significant antagonistic effects were observed in response to high concentrations of B[a]P in combination with DFC at IC50 and ⅕ IC50. While additive effects were found for levels of intracellular reactive oxygen species, antagonistic mixture effects were observed for genotoxicity. B[a]P induced DNA strand breaks, γH2AX activation, and micronuclei formation at ½ IC50 concentrations or lower, whereas DFC induced only low levels of DNA strand breaks. Their mixture caused significantly lower levels of genotoxicity by all three endpoints compared to those expected based on concentration additivity. In addition, antagonistic mixture effects on CYP1 enzyme activity suggested that the observed reduced genotoxicity of B[a]P was due to its reduced metabolic activation as a result of enzymatic inhibition by DFC. Overall, the findings further support the growing concern that co-exposure to environmental toxicants and their non-additive interactions may be a confounding factor that should not be neglected in environmental and human health risk assessment.
Collapse
Affiliation(s)
- Carla Martins
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica 2819 516, Portugal; UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica 2819 516, Portugal; Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden.
| | - Marcos Felipe de Oliveira Galvão
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden
| | - Pedro M Costa
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica 2819 516, Portugal; UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica 2819 516, Portugal
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden.
| |
Collapse
|
6
|
Libalova H, Zavodna T, Margaryan H, Elzeinova F, Milcova A, Vrbova K, Barosova H, Cervena T, Topinka J, Rössner P. Differential DNA damage response and cell fate in human lung cells after exposure to genotoxic compounds. Toxicol In Vitro 2024; 94:105710. [PMID: 37838151 DOI: 10.1016/j.tiv.2023.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
DNA damage can impair normal cellular functions and result in various pathophysiological processes including cardiovascular diseases and cancer. We compared the genotoxic potential of diverse DNA damaging agents, and focused on their effects on the DNA damage response (DDR) and cell fate in human lung cells BEAS-2B. Polycyclic aromatic hydrocarbons [PAHs; benzo[a]pyrene (B[a]P), 1-nitropyrene (1-NP)] induced DNA strand breaks and oxidative damage to DNA; anticancer drugs doxorubicin (DOX) and 5-bromo-2'-deoxyuridine (BrdU) were less effective. DOX triggered the most robust p53 signaling indicating activation of DDR, followed by cell cycle arrest in the G2/M phase, induction of apoptosis and senescence, possibly due to the severe and irreparable DNA lesions. BrdU not only activated p53, but also increased the percentage of G1-phased cells and caused a massive accumulation of senescent cells. In contrast, regardless the activation of p53, both PAHs did not substantially affect the cell cycle distribution or senescence. Finally, a small fraction of cells accumulated only in the G2/M phase and exhibited increased cell death after the prolonged incubation with B[a]P. Overall, we characterized differential responses to diverse DNA damaging agents resulting in specific cell fate and highlighted the key role of DNA lesion type and the p53 signaling persistence.
Collapse
Affiliation(s)
- H Libalova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - T Zavodna
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - H Margaryan
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - F Elzeinova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - A Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - K Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - H Barosova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - T Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic; Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - J Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - P Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic.
| |
Collapse
|
7
|
Assad J, Cho S, Dileo V, Gascoigne G, Hubberstey AV, Patterson D, Williams R. Contaminated sediment in the Detroit River provokes acclimated responses in wild brown bullhead (Ameiurus nebulosus) populations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106772. [PMID: 38039693 DOI: 10.1016/j.aquatox.2023.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
In a previous study, adaptive responses to a single polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), were identified in brown bullhead (Ameiurus nebulosus) captured from contaminated sites across the Great Lakes. The tumor suppressor p53 and phase I toxin metabolizing CYP1A genes showed a elevated and refractory response, respectively, up to the F1 generation (Williams and Hubberstey, 2014). As an extension to the first study, bullhead were exposed to sediment collected from sites along the Detroit River to see if these adaptive responses are attainable when fish from a contaminated site are exposed to a mixture of contaminants, instead of a single compound. p53 and CYP1A proteins were measured again with the addition of phase II glutathione-s-transferase (GST) activity in the present study. Three treatment groups were measured: acute (treated immediately), cleared (depurated for three months and subsequent treatment), and farm raised F1 offspring. All three treatment groups were exposed to clean and contaminated sediment for 24 and 96 h. Acute fish from contaminated sites exposed to contaminated sediment revealed an initial elevated p53 response that did not persist in fish after long-term contaminated sediment exposure. Acute fish from contaminated sites exposed to contaminated sediment revealed refractory CYP1A expression, which disappeared in cleared fish and whose F1 response overlapped with clean site F1 offspring. Decreasing GST activity was evident in both clean and contaminated fish over time, and only clean site fish responded to long-term contaminated sediment deliberately with increasing GST activity. Because p53 and CYP1A gene expression and GST activity responses did not overlap between contaminated fish treatment groups, our study suggests that contaminated fish have acclimated to the contaminants present in their environments and no evidence of adaptation could be detected within these biomarkers.
Collapse
Affiliation(s)
- J Assad
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - S Cho
- Department of Biology, University of Windsor, Windsor, ON N9B3P4, Canada
| | - V Dileo
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - G Gascoigne
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - A V Hubberstey
- Department of Biolomedical Sciences, University of Windsor, Windsor, ON N9B3P4, Canada
| | - D Patterson
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - R Williams
- Department of Biology, University of Windsor, Windsor, ON N9B3P4, Canada.
| |
Collapse
|
8
|
John A, Raza H. Azadirachtin Attenuates Carcinogen Benzo(a) Pyrene-Induced DNA Damage, Cell Cycle Arrest, Apoptosis, Inflammatory, Metabolic, and Oxidative Stress in HepG2 Cells. Antioxidants (Basel) 2023; 12:2001. [PMID: 38001854 PMCID: PMC10669168 DOI: 10.3390/antiox12112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Azadirachtin (AZD), a limonoid from the versatile, tropical neem tree (Azadirachta indica), is well known for its many medicinal, and pharmacological effects. Its effects as an anti-oxidant, anti-inflammatory, and anti-cancer agent are well known. However, not many studies have explored the effects of AZD on toxicities induced by benzo(a)pyrene (B(a)P), a toxic component of cigarette smoke known to cause DNA damage and cell cycle arrest, leading to different kinds of cancer. In the present study, using HepG2 cells, we investigated the protective effects of Azadirachtin (AZD) against B(a)P-induced oxidative/nitrosative and metabolic stress and mitochondrial dysfunction. Treatment with 25 µM B(a)P for 24 h demonstrated an increased production of reactive oxygen species (ROS), followed by increased lipid peroxidation and DNA damage presumably, due to the increased metabolic activation of B(a)P by CYP 450 1A1/1A2 enzymes. We also observed intrinsic and extrinsic apoptosis, alterations in glutathione-dependent redox homeostasis, cell cycle arrest, and inflammation after B(a)P treatment. Cells treated with 25 µM AZD for 24 h showed decreased oxidative stress and apoptosis, partial protection from DNA damage, and an improvement in mitochondrial functions and bioenergetics. The improvement in antioxidant status, anti-inflammatory potential, and alterations in cell cycle regulatory markers qualify AZD as a potential therapeutic in combination with anti-cancer drugs.
Collapse
Affiliation(s)
| | - Haider Raza
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, 5th Postal Region, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
9
|
Castel R, Tassistro V, Claeys-Bruno M, Malleret L, Orsière T. In Vitro Genotoxicity Evaluation of PAHs in Mixtures Using Experimental Design. TOXICS 2023; 11:toxics11050470. [PMID: 37235284 DOI: 10.3390/toxics11050470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Settled dusts are sinks for environmental pollutants, including Polycyclic Aromatic Hydrocarbons (PAHs) that are ubiquitous, persistent, and carcinogenic. To assess their toxicity in mixtures, Toxic Equivalent Factors (TEFs) are routinely used and based on the hypothesis of additive effects, although PAH interactions may occur and remain an open issue. This study investigated genotoxic binary interaction effects for six PAHs in mixtures using two in vitro assays and estimated Genotoxic Equivalent Factors (GEFs) to roughly predict the genotoxicity of PAH in mixtures. The Design of the Experiment approach was used with the micronucleus assay for cytostasis and micronuclei frequency and the alkaline comet assay for DNA damage. GEFs were determined for each PAH independently and in a mixture. For the cytostasis endpoint, no PAHs interaction was noted. BbF and BaP had a synergistic effect on DNA damage. All the PAH interacted between them regarding chromosomal damage. Although the calculated GEFs were similar to the TEFs, the latter may underestimate the genotoxic potential of a PAH mixture. GEFs calculated for PAH alone were lower than GEFs for PAHs in mixtures; thus, mixtures induce greater DNA/chromosomal damage than expected. This research helps to advance the challenging issue of contaminant mixtures' effects on human health.
Collapse
Affiliation(s)
- Rebecca Castel
- Institut Méditerranéen de Biodiversité et Ecologie, Aix Marseille University, Avignon University, CNRS, IRD, IMBE, FR ECCOREV, ITEM, 13005 Marseille, France
- Laboratoire Chimie Environnement, Aix Marseille University, CNRS, LCE, FR ECCOREV, ITEM, 13545 Aix-en-Provence, France
| | - Virginie Tassistro
- Institut Méditerranéen de Biodiversité et Ecologie, Aix Marseille University, Avignon University, CNRS, IRD, IMBE, FR ECCOREV, ITEM, 13005 Marseille, France
| | - Magalie Claeys-Bruno
- Institut Méditerranéen de Biodiversité et Ecologie, Aix Marseille University, Avignon University, CNRS, IRD, IMBE, FR ECCOREV, ITEM, 13005 Marseille, France
| | - Laure Malleret
- Laboratoire Chimie Environnement, Aix Marseille University, CNRS, LCE, FR ECCOREV, ITEM, 13545 Aix-en-Provence, France
| | - Thierry Orsière
- Institut Méditerranéen de Biodiversité et Ecologie, Aix Marseille University, Avignon University, CNRS, IRD, IMBE, FR ECCOREV, ITEM, 13005 Marseille, France
| |
Collapse
|
10
|
Huang KY, Liu S, Yu YW, Wu BS, Lin ZH, Zhu CX, Song DY, Xue YJ, Ji KT. 3,4-benzopyrene aggravates myocardial ischemia-reperfusion injury-induced pyroptosis through inhibition of autophagy-dependent NLRP3 degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114701. [PMID: 36871353 DOI: 10.1016/j.ecoenv.2023.114701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are produced during combustion of organic matter, such as during cigarette smoking, and they exist widely in the environment. Exposure to 3,4-benzo[a]pyrene (BaP), as the most widely studied PAHs, relates to many cardiovascular diseases. However, the underlying mechanism of its involvement remains largely unclear. In this study, we developed a myocardial ischemia-reperfusion (I/R) injury mouse model and an oxygen and glucose deprivation-reoxygenation H9C2 cell model to evaluate the effect of BaP in I/R injury. After BaP exposure, the expression of autophagy-related proteins, the abundance of NLRP3 inflammasomes, and the degree of pyroptosis were measured. Our results show that BaP aggravates myocardial pyroptosis in a autophagy-dependent manner. In addition, we found that BaP activates the p53-BNIP3 pathway via the aryl hydrocarbon receptor to decrease autophagosome clearance. Our findings present new insights into the mechanisms underlying cardiotoxicity and reveal that the p53-BNIP3 pathway, which is involved in autophagy regulation, is a potential therapeutic target for BaP-induced myocardial I/R injury. Because PAHs are omnipresent in daily life, the toxic effects of these harmful substances should not be underestimated.
Collapse
Affiliation(s)
- Kai-Yu Huang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shuai Liu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yong-Wei Yu
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Bo-Sen Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhi-Hui Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chen-Xi Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dong-Yan Song
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang-Jing Xue
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kang-Ting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
11
|
Wang Y, Wang Z, Wang J, Wang R, Ding X, Donahue NM, Dong Z, Ma G, Han Y, Cao J. Assessment of the inhalation exposure and incremental lifetime cancer risk of PM 2.5 bounded polycyclic aromatic hydrocarbons (PAHs) by different toxic equivalent factors and occupancy probability, in the case of Xi'an. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76378-76393. [PMID: 35668257 DOI: 10.1007/s11356-022-21061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread toxic pollutants in the atmosphere and have attracted much attention for decades. In this study, we compared the health risks of PAHs based on different toxic equivalent factors (TEFs) in a heavily polluted area during heating and non-heating periods. We also pay attention to occupancy probability (OP) in different polluted areas. The results showed that there were big differences for calculations by different TEFs, and also by OP or not. Age groups except adults were all lower calculated by OP than not. The sensitivity analysis results on the incremental lifetime cancer risks (ILCR) for population groups by Monte Carlo simulation identified that the cancer slope factor extremely affected the health risk assessment in heating periods, followed by daily inhalation exposure levels. However, daily inhalation exposure levels have dominated the effect on the inhalation ILCR and then followed by the cancer slope factor in non-heating periods. The big differences by different calculations investigated that it is important to set up the correlations between the pollution level and health risks, especially for the longtime health assessment.
Collapse
Affiliation(s)
- Yumeng Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Zedong Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Jingzhi Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China.
- Center for Atmospheric Particles Studies, Carnegie Mellon University, Pittsburgh, PA, USA.
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
- Guangdong Provincial Key Laboratory of Utilization and Protection of Environmental Resource, State Key Laboratory of Organic Geochemmistry, Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou, China.
| | - Runyu Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Xinxin Ding
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Neil McPherson Donahue
- Center for Atmospheric Particles Studies, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhibao Dong
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Ge Ma
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an Zone, Xi'an, 710119, China
| | - Yongming Han
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Chambers B, Shah I. Evaluating adaptive stress response gene signatures using transcriptomics. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20:1-9. [PMID: 37829472 PMCID: PMC10569130 DOI: 10.1016/j.comtox.2021.100179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Stress response pathways (SRPs) mitigate the cellular effects of chemicals, but excessive perturbation can lead to adverse outcomes. Here, we investigated a computational approach to evaluate SRP activity from transcriptomic data using gene set enrichment analysis (GSEA). We extracted published gene signatures for DNA damage response (DDR), unfolded protein response (UPR), heat shock response (HSR), response to hypoxia (HPX), metal-associated response (MTL), and oxidative stress response (OSR) from the Molecular Signatures Database (MSigDB). Next, we used a gene-frequency approach to build consensus SRP signatures of varying lengths from 50 to 477 genes. We then prepared a reference dataset from perturbagens associated with SRPs from the literature with their transcriptomic profiles retrieved from public repositories. Lastly, we used receiver-operator characteristic analysis to evaluate the GSEA scores from matching transcriptomic reference profiles to SRP signatures. Our consensus signatures performed better than or as well as published signatures for 4 out of the 6 SRPs, with the best consensus signature area under the curve (% performance relative to median of published signatures) of 1.00 for DDR (109%), 0.86 for UPR (169%), 0.99 for HTS (103%), 1.00 for HPX (104%), 0.74 for MTL (150%) and 0.83 for OSR (148%). The best matches between transcriptomic profiles and SRP signatures correctly classified perturbagens in 78% and 88% of the cases by first and second rank, respectively. We believe this approach can characterize SRP activity for new chemicals using transcriptomics with further evaluation.
Collapse
Affiliation(s)
- Bryant Chambers
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
13
|
Cheng T, Chaousis S, Kodagoda Gamage SM, Lam AKY, Gopalan V. Polycyclic Aromatic Hydrocarbons Detected in Processed Meats Cause Genetic Changes in Colorectal Cancers. Int J Mol Sci 2021; 22:10959. [PMID: 34681617 PMCID: PMC8537007 DOI: 10.3390/ijms222010959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are commonly ingested via meat and are produced from high-temperature cooking of meat. Some of these PAHs have potential roles in carcinogenesis of colorectal cancer (CRC). We aimed to investigate PAH concentrations in eight types of commonly consumed ready-to-eat meat samples and their potential effects on gene expressions related to CRC. Extraction and clean-up of meat samples were performed using QuEChERS method, and PAHs were detected using GC-MS. Nine different PAHs were found in meat samples. Interestingly, roast turkey contained the highest total PAH content, followed by salami meat. Hams of varying levels of smokedness showed a proportional increase of phenanthrene (PHEN), anthracene (ANTH), and fluorene (FLU). Triple-smoked ham samples showed significantly higher levels of these PAHs compared to single-smoked ham. These three PAHs plus benzo[a]pyrene (B[a]P), being detected in three meat samples, were chosen as treatments to investigate in vitro gene expression changes in human colon cells. After PAH treatment, total RNA was extracted and rtPCR was performed, investigating gene expression related to CRC. B[a]P decreased mRNA expression of TP53. In addition, at high concentrations, B[a]P significantly increased KRAS expression. Treatments with 1 µM PHEN, 25 µM, and 10 µM FLU significantly increased KRAS mRNA expression in vitro, implying the potential basis for PAH-induced colorectal carcinogenesis. Opposingly, the ANTH treatment led to increased TP53 and APC expression and decreased KRAS expression, suggesting an anti-carcinogenic effect. To conclude, PAHs are common in ready-to-eat meat samples and are capable of significantly modifying the expression of key genes related to CRC.
Collapse
Affiliation(s)
- Tracie Cheng
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Stephanie Chaousis
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Sujani Madhurika Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Kandy 20404, Sri Lanka
| | - Alfred King-yin Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| |
Collapse
|
14
|
Pandya DK, Kumar MA. Chemo-metric engineering designs for deciphering the biodegradation of polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125154. [PMID: 33858107 DOI: 10.1016/j.jhazmat.2021.125154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are non-polar organic compounds that are omnipresent in the environment and released due to anthropogenic activities through emissions and discharges. PAHs, being xenobiotic and exerts health impacts, thus they attract serious concern by the environmentalists. The stringent regulations and the need of sustainable development urges the hunt for a technically feasible and cost-effective wastewater treatment. Although the conventional physico-chemical treatment are widely preferred, they cause secondary pollution problems and demand subsequent treatment options. This comprehensive review intends to address the (a) different PAHs and their associated toxicity, (b) the remedial strategies, particularly biodegradation. The biological wastewater treatment techniques that involve microbial systems are highly influenced by the different physio-chemical and environmental parameters. Therefore, suitable optimization techniques are prerequisite for effective functioning of the biological treatment that sustains judiciously and interpreted in a lesser time. Here we have aimed to discuss (a) different chemo-metric tools involved in the design of experiments (DoE), (b) design equations and models, (c) tools for evaluating the model's adequacy and (d) plots for graphically interpreting the chemo-metric designs. However, to best of our knowledge, this is a first review to discuss the PAHs biodegradation that are tailored by chemo-metric designs. The associated challenges, available opportunities and techno-economic aspects of PAHs degradation using chemo-metric engineering designs are explained. Additionally, the review highlights how well these DoE tools can be suited for the sustainable socio-industrial sectors. Concomitantly, the futuristic scope and prospects to undertake new areas of research exploration were emphasized to unravel the least explored chemo-metric designs.
Collapse
Affiliation(s)
- Darshita Ketan Pandya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
15
|
Wallace SJ, de Solla SR, Head JA, Hodson PV, Parrott JL, Thomas PJ, Berthiaume A, Langlois VS. Polycyclic aromatic compounds (PACs) in the Canadian environment: Exposure and effects on wildlife. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114863. [PMID: 32599329 DOI: 10.1016/j.envpol.2020.114863] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 05/05/2023]
Abstract
Polycyclic aromatic compounds (PACs) are ubiquitous in the environment. Wildlife (including fish) are chronically exposed to PACs through air, water, sediment, soil, and/or dietary routes. Exposures are highest near industrial or urban sites, such as aluminum smelters and oil sands mines, or near natural sources such as forest fires. This review assesses the exposure and toxicity of PACs to wildlife, with a focus on the Canadian environment. Most published field studies measured PAC concentrations in tissues of invertebrates, fish, and birds, with fewer studies of amphibians and mammals. In general, PAC concentrations measured in Canadian wildlife tissues were under the benzo[a]pyrene (BaP) guideline for human consumption. Health effects of PAC exposure include embryotoxicity, deformities, cardiotoxicity, DNA damage, changes to DNA methylation, oxidative stress, endocrine disruption, and impaired reproduction. Much of the toxicity of PACs can be attributed to their bioavailability, and the extent to which certain PACs are transformed into more toxic metabolites by cytochrome P450 enzymes. As most mechanistic studies are limited to individual polycyclic aromatic hydrocarbons (PAHs), particularly BaP, research on other PACs and PAC-containing complex mixtures is required to understand the environmental significance of PAC exposure and toxicity. Additional work on responses to PACs in amphibians, reptiles, and semi-aquatic mammals, and development of molecular markers for early detection of biological responses to PACs would provide a stronger biological and ecological justification for regulating PAC emissions to protect Canadian wildlife.
Collapse
Affiliation(s)
- S J Wallace
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada
| | - S R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - J A Head
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada
| | - P V Hodson
- School of Environmental Studies, Queen's University, Kingston, ON, Canada
| | - J L Parrott
- Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - P J Thomas
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - A Berthiaume
- Science and Risk Assessment Directorate, Environment and Climate Change Canada, Gatineau, QC, Canada
| | - V S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada.
| |
Collapse
|
16
|
Deng J, Chen X, Wang D, Song Y, Chen Y, Ouyang D, Liang Y, Sun Y, Li M. Protective effect of hawthorn extract against genotoxicity induced by benzo(<alpha>)pyrene in C57BL/6 mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110761. [PMID: 32470682 DOI: 10.1016/j.ecoenv.2020.110761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Benzo(<alpha>)pyrene [B(<alpha>)P], widely originated from environmental pollution or food process such as roasting and frying, is a strong mutagen and potent carcinogen. Utilization of hawthorn has been reported against physical mutagens. Our study found that hawthorn extract (HE) contained abundant phenolic compounds, wherein chlorogenic acid was 2.78 mg/g, procyanidine B2 was 3.58 mg/g, epicatechin was 2.99 mg/g DW, which may contribute to anti-genotoxicity activity. So, the role of HE against B(<alpha>)P-induced genotoxicity in C57BL/6 mice was further assessed. Fifty mice were distributed into five groups: control group, B(<alpha>)P group (30 mg/kg, i.p.), B(<alpha>)P + HE-L group (100 mg/kg, i.g.), B(<alpha>)P + HE-M group (200 mg/kg, i.g.), B(<alpha>)P + HE-H group (400 mg/kg, i.g.). Mice were orally administered with solutions of HE for 10 days and injected intraperitoneally with B(<alpha>)P for 3 days from the 8th day. Results showed that B(<alpha>)P can induce significantly pathological damage in liver, lung and spleen, as well as decrease white blood cells (WBCs). Remarkably elevated levels of reactive oxygen species (ROS), DNA strand breaks (DSBs) and G1 cell cycle arrest were also found in B(<alpha>)P group, with upregulated expressions of p-H2AX, p-p53 and p21 in bone marrow cells. With administration of HE, liver, lung and spleen injury significantly mitigated, while WBCs were evidently increased in B(<alpha>)P-treated mice. Consistently, HE markedly reduced level of ROS, DSBs and G1 cell cycle arrest accompanied by reducing expressions of p-H2AX, p-p53 and p21 in bone marrow cells. Combined, these results indicated a protective role of HE on B(<alpha>)P-induced genotoxicity.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Ximiao Chen
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Da Wang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Ya Song
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yongchun Chen
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Dongmei Ouyang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yuxuan Liang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yuanming Sun
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Meiying Li
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
17
|
Chao C, Ngo Le P, Engelward BP. SpheroidChip: Patterned Agarose Microwell Compartments Harboring HepG2 Spheroids are Compatible with Genotoxicity Testing. ACS Biomater Sci Eng 2020; 6:2427-2439. [PMID: 33145399 DOI: 10.1021/acsbiomaterials.9b01951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Three-dimensional tissue culture models are emerging as effective alternatives to animal testing. They are especially beneficial for liver toxicity studies, enabling hepatocytes to display improved levels of liver-specific functions. One common model is hepatocyte spheroids, which are spontaneously formed cell aggregates. Techniques for spheroid formation include the use of ultralow attachment plates and the hanging drop method, both of which are technically challenging and relatively low throughput. Here, we describe a simple-to-use platform that improves spheroid production and is compatible with genotoxicity testing by the comet assay. To achieve this, we created a chip containing a microwell array where dozens of spheroids are contained within a single well of a 96-well plate. The microwells are made from agarose, a nontoxic material suitable for cell growth and spheroid formation. HepG2 cells loaded into customizable microwells formed spheroids through agarose-assisted aggregation within one to two days. In addition, the agarose matrix allows the same platform to be used in DNA damage analysis. Specifically, the comet assay enables quantification of DNA breaks based on the increased migration of damaged DNA through agarose during electrophoresis. Here, we developed a modified comet assay and show that intact HepG2 spheroids cultured in microwells can be electrophoresed to reveal the extent of DNA damage following exposure to inflammatory chemicals (H2O2 and SIN-1). With this SpheroidChip analysis method, we detected a dose-dependent increase in DNA damage and observed rapid repair of H2O2-induced DNA damage. In summary, we utilized an agarose microarray to condense what had required an entire 96-well plate into a single well, enabling analysis techniques that were cumbersome or impossible under conditions of a single spheroid per well of a 96-well plate.
Collapse
Affiliation(s)
- Christy Chao
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - P Ngo Le
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Evaluation of three-way fluorescence data-based for simultaneous determination of polycyclic aromatic hydrocarbons in tea infusion samples at sub-ppb levels by second-order multivariate calibration. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Yuan S, Han Y, Ma M, Rao K, Wang Z, Yang R, Liu Y, Zhou X. Aryl-phosphorus-containing flame retardants induce oxidative stress, the p53-dependent DNA damage response and mitochondrial impairment in A549 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:58-67. [PMID: 30981936 DOI: 10.1016/j.envpol.2019.03.109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Aryl phosphorus-containing flame retardants (aryl-PFRs) have been frequently detected with increasingly used worldwide as one of alternatives for brominated flame retardants. However, information on their adverse effects on human health and ecosystem is insufficient, with limited study on their molecular mode of action in vitro. In this study, the cytotoxicity, DNA damage, mitochondrial impairment and the involved molecular mechanisms of certain frequently detectable aryl-PFRs, including 2-ethylhexyldiphenyl phosphate (EHDPP), methyl diphenyl phosphate (MDPP), bisphenol-A bis (diphenyl phosphate) (BDP), isodecyl diphenyl phosphate (IDPP), cresyl diphenyl phosphate (CDP) and the structurally similar and widely used organophosphorus pesticide chlorpyrifos (CPF), were evaluated in A549 cells using high-content screening (HCS) system. Aryl-PFRs showed different lethal concentration 50 (LC50) values ranging from 97.94 to 546.85 μM in A549 cells using CCK-8 assay. EHDPP, IDPP, CDP, MDPP and CPF demonstrated an ability to induce DNA damage, evidenced by increased DNA content and S phase-reducing cell cycle arrest effect using fluorophore dye cocktail assay. Additionally, the selected aryl-PFRs induced mitochondrial impairment by the increasing mitochondrial mass and decreasing mitochondrial membrane potential. Moreover, BDP, MDPP, and CDP, which contain short alkyl chains showed their potential oxidative stress with intracellular ROS and mitochondrial superoxide overproduction from an initially relatively low concentration. Additionally, based on the promotion of firefly luminescence in p53-transfected A549 cells, p53 activation was found to be involved in aryl-PFRs-induced DNA damage. Further real-time PCR results showed that all selected aryl-PFRs triggered p53/p21/gadd45β-, and p53/p21/mdm2-mediated cell cycle pathways, and the p53/bax mediated apoptosis pathway to induce DNA damage and cytotoxic effects. These results suggest that aryl-PFRs (e.g., BDP, MDPP, CDP) cause oxidative stress-mediated DNA damage and mitochondrial impairment, and p53-dependent pathway was involved in the aryl-PFRs-induced DNA damage and cell cycle arrest. In conclusion, this study improves the understanding of PFRs-induced adverse outcomes and the involved molecular mechanism.
Collapse
Affiliation(s)
- Shengwu Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Rong Yang
- Beijing Water Quality Monitoring Center for South-to-North Water Diversion, Beijing, 100093, China
| | - Yihong Liu
- Beijing Water Quality Monitoring Center for South-to-North Water Diversion, Beijing, 100093, China
| | - Xiaohong Zhou
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Souza SSD, Silva GSD, Almeida-Val VMFD. Ecophysiology, genotoxicity, histopathology, and gene responses of naphthalene injected Colossoma macropomum (Cuvier, 1818) exposed to hypoxia. Genet Mol Biol 2019; 42:411-424. [PMID: 31259356 PMCID: PMC6726157 DOI: 10.1590/1678-4685-gmb-2018-0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/01/2018] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to evaluate the biological responses of Colossoma
macropomum to naphthalene injection and subsequent hypoxia
exposure, emphasizing the expression of the tumor suppressor gene
tp53. Tambaquis were intraperitoneally injected with
naphthalene (50 mg/kg) and, after 96 hours, the fish were transferred to
respirometry chambers and, submitted to progressive hypoxia for the
determination of critical PO2. In a subsequent experiment, the fish
received an intraperitoneal injection of naphthalene and were kept for 96 hours
under normoxia. Successively, fish were challenged with acute hypoxia
(PO2<PO2 crit) during 6 hours. We observed that the
PO2 crit was not affected by naphthalene injection. Moreover,
hematological parameters were modulated only in response to hypoxia. Fish with
naphthalene injection plus hypoxia exposure presented altered activity of the
GST and CAT enzymes. Exposure to naphthalene also resulted in DNA damages, which
was not influenced by hypoxia. Hypoxia accentuated the hepatic lesions caused by
naphthalene, as well as it also impaired the transcription of
tp53 in naphtalene injected fish, demonstrating the risks
of contaminating aquatic environments, especially environments where hypoxic
conditions are common and occur on a daily or on seasonal basis, as in the
Amazon basin.
Collapse
Affiliation(s)
- Samara Silva de Souza
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Manaus, AM, Brazil
| | - Grazyelle Sebrenski da Silva
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Manaus, AM, Brazil.,Institute of Biological Science (ICB), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | |
Collapse
|
21
|
Jeong KH, Lee HJ, Park TS, Shim SM. Catechins Controlled Bioavailability of Benzo[a]pyrene (B[α]P) from the Gastrointestinal Tract to the Brain towards Reducing Brain Toxicity Using the In Vitro Bio-Mimic System Coupled with Sequential Co-Cultures. Molecules 2019; 24:molecules24112175. [PMID: 31185615 PMCID: PMC6600685 DOI: 10.3390/molecules24112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/02/2022] Open
Abstract
The aim of the current study was to examine the preventive effect of green tea catechins on the transport of Benzo[a]pyrene (B[α]P) into the brain using an in vitro bio-mimic system coupled with sequential co-cultures. When 72 μM of catechins was pre-treated, cellular cytotoxicity induced by IC50 of B[α]P in human liver hepatocellular carcinoma (HepG2) and human brain microvascular endothelial cells (HBMECs) was reduced by 27% and 26%, respectively. The cellular integrity measured in HBMECs, which was exposed to IC50 of B[α]P, slowly decreased. However, the pre-treatment of catechins retained cellular integrity that was 1.14 times higher than with the absence of catechins. Co-consumption of catechins reduced not only the bio-accessibility of B[α]P in digestive fluid, but it also decreased absorption of B[α]P in human intestinal epithelial cells (Caco-2) with a HepG2 co-culture system. It was found that approximately a two times lower amount of B[α]P was transported via the blood-brain barrier (BBB) compared to only the B[α]P intake. These results are taken in conjunction with each other support that catechins could be able to prevent brain toxicity induced by B[α]P in the human body by limiting the bio-availability of B[α]P.
Collapse
Affiliation(s)
- Kang-Hyun Jeong
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Bokjung-dong, Sujung-gu, Sungnam-si 461-701, Gyeonggi-do, Korea.
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
| |
Collapse
|
22
|
Recombinant Aflatoxin-Degrading F 420H 2-Dependent Reductase from Mycobacterium smegmatis Protects Mammalian Cells from Aflatoxin Toxicity. Toxins (Basel) 2019; 11:toxins11050259. [PMID: 31072027 PMCID: PMC6563500 DOI: 10.3390/toxins11050259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins are carcinogenic secondary metabolites of fungi that contaminate many staple crops and foods. Aflatoxin contamination is a worldwide problem, especially in developing countries, posing health hazards, e.g., causing aflatoxicosis and hepatocellular carcinoma, and even death. Biological solutions for aflatoxin detoxification are environmentally friendly and a cheaper alternative than chemical methods. The aims of the current study were to investigate: (1) the ability of MSMEG_5998, an aflatoxin-degrading F420H2-dependent reductase from Mycobacterium smegmatis, to degrade aflatoxin B1 (AFB1) and reduce AFB1-caused damage in HepG2 cell culture model; and (2) whether a thioredoxin (Trx) linkage of MSMEG_5998 enhanced the enzyme activity. We show that Trx-linked MSMEG_5998 degraded 63% AFB1 and native MSMEG_5998 degraded 31% after 4 h at 22 °C, indicating that the Trx-linked enzyme had a better AFB1-degrading ability. In a HepG2 cell culture model, Trx-linked MSMEG_5998 reduced DNA damage and p53-mediated apoptosis caused by AFB1 to a greater extent than the native enzyme. These findings suggest that Trx-linked MSMEG_5998 could potentially be developed to protect the liver from AFB1 damage, or as a candidate protein to reduce AFB1-related toxicity in animals.
Collapse
|
23
|
Zhang F, Tian C, Liu W, Wang K, Wei Y, Wang H, Wang J, Liu S. Determination of Benzopyrene-Induced Lung Inflammatory and Cytotoxic Injury in a Chemical Gradient-Integrated Microfluidic Bronchial Epithelium System. ACS Sens 2018; 3:2716-2725. [PMID: 30507116 DOI: 10.1021/acssensors.8b01370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Environmental pollution is one of the largest sources responsible for human diseases and premature death worldwide. However, the methodological development of a spatiotemporally controllable and high-throughput investigation of the environmental pollution-induced biological injury events is still being explored. In this study, we describe a chemical gradient generator-aided microfluidic cell system for the dynamic study of representative environmental pollutant-induced bronchial epithelium injury in a throughput manner. We demonstrated the stability and reliability of operation-optimized microfluidic system for precise and long-term chemical gradient production. We also performed a microenvironment-controlled microfluidic bronchial epithelium construction with high viability and structure integration. Moreover, on-chip investigation of bronchial epithelium injury by benzopyrene stimulation with various concentrations can be carried out in the single device. The varying bronchial inflammatory and cytotoxic responses were temporally monitored and measured based on the well-established system. The benzopyrene directionally led the bronchial epithelium to present observable cell shrinkage, cytoskeleton disintegration, Caspase-3 activation, overproduction of reactive oxygen species, and various inflammatory cytokine (TNF-α, IL-6, and IL-8) secretion, suggesting its significant inflammatory and cytotoxic effects on respiratory system. We believe the microfluidic advancement has potential applications in the fields of environmental monitoring, tissue engineering, and pharmaceutical development.
Collapse
Affiliation(s)
- Fen Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chang Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenming Liu
- School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanqing Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Huaisheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Jinyi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
24
|
Wu S, Wu M, Qi M, Zhong L, Qiu L. Effects of novel brominated flame retardant TBBPA on human airway epithelial cell (A549) in vitro and proteome profiling. ENVIRONMENTAL TOXICOLOGY 2018; 33:1245-1253. [PMID: 30098271 DOI: 10.1002/tox.22632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The cellular toxicity response of human airway epithelial cells (A549) to tetrabromobisphenol (TBBPA) was assessed in vitro. Cell viability, levels of intracellular reactive oxygen species (ROS), lipid peroxidation (MDA), and caspase-3 activity were determined after A549 treated with varying concentrations of TBBPA. A comparative proteomic analysis was performed in cells treated with different concentrations of TBBPA (0, 10, and 40 μg/mL). Two-way anova analysis showed that cell viability was significantly decreased after treatment by TBBPA with a concentration of 16 μg/mL for 48 hr, however, the caspase-3 activities, ROS generation, and MDA content increased. Ultrastructural observation revealed that the cell was morphological damaged after exposure to 64 μg/mL TBBPA, with mitochondria seriously injured and the smooth endoplasmic reticulum dilated. There was a good correlation between ROS generation and mitochondrial dysfunction. Seventeen differentially expressed proteins involved in various biological processes were identified. These findings provide a basis for understanding the mechanisms of cell dysfunction and perturbation of antioxidant status induced by additive flame retardant on airway epithelial cells.
Collapse
Affiliation(s)
- Shijin Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Mei Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Mengting Qi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Li Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lequan Qiu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
25
|
Inevitable dietary exposure of Benzo[a]pyrene: carcinogenic risk assessment an emerging issues and concerns. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Singha LP, Sinha N, Pandey P. Rhizoremediation prospects of Polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:579-588. [PMID: 30149357 DOI: 10.1016/j.ecoenv.2018.08.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 05/22/2023]
Abstract
Rhizoremediation is a strategy where pollutant degrading bacteria are augmented through plant roots using plant-microbe interaction. Therefore, for effective rhizoremediation of pyrene contaminated soil, bacterial strains were experimented for amelioration of stress response in host plant along with biodegradation ability. A total of 28 bacteria, having ability to degrade polycyclic aromatic hydrocarbons were isolated from contaminated sites and checked for their plant growth promoting attributes, such as indole acetic acid (IAA) production, phosphate solubilization, atmospheric nitrogen fixation and siderophore release. Among these isolates, Klebsiella pneumoniae AWD5 was found to degrade 60% of pyrene. While other isolates, i.e. Alcaligenes faecalis BDB4, Pseudomonas fragi DBC, Pseudomonas aeruginosa PDB1, Acinetobactor sp. PDB4 degraded 48.5%, 50.29%, 31.3% and 36% of pyrene, respectively, after 6 days of incubation. K. pneumoniae AWD5 produced 94.2 μg/ml IAA and 3.1 mM/mg/h unit of ACC deaminase, which was best among eighteen indole acetic acid producers and five of the 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing isolates. P. aeruginosa PDB1 resulted in highest phosphate solubilization activity of 875.26 ng/ml of soluble phosphate among seven phosphate solubilizers. The isolates AWD5 and PDB1 both have shown a good amount of siderophore release (56.3% and 84.3% unit). There was 19.1% increase in shoot length of rice seedlings treated with PDB1 in presence of pyrene. Similarly, 26.5% increase in the root length of AWD5 treated rice was recorded in pyrene contaminated soil. Bacterial inoculation also induced and improved the stress response in host plant, in presence of pyrene, as suggested by the superoxide dismutase, glutathione and glutathione-S-transferase activities in rice.
Collapse
Affiliation(s)
| | - Nibedita Sinha
- Department of Microbiology, Assam University, Silchar 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar 788011, India.
| |
Collapse
|
27
|
Binelli A, Magni S, La Porta C, Bini L, Della Torre C, Ascagni M, Maggioni D, Ghilardi A, Armini A, Landi C, Santo N, Madaschi L, Coccè V, Mutti F, Lionetti MC, Ciusani E, Del Giacco L. Cellular pathways affected by carbon nanopowder-benzo(α)pyrene complex in human skin fibroblasts identified by proteomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:144-153. [PMID: 29803189 DOI: 10.1016/j.ecoenv.2018.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
One of the crucial and unsolved problems of the airborne carbon nanoparticles is the role played by the adsorbed environmental pollutants on their toxicological effect. Indeed, in the urban areas, the carbon nanoparticles usually adsorb some atmospheric contaminants, whose one of the leading representatives is the benzo(α)pyrene. Herein, we used the proteomics to investigate the alteration of toxicological pathways due to the carbon nanopowder-benzo(α)pyrene complex in comparison with the two contaminants administered alone on human skin-derived fibroblasts (hSDFs) exposed for 8 days in semi-static conditions. The preliminary confocal microscopy observations highlighted that carbon-nanopowder was able to pass through the cell membranes and accumulate into the cytoplasm both when administered alone and with the adsorbed benzo(α)pyrene. Proteomics revealed that the effect of carbon nanopowder-benzo(α)pyrene complex seems to be related to a new toxicological behavior instead of simple additive or synergistic effects. In detail, the cellular pathways modulated by the complex were mainly related to energy shift (glycolysis and pentose phosphate pathway), apoptosis, stress response and cellular trafficking.
Collapse
Affiliation(s)
- A Binelli
- Department of Biosciences, University of Milan, Italy.
| | - S Magni
- Department of Biosciences, University of Milan, Italy.
| | - C La Porta
- Department of Environmental Science and Policy, University of Milan, Italy; Center for Complexity & Biosystem, University of Milan, Italy
| | - L Bini
- Department of Life Science, University of Siena, Italy
| | - C Della Torre
- Department of Biosciences, University of Milan, Italy
| | - M Ascagni
- Department of Biosciences, University of Milan, Italy; UNITECH-NOLIMITS Platform, University of Milan, Italy
| | - D Maggioni
- Department of Chemistry, University of Milan, Italy
| | - A Ghilardi
- Department of Biosciences, University of Milan, Italy
| | - A Armini
- Department of Life Science, University of Siena, Italy
| | - C Landi
- Department of Life Science, University of Siena, Italy
| | - N Santo
- Department of Biosciences, University of Milan, Italy; UNITECH-NOLIMITS Platform, University of Milan, Italy
| | - L Madaschi
- Department of Biosciences, University of Milan, Italy; UNITECH-NOLIMITS Platform, University of Milan, Italy
| | - V Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - F Mutti
- Department of Environmental Science and Policy, University of Milan, Italy; Center for Complexity & Biosystem, University of Milan, Italy
| | - M C Lionetti
- Department of Environmental Science and Policy, University of Milan, Italy; Center for Complexity & Biosystem, University of Milan, Italy
| | - E Ciusani
- Department of Diagnostics and Applied Technology, Istituto Neurologico Carlo Besta, Milan, Italy
| | - L Del Giacco
- Department of Biosciences, University of Milan, Italy
| |
Collapse
|
28
|
Wang Y, Pan T, Li L, Wang H, Zhang D, Yang H. Benzo(a)pyrene promotes Hep-G2 cell migration and invasion by upregulating phosphorylated extracellular signal-regulated kinase expression. Oncol Lett 2018; 15:8325-8332. [PMID: 29805565 PMCID: PMC5950133 DOI: 10.3892/ol.2018.8379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 03/07/2018] [Indexed: 12/21/2022] Open
Abstract
Benzo(a)pyrene (BaP), a carcinogenic component of cigarette smoke, has been reported to activate extracellular signal-regulated kinase (ERK) in cancer cells. Furthermore, activated ERK is associated with liver cancer cell invasion and metastasis. Therefore, the aim of the present study was to investigate the potential role of phosphorylated (p)-ERK in BaP-induced Hep-G2 cell migration and invasion. An MTT assay was used to determine the effects of BaP treatment on Hep-G2 cell proliferation. Wound-healing and Transwell invasion assays were employed to assess the migration and invasion abilities of Hep-G2 cells. Western blot analysis was applied to detect the expression of proteins. The results of the present study demonstrated that BaP treatment was able to increase the level of p-ERK protein expression in Hep-G2 cells. BaP treatment promoted Hep-G2 cell migration and invasion. The ERK inhibitor, U0126, was able to block the migration and invasion abilities of Hep-G2 cells induced by BaP. The results of the present study demonstrated that BaP treatment promoted the migration and invasion of Hep-G2 cells by upregulating p-ERK expression.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Teng Pan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Li Li
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Ding Zhang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
29
|
Rutaecarpine Suppresses Proliferation and Promotes Apoptosis of Human Pulmonary Artery Smooth Muscle Cells in Hypoxia Possibly Through HIF-1α–Dependent Pathways. J Cardiovasc Pharmacol 2018; 71:293-302. [DOI: 10.1097/fjc.0000000000000571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Ke S, Liu Q, Yao Y, Zhang X, Sui G. An in vitro cytotoxicities comparison of 16 priority polycyclic aromatic hydrocarbons in human pulmonary alveolar epithelial cells HPAEpiC. Toxicol Lett 2018. [PMID: 29526570 DOI: 10.1016/j.toxlet.2018.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In present study, we compared for the first time the cytotoxicities of the 16 priority polycyclic aromatic hydrocarbons (PAHs) in human pulmonary alveolar epithelial cells HPAEpiC. Moreover, we examined the effects of each PAH on oxidative stress (SOD, GSH, and ROS), cell viability, extracellular LDH, and apoptosis. The 16 priority PAHs were classified into four levels of cytotoxicity: (1) high cytotoxicity, BkF, BaP, and DBA; (2) moderate cytotoxicity, BbF, IND, BghiP, BaA, and CHR; (3) low cytotoxicity, PA, FL, and Pyr; and (4) mild cytotoxicity, Nap, AcPy, Acp, Flu, and Ant. Most of the PAHs showed benzene-ring-related cytotoxicity, except PA with 3-ring structure, cytotoxicity of which is similar to those of FL and Pyr with 4-ring structure. Results indicated the need for more studies on DBA, IND, and BghiP, among others, which are rarely investigated. PA, FL, and Pyr with little carcinogenicity should also be evaluated. This study will provide useful references for studies on the effects of PAHs on different cells or animal models.
Collapse
Affiliation(s)
- Shaorui Ke
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Qi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Yuhan Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044 PR China.
| |
Collapse
|
31
|
Qiu B, Jiang W, Qiu W, Mu W, Qin Y, Zhu Y, Zhang J, Wang Q, Liu D, Qu Z. Pine needle oil induces G2/M arrest of HepG2 cells by activating the ATM pathway. Exp Ther Med 2018; 15:1975-1981. [PMID: 29434792 PMCID: PMC5776635 DOI: 10.3892/etm.2017.5648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/23/2017] [Indexed: 11/06/2022] Open
Abstract
Over the last two decades, inducing DNA damage of cancer cells by natural medicines has become a research hotspot in the field of cancer treatment. Although various natural medicines have anticancer effects, very few studies have been conducted to explore the anti-cancer effect of pine needle oil. In the present study, the role of pine needle oil in inducing G2/M arrest in HepG2 cells was investigated. The data revealed that pine needle oil could induce DNA damage in a dose-dependent manner. In the pine needle oil-treated HepG2 cells, the protein levels of phosphorylated (p)-ataxia-telangiectasia mutated (ATM), γ-H2A histone family, member X, p-p53, p-checkpoint kinase 2 and p-cell division cycle 25C were evidently increased, indicating that pine needle oil facilitated G2/M arrest in HepG2 cells through the ATM pathway. In response to the treatment with pine needle oil, ATM was activated in HepG2 cells, which subsequently phosphorylated downstream targets and induced G2/M arrest. In summary, the data of the present study indicated that pine needle oil induces G2/M arrest in HepG2 cells by facilitating ATM activation.
Collapse
Affiliation(s)
- Bing Qiu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Wei Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Wenliang Qiu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Wenling Mu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yujing Qin
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yongcui Zhu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Jianying Zhang
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Qingyi Wang
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dongjie Liu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Zhangyi Qu
- Department of Hygienic Microbiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
32
|
Gene Expression, Oxidative Stress, and Senescence of Primary Coronary Endothelial Cells Exposed to Postprandial Serum of Healthy Adult and Elderly Volunteers after Oven-Cooked Meat Meals. Mediators Inflamm 2018; 2017:3868545. [PMID: 29379227 PMCID: PMC5742900 DOI: 10.1155/2017/3868545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies have linked high consumption of meat with major age-related diseases including cardiovascular diseases. Abnormal postprandial increases in plasma lipids after a meat meal have been hypothesized among the pathogenetic mechanisms. However, it is still unknown if the postprandial serum derived after a normal meat meal is able to affect endothelial function, and if the type of meat and the age of the donors are critical factors. Here, we show the effects of postprandial sera derived from healthy adults and elderly volunteers who consumed meat meals on human coronary artery endothelial cell (HCAEC) oxidative stress, gene expression, DNA damage, and cellular senescence. We observed that a single exposure to postprandial serum induces a slight increase in ROS that is associated with modulation of gene expression pathways related to oxidative stress response and metabolism. The postprandial-induced increase in ROS is not associated with a measurable DNA oxidative damage. However, repeated exposure to postprandial serum induces an acceleration of cellular senescence. Taking into account the deleterious role of cellular senescence in age-related vascular diseases, the results suggest a new mechanism by which excessive meat consumption and time spent in postprandial state may affect health status during aging.
Collapse
|
33
|
Morgado PI, Jose S, Wanke R, M Antunes AM, Cardoso AS, Jordao L. Integration of cellular and molecular endpoints to assess the toxicity of polycyclic aromatic hydrocarbons in HepG2 cell line. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3404-3414. [PMID: 28731233 DOI: 10.1002/etc.3927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants present in the environment with known mutagenic and carcinogenic properties. In the present study the effects of exposure to single or multiple doses of benzo[a]anthracene (BaA), pyrene (Pyr), and 3 halogenated derivatives of these compounds (1-chloropyrene, 1-bromopyrene [1-BrPyr], and 7-chlorobenzo[a]anthracene [7-ClBaA]) were evaluated in a liver-derived human cell line (HepG2). Cytotoxicity as assessed by the classic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red assays showed a mild toxic effect in response to single or multiple dose exposure for up to 72 h, except for multiple dose exposure to BaA and 7-ClBaA (1 μM/d for 4 d) and single exposure to 10 μM BaA. Furthermore, selective mitochondrial and lysosomal toxicity was observed for Pyr and BaA series, respectively. To understand the underlying molecular mechanisms responsible for this effect, reactive oxygen species production, mitochondrial membrane depolarization, lysosomal pH, DNA fragmentation, and early and late apoptosis mediators were evaluated after exposure to single doses of the compounds. All compounds were able to trigger oxidative stress after 24 h as measured by catalase activity, and a good correlation was found between mitochondrial membrane depolarization, lysosomal pH increase, and MTT and neutral red assays. Evaluation of cell death mediators showed that caspase-3/7, but not annexin-V, pathways were involved in toxicity triggered by the studied compounds. The integration of all results showed that 1-BrPyr and BaA have a higher toxicity potential. Environ Toxicol Chem 2017;36:3404-3414. © 2017 SETAC.
Collapse
Affiliation(s)
- Patrícia I Morgado
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Sílvia Jose
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Riccardo Wanke
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Sofia Cardoso
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Luisa Jordao
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| |
Collapse
|
34
|
Zha J, Hong X, Rao H, Yuan L, Wang Z, Kumaran SS. Benzo(a)pyrene-induced a mitochondria-independent apoptosis of liver in juvenile Chinese rare minnows (Gobiocypris rarus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:191-199. [PMID: 28800488 DOI: 10.1016/j.envpol.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
To examine the effects of BaP on tissue apoptosis, laboratory studies were conducted using juvenile Chinese rare minnows (Gobiocypris rarus) exposed to 1, 5, 20, and 80 μg/L of BaP for 28 days. The post-treatment pathological findings in the liver were associated with hepatocyte swelling, karyopyknosis, and karyorrhexis. Moreover, an increase in the goblet cells in the intestine, epithelial hyperplasia of the gills and fusion of gill lamellae were observed. Significant increases in hepatocyte apoptosis using the TUNEL stain were observed in the liver tissue but not in the intestine and gills. In addition, BaP exposure significantly up-regulated the mRNA levels of cyp1a1, p53, bax, bcl-2, and caspase-9 in the liver following the 5, 20, and 80 μg/L treatments, whereas the apaf-1 was significantly down-regulated following all treatments. Moreover, the activities of caspase 3 and caspase 8 were markedly elevated, whereas the protein expression levels of Apaf-1 were down-regulated following the 20 and 80 μg/L treatments. Taken together, our results suggested that BaP strongly induces tissue-specific apoptosis in vivo, leading to significant pathological changes. The responsiveness of apoptotic-related genes demonstrates that BaP induced apoptosis in the liver may be through a mitochondria-independent pathway.
Collapse
Affiliation(s)
- Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Haiou Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | |
Collapse
|
35
|
Inflammation and the chemical carcinogen benzo[a]pyrene: Partners in crime. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:12-24. [DOI: 10.1016/j.mrrev.2017.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/02/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
|
36
|
Bai H, Zhang H. Characteristics, sources, and cytotoxicity of atmospheric polycyclic aromatic hydrocarbons in urban roadside areas of Hangzhou, China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:303-312. [PMID: 27925846 DOI: 10.1080/10934529.2016.1258862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The primary objective of this study is to understand the profiles, sources and cytotoxic effects of atmospheric polycyclic aromatic hydrocarbons (PAHs), which are closely related to urban air contamination and public health, in urban roadside environments. On-road sampling campaigns were conducted from 2014 to 2015 at three urban road sites in Hangzhou, China. Sixteen gaseous and particulate matter (PM) 2.5-bound PAHs were identified and quantified using gas chromatography-mass spectrometry (GC-MS). The total PAH concentrations at the three sites ranged from 750 to1142 ng/m3 and 1050 to 1483 ng/m3 in summer and winter, respectively. Low molecular weight PAHs were the most abundant compounds (77-86%) and primarily existed in gas phase. The concentrations and phase distributions of high molecular weight PAHs were varied at three sites due to the differences in traffic volume, vehicle composition, engine loading, and nearby artificial activity. Diagnostic ratios of the principal mass (m/z,178, 202, 228 and 276) parent PAHs were statistically described to determine the PAH sources to urban roadsides; principal component analysis (PCA) was applied to apportion the sources. The results indicated that high- and low-temperature fuel processes, as well as residential and industrial emissions, were major contributors to roadside PAHs. The cytotoxic potential of the roadside PAHs was evaluated using a human epithelial lung cell line (A549). Cell viability was measured after a direct exposure to PAH extract. The results reflected the profiles of roadside PAHs at the three sites. The cytotoxicity of reference PAHs was evaluated to provide further insights into the cytotoxic potential of PAHs. We found that low molecular weight PAHs, which are less cytotoxic compounds, synergistically promoted the lethal effect of cytotoxic compounds, posing a potential threat to public health.
Collapse
Affiliation(s)
- Hongzhen Bai
- a State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University , Hangzhou , China
| | - Hongjian Zhang
- a State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University , Hangzhou , China
| |
Collapse
|
37
|
Yuan L, Lv B, Zha J, Wang Z. Benzo[a]pyrene induced p53-mediated cell cycle arrest, DNA repair, and apoptosis pathways in Chinese rare minnow (Gobiocypris rarus). ENVIRONMENTAL TOXICOLOGY 2017; 32:979-988. [PMID: 27323304 DOI: 10.1002/tox.22298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/16/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
The p53 pathways play an important role in carcinogenesis. In mammals, p53 and p53 target genes have been extensively studied, but little is known about their functions and regulation in fish. In this study, the cDNA fragments of p53 network genes, including p53, p21, mdm2, gadd45α, gadd45β, igfbp-3, and bax, were cloned from Chinese rare minnow (Gobiocypris rarus). These genes displayed high amino acid sequence identities with their zebrafish orthologs. The mRNA levels of p53 network genes and pathological changes in the liver were determined after adult rare minnow were exposed to 0.4, 2, and 10 µg/L of benzo[a]pyrene (BaP) for 28 days. The results showed that p53, p21, mdm2, gadd45α, and bax mRNA expressions in the livers from males and females were significantly upregulated compared with those of the controls (p < 0.05), but gadd45β and igfbp-3 expression was not significantly changed. Microphotographs revealed enlargement of the cell nuclei and cellular degeneration in males, while atrophy and vacuolization of hepatocytes were observed in females (10 µg/L). These results suggested that BaP induced liver DNA repair and apoptosis pathways and caused adverse pathological changes in rare minnow. The strongly responsive p53 network genes in the livers suggest that rare minnow is suitable as an experimental fish to screen environmental carcinogens. In addition, the p53 network genes in rare minnow could feasibly be used to identify the mechanism of environmental carcinogenesis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 979-988, 2017.
Collapse
Affiliation(s)
- Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Biping Lv
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zijian Wang
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
38
|
Hardonnière K, Huc L, Sergent O, Holme JA, Lagadic-Gossmann D. Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Semin Cancer Biol 2017; 43:49-65. [PMID: 28088583 DOI: 10.1016/j.semcancer.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.
Collapse
Affiliation(s)
- Kévin Hardonnière
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Laurence Huc
- INRA UMR 1331 ToxAlim (Research Center in Food Toxicology), University of Toulouse ENVT, INP, UPS, 180 Chemin de Tournefeuille, F-31027, France
| | - Odile Sergent
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France
| | - Jørn A Holme
- Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dominique Lagadic-Gossmann
- Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset - Inserm UMR 1085), F-35043 Rennes, France; Université de Rennes 1, Structure fédérative de recherche Biosit, UMS CNRS 3480/US Inserm 018, F 35043 Rennes, France.
| |
Collapse
|
39
|
Huang J, Lu H, Lu Y, Hung P, Lin Y, Lin C, Yang C, Wong T, Lu S, Lin C. Enhancement of the genotoxicity of benzo[a]pyrene by arecoline through suppression of DNA repair in HEp-2 cells. Toxicol In Vitro 2016; 33:80-7. [DOI: 10.1016/j.tiv.2016.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/06/2016] [Accepted: 02/13/2016] [Indexed: 01/02/2023]
|
40
|
Stępnik M, Spryszyńska S, Smok-Pieniążek A, Ferlińska M, Roszak J, Nocuń M. The modulating effect of ATM, ATR, DNA-PK inhibitors on the cytotoxicity and genotoxicity of benzo[a]pyrene in human hepatocellular cancer cell line HepG2. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:988-996. [PMID: 26595742 DOI: 10.1016/j.etap.2015.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
The effect of inhibitors of phosphatidylinositol-3-kinase-related kinases (PIKK): ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK) on response of HepG2 human liver cancer cells to benzo[a]pyrene (BaP) was investigated. PIKK inhibitors: KU55933 (5 μM), NU7026 (10 μM) or caffeine (1 and 2mM) when used as single agents or in combinations (KU55933/NU7026 and caffeine/NU7026) did not significantly influence the BaP (3 μM) cytotoxicity (MTT reduction test). BaP induced a weak proapoptotic effect which was moderately enhanced by both inhibitor combinations. HepG2 cells exposed to BaP showed a strong S-phase arrest which was considerably diminished by both inhibitor combinations. The DNA damage (comet assay) induced after continuous 24h exposure to BaP was significantly diminished by both inhibitor combinations. Weak induction of reactive oxygen species by BaP was observed, which was not modulated by the inhibitor combinations. Similarly, no modulation of the glutathione levels was observed.
Collapse
Affiliation(s)
- Maciej Stępnik
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| | - Sylwia Spryszyńska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| | - Anna Smok-Pieniążek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| | - Magdalena Ferlińska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| | - Joanna Roszak
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| | - Marek Nocuń
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Łódź, Poland.
| |
Collapse
|
41
|
Moreau M, Ouellet N, Ayotte P, Bouchard M. Effects of intravenous benzo[a]pyrene dose administration on levels of exposure biomarkers, DNA adducts, and gene expression in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:166-184. [PMID: 25506633 DOI: 10.1080/15287394.2014.954072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effects of benzo[a]pyrene (BaP) administration on biomarkers of exposure and early effects were studied in male Sprague-Dawley rats intravenously injected with doses of 0.4, 4, 10, or 40 μmol BaP/kg . Blood, tissues, and excreta were collected 8 and 24 h posttreatment. BaP and several of its metabolites were simultaneously measured in blood, tissues and excreta by ultra-high-performance liquid chromatography (UHPLC)/fluorescence. DNA adducts of BaP diol epoxide (BaPDE) in lungs were quantified using an ultrasensitive immunoassay with chemiluminescence detection. Expression of selected genes in lungs of treated rats (lung RNA) compared to control rats was also assessed by quantitative real-time polymerase chain reaction. There was a dose-dependent increase in blood, tissue, and excreted levels of BaP metabolites. At 8 and 24 h postinjection, BaP and hydroxyBaP were found in higher concentrations in blood and tissues compared to other analytes. However, diolBaP were excreted in greater amounts in urine and apparently more rapidly than hydroxyBaP. Mean percentages (± SD) of injected dose excreted in urine as 4,5-diolBaP during the 0-8 h and 0-24 h period posttreatment were 0.16 ± 0.027% and 0.14 ± 0.083%, respectively. Corresponding values for 3-OHBaP were 0.0045 ± 0.0009% and 0.026 ± 0.014%. BaP-diones were not detectable in blood, tissues, and excreta; 7,8-diolBaP and BaPtetrol were found to be minor metabolites. There was also a dose-dependent increase in DNA adduct formation in lung. Analysis of gene expression further showed a modulation of Cyp1a1, Cyp1b1, Nqo1, Nrf2, Fos, and Ahr expression at 10- and 40-μmol/kg doses, but not at the lower doses. This study provided a better assessment of the influence of absorbed BaP doses on biological levels of diolBaP and OHBaP exposure biomarkers and association of the latter with early biological alterations, such as DNA adducts and gene expression.
Collapse
Affiliation(s)
- Marjory Moreau
- a Department of Environmental and Occupational Health , Chair in Toxicological Risk Assessment and Management and Research Institute of Public Health of the University of Montreal (IRSPUM), University of Montreal , Montreal , Quebec , Canada
| | | | | | | |
Collapse
|
42
|
Moreau M, Ayotte P, Bouchard M. Kinetics of Diol and Hydroxybenzo[a]pyrene Metabolites in Relation to DNA Adduct Formation and Gene Expression in Rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:725-746. [PMID: 26090558 DOI: 10.1080/15287394.2015.1028119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Benzo[a]pyrene (BaP) is a human carcinogen, but there are no validated biomarkers of exposure and the relationship of carcinogenesis with early biological alterations is not fully documented. This study aimed at better documenting the toxicokinetics of diolBaP and hydroxyBaP metabolites as potential biomarkers of exposure to BaP in relation to DNA adduct formation and gene expression. Rats were intravenously (iv) injected with 40 μmol/kg BaP. BaP and several metabolites were measured in blood, tissues, and excreta collected at frequent intervals over 72 h posttreatment. BaP diol epoxide (BaPDE)-DNA adduct formation and gene expression were assessed in lungs. 3-HydroxyBaP (3-OHBaP) and 4,5-diolBaP were the most abundant measured metabolites, and differences in time courses were apparent between the two metabolites. Over the 0-72 h period, mean proportions of BaP dose recovered in urine as 3-OHBaP and 4,5-diolBaP (±SD) were 0.017 ± 0.003% and 0.1 ± 0.03%. Corresponding values in feces were 1.5 ± 0.5% and 0.42 ± 0.052%. BaPDE-DNA adducts were significantly increased in lungs and a correlation was observed with urinary 3-OHBaP and 4,5-diolBaP. Analysis of gene expression showed a modulation of expression of metabolic genes (Cyp1a1, Cyp1b1, Nqo1, Ahr) and oxidative stress and repair genes (Nrf2, Rad51). However, BaPDE adducts formation did not exhibit any significant correlation with expression of genes, except a negative correlation with Rad51 expression. Similarly, there was no significant correlation between urinary excretion of OHBaP and diolBaP and expression of genes, except for urinary 7-OHBaP excretion, which was negatively correlated with Rad51 expression. Results indicate that concomitant measurements of diolBaP and OHBaP may serve to better assess the extent of exposure as compared to single metabolite measurements, given kinetic differences between metabolites. Further, although some urinary metabolites were correlated with BaPDE adducts, links with gene expression need to be further investigated.
Collapse
Affiliation(s)
- Marjory Moreau
- a Department of Environmental and Occupational Health , Chair in Toxicological Risk Assessment and Management and the Research Institute of Public Health of the University of Montreal (IRSPUM), University of Montreal , Montreal , Quebec , Canada
| | | | | |
Collapse
|
43
|
DNA damage caused by inorganic particulate matter on Raji and HepG2 cell lines exposed to ultraviolet radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 771:6-14. [PMID: 25308436 DOI: 10.1016/j.mrgentox.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 11/22/2022]
Abstract
Epidemiological studies have correlated exposure to ultraviolet-irradiated particulate matter with cardiovascular, respiratory, and lung diseases. This study investigated the DNA damage induced by two major inorganic particulate matter compounds found in diesel exhaust, ammonium nitrate and ammonium sulfate, on Burkitt's lymphoma (Raji) and hepatocellular carcinoma (HepG2) cell lines. We found a dose-dependent positive correlation of accumulated DNA damage at concentrations of ammonium nitrate (25 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml, 400 μg/ml) with ultraviolet exposure (250 J/m(2), 400 J/m(2), 600 J/m(2), 850 J/m(2)), as measured by the comet assay in both cell lines. There was a significant difference between the treated ammonium nitrate samples and negative control samples in Raji and HepG2 cells (p<0.001). Apoptosis was shown in Raji and HepG2 cells when exposed to high concentrations of ammonium nitrate (200 μg/ml and 400 μg/ml) for 1h in samples without ultraviolet exposure, as assessed by the comet assay. However, the level of apoptosis greatly diminished after ultraviolet exposure at these concentrations. Over a 24h period, at intervals of 1, 4, 8, 12, 18, and 24h, we also observed that ammonium nitrate decreased viability in Raji and HepG2 cell lines and inhibited cell growth. Ammonium sulfate-induced DNA damage was minimal in both cell lines, but there remained a significant difference (p<0.05) between the ultraviolet radiation treated and negative control samples. These results indicate that the inorganic particulate compound, ammonium nitrate, induced DNA strand breaks at all concentrations, and indications of apoptosis at high concentrations in Raji and HepG2 cells, with ultraviolet radiation preventing apoptosis at high concentrations. We hypothesize that ultraviolet radiation may inhibit an essential cellular mechanism, possibly involving p53, thereby explaining this phenomenon. Further studies are necessary to characterize the roles of apoptosis inhibition induced by DNA damage caused by inorganic particulate matter.
Collapse
|
44
|
Wang Y, Wang J, Mu J, Wang Z, Yao Z, Lin Z. Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:148-158. [PMID: 23608972 DOI: 10.1007/s11356-013-1597-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/25/2013] [Indexed: 06/02/2023]
Abstract
Predicted no-effect concentration (PNEC) is often used in ecological risk assessment to determine low-risk concentrations for chemicals. In the present study, native marine species were selected for toxicity testing. The PNECs for three polycyclic aromatic hydrocarbons (PAHs), specifically phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP), were derived from chronic and acute toxicity data with log-normal statistical methods. The achieved PNECs for Phe, Pyr, and BaP were 2.33, 1.09, and 0.011 μg/L, respectively. In Jinzhou Bay and the Shuangtaizi River Estuary of Liaodong Bay in the Bohai Sea, China, the surface water concentrations of the three PAHs were analyzed by gas chromatography-mass spectrometry. Based on two probabilistic ecological risk assessment (PERA) methods, namely probabilistic risk quotient and joint probability curve, the potential risk of Phe, Pyr, and BaP in Jinzhou Bay and Shuangtaizi River Estuary was assessed. The same order of ecological risk (BaP > Phe > Pyr) was found by both models. Our study considered regional characteristics of marine biota during the calculation of PNECs, and the PERA methods provided probabilities of potential ecological risks of chemicals. Within the study area, further research on BaP is required due to its high potential ecological risk.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, 42 Linghe Street, Dalian, 116023, China
| | | | | | | | | | | |
Collapse
|
45
|
Labib S, Guo CH, Williams A, Yauk CL, White PA, Halappanavar S. Toxicogenomic outcomes predictive of forestomach carcinogenesis following exposure to benzo(a)pyrene: Relevance to human cancer risk. Toxicol Appl Pharmacol 2013; 273:269-80. [DOI: 10.1016/j.taap.2013.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 02/05/2023]
|
46
|
Ayed-Boussema I, Abassi H, Bouaziz C, Hlima WB, Ayed Y, Bacha H. Antioxidative and antigenotoxic effect of vitamin E against patulin cytotoxicity and genotoxicity in HepG2 cells. ENVIRONMENTAL TOXICOLOGY 2013; 28:299-306. [PMID: 21656641 DOI: 10.1002/tox.20720] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Patulin (PAT) is a mycotoxin produced in fruits, mainly in apples, by certain species of Penicillium, Aspergillus, and Byssochlamys. It has been shown that PAT is cytotoxic, genotoxic, and mutagenic in different cell types. Several studies incriminate the oxidative stress as a mechanism of PAT-mediated toxicity. In this context, our aim was to investigate the protective role of Vitamin E (Vit E), an antioxidant agent, against PAT induced cytotoxicity and genotoxicity in cultured HepG2 cells. The obtained results showed that addition of Vit E in cells treated with PAT significantly reduce cell mortality induced by this toxin. In the same conditions, Vit E decreased the intracellular level of ROS, reduced PAT induced p53 expression, and reversed PAT induced DNA damage. In addition, Vit E prevented significantly the percentage of chromosome aberrations induced by PAT in HepG2 cells in a concentration dependant manner. These results suggest that Vit E, an exogenous antioxidant agent, plays an important role in defense against PAT-induced cytotoxicity and genotoxicity, which confirms the involvement of oxidative stress in the induction of DNA damage by PAT in HepG2 cells.
Collapse
Affiliation(s)
- Imen Ayed-Boussema
- Laboratory for Research on Biologically Compatible Compounds-LRSBC, Monastir University, Rue Avicenne, Monastir 5019, Tunisia
| | | | | | | | | | | |
Collapse
|
47
|
Labib S, Yauk C, Williams A, Arlt VM, Phillips DH, White PA, Halappanavar S. Subchronic oral exposure to benzo(a)pyrene leads to distinct transcriptomic changes in the lungs that are related to carcinogenesis. Toxicol Sci 2012; 129:213-24. [PMID: 22610609 PMCID: PMC3430207 DOI: 10.1093/toxsci/kfs177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that acute oral exposure to the environmental carcinogen benzo(a)pyrene (BaP) elicits comparable levels of DNA adducts, but distinct transcriptomic changes, in mouse lungs and livers, the two main BaP bioactivating organs. Oral BaP exposure is predominantly associated with lung cancer and not hepatic cancer in some animal models, suggesting that gene expression differences may provide insight into the drivers of tissue-specific carcinogenesis. In the present study, we examine pulmonary DNA adduct formation, lacZ mutant frequency, and mRNA profiles in adult male MutaMouse following subchronic (28 day) oral exposure to BaP (0, 25, 50, and 75 mg/kg/day) and sacrificed 3 days postexposure. The results are compared with those obtained from livers of the same mice (previously published). Although there was a 1.8- to 3.3-fold increase in the levels of DNA adducts in lung compared with liver, the lacZ transgene mutant frequency was similar in both tissues. At the transcriptomic level, a transition from activation of the DNA damage response p53 pathway at the low dose to the induction of genes involved in angiogenesis, evasion of apoptosis and growth signals at the high doses was evident only in the lungs. These results suggest that tissue DNA adducts and mutant frequency are sensitive markers of target tissue exposure and mode of action, whereas early changes in gene expression may provide a better indication of the likelihood of carcinogenic transformation in selected tissues. Moreover, the study provides new information on the underlying mechanisms that contribute to tissue-specific responses to BaP.
Collapse
Affiliation(s)
- Sarah Labib
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; and
| | - Carole Yauk
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; and
| | - Andrew Williams
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; and
| | - Volker M. Arlt
- Analytical and Environmental Sciences Division, King’s College London, London, SE1 9NH, U.K.
| | - David H. Phillips
- Analytical and Environmental Sciences Division, King’s College London, London, SE1 9NH, U.K.
| | - Paul A. White
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; and
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; and
| |
Collapse
|
48
|
Yan C, Chen Z, Li H, Zhang G, Li F, Duerksen-Hughes PJ, Zhu X, Yang J. Nuclear proteome analysis of benzo(a)pyrene-treated HeLa cells. Mutat Res 2012; 731:75-84. [PMID: 22138005 DOI: 10.1016/j.mrfmmm.2011.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 11/03/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
Previously, we employed a proteomics-based 2-D gel electrophoresis assay to show that exposure to 10μM benzo(a)pyrene (BaP) during a 24 h frame can lead to changes in nuclear protein expression and alternative splicing. To further expand our knowledge about the DNA damage response (DDR) induced by BaP, we investigated the nuclear protein expression profiles in HeLa cells treated with different concentrations of BaP (0.1, 1, and 10μM) using this proteomics-based 2-D gel electrophoresis assay. We found 125 differentially expressed proteins in BaP-treated cells compared to control cells. Among them, 79 (63.2%) were down-regulated, 46 (36.8%) were up-regulated; 8 showed changes in the 1μM and 10μM BaP-treated groups, 2 in the 0.1μM and 10μM BaP-treated groups, 4 in the 0.1μM and 1μM BaP-treated groups, and only one showed changes in all three groups. Fifty protein spots were chosen for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, and of these, 39 were identified, including subunits of the 26S proteasome and Annexin A1. The functions of some identified proteins were further examined and the results showed that they might be involved in BaP-induced DDR. Taken together, these data indicate that proteomics is a valuable approach in the study of environmental chemical-host interactions, and the identified proteins could provide new leads for better understanding BaP-induced mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Chunlan Yan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Coitinho JB, Costa DMA, Guimarães SL, de Góes AM, Nagem RAP. Expression, purification and preliminary crystallographic studies of NahF, a salicylaldehyde dehydrogenase from Pseudomonas putida G7 involved in naphthalene degradation. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:93-7. [PMID: 22232182 PMCID: PMC3253845 DOI: 10.1107/s174430911105038x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022]
Abstract
Pseudomonas putida G7 is one of the most studied naphthalene-degrading species. The nah operon in P. putida, which is present on the 83 kb metabolic plasmid NAH7, codes for enzymes involved in the conversion of naphthalene to salicylate. The enzyme NahF (salicylaldehyde dehydrogenase) catalyzes the last reaction in this pathway. The nahF gene was subcloned into the pET28a(TEV) vector and the recombinant protein was overexpressed in Escherichia coli Arctic Express at 285 K. The soluble protein was purified by affinity chromatography followed by gel filtration. Crystals of recombinant NahF (6×His-NahF) were obtained at 291 K and diffracted to 2.42 Å resolution. They belonged to the hexagonal space group P6(4)22, with unit-cell parameters a = b = 169.47, c = 157.94 Å. The asymmetric unit contained a monomer and a crystallographic twofold axis generated the dimeric biological unit.
Collapse
Affiliation(s)
- Juliana Barbosa Coitinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte-MG, Brazil
| | - Débora Maria Abrantes Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte-MG, Brazil
| | - Samuel Leite Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte-MG, Brazil
| | - Alfredo Miranda de Góes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte-MG, Brazil
| | - Ronaldo Alves Pinto Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte-MG, Brazil
| |
Collapse
|
50
|
Malik AI, Williams A, Lemieux CL, White PA, Yauk CL. Hepatic mRNA, microRNA, and miR-34a-target responses in mice after 28 days exposure to doses of benzo(a)pyrene that elicit DNA damage and mutation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:10-21. [PMID: 21964900 PMCID: PMC3525943 DOI: 10.1002/em.20668] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/18/2011] [Accepted: 06/20/2011] [Indexed: 05/04/2023]
Abstract
Benzo(a)pyrene (BaP) is a mutagenic carcinogen that is ubiquitous in our environment. To better understand the toxic effects of BaP and to explore the relationship between toxicity and toxicogenomics profiles, we assessed global mRNA and microRNA (miRNA) expression in Muta™Mouse. Adult male mice were exposed by oral gavage to 25, 50, and 75 mg/kg/day BaP for 28 days. Liver tissue was collected 3 days following the last treatment. Initially, we established that exposure to BaP led to the formation of hepatic DNA adducts and mutations in the lacZ transgene of the Muta™Mouse. We then analyzed hepatic gene expression profiles. Microarray analysis of liver samples revealed 134 differentially expressed transcripts (adjusted P < 0.05; fold changes > 1.5). The mRNAs most affected were involved in xenobiotic metabolism, immune response, and the downstream targets of p53. In this study, we found a significant 2.0 and 3.6-fold increase following exposure to 50 and 75 mg/kg/day BaP, respectively, relative to controls for miR-34a. This miRNA is involved in p53 response. No other significant changes in miRNAs were observed. The protein levels of five experimentally confirmed miR-34a targets were examined, and no major down-regulation was present. The results suggest that liver miRNAs are largely unresponsive to BaP doses that cause both DNA adducts and mutations. In summary, the validated miRNA and mRNA expression profiles following 28 day BaP exposure reflect a DNA damage response and effects on the cell cycle, consistent with the observed increases in DNA adducts and mutations.
Collapse
|