1
|
Romo-García MF, Mendoza-Cano O, Murillo-Zamora E, Camacho-delaCruz AA, Ríos-Silva M, Bricio-Barrios JA, Cuevas-Arellano HB, Rivas-Santiago B, Maeda-Gutiérrez V, Galván-Tejada CE, Gonzalez-Curiel IE. Glyphosate exposure increases early kidney injury biomarker KIM-1 in the pediatric population: a cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179533. [PMID: 40315545 DOI: 10.1016/j.scitotenv.2025.179533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025]
Abstract
Glyphosate exposure has been associated with adverse health effects, ranging from metabolic disruptions to neurological diseases, with the severity of impacts varying according to age and duration of exposure. Nevertheless, evidence of these health effects in the pediatric population remains limited. Given the heightened developmental sensitivity of children, they are particularly vulnerable to potential harm. Studies had associated glyphosate exposure with both acute and chronic kidney damage, emphasizing the need for alternative biomarkers to detect subclinical lesions before clinical symptoms appear. To achieve early diagnosis and detection of early damage, it is necessary to measure other biomarkers, like KIM-1, a type 1 transmembrane protein up-regulated in tubular epithelia cells after a renal injury lesion, offering a potential for early detection of subclinical renal injury. In the present study, kidney injury related to glyphosate exposure was assessed in 221 pediatric individuals. Glyphosate and KIM-1 were measured by immunoassays. A significant increase in KIM-1 concentrations was observed in the groups with the highest median concentrations of glyphosate. Multiple linear regression analysis indicated that KIM-1 molecule concentration had an increasement of 42 % (CI 32 % - 52 %) on average per unit of glyphosate. Additionally, a SHAP model demonstrated that glyphosate concentrations accounted for approximately 51 % of the variability of KIM-1 concentrations. These findings underscore the importance of monitoring glyphosate exposure and its potential renal impact in children.
Collapse
Affiliation(s)
- María Fernanda Romo-García
- Laboratorio de Inmunotoxicología, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus UAZ siglo XXI, Carretera Zacatecas-Guadalajara km 6, Col. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Oliver Mendoza-Cano
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, Coquimatlán 28400, Mexico
| | - Efrén Murillo-Zamora
- Unidad de Investigación en Epidemiología Clínica, Instituto Mexicano del Seguro Social, Av. Lapislázuli 250, Col. El Haya, Villa de Álvarez 28984, Mexico
| | - Arlette A Camacho-delaCruz
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, Coquimatlán 28400, Mexico
| | - Mónica Ríos-Silva
- Facultad de Medicina, Universidad de Colima, Av. Universidad 333, Col. Las Víboras, Colima 28040, Mexico
| | | | | | - Bruno Rivas-Santiago
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Alameda Trinidad García de La Cadena 438_2436A436, Zacatecas Centro, 98000, Zacatecas, Zacatecas, Mexico
| | - Valeria Maeda-Gutiérrez
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Campus UAZ siglo XXI, Carretera Zacatecas-Guadalajara km 6, Col. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Carlos E Galván-Tejada
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Campus UAZ siglo XXI, Carretera Zacatecas-Guadalajara km 6, Col. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Irma E Gonzalez-Curiel
- Laboratorio de Inmunotoxicología, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus UAZ siglo XXI, Carretera Zacatecas-Guadalajara km 6, Col. Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
2
|
Bai G, Yuan H, Cao M, Jiang X, Shi B, Bin P. Glyphosate-Based Herbicide Stress During Pregnancy Impairs Intestinal Development in Newborn Piglets by Modifying DNA Methylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2483-2498. [PMID: 39804095 DOI: 10.1021/acs.jafc.4c07679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Glyphosate-based herbicide (GBH), a feed contaminant, has been proven to impair the growth and development of humans and animals. Previous research has revealed that maternal toxin exposure during pregnancy could cause permanent fetal changes by epigenetic modulation. However, there was insufficient evidence of the involvement of DNA methylation in maternal GBH exposure-induced intestinal health of offspring. Here, we established pregnant sow exposure models to investigate the effects of GBH on the intestinal DNA methylation of newborn piglets. The results showed gestational exposure to GBH compromises the intestinal function of newborn piglets as well as decreases the mRNA expression of Dnmt1 and Dnmt3b jejunum. Further RRBS DNA methylation analysis revealed genomic hypomethylation in jejunum, and the differentially methylated regions were enriched in the pathways of intestinal development and food digestion and the related GO terms. Additionally, integrative analysis of methylome and transcriptome identified 23 genes showing inverse correlations and indicated the underlying injury mechanisms upon maternal GBH. These findings provide new insights and fundamental knowledge into the possible involvement of DNA methylation in the intestinal injury of offspring induced by maternal GBH exposure during pregnancy, which drives manufacturers to develop low-toxicity herbicide to ensure food safety and human health.
Collapse
Affiliation(s)
- Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hua Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Chiantia G, Comai D, Hidisoglu E, Gurgone A, Franchino C, Carabelli V, Marcantoni A, Giustetto M. Glyphosate impairs both structure and function of GABAergic synapses in hippocampal neurons. Neuropharmacology 2025; 262:110183. [PMID: 39401670 DOI: 10.1016/j.neuropharm.2024.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Glyphosate (Gly) is a broad-spectrum herbicide responsible for the inhibition of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase known to be expressed exclusively in plants and not in animals. For decades Gly has been thought to be ineffective in mammals, including humans, until it was demonstrated that rodents treated with the Gly-based herbicide Roundup showed reduced content of neurotransmitters (e.g., serotonin, dopamine, norepinephrine, and acetylcholine), increased oxidative stress in the brain associated with anxiety and depression-like behaviors and learning and memory deficits. Despite compelling evidence pointing to a neurotoxic effect of Gly, an in-depth functional description of its effects on synaptic transmission is still lacking. To investigate the synaptic alterations dependent on Gly administration we performed whole-cell patch-clamp recordings and immunocytochemistry on mouse primary cultured hippocampal neurons. Our findings reveal that 30 min incubation of Gly at the acceptable daily intake dose severely impaired inhibitory GABAergic synapses. Further analysis pointed out that Gly decreased the number of postsynaptic GABAA receptors and reduced the amplitude of evoked inhibitory postsynaptic currents, the readily releasable pool size available for synchronous release and the quantal size. Finally, a decreased number of release sites has been observed. Consistently, morphological analyses showed that the density of both pre- and post-synaptic inhibitory compartments decorating pyramidal cell dendrites was reduced by Gly. In conclusion, our experiments define for the first time the effects induced by Gly on GABAergic synapses, and reveal that Gly significantly impairs both pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Giuseppe Chiantia
- (")Rita Levi-Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Debora Comai
- (")Rita Levi-Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Enis Hidisoglu
- Department of Drug Science, University of Turin, Turin, Italy; Department of Biophysics, Faculty of Medicine, Izmir Bakircay University, Izmir, Turkey
| | - Antonia Gurgone
- (")Rita Levi-Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | | | | | | | - Maurizio Giustetto
- (")Rita Levi-Montalcini" Department of Neuroscience, University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Morozov A, Yurchenko V. Glyphosate and aminomethylphosphonic acid impact on redox status and biotransformation in fish and the mitigating effects of diet supplementation. Vet Res Commun 2024; 48:2901-2914. [PMID: 39073654 DOI: 10.1007/s11259-024-10481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Fish reared under seminatural conditions can be challenged by exposure to herbicides. Farming facilities relying on the surrounding area's water quality can be affected by glyphosate and aminomethylphosphonic acid (AMPA) contamination. This review summarizes findings on how glyphosate and AMPA in the amounts registered in surface waterbodies affect redox status and biotransformation in fish and covers the aspect of diet supplementation for oxidative stress relief. Environmentally relevant concentrations of glyphosate and AMPA can alter the transcription and catalytic activities of antioxidant enzymes, decrease the content of reduced glutathione, and increase the accumulation of lipid peroxidation products, all of which are signs of a redox imbalance. Glyphosate has been shown to affect complex I in the mitochondrial respiratory chain and dysregulate iron transport-related genes, causing redox disturbance. Relatively high but environmentally realistic glyphosate concentrations can initiate the induction of cytochrome P450 biotransformation enzymes, alter the regulation of ABC exporters, and cause the inhibition of the redox-sensitive Nrf2 signaling pathway. Studies on reducing herbicide toxicity through dietary supplementation are a promising area of research. Natural functional supplements have been proven to have great potential for mitigating glyphosate-induced oxidative stress and thereby improving fish health, which in turn means maintaining productivity in fish farms that use natural water. However, data on the effects of AMPA on fish are scarce, and studies on the alleviation of its toxicity in fish are lacking. Considering the variety of AMPA contamination routes, one cannot underestimate the need for further research.
Collapse
Affiliation(s)
- Alexey Morozov
- Papanin Institute for Biology of Inland Waters Russian Academy of Sciences (IBIW RAS), 109, Yaroslavl, Borok, 152742, Russia.
| | - Victoria Yurchenko
- Papanin Institute for Biology of Inland Waters Russian Academy of Sciences (IBIW RAS), 109, Yaroslavl, Borok, 152742, Russia
| |
Collapse
|
5
|
Leblanc PO, Breton Y, Léveillé F, Tessier PA, Pelletier M. The impact of the herbicide glyphosate and its metabolites AMPA and MPA on the metabolism and functions of human blood neutrophils and their sex-dependent effects on reactive oxygen species and CXCL8/IL-8 production. ENVIRONMENTAL RESEARCH 2024; 252:118831. [PMID: 38580005 DOI: 10.1016/j.envres.2024.118831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Significant levels of glyphosate, the world's most widely used herbicide, and its primary metabolites, AMPA and MPA, are detected in various human organs and body fluids, including blood. Several studies have associated the presence of glyphosate in humans with health problems, and effects on immune cells and their functions have been reported. However, the impact of this molecule and its metabolites on neutrophils, the most abundant leukocytes in the human bloodstream, is still poorly documented. We isolated neutrophils from human donor blood and investigated the effects of exposure to glyphosate, AMPA, and MPA on viability, energy metabolism, and essential antimicrobial functions in vitro. We observed that neutrophil viability was unaffected at the blood-relevant average concentrations of the general population and exposed workers, as well as at higher intoxication concentrations. Neutrophil energy metabolism was also not altered following exposure to the chemicals. However, while phagocytosis was unaffected, reactive oxygen species generation and CXCL8/IL-8 production were altered by exposure to the molecules. Alterations in function following exposure to glyphosate and metabolites differed according to the sex of the donors, which could be linked to glyphosate's known role as an endocrine disruptor. While ROS generation was increased in both sexes, male neutrophils exposed to glyphosate had increased intracellular production of CXCL8/IL-8, with no effect on female neutrophils. Conversely, exposure to the metabolites AMPA and MPA decreased extracellular production of this chemokine only in female neutrophils, with MPA also increasing intracellular production in male cells exposed to the chemoattractant N-formyl-methionine-leucyl-phenylalanine. Our study highlights the effects of glyphosate and its metabolites on the antimicrobial functions of neutrophils, which could be associated with health problems as future studies provide a better understanding of the risks associated with glyphosate use. Advances in knowledge will enable better and potentially stricter regulations to protect the public.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Yann Breton
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Florence Léveillé
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
6
|
Jenkins HM, Meeker JD, Zimmerman E, Cathey A, Fernandez J, Montañez GH, Park S, Pabón ZR, Vélez Vega CM, Cordero JF, Alshawabkeh A, Watkins DJ. Gestational glyphosate exposure and early childhood neurodevelopment in a Puerto Rico birth cohort. ENVIRONMENTAL RESEARCH 2024; 246:118114. [PMID: 38211716 DOI: 10.1016/j.envres.2024.118114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
INTRODUCTION N-(phosphonomethyl)glycine, or glyphosate, is a non-selective systemic herbicide widely used in agricultural, industrial, and residential settings since 1974. Glyphosate exposure has been inconsistently linked to neurotoxicity in animals, and studies of effects of gestational exposure among humans are scarce. In this study we investigated relationships between prenatal urinary glyphosate analytes and early childhood neurodevelopment. METHODS Mother-child pairs from the PROTECT-CRECE birth cohort in Puerto Rico with measures for both maternal urinary glyphosate analytes and child neurodevelopment were included for analysis (n = 143). Spot urine samples were collected 1-3 times throughout pregnancy and analyzed for glyphosate and aminomethylphosphonic acid (AMPA), an environmental degradant of glyphosate. Child neurodevelopment was assessed at 6, 12, and 24 months using the Battelle Developmental Inventory, 2nd edition Spanish (BDI-2), which provides scores for adaptive, personal-social, communication, motor, and cognitive domains. We used multivariable linear regression to examine associations between the geometric mean of maternal urinary glyphosate analytes across pregnancy and BDI-2 scores at each follow-up. Results were expressed as percent change in BDI-2 score per interquartile range increase in exposure. RESULTS Prenatal AMPA concentrations were negatively associated with communication domain at 12 months (%change = -5.32; 95%CI: 9.04, -1.61; p = 0.007), and communication subdomain scores at 12 and 24 months. At 24 months, four BDI-2 domains were associated with AMPA: adaptive (%change = -3.15; 95%CI: 6.05, -0.25; p = 0.038), personal-social (%change = -4.37; 95%CI: 7.48, -1.26; p = 0.008), communication (%change = -7.00; 95%CI: 11.75, -2.26; p = 0.005), and cognitive (%change = -4.02; 95%CI: 6.72, -1.32; p = 0.005). Similar trends were observed with GLY concentrations, but most confidence intervals include zero. We found no significant associations at 6 months. CONCLUSIONS Our results suggest that gestational exposure to glyphosate is associated with adverse early neurodevelopment, with more pronounced delays at 24 months. Given glyphosate's wide usage, further investigation into the impact of gestational glyphosate exposure on neurodevelopment is warranted.
Collapse
Affiliation(s)
- Haley M Jenkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, 02115, USA.
| | - Amber Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - Jennifer Fernandez
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - Gredia Huerta Montañez
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Seonyoung Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - Zaira Rosario Pabón
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Carmen M Vélez Vega
- Department of Social Sciences, UPR Medical Sciences Campus, University of Puerto Rico Graduate School of Public Health, San Juan, PR, 00936, USA.
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA.
| | - Akram Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Abe FR, Dorta DJ, Gravato C, de Oliveira DP. Elucidating the effects of pure glyphosate and a commercial formulation on early life stages of zebrafish using a complete biomarker approach: All-or-nothing! THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170012. [PMID: 38246377 DOI: 10.1016/j.scitotenv.2024.170012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
The search for new methods in the toxicology field has increased the use of early life stages of zebrafish (Danio rerio) as a versatile organism model. Here, we use early stages of zebrafish to evaluate glyphosate as pure active ingredient and within a commercial formulation in terms of oxidative stress. Biomarkers involved in the oxidative status were evaluated along with other markers of neurotoxicity, genotoxicity, cytotoxicity, energy balance and motor performance, and the selected tools were evaluated by its sensitivity in determining early-warning events. Zebrafish embryos exposed to glyphosate active ingredient and glyphosate-based formulation were under oxidative stress, but only the commercial formulation delayed the embryogenesis, affected the cholinergic neurotransmission and induced DNA damage. Both altered the motor performance of larvae at very low concentrations, becoming larvae hypoactive. The energy balance was also impaired, as embryos under oxidative stress had lower lipids reserves. Although data suggest that glyphosate-based formulation has higher toxicity than the active ingredient itself, the most sensitive biomarkers detected early-warning effects at very low concentrations of the active ingredient. Biochemical biomarkers of defense system and oxidative damage were the most sensitive tools, detecting pro-oxidant responses at very low concentrations, along with markers of motor performance that showed high sensitivity and high throughput, suitable for detecting early effects linked to neurotoxicity. Alterations on morphology during embryogenesis showed the lowest sensitivity, thus morphological alterations appeared after several alterations at biochemical levels. Tools evaluating DNA damage and cell proliferation showed mid-sensitivity, but low throughput, thus they could be used as complementary markers.
Collapse
Affiliation(s)
- Flavia Renata Abe
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil; Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Carlos Gravato
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Danielle Palma de Oliveira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903 Ribeirão Preto, Brazil; Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil.
| |
Collapse
|
8
|
Watanabe D, Sonoda S, Ohta H. Simultaneous determination of water-soluble herbicides using hydrophilic interaction liquid chromatography-mass spectrometry. Forensic Toxicol 2024; 42:1-6. [PMID: 37480483 DOI: 10.1007/s11419-023-00669-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE The analysis of water-soluble herbicides, including glyphosate (Glyp), glufosinate (Gluf), paraquat (PQ), and diquat (DQ), is time-consuming and expensive because they cannot be analyzed using general toxicological screening methods. Thus, this study aimed to develop a simple and rapid method to simultaneously analyze these compounds without any derivatization nor ion-pairing reagents. METHODS The analytes were separated using hydrophilic interaction liquid chromatography and detected using tandem mass spectrometry. The developed method was applied to plant and biological samples assuming criminal damage and poisoning cases, respectively. RESULTS All analytes were separated well and detected with good peak shapes. For plant samples, the herbicides were specifically detected from withered leaves using a simple extraction method. For biological samples, quantitative analysis was successfully validated, and the limit of quantification values of Glyp and Gluf were 0.2 µg/mL, and those of PQ and DQ were 1 ng/mL. CONCLUSION The developed method had sufficient performance for practical forensic applications including poisoning cases and malicious uses to damage commercial crops.
Collapse
Affiliation(s)
- Daisuke Watanabe
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa City, Chiba, 277-0882, Japan.
| | - Shuhei Sonoda
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa City, Chiba, 277-0882, Japan
| | - Hikoto Ohta
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa City, Chiba, 277-0882, Japan
| |
Collapse
|
9
|
Filippi I, Bonansea RI, Butinof M, Fernández RA, Llorca M, Farré M, Muñoz SE, Amé MV. First Report of the Joint Exposure to Glyphosate and Glufosinate of a Male Population in the Province of Córdoba (Argentina). TOXICS 2023; 11:1020. [PMID: 38133421 PMCID: PMC10747456 DOI: 10.3390/toxics11121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Despite potential health implications, data on the presence of Glyphosate (GLY) and other non-GLY herbicides in human matrices remain scarce. This study aimed to develop a simple and cost-effective methodology for detecting and quantifying GLY, its primary biodegradation product; aminomethylphosphonic acid (AMPA); and glufosinate (GLU) in plasma and urine of environmentally and occupationally exposed populations from the province of Córdoba (Argentina). Different alternatives of pre-treatment, derivatization with FMOC-Cl, solid phase extraction, and final sample conditioning steps were evaluated to improve the quantification of the herbicides by a high-performance liquid chromatography system coupled to a triple-quadrupole mass spectrometer. Recoveries ranged from 39 to 84% in both matrices, while limits of quantification were 3, 1, and 0.3 ng/mL and 3.6, 5.1, and 0.3 ng/mL for AMPA, GLY, and GLU in plasma and urine, respectively. In plasma samples, GLY was the most frequently detected analyte (32%), followed by GLU (10%). In urine samples, GLU was the most frequently detected herbicide (13%), followed by GLY (6%). No differences between group or matrix correlations were found. This study is the first report of GLU in human biological matrices and should be used to establish baseline values for future surveillance systems.
Collapse
Affiliation(s)
- Iohanna Filippi
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina; (I.F.); (R.I.B.); (S.E.M.)
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Rocío I. Bonansea
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina; (I.F.); (R.I.B.); (S.E.M.)
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina;
| | - Mariana Butinof
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina;
| | - Ricardo A. Fernández
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba 5000, Argentina;
| | - Marta Llorca
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain; (M.L.); (M.F.)
| | - Marinella Farré
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain; (M.L.); (M.F.)
| | - Sonia E. Muñoz
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina; (I.F.); (R.I.B.); (S.E.M.)
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina;
| | - María V. Amé
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| |
Collapse
|
10
|
Curl CL, Hyland C, Spivak M, Sheppard L, Lanphear B, Antoniou MN, Ospina M, Calafat AM. The Effect of Pesticide Spray Season and Residential Proximity to Agriculture on Glyphosate Exposure among Pregnant People in Southern Idaho, 2021. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127001. [PMID: 38054699 PMCID: PMC10699167 DOI: 10.1289/ehp12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Glyphosate is one of the most heavily used pesticides in the world, but little is known about sources of glyphosate exposure in pregnant people living in agricultural regions. OBJECTIVE Our objective was to evaluate glyphosate exposure during pregnancy in relation to residential proximity to agriculture as well as agricultural spray season. METHODS We quantified glyphosate concentrations in 453 urine samples collected biweekly from a cohort of 40 pregnant people in southern Idaho from February through December 2021. We estimated each participant's glyphosate exposure as the geometric mean (GM) of glyphosate concentrations measured in all samples (average n = 11 samples/participant), as well as the GM of samples collected during the pesticide "spray season" (defined as those collected 1 May-15 August; average n = 5 samples/participant) and the "nonspray season" (defined as those collected before 1 May or after 15 August; average n = 6 samples/participant). We defined participants who resided < 0.5 km from an actively cultivated agriculture field to live "near fields" and those residing ≥ 0.5 km from an agricultural field to live "far from fields" (n = 22 and 18, respectively). RESULTS Among participants living near fields, urinary glyphosate was detected more frequently and at significantly increased GM concentrations during the spray season in comparison with the nonspray season (81% vs. 55%; 0.228 μ g / L vs. 0.150 μ g / L , p < 0.001 ). In contrast, among participants who lived far from fields, neither glyphosate detection frequency nor GMs differed in the spray vs nonspray season (66% vs. 64%; 0.154 μ g / L vs. 0.165 μ g / L , p = 0.45 ). Concentrations did not differ by residential proximity to fields during the nonspray season (0.154 μ g / L vs. 0.165 μ g / L , for near vs. far, p = 0.53 ). DISCUSSION Pregnant people living near agriculture fields had significantly increased urinary glyphosate concentrations during the agricultural spray season than during the nonspray season. They also had significantly higher urinary glyphosate concentrations during the spray season than those who lived far from agricultural fields at any time of year, but concentrations did not differ during the nonspray season. These findings suggest that agricultural glyphosate spray is a source of exposure for people living near fields. https://doi.org/10.1289/EHP12768.
Collapse
Affiliation(s)
- Cynthia L. Curl
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Carly Hyland
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
- Division of Agriculture and National Resources, University of California, Berkeley, CA, USA
| | - Meredith Spivak
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Lianne Sheppard
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Bruce Lanphear
- Simon Fraser University, Vancouver, British Columbia, Canada
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, London, UK
- Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Fréville M, Henri J, Estienne A, Serra L, Ramé C, Ganier P, Chahnamian M, Froment P, Dupont J. Determination of the elimination half-life of Glyphosate and its main metabolite, AMPA, in chicken plasma. Toxicol Lett 2023; 389:19-25. [PMID: 37866553 DOI: 10.1016/j.toxlet.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most-used herbicides worldwide. Concerns about their toxicity and ecotoxicity have motivated scientists to assess their potential effects on animals, as well as their toxicokinetic parameters in rats and humans. However, to our knowledge, such data have not been produced for avian models. In this study, toxicokinetic parameters for glyphosate and AMPA were calculated after one unique dietary exposure (40 mg of glyphosate equivalent per kg) and one unique intravenous injection of a GBH, in hens and roosters respectively. Non compartmental analysis was used to show the evolution of glyphosate and AMPA plasma concentrations over time. After one unique intravenous injection of a glyphosate-based herbicide, glyphosate and AMPA were quickly eliminated from plasma and were poorly distributed (Vssglyphosate = 0.30 L/kg). Their terminal half-lives are 4.7 h and 8.10 h, respectively. After dietary exposure, glyphosate and AMPA followed a 6 h absorption phase followed by a 42 h elimination phase. They were poorly distributed (Vssglyphosate = 0.00562 L/kg), and their maximum concentrations (Cmax) were 21285 µg/L and 108 µg/L, respectively. Their terminal elimination half-lives were 8.94 h and 6.93 h, respectively. Taken together, this study provides new data on the elimination rate and approximate biological half-life range of glyphosate in birds.
Collapse
Affiliation(s)
- Mathias Fréville
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Jérôme Henri
- Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 10B rue Claude Bourgelat, Fougères 35306, France
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Loïse Serra
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Christelle Ramé
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Patrice Ganier
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT 1295, F-37380 Nouzilly, France
| | - Marine Chahnamian
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT 1295, F-37380 Nouzilly, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France.
| |
Collapse
|
12
|
Hays SM, Kirman CR, Flippin J, Lopez T. Biomonitoring Equivalents for glyphosate. Regul Toxicol Pharmacol 2023; 144:105481. [PMID: 37633328 DOI: 10.1016/j.yrtph.2023.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
One of the most widely used herbicides worldwide, glyphosate is registered for use in many agricultural and non-agricultural settings. Accordingly, regulatory authorities develop toxicology reference values (TRVs) to conduct risk assessments for potential exposures. Exposures to glyphosate are typically biomonitored via measures of glyphosate in urine. However, measured concentrations of glyphosate in urine, with units mg/L urine, cannot be directly interpreted using the available TRVs as they are presented in terms of daily intake levels (e.g. mg/kg-bw per day). In this evaluation, we review available health-based risk assessments and TRVs for glyphosate and derive Biomonitoring Equivalent (BE) values for interpretation of population biomonitoring data. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, human milk, etc.) that is consistent with an existing health-based TRVs such as a reference dose (RfD) or tolerable daily intake (TDI). The BE values derived in this manuscript are screening values that can help public health officials and regulators interpret glyphosate biomonitoring data.
Collapse
|
13
|
Montero-Montoya R, Suárez-Larios K, Serrano-García L. Paraoxon and glyphosate induce DNA double-strand breaks but are not type II topoisomerase poisons. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 890:503657. [PMID: 37567644 DOI: 10.1016/j.mrgentox.2023.503657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
We tested the hypothesis that the pesticides paraoxon and glyphosate cause DNA double-strand breaks (DSB) by poisoning the enzyme Type II topoisomerase (topo II). Peripheral lymphocytes in G0 phase, treated with the pesticides, plus or minus ICRF-187, an inhibitor of Topo II, were stimulated to proliferate; induced cytogenetic damage was measured. Micronuclei, chromatin buds, nucleoplasmic bridges, and extranuclear fragments were induced by treatments with the pesticides, irrespective of the pre-treatment with ICRF-187. These results indicate that the pesticides do not act as topo II poisons. The induction of DSB may occur by other mechanisms, such as effects on other proteins involved in recombination repair.
Collapse
Affiliation(s)
- Regina Montero-Montoya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 Ciudad de México, Mexico.
| | - Karen Suárez-Larios
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 Ciudad de México, Mexico
| | - Luis Serrano-García
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, 04510 Ciudad de México, Mexico
| |
Collapse
|
14
|
Hyland C, Spivak M, Sheppard L, Lanphear BP, Antoniou M, Ospina M, Calafat AM, Curl CL. Urinary Glyphosate Concentrations among Pregnant Participants in a Randomized, Crossover Trial of Organic and Conventional Diets. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:77005. [PMID: 37493357 PMCID: PMC10370340 DOI: 10.1289/ehp12155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Consumption of an organic diet reduces exposure to a range of agricultural pesticides. Only three studies have examined the effect of an organic diet intervention on exposure to the herbicide glyphosate, the most heavily used agricultural chemical in the world. Despite its widespread use, the primary sources of glyphosate exposure in humans are poorly understood. OBJECTIVE Our objective was to examine the effect of an organic diet intervention on urinary glyphosate concentrations among pregnant individuals. METHODS We conducted a 2-wk randomized crossover trial in which 39 pregnant participants living near (≤ 0.5 km ) and far (> 0.5 km ) from agricultural fields received a 1-wk supply of conventional groceries and 1 wk of organic groceries, randomized to order. We collected daily first morning void urine samples and analyzed composite samples from each week for glyphosate. We examined differences in urinary glyphosate concentrations between the conventional week and the organic week among all participants and stratified by residential proximity to an agricultural field. RESULTS Median specific gravity-adjusted glyphosate concentrations were 0.19 μ g / L and 0.16 μ g / L during the conventional and organic weeks, respectively. We observed modest decreases in urinary glyphosate concentrations from the conventional to organic week among far-field participants, but no difference among near-field participants. In secondary analyses excluding participants who did not meet a priori criteria of compliance with the intervention, we observed significant decreases in urinary glyphosate concentrations, particularly among far-field participants (p < 0.01 - 0.02 , depending on exclusion criteria). DISCUSSION This trial is the first to examine the effect of an organic diet intervention on glyphosate among people living near and far from agricultural fields. Our results suggest that diet is an important contributor to glyphosate exposure in people living > 0.5 km from agricultural fields; for people living near crops, agriculture may be a dominant exposure source during the pesticide spray season. https://doi.org/10.1289/EHP12155.
Collapse
Affiliation(s)
- Carly Hyland
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Meredith Spivak
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Lianne Sheppard
- School of Public Health, University of Washington, Seattle, Washington, USA
| | | | - Michael Antoniou
- Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy’s Hospital, London, UK
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cynthia L. Curl
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| |
Collapse
|
15
|
Lucia RM, Liao X, Huang WL, Forman D, Kim A, Ziogas A, Norden-Krichmar TM, Goodman D, Alvarez A, Masunaka I, Pathak KV, McGilvrey M, Hegde AM, Pirrotte P, Park HL. Urinary glyphosate and AMPA levels in a cross-sectional study of postmenopausal women: Associations with organic eating behavior and dietary intake. Int J Hyg Environ Health 2023; 252:114211. [PMID: 37393842 PMCID: PMC10503538 DOI: 10.1016/j.ijheh.2023.114211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Animal and epidemiologic studies suggest that there may be adverse health effects from exposure to glyphosate, the most highly used pesticide in the world, and its metabolite aminomethylphosphonic acid (AMPA). Meanwhile, consumption of organic foods (presumably grown free of chemical pesticides) has increased in recent years. However, there have been limited biomonitoring studies assessing the levels of human glyphosate and AMPA exposure in the United States. We examined urinary levels of glyphosate and AMPA in the context of organic eating behavior in a cohort of healthy postmenopausal women residing in Southern California and evaluated associations with demographics, dietary intake, and other lifestyle factors. 338 women provided two first-morning urine samples and at least one paired 24-h dietary recall reporting the previous day's dietary intake. Urinary glyphosate and AMPA were measured using LC-MS/MS. Participants reported on demographic and lifestyle factors via questionnaires. Potential associations were examined between these factors and urinary glyphosate and AMPA concentrations. Glyphosate was detected in 89.9% of urine samples and AMPA in 67.2%. 37.9% of study participants reported often or always eating organic food, 30.2% sometimes, and 32.0% seldom or never. Frequency of organic food consumption was associated with several demographic and lifestyle factors. Frequent organic eaters had significantly lower urinary glyphosate and AMPA levels, but not after adjustment for covariates. Grain consumption was significantly associated with higher urinary glyphosate levels, even among women who reported often or always eating organic grains. Soy protein and alcohol consumption as well as high frequency of eating fast food were associated with higher urinary AMPA levels. In conclusion, in the largest study to date examining paired dietary recall data and measurements of first-void urinary glyphosate and AMPA, the vast majority of subjects sampled had detectable levels, and significant dietary sources in the American diet were identified.
Collapse
Affiliation(s)
- Rachel M Lucia
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Xiyue Liao
- Department of Mathematics and Statistics, California State University, Long Beach, CA, USA
| | - Wei-Lin Huang
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Danielle Forman
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Alexis Kim
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Argyrios Ziogas
- Department of Medicine, University of California, Irvine, CA, USA
| | | | - Deborah Goodman
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Andrea Alvarez
- Department of Medicine, University of California, Irvine, CA, USA
| | - Irene Masunaka
- Department of Medicine, University of California, Irvine, CA, USA
| | - Khyatiben V Pathak
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Marissa McGilvrey
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Apurva M Hegde
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Hannah Lui Park
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
16
|
Gomez AL, Altamirano GA, Alcaraz MR, Montemurro M, Schierano-Marotti G, Oddi SL, Culzoni MJ, Muñoz-de-Toro M, Bosquiazzo VL, Kass L. Mammary Gland Development in Male Rats Perinatally Exposed to Propiconazole, Glyphosate, or their Mixture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104184. [PMID: 37328086 DOI: 10.1016/j.etap.2023.104184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to assess whether perinatal exposure to propiconazole (PRO), glyphosate (GLY) or their mixture (PROGLY) alters key endocrine pathways and the development of the male rat mammary gland. To this end, pregnant rats were orally exposed to vehicle, PRO, GLY, or a mixture of PRO and GLY from gestation day 9 until weaning. Male offspring were euthanized on postnatal day (PND) 21 and PND60. On PND21, GLY-exposed rats showed reduced mammary epithelial cell proliferation, whereas PRO-exposed ones showed increased ductal p-Erk1/2 expression without histomorphological alterations. On PND60, GLY-exposed rats showed reduced mammary gland area and estrogen receptor alpha expression and increased aromatase expression, whereas PRO-exposed ones showed enhanced lobuloalveolar development and increased lobular hyperplasia. However, PROGLY did not modify any of the endpoints evaluated. In summary, PRO and GLY modified the expression of key molecules and the development of the male mammary gland individually but not together.
Collapse
Affiliation(s)
- Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milagros Montemurro
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sofia L Oddi
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
17
|
Costas-Ferreira C, Durán R, Faro LF. Neurotoxic effects of exposure to glyphosate in rat striatum: Effects and mechanisms of action on dopaminergic neurotransmission. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105433. [PMID: 37248010 DOI: 10.1016/j.pestbp.2023.105433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
The main objective of this study was to evaluate the effects and possible mechanisms of action of glyphosate and a glyphosate-based herbicide (GBH) on dopaminergic neurotransmission in the rat striatum. Acute exposure to glyphosate or GBH, administered by systemic (75 or 150 mg/kg, i.p.) or intrastriatal (1, 5, or 10 mM for 1 h) routes, produced significant concentration-dependent increases in dopamine release measured in vivo by cerebral microdialysis coupled to HPLC with electrochemical detection. Systemic administration of glyphosate also significantly impaired motor control and decreased striatal acetylcholinesterase activity and antioxidant capacity. At least two mechanisms can be proposed to explain the glyphosate-induced increases in extracellular dopamine levels: increased exocytotic dopamine release from synaptic vesicles or inhibition of dopamine transporter (DAT). Thus, we investigated the effects of intrastriatal administration of glyphosate (5 mM) in animals pretreated with tetrodotoxin (TTX) or reserpine. It was observed that TTX (10 or 20 μM) had no significant effect on glyphosate-induced dopamine release, while reserpine (10 mg/kg i.p) partially but significantly reduced the dopamine release. When glyphosate was coinfused with nomifensine (50 μM), the increase in dopamine levels was significantly higher than that observed with glyphosate or nomifensine alone. So, two possible hypotheses could explain this additive effect: both glyphosate and nomifensine act through different mechanisms at the dopaminergic terminals to increase dopamine levels; or both nomifensine and glyphosate act on DAT, with glyphosate simultaneously inhibiting reuptake and stimulating dopamine release by reversing the DAT function. Future research is needed to determine the effects of this pesticide at environmentally relevant doses.
Collapse
Affiliation(s)
- Carmen Costas-Ferreira
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Rafael Durán
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Lilian Ferreira Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain.
| |
Collapse
|
18
|
Heymann AK, Schnabel K, Billenkamp F, Bühler S, Frahm J, Kersten S, Meyer U, von Soosten D, Dänicke S. Influences of Glyphosate Contaminations and Concentrate Feed on Performance, Blood Parameters, Blood Cell Functionality and DNA Damage Properties in Fattening Bulls. Animals (Basel) 2023; 13:ani13091499. [PMID: 37174536 PMCID: PMC10177583 DOI: 10.3390/ani13091499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Glyphosate (GLY), the active substance in non-selective herbicides, is often found in ruminant feed. The present feeding study aimed to investigate the effects of GLY-contaminated rations and different concentrate feed proportions (CFP) on the health of fattening German Holstein bulls. Bulls were grouped by low (LC) or high (HC) CFP with (GLYLC, GLYHC) or without GLY-contaminations (CONLC, CONHC) in their rations. Intakes (dry matter, water) and body weight were documented continuously lasting over an average range from 392.2 ± 60.4 kg to 541.2 ± 67.4 kg (mean ± SD). Blood samples collected at the trial's beginning, and after 7 and 15 weeks, were analyzed for hematological and clinical-chemical traits, functional properties of leukocytes, redox parameters and DNA damage. The average GLY exposures of 128.6 (GLYHC), 213.7 (GLYLC), 1.3 (CONHC) and 2.0 µg/kg body weight/d (CONLC) did not lead to GLY effects for most of the assessed parameters relating to animal health and performance. CFP and time displayed marked influences on most of the experimental parameters such as higher dry matter intake and average daily gain in HC compared with the LC groups. GLY effects were rather weak. However, the observed interactive effects between GLY and CFP and/or time occurring in an inconsistent manner are likely not reproducible. Finally, all animals remained clinically inconspicuous, which brings into question the physiological relevance of putative GLY effects.
Collapse
Affiliation(s)
- Ann-Katrin Heymann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - Karina Schnabel
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - Fabian Billenkamp
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| |
Collapse
|
19
|
Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision (Basel) 2023; 7:vision7020032. [PMID: 37092465 PMCID: PMC10123707 DOI: 10.3390/vision7020032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.
Collapse
Affiliation(s)
| | - Brandon Locke
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jacqueline Albert
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
20
|
Smith-Roe SL, Swartz CD, Rashid A, Christy NC, Sly JE, Chang X, Sipes NS, Shockley KR, Harris SF, McBride SJ, Larson GJ, Collins BJ, Mutlu E, Witt KL. Evaluation of the herbicide glyphosate, (aminomethyl)phosphonic acid, and glyphosate-based formulations for genotoxic activity using in vitro assays. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:202-233. [PMID: 36880770 PMCID: PMC10266336 DOI: 10.1002/em.22534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Glyphosate, the most heavily used herbicide world-wide, is applied to plants in complex formulations that promote absorption. The National Toxicology Program reported in 1992 that glyphosate, administered to rats and mice at doses up to 50,000 ppm in feed for 13 weeks, showed little evidence of toxicity, and no induction of micronuclei was observed in the mice in this study. Subsequently, mechanistic studies of glyphosate and glyphosate-based formulations (GBFs) that have focused on DNA damage and oxidative stress suggest that glyphosate may have genotoxic potential. However, few of these studies directly compared glyphosate to GBFs, or effects among GBFs. To address these data gaps, we tested glyphosate, glyphosate isopropylamine (IPA), and (aminomethyl)phosphonic acid (AMPA, a microbial metabolite of glyphosate), 9 high-use agricultural GBFs, 4 residential-use GBFs, and additional herbicides (metolachlor, mesotrione, and diquat dibromide) present in some of the GBFs in bacterial mutagenicity tests, and in human TK6 cells using a micronucleus assay and a multiplexed DNA damage assay. Our results showed no genotoxicity or notable cytotoxicity for glyphosate or AMPA at concentrations up to 10 mM, while all GBFs and herbicides other than glyphosate were cytotoxic, and some showed genotoxic activity. An in vitro to in vivo extrapolation of results for glyphosate suggests that it is of low toxicological concern for humans. In conclusion, these results demonstrate a lack of genotoxicity for glyphosate, consistent with observations in the NTP in vivo study, and suggest that toxicity associated with GBFs may be related to other components of these formulations.
Collapse
Affiliation(s)
- Stephanie L. Smith-Roe
- Division of Translational Toxicology, NIEHS, Research
Triangle Park, North Carolina, USA
| | - Carol D. Swartz
- Integrated Laboratory Systems, LLC†, Research Triangle Park, North Carolina,
USA
| | - Asma Rashid
- Integrated Laboratory Systems, LLC†, Research Triangle Park, North Carolina,
USA
| | - Nicholas C. Christy
- Integrated Laboratory Systems, LLC†, Research Triangle Park, North Carolina,
USA
| | - Jamie E. Sly
- Integrated Laboratory Systems, LLC†, Research Triangle Park, North Carolina,
USA
| | - Xiaoqing Chang
- Integrated Laboratory Systems, LLC†, Research Triangle Park, North Carolina,
USA
| | - Nisha S. Sipes
- Division of Translational Toxicology, NIEHS, Research
Triangle Park, North Carolina, USA
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, NIEHS,
Research Triangle Park, North Carolina, USA
| | - Shawn F. Harris
- Social & Scientific Systems, Inc., Durham, North
Carolina, USA
| | | | - Gary J. Larson
- Social & Scientific Systems, Inc., Durham, North
Carolina, USA
| | - Bradley J. Collins
- Division of Translational Toxicology, NIEHS, Research
Triangle Park, North Carolina, USA
| | - Esra Mutlu
- Division of Translational Toxicology, NIEHS, Research
Triangle Park, North Carolina, USA
| | - Kristine L. Witt
- Division of Translational Toxicology, NIEHS, Research
Triangle Park, North Carolina, USA
| |
Collapse
|
21
|
Wu J, Sun X, Wu C, Hong X, Xie L, Shi Z, Zhao L, Du Q, Xiao W, Sun J, Wang J. Single-cell transcriptome analysis reveals liver injury induced by glyphosate in mice. Cell Mol Biol Lett 2023; 28:11. [PMID: 36739397 PMCID: PMC9898913 DOI: 10.1186/s11658-023-00426-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glyphosate (GLY), as the active ingredient of the most widely used herbicide worldwide, is commonly detected in the environment and living organisms, including humans. Its toxicity and carcinogenicity in mammals remain controversial. Several studies have demonstrated the hepatotoxicity of GLY; however, the underlying cellular and molecular mechanisms are still largely unknown. METHODS Using single-cell RNA sequencing (scRNA-seq), immunofluorescent staining, and in vivo animal studies, we analyzed the liver tissues from untreated and GLY-treated mice. RESULTS We generated the first scRNA-seq atlas of GLY-exposed mouse liver. GLY induced varied cell composition, shared or cell-type-specific transcriptional alterations, and dysregulated cell-cell communication and thus exerted hepatotoxicity effects. The oxidative stress and inflammatory response were commonly upregulated in several cell types. We also observed activation and upregulated phagocytosis in macrophages, as well as proliferation and extracellular matrix overproduction in hepatic stellate cells. CONCLUSIONS Our study provides a comprehensive single-cell transcriptional picture of the toxic effect of GLY in the liver, which offers novel insights into the molecular mechanisms of the GLY-associated hepatotoxicity.
Collapse
Affiliation(s)
- Jiangpeng Wu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Xiuping Sun
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Chunyi Wu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Lulin Xie
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Zixu Shi
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Liang Zhao
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
- Department of Pathology and Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China.
| | - Jichao Sun
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Jigang Wang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China.
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
22
|
Coperchini F, Greco A, Croce L, Denegri M, Magri F, Rotondi M, Chiovato L. In vitro study of glyphosate effects on thyroid cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120801. [PMID: 36462676 DOI: 10.1016/j.envpol.2022.120801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is a pesticide, which contaminates the environment and exposes workers and general population to its residues present in foods and waters. In soil, Glyphosate is degraded in metabolites, amino-methyl-phosphonic acid (AMPA) being the main one. Glyphosate is considered a potential cancerogenic and endocrine-disruptor agent, however its adverse effects on the thyroid were evaluated only in animal models and in vitro data are still lacking. Aim of this study was to investigate whether exposure to Glyphosate could exert adverse effects on thyroid cells in vitro. Two models (adherent-2D and spheroid-3D) derived from the same cell strain Fisher-rat-thyroid-cell line-5 (FRTL-5) were employed. After exposure to Glyphosate at increasing concentrations (0.0, 0.1-0.25- 0.5-1.0-2.0-10.0 mM) we evaluated cell viability by WST-1 (adherent and spheroids), results being confirmed by propidium-iodide staining (only for spheroids). Proliferation of adherent cells was assessed by crystal violet and trypan-blue assays, the increasing volume of spheroids was taken as a measure of proliferation. We also evaluated the ability of cells to form spheroids after Glyphosate exposure. We assessed changes of reactive-oxygen-species (ROS) by the cell-permeant H2DCFDA. Glyphosate-induced changes of mRNAs encoding for thyroid-related genes (TSHR, TPO, TG, NIS, TTF-1 and PAX8) were evaluated by RT-PCR. Glyphosate reduced cell viability and proliferation in both models, even if at different concentrations. Glyphosate at the highest concentration reduced the ability of FRTL-5 to form spheroids. An increased ROS production was found in both models after exposure to Glyphosate. Finally, Glyphosate increased the mRNA levels of some thyroid related genes (TSHR, TPO, TG and TTF-1) in both models, while it increased the mRNAs of PAX8 and NIS only in the adherent model. The present study supports an adverse effect of Glyphosate on cultured thyroid cells. Glyphosate reduced cell viability and proliferation and increased ROS production in thyroid cells.
Collapse
Affiliation(s)
- Francesca Coperchini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Laura Croce
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marco Denegri
- Unit of Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Flavia Magri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy.
| |
Collapse
|
23
|
Kim YJ, Nitin N, Kim KB. Negligible Toxicokinetic Differences of Glyphosate by Different Vehicles in Rats. TOXICS 2023; 11:67. [PMID: 36668793 PMCID: PMC9861297 DOI: 10.3390/toxics11010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Glyphosate is a non-selective herbicide. Although glyphosate is not acutely toxic, the intake of glyphosate-based herbicides has caused many accidents. Some studies have suggested that surfactants might be the cause. The purpose of this study was to compare the toxicokinetic (TK) properties of glyphosate according to different vehicles in rats. Glyphosate (1%) was dissolved in distilled water (DW), polyoxyethylene tallow amine (POEA), and Tween 20. After a single oral treatment of glyphosate (50 mg/kg), blood was collected at time intervals, and glyphosate concentrations in the target organ (liver and kidney) were determined 24 h after final blood collection. All samples were analyzed using LC-MS/MS. The TK parameters of glyphosate were similar in the DW and Tween 20 groups. However, there were significant differences in Tmax and volume of distribution (Vd) between the DW and POEA group (p < 0.05). Glyphosate was absorbed about 10 times faster in POEA group rather than DW, and exhibited a higher distribution. However, other important TK parameters of T1/2, AUC, and Cmax were not statistically different among the different vehicle groups. Although glyphosate concentration in the liver was significantly higher in the POEA group than in the DW group, there was no significant difference in the kidney. These results indicate that the toxicokinetics of glyphosate are not significantly affected by POEA. It can be concluded that POEA toxicity itself can be attributed to the acute toxicity of glyphosate-containing products.
Collapse
Affiliation(s)
- Yu-Jin Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Republic of Korea
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan 31116, Chungnam, Republic of Korea
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| |
Collapse
|
24
|
de Marins MLR, Nunes JA, Da Silva Moraes VG, de Lima RS, de Oliveira Cardoso MV, Araújo Ribeiro LAD, de Queiroz DB, Silva FS. Maternal exposure to glyphosate-based herbicide causes changes in the vascular function of offspring adult rats. Reprod Toxicol 2023; 115:94-101. [PMID: 36543306 DOI: 10.1016/j.reprotox.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
This study analyzed how glyphosate exposure in the gestational period affects vascular function in their offspring, focusing on the influence of age and whether oxidative stress is involved in this effect. To this, pregnant Wistar rats were exposed through drinking water to 0.2% of a glyphosate commercial formulation, and we analyzed the response to acetylcholine and phenylephrine in the aorta from offspring of glyphosate herbicide-based (O-GHB) and controls (O-CON) rats at 3, 6, and 12 months of age. O-GHB groups showed no changes in arterial blood pressure or aorta histological analysis. Relaxation to acetylcholine was reduced in O-GHB than O-CON. Acute TEMPOL increased relaxation to acetylcholine in O-GHB at 6 and 12 months of age. The aorta from O-GHB was hyperactive to phenylephrine only at 6 months of age. Preincubation with N-nitro-L-arginine methyl ester (L-NAME) increased contraction to phenylephrine more in O-CON than O-GHB. TEMPOL similarly reduced phenylephrine response. This effect was prevented by L-NAME. Results reinforce the concept that oxidative stress during the perinatal period contributes to the development of vascular changes in adulthood. Results also reveal that although no changes in cardiac or histological parameters have been demonstrated, the current levels considered safe for exposure to glyphosate deserve further investigation, especially during pregnancy.
Collapse
|
25
|
Bai G, Jiang X, Qin J, Zou Y, Zhang W, Teng T, Shi B, Sun H. Perinatal exposure to glyphosate-based herbicides impairs progeny health and placental angiogenesis by disturbing mitochondrial function. ENVIRONMENT INTERNATIONAL 2022; 170:107579. [PMID: 36265358 DOI: 10.1016/j.envint.2022.107579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used pesticide worldwide and can provoke placental injury. However, whether and how GBHs damage angiogenesis in the placenta is not yet known. This work evaluated the safety of glyphosate on pregnant sows based on the limit level by governments and investigated the effects and mechanism of Low-GBHs (20 mg/kg) and High-GBHs (100 mg/kg) exposure on placental angiogenesis. Results showed that gestational exposure to GBHs decreased placental vessel density and cell multiplication by interfering with the expression of VEGFA, PLGF, VEGFr2 and Hand2 (indicators of angiogenesis), which may be in relation to oxidative stress-induced disorders of mitochondrial fission and fusion as well as the impaired function of the mitochondrial respiratory chain. Additionally, GBHs destroyed barrier function and nutrient transport in the placenta, and was accompanied by jejunum oxidative stress in newborn piglets. However, GBHs exposure had no significant differences on sow reproductive performance. As a natural antioxidant, betaine treatment protected placenta and newborn piglets against GBHs-induced damage. In conclusion, GBHs impaired placental angiogenesis and function and further damaged the health of postnatal progeny, these effects may be linked to mitochondrial dysfunction. Betaine treatment following glyphosate exposure provided modest relief.
Collapse
Affiliation(s)
- Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianwei Qin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingbin Zou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Wentao Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Haoyang Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
26
|
Mesnage R, Ferguson S, Brandsma I, Moelijker N, Zhang G, Mazzacuva F, Caldwell A, Halket J, Antoniou MN. The surfactant co-formulant POEA in the glyphosate-based herbicide RangerPro but not glyphosate alone causes necrosis in Caco-2 and HepG2 human cell lines and ER stress in the ToxTracker assay. Food Chem Toxicol 2022; 168:113380. [PMID: 36028061 DOI: 10.1016/j.fct.2022.113380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
The toxicity of co-formulants present in glyphosate-based herbicides (GBHs) has been widely discussed leading to the European Union banning the polyoxyethylene tallow amine (POEA). We identified the most commonly used POEA, known as POE-15 tallow amine (POE-15), in the widely used US GBH RangerPro. Cytotoxicity assays using human intestinal epithelial Caco-2 and hepatocyte HepG2 cell lines showed that RangerPro and POE-15 are far more cytotoxic than glyphosate alone. RangerPro and POE-15 but not glyphosate caused cell necrosis in both cell lines, and that glyphosate and RangerPro but not POE-15 caused oxidative stress in HepG2 cells. We further tested these pesticide ingredients in the ToxTracker assay, a system used to evaluate a compound's carcinogenic potential, to assess their capability for inducing DNA damage, oxidative stress and an unfolded protein response (endoplasmic reticulum, ER stress). RangerPro and POE-15 but not glyphosate gave rise to ER stress. We conclude that the toxicity resulting from RangerPro exposure is thus multifactorial involving ER stress caused by POE-15 along with oxidative stress caused by glyphosate. Our observations reinforce the need to test both co-formulants and active ingredients of commercial pesticides to inform the enactment of more appropriate regulation and thus better public and environmental protection.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | - Scarlett Ferguson
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | | | | | - Gaonan Zhang
- Toxys, De Limes 7, 2342 DH, Oegstgeest, the Netherlands
| | - Francesca Mazzacuva
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - Anna Caldwell
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - John Halket
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
27
|
Bai G, Zhou R, Jiang X, Zou Y, Shi B. Glyphosate-based herbicides induces autophagy in IPEC-J2 cells and the intervention of N-acetylcysteine. ENVIRONMENTAL TOXICOLOGY 2022; 37:1878-1890. [PMID: 35388968 DOI: 10.1002/tox.23534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used pesticide in the world, and its extensive use has increased pressures on environmental safety and potential human and livestock health risks. This study investigated the effects of GBHs on antioxidant capacity, inflammatory cytokines, and autophagy of porcine intestinal epithelial cells (IPEC-J2) and its molecular mechanism. Also, the protective effects of N-acetylcysteine (NAC) against the toxicity of GBHs were evaluated. Our results showed that the activities of antioxidant enzymes (SOD, GSH-Px) were decreased by GBHs. GBHs increased inflammatory factors (IL-1β, IL-6, TNF-α) and the mRNA expression of iNOS and COX-2. GBHs induced the up-regulation of Nrf2/HO-1 pathway and the phosphorylation of IκB-α and NFκB p65, up-regulation of LC3-II/LC3-I, and down-regulation of P62, and NFκB inhibitor decreased the mRNA expression of inflammatory cytokines (IL-1β, IL-6, IL-8). Moreover, NAC reduced the cytotoxicity by suppressing ROS levels, and changed the autophagy-related proteins such as the suppression of LC3-II conversion and up-regulation of P62. Our findings unveil a novel mechanism of GBHs effects on IPEC-J2 cells and NAC can reverse cytotoxicity to some extent.
Collapse
Affiliation(s)
- Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Ruiying Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xu Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yingbin Zou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
28
|
Mesnage R, Calatayud M, Duysburgh C, Marzorati M, Antoniou MN. Alterations in infant gut microbiome composition and metabolism after exposure to glyphosate and Roundup and/or a spore-based formulation using the SHIME technology. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e6. [PMID: 39295780 PMCID: PMC11406414 DOI: 10.1017/gmb.2022.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 09/21/2024]
Abstract
Despite extensive research into the toxicology of the herbicide glyphosate, there are still major unknowns regarding its effects on the human gut microbiome. We describe the effects of glyphosate and a Roundup glyphosate-based herbicide on infant gut microbiota using SHIME technology. SHIME microbiota culture was undertaken in the presence of a concentration of 100-mg/L glyphosate and the same glyphosate equivalent concentration of Roundup. Roundup and to a lesser extent glyphosate caused an increase in fermentation activity, resulting in acidification of the microbial environment. This was also reflected by an increase in lactate and acetate production concomitant to a decrease in the levels of propionate, valerate, caproate and butyrate. Ammonium production reflecting proteolytic activities was increased by Roundup exposure. Global metabolomics revealed large-scale disturbances, including an increased abundance of long-chain polyunsaturated fatty acids. Changes in bacterial composition measured by qPCR and 16S rRNA suggested that lactobacilli had their growth stimulated as a result of microenvironment acidification. Co-treatment with the spore-based probiotic formulation MegaSporeBiotic reverted some of the changes in short-chain fatty acid levels. Altogether, our results suggest that glyphosate can exert effects on human gut microbiota.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | | | | | - Massimo Marzorati
- ProDigest BV, Ghent, Belgium
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| |
Collapse
|
29
|
Ngatuni D, Wairagu P, Jillani N, Isaac AO, Nyariki JN. A glyphosate-based herbicide disrupted hematopoiesis and induced organ toxicities, ameliorated by vitamin B12 in a mouse model. Saudi J Biol Sci 2022; 29:103278. [PMID: 35401022 PMCID: PMC8987997 DOI: 10.1016/j.sjbs.2022.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Glyphosate-based herbicides (GBH) are widely used worldwide. Their negative impact on human health is a matter of debate by regulatory bodies and the public. The present study sought to determine the impact of a GBH on the vital organs; and the potential protective effects of vitamin B12 (cyanocobalamin) supplementation. Sixty white Swiss mice were randomly assigned to five treatment groups, each containing twelve mice. Group one represented the normal control; Group two mice were treated with 375 mg/kg of GBH for 56 days; Group three mice received 10 mg/kg of cyanocobalamin for 56 days; Group four mice were administered with 375 mg/kg of GBH and 10 mg/kg cyanocobalamin for 56 days and Group five received 10 mg/kg cyanocobalamin first for 7 days, then continued thereafter co-administered together with 375 mg/kg of GBH for 56 days). Oral administration of GBH induced severe anemia in mice, which was attenuated by cyanocobalamin. Moreover, GBH resulted in a very significant alteration of platelets, WBCs, and its sub-types. Once again, cyanocobalamin stabilized the levels of platelets and WBCs in the presence of GBH. GBH-induced elevation of triglycerides and HDL was nullified by the administration of cyanocobalamin. Further studies showed evidence for GBH-induced inflammation represented by an imbalance in serum levels of the TNF-α: IL-10 and IFN-γ ratios. The GBH severely depleted GSH levels in the liver. A GBH-induced rise in GSH in the kidney, lungs and brain was noted; and is an indicator of antioxidant capacity enhancement in response to a GBH-induced oxidant challenge. Moreover, cyanocobalamin supplementation abrogated GBH-induced oxidative stress as depicted by stabilized GSH levels in the liver, kidney, lungs, and brain. In the presence of cyanocobalamin, the GBH-induced liver injury depicted by elevation of AST, ALT, and bilirubin, was attenuated. From the results, we conclude that the capacity of cyanocobalamin to assuage GBH-induced inflammatory responses, hepatotoxicity, and hematological alteration as well as oxidative stress may be attributable to its antioxidant and anti-inflammatory properties. The current findings provide a solid foundation for further scrutiny of this phenomenon, with vital implications in GBH exposure and the role of potent antioxidant supplementation in the management of GBH-induced toxicity.
Collapse
|
30
|
Moser VC, Morris-Schaffer K, Richardson JR, Li AA. Glyphosate and neurological outcomes: A systematic literature review of animal studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:162-209. [PMID: 35676826 DOI: 10.1080/10937404.2022.2083739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of nervous system effects of glyphosate, a widely used herbicide, have not been critically examined. The aim of this paper was to systematically review glyphosate-induced neurotoxicity literature to determine its usefulness in regulatory decision-making. The review was restricted to mammalian studies of behavior, neuropathology, and neuropharmacology; in vitro and other biochemical studies were considered supplementary information. Glyphosate formulation studies were also considered, despite uncertainties regarding toxicities of the formulated products; no studies used a formulation vehicle as the control. Inclusion criteria were developed a priori to ensure consistent evaluation of studies, and in vivo investigations were also ranked using ToxRTool software to determine reliability. There were 27 in vivo studies (open literature and available regulatory reports), but 11 studies were considered unreliable (mostly due to critical methodological deficiencies). There were only seven acceptable investigations on glyphosate alone. Studies differed in terms of dosing scenarios, experimental designs, test species, and commercial product. Limitations included using only one dose and/or one test time, small sample sizes, limited data presentation, and/or overtly toxic doses. While motor activity was the most consistently affected endpoint (10 of 12 studies), there were considerable differences in outcomes. In six investigations, there were no marked neuropathological changes in the central or peripheral nervous system. Other neurological effects were less consistent, and some outcomes were less convincing due to influences including high variability and small effect sizes. Taken together, these studies do not demonstrate a consistent impact of glyphosate on the structure or function of the mammalian nervous system.
Collapse
Affiliation(s)
| | - Keith Morris-Schaffer
- Exponent Inc, Center for Chemical Regulation and Food Safety, Sacramento, California
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States
| | - Abby A Li
- Exponent Inc, Center for Health Sciences, Oakland, CA, United States
| |
Collapse
|
31
|
Larsen K, Lifschitz A, Fernández San Juan R, Virkel G. Metabolic stability of glyphosate and its environmental metabolite (aminomethylphosphonic acid) in the ruminal content of cattle. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:740-751. [PMID: 35302929 DOI: 10.1080/19440049.2022.2032382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 10/18/2022]
Abstract
Glyphosate (GLY) is one of the most commonly used herbicides worldwide. Both GLY and aminomethylphosphonic acid (AMPA), its main degradation product, may be present in feedstuffs offered to dairy cows. Although the major proportions of ingested GLY and AMPA are eliminated with faeces, a potential degradation of GLY to AMPA in the rumen of dairy cows has been suggested. Considering that the rumen plays a central role in the pre-systemic metabolism of xenobiotics, this research aimed to investigate whether or not GLY and AMPA are metabolised in the ruminal environment of cattle. The distribution of both compounds between the fluid and solid phases of the ruminal content (RC) was also evaluated. RC from 3 steers were collected in an abattoir. Aliquots were incubated (3-6 h) in anaerobiosis with GLY (15 µg/mL) and AMPA (1.5 µg/mL). Metabolic viability of RC was assessed by the measurement of the sulpho-reduction of the anthelmintic derivative albendazole sulphoxide (ABZSO) into albendazole (ABZ) in the absence (controls) or in presence of GLY and AMPA. Incubations of boiled (inactive) RC were used as controls. Samples were analysed by HLPC with fluorescence detection. Neither GLY nor AMPA were metabolised in metabolically active RC from cattle. Both compounds were predominantly found in the fluid phase compared to the solid (particulate) matter of RC. Neither GLY nor AMPA had a negative effect on the metabolic production of ABZ. A high metabolic stability of both compounds within the ruminal environment would be expected in vivo. Their presence in high proportion in the fluid phase of the ruminal content may give rise to a rapid flow of both GLY and AMPA to the posterior gastrointestinal tract. Negative effects on the ruminal biotransformation of therapeutically used drugs would not be expected when the herbicide and its degradation product are consumed with food.
Collapse
Affiliation(s)
- Karen Larsen
- Facultad de Ciencias Veterinarias, Laboratorio de Ecotoxicología y Biología Celular, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Adrián Lifschitz
- Facultad de Ciencias Veterinarias, Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Rocío Fernández San Juan
- Facultad de Ciencias Veterinarias, Laboratorio de Ecotoxicología y Biología Celular, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Guillermo Virkel
- Facultad de Ciencias Veterinarias, Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CIC-UNCPBA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| |
Collapse
|
32
|
Strilbyska OM, Tsiumpala SA, Kozachyshyn II, Strutynska T, Burdyliuk N, Lushchak VI, Lushchak O. The effects of low-toxic herbicide Roundup and glyphosate on mitochondria. EXCLI JOURNAL 2022; 21:183-196. [PMID: 35221840 PMCID: PMC8859649 DOI: 10.17179/excli2021-4478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The effects of pesticides on the health of non-target living organisms in agricultural areas are critically important aspects for their safe use. Their release into the environment is an inevitable aspect for predicting and evaluation of the risk of their application. Roundup, a glyphosate-based herbicide, has been designed as an effective pesticide against weeds and now is the most widely used agrochemicals around the world due to its highly specific action of the biosynthesis of certain amino acids in plants. Despite it is claimed to be low toxic for not-target organisms, due to its broad application Roundup and products of its degradation were detected in organisms of diverse animals and humans. In this review, we describe animal and human studies of general adverse effects of Roundup and its principal substance glyphosate with focus on endocrine disruption, oxidative stress and behavioral disorders. At mechanistic level, we focus on the potential toxicity of the herbicide Roundup and glyphosate as effectors of bioenergetic functions of mitochondria. Their effects on mitochondrial membrane potential and oxidative phosphorylation are among described to date critical components responsible for its toxicity. Finally, we discuss general molecular mechanisms potentially involved in the interaction between glyphosate and mitochondria which to some extent are associated with generation of reactive oxygen species.
Collapse
Affiliation(s)
- Olha M Strilbyska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Sviatoslav A Tsiumpala
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Ivanna I Kozachyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Tetiana Strutynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.,Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk, 76000, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.,Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk, 76000, Ukraine
| |
Collapse
|
33
|
Wang X, Lu Q, Guo J, Ares I, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative Stress and Metabolism: A Mechanistic Insight for Glyphosate Toxicology. Annu Rev Pharmacol Toxicol 2022; 62:617-639. [PMID: 34990202 DOI: 10.1146/annurev-pharmtox-020821-111552] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glyphosate (GLYP) is a widely used pesticide; it is considered to be a safe herbicide for animals and humans because it targets 5-enolpyruvylshikimate-3-phosphate synthase. However, there has been increasing evidence that GLYP causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. This review provides a comprehensive introduction to the toxicity of GLYP and, for the first time, systematically summarizes the toxicity mechanism of GLYP from the perspective of oxidative stress, including GLYP-mediated oxidative damage, changes in antioxidant status, altered signaling pathways, and the regulation of oxidative stress by exogenous substances. In addition, the metabolism of GLYP is discussed, including metabolites,metabolic pathways, metabolic enzymes, and the toxicity of metabolites. This review provides new ideas for the toxicity mechanism of GLYP and proposes effective strategies for reducing its toxicity.
Collapse
Affiliation(s)
- Xiaojing Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei 430023, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| |
Collapse
|
34
|
Pena A, Duarte S, Pereira AMPT, Silva LJG, Laranjeiro CSM, Oliveira M, Lino C, Morais S. Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part I-Lessons Learned on Polycyclic Aromatic Hydrocarbons, Metals, Metalloids, and Pesticides. Molecules 2021; 27:242. [PMID: 35011472 PMCID: PMC8746698 DOI: 10.3390/molecules27010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Human biomonitoring (HBM) data provide information on total exposure regardless of the route and sources of exposure. HBM studies have been applied to quantify human exposure to contaminants and environmental/occupational pollutants by determining the parent compounds, their metabolites or even their reaction products in biological matrices. HBM studies performed among the Portuguese population are disperse and limited. To overcome this knowledge gap, this review gathers, for the first time, the published Portuguese HBM information concerning polycyclic aromatic hydrocarbons (PAHs), metals, metalloids, and pesticides concentrations detected in the urine, serum, milk, hair, and nails of different groups of the Portuguese population. This integrative insight of available HBM data allows the analysis of the main determinants and patterns of exposure of the Portuguese population to these selected hazardous compounds, as well as assessment of the potential health risks. Identification of the main difficulties and challenges of HBM through analysis of the enrolled studies was also an aim. Ultimately, this study aimed to support national and European policies promoting human health and summarizes the most important outcomes and lessons learned through the HBM studies carried out in Portugal.
Collapse
Affiliation(s)
- Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Sofia Duarte
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
- Centro de Investigação Vasco da Gama-Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama, Av. José R. Sousa Fernandes, Campus Universitário-Bloco B, 3020-210 Coimbra, Portugal
| | - André M. P. T. Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Liliana J. G. Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Célia S. M. Laranjeiro
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Marta Oliveira
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.O.); (S.M.)
| | - Celeste Lino
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Simone Morais
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.O.); (S.M.)
| |
Collapse
|
35
|
Bicca DF, Spiazzi CC, Ramalho JB, Soares MB, Cibin FWS. A subchronic low-dose exposure of a glyphosate-based herbicide induces depressive and anxious-like behavior in mice: quercetin therapeutic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67394-67403. [PMID: 34254248 DOI: 10.1007/s11356-021-15402-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the possible role of pesticide exposure in contributing to neurological diseases such as depression. Here, we evaluated whether a subchronic low dose of a glyphosate-based herbicide (GBH) could induce alterations in the central nervous system, using the flavonoid quercetin as a therapeutic strategy. Forty mice were divided into four treatment groups: control, GBH, quercetin, and GBH+Quer groups and received 50 mg/kg of GBH solution, 30 mg/kg of quercetin, and/or vehicles for 30 days via gavage. After performing behavioral tests, such as the open field (OF), elevated plus maze (EPM), forced swim test (FST), and sucrose preference test (SPT), the mice were euthanized and their hippocampal tissues were collected to measure the levels of oxidative stress markers such as reactive species (RS), total antioxidant capacity (FRAP), reduced glutathione (GSH), and acetylcholinesterase activity (AChE), as well as for histological evaluation. The GBH group showed anxious and depressive-like behavior in the EPM and FST tests, as well as increased levels of RS and decreased GSH levels in the hippocampus. Quercetin treatment in the GBH+Quer group allowed partial or total improvement in behavioral tests (EPM and FST) and in the levels of oxidative stress markers (RS and GSH). However, the quercetin group showed similar behavior to the GBH group after treatment. The results revealed that oral exposure to a subchronic low dose of GBH was capable of promoting effects on behavior and oxidative stress in the hippocampus of mice. In addition, despite quercetin having a neuroprotective role, caution is needed when considering the possible per se effects of its continuous supplementation.
Collapse
Affiliation(s)
- Diogo Ferreira Bicca
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Cristiano Chiapinotto Spiazzi
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Juliana Bernera Ramalho
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Melina Bucco Soares
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Francielli Weber Santos Cibin
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
36
|
Marino M, Mele E, Viggiano A, Nori SL, Meccariello R, Santoro A. Pleiotropic Outcomes of Glyphosate Exposure: From Organ Damage to Effects on Inflammation, Cancer, Reproduction and Development. Int J Mol Sci 2021; 22:12606. [PMID: 34830483 PMCID: PMC8618927 DOI: 10.3390/ijms222212606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Glyphosate is widely used worldwide as a potent herbicide. Due to its ubiquitous use, it is detectable in air, water and foodstuffs and can accumulate in human biological fluids and tissues representing a severe human health risk. In plants, glyphosate acts as an inhibitor of the shikimate pathway, which is absent in vertebrates. Due to this, international scientific authorities have long-considered glyphosate as a compound that has no or weak toxicity in humans. However, increasing evidence has highlighted the toxicity of glyphosate and its formulations in animals and human cells and tissues. Thus, despite the extension of the authorization of the use of glyphosate in Europe until 2022, several countries have begun to take precautionary measures to reduce its diffusion. Glyphosate has been detected in urine, blood and maternal milk and has been found to induce the generation of reactive oxygen species (ROS) and several cytotoxic and genotoxic effects in vitro and in animal models directly or indirectly through its metabolite, aminomethylphosphonic acid (AMPA). This review aims to summarize the more relevant findings on the biological effects and underlying molecular mechanisms of glyphosate, with a particular focus on glyphosate's potential to induce inflammation, DNA damage and alterations in gene expression profiles as well as adverse effects on reproduction and development.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, 80133 Naples, Italy;
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| | - Stefania Lucia Nori
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, 80133 Naples, Italy;
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| |
Collapse
|
37
|
Milesi MM, Lorenz V, Durando M, Rossetti MF, Varayoud J. Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects. Front Endocrinol (Lausanne) 2021; 12:672532. [PMID: 34305812 PMCID: PMC8293380 DOI: 10.3389/fendo.2021.672532] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Glyphosate base herbicides (GBHs) are the most widely applied pesticides in the world and are mainly used in association with GBH-tolerant crop varieties. Indiscriminate and negligent use of GBHs has promoted the emergence of glyphosate resistant weeds, and consequently the rise in the use of these herbicides. Glyphosate, the active ingredient of all GBHs, is combined with other chemicals known as co-formulants that enhance the herbicide action. Nowadays, the safety of glyphosate and its formulations remain to be a controversial issue, as evidence is not conclusive whether the adverse effects are caused by GBH or glyphosate, and little is known about the contribution of co-formulants to the toxicity of herbicides. Currently, alarmingly increased levels of glyphosate have been detected in different environmental matrixes and in foodstuff, becoming an issue of social concern. Some in vitro and in vivo studies have shown that glyphosate and its formulations exhibit estrogen-like properties, and growing evidence has indicated they may disrupt normal endocrine function, with adverse consequences for reproductive health. Moreover, multigenerational effects have been reported and epigenetic mechanisms have been proved to be involved in the alterations induced by the herbicide. In this review, we provide an overview of: i) the routes and levels of human exposure to GBHs, ii) the potential estrogenic effects of glyphosate and GBHs in cell culture and animal models, iii) their long-term effects on female fertility and mechanisms of action, and iv) the consequences on health of successive generations.
Collapse
Affiliation(s)
- María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
38
|
De María M, Silva-Sanchez C, Kroll KJ, Walsh MT, Nouri MZ, Hunter ME, Ross M, Clauss TM, Denslow ND. Chronic exposure to glyphosate in Florida manatee. ENVIRONMENT INTERNATIONAL 2021; 152:106493. [PMID: 33740675 DOI: 10.1016/j.envint.2021.106493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 05/25/2023]
Abstract
Florida manatees depend on freshwater environments as a source of drinking water and as warm-water refuges. These freshwater environments are in direct contact with human activities where glyphosate-based herbicides are being used. Glyphosate is the most used herbicide worldwide and it is intensively used in Florida as a sugarcane ripener and to control invasive aquatic plants. The objective of the present study was to determine the concentration of glyphosate and its breakdown product, aminomethylphosphonic acid (AMPA), in Florida manatee plasma and assess their exposure to manatees seeking a warm-water refuge in Crystal River (west central Florida), and in South Florida. We analyzed glyphosate's and AMPA's concentrations in Florida manatee plasma (n = 105) collected during 2009-2019 using HPLC-MS/MS. We sampled eight Florida water bodies between 2019 and 2020, three times a year: before, during and after the sugarcane harvest using grab samples and molecular imprinted passive Polar Organic Chemical Integrative Samplers (MIP-POCIS). Glyphosate was present in 55.8% of the sampled Florida manatees' plasma. The concentration of glyphosate has significantly increased in Florida manatee samples from 2009 until 2019. Glyphosate and AMPA were ubiquitous in water bodies. The concentration of glyphosate and AMPA was higher in South Florida than in Crystal River, particularly before and during the sugarcane harvest when Florida manatees depend on warm water refuges. Based on our results, Florida manatees were chronically exposed to glyphosate and AMPA, during and beyond the glyphosate applications to sugarcane, possibly associated with multiple uses of glyphosate-based herbicides for other crops or to control aquatic weeds. This chronic exposure in Florida water bodies may have consequences for Florida manatees' immune and renal systems which may further be compounded by other environmental exposures such as red tide or cold stress.
Collapse
Affiliation(s)
- Maite De María
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Aquatic Animal Health Program, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL 32610, USA.
| | - Cecilia Silva-Sanchez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Michael T Walsh
- Aquatic Animal Health Program, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL 32610, USA.
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL 32653, United States.
| | - Monica Ross
- Clearwater Marine Aquarium, 249 Windward Passage, Clearwater, FL 33767, USA.
| | - Tonya M Clauss
- Georgia Aquarium, Atlanta, Georgia, 225 Baker Street Northwest, Atlanta, GA 30313, USA.
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
39
|
Ferreira C, Duarte SC, Costa E, Pereira AMPT, Silva LJG, Almeida A, Lino C, Pena A. Urine biomonitoring of glyphosate in children: Exposure and risk assessment. ENVIRONMENTAL RESEARCH 2021; 198:111294. [PMID: 33971124 DOI: 10.1016/j.envres.2021.111294] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 05/21/2023]
Abstract
The use of glyphosate has been increasing over the years, making it one of the most consumed herbicides in the world. Although children are considered a vulnerable population, only four previous published studies determined glyphosate in the urine of non-occupationally exposed children. The paucity of epidemiological data and biomonitoring surveys are considered major gaps, that hinder the implementation of science driven policies in the protection of public health. The aim of the present study was to determine glyphosate in the urine of 41 Portuguese children (2-13 years old) and identify potential determinants of exposure. Glyphosate was detected in 95.1% of the samples (1.77 ± 0.86 μg/L), up to a maximum value of 4.35 μg/L. Glyphosate concentrations were higher in the urine of children aged 7-9 years, living near agricultural areas (<1 km), with a higher percentage of consumption of home-produced foods, and whose parents applied herbicides in the backyard. Risk assessment revealed an exposure representing 1-5.58% of the established Acceptable Daily Intake (ADI) of glyphosate (0.5 mg/kg bw/day). The results should be further analyzed considering the age of the participants, for which no adjusted ADI exists. This was the first published report of glyphosate exposure in the urine of Portuguese children.
Collapse
Affiliation(s)
- Catarina Ferreira
- REQUIMTE-LAQV, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548, Coimbra, Portugal.
| | - Sofia C Duarte
- REQUIMTE-LAQV, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548, Coimbra, Portugal; Centro de Investigação Vasco da Gama (CIVG)/ Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário de Lordemão, 3020-210, Coimbra, Portugal.
| | - Eduardo Costa
- Centro de Investigação Vasco da Gama (CIVG)/ Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário de Lordemão, 3020-210, Coimbra, Portugal; Pharmacology and Pharmaceutical Care Laboratory, Faculdade de Farmácia da Universidade de Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; Institute of Experimental Pathology, Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; IMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| | - André M P T Pereira
- REQUIMTE-LAQV, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548, Coimbra, Portugal.
| | - Liliana J G Silva
- REQUIMTE-LAQV, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548, Coimbra, Portugal.
| | - Anabela Almeida
- Centro de Investigação Vasco da Gama (CIVG)/ Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário de Lordemão, 3020-210, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Universidade de Coimbra, 3000-548, Coimbra, Portugal.
| | - Celeste Lino
- REQUIMTE-LAQV, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548, Coimbra, Portugal.
| | - Angelina Pena
- REQUIMTE-LAQV, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
40
|
Maddalon A, Galbiati V, Colosio C, Mandić-Rajčević S, Corsini E. Glyphosate-based herbicides: Evidence of immune-endocrine alteration. Toxicology 2021; 459:152851. [PMID: 34246717 DOI: 10.1016/j.tox.2021.152851] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Glyphosate (G) is the active ingredient of the most widely used herbicide products. It targets the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which lacks in humans, suggesting to confer a low mammalian toxicity to G-based herbicides (GBHs). Despite this, the use of G is currently under intense debate. Many studies indicating its hazard and toxicity on non-target organisms are emerging, and associations between GBHs and immune-endocrine disturbances have been described. This review aims to investigate, based on recent epidemiological studies and studies performed in vitro and in vivo in animals, the possible association between GBHs and immune-endocrine alterations. Published data suggest that GBHs have endocrine disrupting potentiality targeting sex and thyroid hormones, although its relevance for humans will require further investigations. Evidence of immunotoxicity are limited compared to those on endocrine effects, but overall highlight possible noxious effects, including lung inflammation and rhinitis. An attractive hypothesis could be the one that connects microbiota dysbiosis with possible immune-endocrine outcomes. Indeed, several intestinal microorganisms express the enzyme EPSPS and, studies are emerging that highlight a possible G-induced dysbiosis. Considering the wide use of GBHs in agriculture, further studies investigating their noxious effects at levels relevant for human exposure should be performed. A critical analysis of emerging evidence of G toxicity is required to better characterize its safety profile. In addition, attention should be paid to the differences between G alone and its formulations, which, containing substances able to increase G absorption, may present a different toxicity profile.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Claudio Colosio
- Occupational Health Unit, International Centre for Rural Health, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefan Mandić-Rajčević
- Occupational Health Unit, International Centre for Rural Health, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
41
|
Mesnage R, Mazzacuva F, Caldwell A, Halket J, Antoniou MN. Urinary excretion of herbicide co-formulants after oral exposure to roundup MON 52276 in rats. ENVIRONMENTAL RESEARCH 2021; 197:111103. [PMID: 33811865 DOI: 10.1016/j.envres.2021.111103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of surfactants, which are an integral component of glyphosate-formulated products is an underexplored and highly debated subject. Since biomonitoring human exposure to glyphosate co-formulants is considered as a public health priority, we developed and validated a high-resolution mass spectrometry method to measure the urinary excretion of surfactants present in Roundup MON 52276, the European Union (EU) representative formulation of glyphosate-based herbicides. Quantification was performed measuring the 5 most abundant compounds in the mixture. We validated the method and showed that it is highly accurate, precise and reproducible with a limit of detection of 0.0004 μg/mL. We used this method to estimate the oral absorption of MON 52276 surfactants in Sprague-Dawley rats exposed to three concentrations of MON 52276 via drinking water for 90 days. MON 52276 surfactants were readily detected in urine of rats administered with this commercial Roundup formulation starting from a low concentration corresponding to the EU glyphosate acceptable daily intake. Our results provide a first step towards the implementation of surfactant co-formulant biomonitoring in human populations.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | - Francesca Mazzacuva
- Mass Spectrometry Facility, King's College London, FWB, 150 Stamford Street, London, SE1 9NH, UK
| | - Anna Caldwell
- Mass Spectrometry Facility, King's College London, FWB, 150 Stamford Street, London, SE1 9NH, UK
| | - John Halket
- Mass Spectrometry Facility, King's College London, FWB, 150 Stamford Street, London, SE1 9NH, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
42
|
Luna S, Neila LP, Vena R, Borgatello C, Rosso SB. Glyphosate exposure induces synaptic impairment in hippocampal neurons and cognitive deficits in developing rats. Arch Toxicol 2021; 95:2137-2150. [PMID: 33837468 DOI: 10.1007/s00204-021-03046-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Glyphosate is the active ingredient of several widely used herbicide formulations. Studies based on Glyphosate exposure in different experimental models have suggested that the nervous system represented a key target for its toxicity. Previously, we demonstrated that exposure to glyphosate during gestation induces deficits on behavioral and cognitive function in rats. The aim of the present work was to examine whether cognitive dysfunction induced by Glyphosate was connected to changes on synapse formation and maturation. To understand how glyphosate affects synaptic assembly, we performed in vitro assays on cultured hippocampal neurons that were exposed to the herbicide (0.5 or 1 mg/mL) for 5 or 10 days. Biochemical and immunocytochemical approaches revealed that Glyphosate treated neurons showed a decrease on dendritic complexity and synaptic spine formation and maturation. Moreover, results indicated that Glyphosate decreased synapse formation in hippocampal neurons. To evaluate these effects in vivo, pup rats were treated with 35 or 70 mg/kg of Glyphosate from PND 7 to PND 27, every 48 h. Results indicated that Glyphosate postnatal exposure induced cognitive impairments, since recognition and spatial memory were altered. To go further, we evaluated synaptic protein expression and synaptic organization in hippocampus. Images revealed that Glyphosate treatment downregulates synapsin-1, PSD-95, and CaMKII expression, and also decreased PSD-95 clustering in hippocampus. Taken together, these findings demonstrate for the first time that Glyphosate exposure affects synaptic assembly and reduced synaptic protein expression in hippocampus and that likely triggers the impairment of cognitive function and neuronal connectivity.
Collapse
Affiliation(s)
- Sebastian Luna
- Área Toxicología, Departamento de Ciencias de Los Alimentos Y Medio Ambiente. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lorena P Neila
- Área Toxicología, Departamento de Ciencias de Los Alimentos Y Medio Ambiente. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular Y Celular de Rosario, Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Conrado Borgatello
- Área Toxicología, Departamento de Ciencias de Los Alimentos Y Medio Ambiente. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvana B Rosso
- Área Toxicología, Departamento de Ciencias de Los Alimentos Y Medio Ambiente. Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
43
|
Silver MK, Fernandez J, Tang J, McDade A, Sabino J, Rosario Z, Vélez Vega C, Alshawabkeh A, Cordero JF, Meeker JD. Prenatal Exposure to Glyphosate and Its Environmental Degradate, Aminomethylphosphonic Acid (AMPA), and Preterm Birth: A Nested Case-Control Study in the PROTECT Cohort (Puerto Rico). ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57011. [PMID: 34009015 PMCID: PMC8132611 DOI: 10.1289/ehp7295] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 03/16/2021] [Accepted: 04/16/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Glyphosate (GLY) is the most heavily used herbicide in the world. Despite nearly ubiquitous exposure, few studies have examined prenatal GLY exposure and potentially adverse pregnancy outcomes. Preterm birth (PTB) is a risk factor for neonatal mortality and adverse health effects in childhood. OBJECTIVES We examined prenatal exposure to GLY and a highly persistent environmental degradate of GLY, aminomethylphosphonic acid (AMPA), and odds of PTB in a nested case-control study within the ongoing Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) pregnancy cohort in northern Puerto Rico. METHODS GLY and AMPA in urine samples collected at 18 ± 2 (Visit 1) and 26 ± 2 (Visit 3) wk gestation (53 cases/194 randomly selected controls) were measured using gas chromatography tandem mass spectrometry. Multivariable logistic regression was used to estimate associations with PTB (delivery < 37 wk completed gestation). RESULTS Detection rates in controls were 77.4% and 77.5% for GLY and 52.8% and 47.7% for AMPA, and geometric means (geometric standard deviations) were 0.44 (2.50) and 0.41 ( 2.56 ) μ g / L for GLY and 0.25 (3.06) and 0.20 ( 2.87 ) μ g / L for AMPA, for Visits 1 and 3, respectively. PTB was significantly associated with specific gravity-corrected urinary GLY and AMPA at Visit 3, whereas associations with levels at Visit 1 and the Visits 1-3 average were largely null or inconsistent. Adjusted odds ratios (ORs) for an interquartile range increase in exposure at Visit 3 were 1.35 (95% CI: 0.99, 1.83) and 1.67 (95% CI: 1.26, 2.20) for GLY and AMPA, respectively. ORs for Visit 1 and the visit average were closer to the null. DISCUSSION Urine GLY and AMPA levels in samples collected near the 26th week of pregnancy were associated with increased odds of PTB in this modestly sized nested case-control study. Given the widespread use of GLY, multiple potential sources of AMPA, and AMPA's persistence in the environment, as well as the potential for long-term adverse health effects in preterm infants, further investigation in other populations is warranted. https://doi.org/10.1289/EHP7295.
Collapse
Affiliation(s)
- Monica K. Silver
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jennifer Fernandez
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jason Tang
- NSF International, Ann Arbor, Michigan, USA
| | | | | | - Zaira Rosario
- University of Puerto Rico Graduate School of Public Health, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Carmen Vélez Vega
- University of Puerto Rico Graduate School of Public Health, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, Boston, Massachusetts, USA
| | - José F. Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
Masood MI, Naseem M, Warda SA, Tapia-Laliena MÁ, Rehman HU, Nasim MJ, Schäfer KH. Environment permissible concentrations of glyphosate in drinking water can influence the fate of neural stem cells from the subventricular zone of the postnatal mouse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116179. [PMID: 33348142 DOI: 10.1016/j.envpol.2020.116179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The developing nervous system is highly vulnerable to environmental toxicants especially pesticides. Glyphosate pesticide induces neurotoxicity both in humans and rodents, but so far only when exposed to higher concentrations. A few studies, however, have also reported the risk of general toxicity of glyphosate at concentrations comparable to allowable limits set up by environmental protection authorities. In vitro data regarding glyphosate neurotoxicity at concentrations comparable to maximum permissible concentrations in drinking water is lacking. In the present study, we established an in vitro assay based upon neural stem cells (NSCs) from the subventricular zone of the postnatal mouse to decipher the effects of two maximum permissible concentrations of glyphosate in drinking water on the basic neurogenesis processes. Our results demonstrated that maximum permissible concentrations of glyphosate recognized by environmental protection authorities significantly reduced the cell migration and differentiation of NSCs as demonstrated by the downregulation of the expression levels of the neuronal ß-tubulin III and the astrocytic S100B genes. The expression of the cytoprotective gene CYP1A1 was downregulated whilst the expression of oxidative stresses indicator gene SOD1 was upregulated. The concentration comparable to non-toxic human plasma concentration significantly induced cytotoxicity and activated Ca2+ signalling in the differentiated culture. Our findings demonstrated that the permissible concentrations of glyphosate in drinking water recognized by environmental protection authorities are capable of inducing neurotoxicity in the developing nervous system.
Collapse
Affiliation(s)
- Muhammad Irfan Masood
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, D-66123, Germany; Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany; Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Mahrukh Naseem
- Department of Zoology, University of Balochistan, Quetta, 87550, Pakistan
| | - Salam A Warda
- Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany
| | | | - Habib Ur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, D-66123, Germany
| | - Karl Herbert Schäfer
- Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany; Department of Pediatric Surgery Mannheim, University Medicine Mannheim, University of Heidelberg, Mannheim, 68167, Germany.
| |
Collapse
|
45
|
Faniband MH, Norén E, Littorin M, Lindh CH. Human experimental exposure to glyphosate and biomonitoring of young Swedish adults. Int J Hyg Environ Health 2021; 231:113657. [PMID: 33130428 DOI: 10.1016/j.ijheh.2020.113657] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022]
Abstract
Glyphosate (GLY), N-(phosphonomethyl) glycine, is the most widely used herbicide in the world. It is a broad-spectrum herbicide, also used in crop desiccation. Agricultural workers may be occupationally exposed and general populations may be exposed to GLY mainly through diet. We studied the kinetics of GLY by measuring the parent compound and its metabolite aminomethylphosphonic acid (AMPA) in urine samples of three volunteers after an experimental oral exposure. We further examined GLY exposure by measuring GLY and AMPA in spot urine samples of 197 young adults in the general population in Scania, southern Sweden. Urine samples were analyzed using LC-MS/MS. In the experimental exposure, three healthy volunteers received an oral dose equivalent to 50% of the ADI for GLY. Urinary samples were collected up to 100 h after the exposure. The excretion of GLY to urine seemed to follow first-order kinetics and a two-phase excretion. The excretion half-life of GLY (density adjusted) was 6-9 h in the rapid phase and 18-33 h in the slower phase. The total dose recovered as unchanged GLY in the urine samples of volunteers was 1-6%. The metabolite AMPA was found to be 0.01-0.04% of the total dose of GLY. In the population of young adults, the median concentration was below 0.1 μg/L and a maximum concentration being 3.39 μg/L (density adjusted). AMPA was generally detected in lower concentrations (maximum = 0.99 μg/L). A moderate correlation (Spearman's ρ = 0.56) was observed between GLY and AMPA concentrations. Overall, the results may suggest that GLY and AMPA partly originate from separate exposures and that unchanged GLY is a more suitable biomarker of exposure.
Collapse
Affiliation(s)
- Moosa H Faniband
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85, Lund, Sweden
| | - Erika Norén
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85, Lund, Sweden.
| | - Margareta Littorin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85, Lund, Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85, Lund, Sweden
| |
Collapse
|
46
|
Rodríguez-Gil JL, Prosser RS, Duke SO, Solomon KR. Ecotoxicology of Glyphosate, Its Formulants, and Environmental Degradation Products. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:129-205. [PMID: 34104986 DOI: 10.1007/398_2020_56] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemical and biological properties of glyphosate are key to understanding its fate in the environment and potential risks to non-target organisms. Glyphosate is polar and water soluble and therefore does not bioaccumulate, biomagnify, or accumulate to high levels in the environment. It sorbs strongly to particles in soil and sediments and this reduces bioavailability so that exposures to non-target organisms in the environment are acute and decrease with half-lives in the order of hours to a few days. The target site for glyphosate is not known to be expressed in animals, which reduces the probability of toxicity and small risks. Technical glyphosate (acid or salts) is of low to moderate toxicity; however, when mixed with some formulants such as polyoxyethylene amines (POEAs), toxicity to aquatic animals increases about 15-fold on average. However, glyphosate and the formulants have different fates in the environment and they do not necessarily co-occur. Therefore, toxicity tests on formulated products in scenarios where they would not be used are unrealistic and of limited use for assessment of risk. Concentrations of glyphosate in surface water are generally low with minimal risk to aquatic organisms, including plants. Toxicity and risks to non-target terrestrial organisms other than plants treated directly are low and risks to terrestrial invertebrates and microbial processes in soil are very small. Formulations containing POEAs are not labeled for use over water but, because POEA rapidly partitions into sediment, risks to aquatic organisms from accidental over-sprays are reduced in shallow water bodies. We conclude that use of formulations of glyphosate under good agricultural practices presents a de minimis risk of direct and indirect adverse effects in non-target organisms.
Collapse
Affiliation(s)
- Jose Luis Rodríguez-Gil
- IISD - Experimental Lakes Area, Winnipeg, MB, Canada.
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada.
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Keith R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
47
|
Mesnage R, Teixeira M, Mandrioli D, Falcioni L, Ducarmon QR, Zwittink RD, Mazzacuva F, Caldwell A, Halket J, Amiel C, Panoff JM, Belpoggi F, Antoniou MN. Use of Shotgun Metagenomics and Metabolomics to Evaluate the Impact of Glyphosate or Roundup MON 52276 on the Gut Microbiota and Serum Metabolome of Sprague-Dawley Rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:17005. [PMID: 33502259 PMCID: PMC7839352 DOI: 10.1289/ehp6990] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND There is intense debate on whether glyphosate can inhibit the shikimate pathway of gastrointestinal microorganisms, with potential health implications. OBJECTIVES We tested whether glyphosate or its representative EU herbicide formulation Roundup MON 52276 affects the rat gut microbiome. METHODS We combined cecal microbiome shotgun metagenomics with serum and cecum metabolomics to assess the effects of glyphosate [0.5, 50, 175 mg / kg body weight ( BW ) per day ] or MON 52276 at the same glyphosate-equivalent doses, in a 90-d toxicity test in rats. RESULTS Glyphosate and MON 52276 treatment resulted in ceca accumulation of shikimic acid and 3-dehydroshikimic acid, suggesting inhibition of 5-enolpyruvylshikimate-3-phosphate synthase of the shikimate pathway in the gut microbiome. Cysteinylglycine, γ -glutamylglutamine , and valylglycine levels were elevated in the cecal microbiome following glyphosate and MON 52276 treatments. Altered cecum metabolites were not differentially expressed in serum, suggesting that the glyphosate and MON 52276 impact on gut microbial metabolism had limited consequences on physiological biochemistry. Serum metabolites differentially expressed with glyphosate treatment were associated with nicotinamide, branched-chain amino acid, methionine, cysteine, and taurine metabolism, indicative of a response to oxidative stress. MON 52276 had similar, but more pronounced, effects than glyphosate on the serum metabolome. Shotgun metagenomics of the cecum showed that treatment with glyphosate and MON 52276 resulted in higher levels of Eggerthella spp., Shinella zoogleoides, Acinetobacter johnsonii, and Akkermansia muciniphila. Shinella zoogleoides was higher only with MON 52276 exposure. In vitro culture assays with Lacticaseibacillus rhamnosus strains showed that Roundup GT plus inhibited growth at concentrations at which MON 52276 and glyphosate had no effect. DISCUSSION Our study highlights the power of multi-omics approaches to investigate the toxic effects of pesticides. Multi-omics revealed that glyphosate and MON 52276 inhibited the shikimate pathway in the rat gut microbiome. Our findings could be used to develop biomarkers for epidemiological studies aimed at evaluating the effects of glyphosate herbicides on humans. https://doi.org/10.1289/EHP6990.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, Guy’s Hospital, London, UK
| | - Maxime Teixeira
- Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, University of Caen Normandy, Caen, France
| | | | | | - Quinten Raymond Ducarmon
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Romy Daniëlle Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Anna Caldwell
- Mass Spectrometry Facility, King’s College London, London, UK
| | - John Halket
- Mass Spectrometry Facility, King’s College London, London, UK
| | - Caroline Amiel
- Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, University of Caen Normandy, Caen, France
| | - Jean-Michel Panoff
- Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, University of Caen Normandy, Caen, France
| | | | - Michael Nicolas Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, Guy’s Hospital, London, UK
| |
Collapse
|
48
|
Qiao C, Wang C, Pang R, Tian F, Han L, Guo L, Luo J, Li J, Pang T, Xie H, Fang J. Environmental behavior and influencing factors of glyphosate in peach orchard ecosystem. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111209. [PMID: 32891912 DOI: 10.1016/j.ecoenv.2020.111209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
In this paper, several experiments were carried out to study the environmental behavior and influencing factors of glyphosate (PMG) in peach orchard ecosystem. The results of field experiments showed that PMG and its metabolite aminomethylphosphonic acid (AMPA) were detected in peach tree leaves and peach tree fruits, although PMG was only sprayed on the soil. The residues of PMG and AMPA in peach tree leaves were ~0.1 mg/kg and ~0.5 mg/kg and in peach tree fruits were ~0.01 mg/kg and 0.07-0.11 mg/kg, respectively. By conducting a series of laboratory simulation experiments, the environmental factors affecting the degradation of PMG were screened and evaluated. The results showed that PMG metabolized much faster in loess soil than red soil and black soil (with the DT50 of 11.6 days, 62.4 days, and 34.1 days, respectively). By analyzing the basic properties of the soil, we investigated the effects of pH, moisture content, organic matter (exogenous biochar) and ambient temperature using orthogonal experiments, and the results were further confirmed by microbial experiment. The results showed that alkaline conditions (pH = 7.8/9), high water content (25%) and microorganisms could promote the degradation of PMG. Sterile soil environment had a negative impact on the metabolic behavior of PMG to AMPA.
Collapse
Affiliation(s)
- Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jing Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Jinbao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
49
|
Ingaramo P, Alarcón R, Muñoz-de-Toro M, Luque EH. Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol Cell Endocrinol 2020; 518:110934. [PMID: 32659439 DOI: 10.1016/j.mce.2020.110934] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Numerous evidences have alerted on the toxic effects of the exposure to glyphosate on living organisms. Glyphosate is the herbicide most used in crops such as maize and soybean worldwide, which implies that several non-target species are at a high risk of exposure. Although the Environmental Protection Agency (EPA-USA) has reaffirmed that glyphosate is safe for users, there are controversial studies that question this statement. Some of the reported effects are due to exposure to high doses; however, recent evidences have shown that exposure to low doses could also alter the development of the female reproductive tract, with consequences on fertility. Different animal models of exposure to glyphosate or glyphosate-based herbicides (GBHs) have shown that the effects on the female reproductive tract may be related to the potential and/or mechanisms of actions of an endocrine-disrupting compound. Studies have also demonstrated that the exposure to GBHs alters the development and differentiation of ovarian follicles and uterus, affecting fertility when animals are exposed before puberty. In addition, exposure to GBHs during gestation could alter the development of the offspring (F1 and F2). The main mechanism described associated with the endocrine-disrupting effect of GBHs is the modulation of estrogen receptors and molecules involved in the estrogenic pathways. This review summarizes the endocrine-disrupting effects of exposure to glyphosate and GBHs at low or "environmentally relevant" doses in the female reproductive tissues. Data suggesting that, at low doses, GBHs may have adverse effects on the female reproductive tract fertility are discussed.
Collapse
Affiliation(s)
- Paola Ingaramo
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina.
| |
Collapse
|
50
|
Fagan J, Bohlen L, Patton S, Klein K. Organic diet intervention significantly reduces urinary glyphosate levels in U.S. children and adults. ENVIRONMENTAL RESEARCH 2020; 189:109898. [PMID: 32797996 DOI: 10.1016/j.envres.2020.109898] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND A growing set of studies show that an organic diet is associated with reduced levels of urinary pesticide analytes. However, with the exception of one pilot study of two individuals, diet intervention studies to date have not analyzed glyphosate, the most commonly used herbicide in the United States and globally. OBJECTIVE To investigate the impact of an organic diet intervention on levels of glyphosate and its main metabolite, AMPA (aminomethyl phosphonic acid), in urine collected from adults and children. METHODS We analyzed urine samples from four racially and geographically diverse families in the United States for five days on a completely non-organic diet and for five days on a completely organic diet (n = 16 participants and a total of 158 urine samples). RESULTS Mean urinary glyphosate levels for all subjects decreased 70.93% (95% CI -77.96, -61.65, p<0.010) while mean AMPA levels decreased by 76.71% (95% CI -81.54, -70.62, p < 0.010) within six days on an organic diet. Similar decreases in urinary levels of glyphosate and AMPA were observed when data for adults were examined alone, 71.59% (95% CI -82.87, -52.86, p < 0.01) and 83.53% (95% CI -88.42, -76.56, p < 0.01) and when data for children were examined alone, 70.85% (95% CI -78.52, -60.42, p < 0.01) and 69.85% (95% CI -77.56, -59.48, p < 0.01). CONCLUSION An organic diet was associated with significantly reduced urinary levels of glyphosate and AMPA. The reduction in glyphosate and AMPA levels was rapid, dropping to baseline within three days. This study demonstrates that diet is a primary source of glyphosate exposure and that shifting to an organic diet is an effective way to reduce body burden of glyphosate and its main metabolite, AMPA. This research adds to a growing body of literature indicating that an organic diet may reduce exposure to a range of pesticides in children and adults.
Collapse
Affiliation(s)
- John Fagan
- Health Research Institute, P.O. Box 370, Fairfield, IA, 52556, USA
| | - Larry Bohlen
- Health Research Institute, P.O. Box 370, Fairfield, IA, 52556, USA
| | - Sharyle Patton
- Commonweal Institute, P.O. Box 316, Bolinas, CA, 94924, USA
| | - Kendra Klein
- Friends of the Earth U.S., 2150 Allston Way Suite 360, Berkeley, CA, 94704, USA.
| |
Collapse
|