1
|
He S, Wang Y, Qi J, Chen H, Zhou W. Co-delivery liposomes of irinotecan hydrochloride and curcumin in the synergistic treatment of colorectal cancer. J Drug Deliv Sci Technol 2024; 98:105848. [DOI: 10.1016/j.jddst.2024.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
|
2
|
Mohammadi AH, Bagheri F, Baghaei K. Chondroitin sulfate-tocopherol succinate modified exosomes for targeted drug delivery to CD44-positive cancer cells. Int J Biol Macromol 2024:133625. [PMID: 39084997 DOI: 10.1016/j.ijbiomac.2024.133625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Exosomes (Exos), natural nanovesicles released by various cell types, show potential as an effective drug delivery platform due to their intrinsic role as transporters of biomolecules between different cells. However, Exos functionalization with targeting ligands is a critical step to enhance their targeting capability, which could be challenging. In this study, Exos were modified to specifically bind to CD44-positive cells by anchoring chondroitin sulfate (CS) to their surface. Exo modification was facilitated with CS conjugation with alpha-tocopherol succinate (TOS) as an anchorage. The modified Exos were utilized for delivering curcumin (Cur) to pancreatic cancer (PC) cells. In vitro Cur release studies revealed that Exos play a crucial role in maintaining Cur within themselves, demonstrating their potential as effective carriers for drug delivery to targeted locations. Notably, Cur loaded into the modified Exos exhibited enhanced cytotoxicity compared to unmodified Exo-Cur. Meanwhile, Exo-Cur-TOS-CS induced apoptosis more effectively in AsPC-1 cells than unmodified Exos (70.2 % versus 56.9 %). It is worth mentioning that with CD44-mediated cancer-specific targeting, Exo-CS enabled increased intracellular accumulation in AsPC-1 cells, showing promise as a targeted platform for cancer therapy. These results confirm that Exo modification has a positive impact on enhancing the therapeutic efficacy and cytotoxicity of drugs.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Australia.
| |
Collapse
|
3
|
Madadjim R, An T, Cui J. MicroRNAs in Pancreatic Cancer: Advances in Biomarker Discovery and Therapeutic Implications. Int J Mol Sci 2024; 25:3914. [PMID: 38612727 PMCID: PMC11011772 DOI: 10.3390/ijms25073914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic cancer remains a formidable malignancy characterized by high mortality rates, primarily attributable to late-stage diagnosis and a dearth of effective therapeutic interventions. The identification of reliable biomarkers holds paramount importance in enhancing early detection, prognostic evaluation, and targeted treatment modalities. Small non-coding RNAs, particularly microRNAs, have emerged as promising candidates for pancreatic cancer biomarkers in recent years. In this review, we delve into the evolving role of cellular and circulating miRNAs, including exosomal miRNAs, in the diagnosis, prognosis, and therapeutic targeting of pancreatic cancer. Drawing upon the latest research advancements in omics data-driven biomarker discovery, we also perform a case study using public datasets and address commonly identified research discrepancies, challenges, and limitations. Lastly, we discuss analytical approaches that integrate multimodal analyses incorporating clinical and molecular features, presenting new insights into identifying robust miRNA-centric biomarkers.
Collapse
Affiliation(s)
| | | | - Juan Cui
- School of Computing, University of Nebraska—Lincoln, Lincoln, NE 68588, USA; (R.M.); (T.A.)
| |
Collapse
|
4
|
Zhai LL, Li WB, Chen LJ, Wang W, Ju TF, Yin DL. Curcumin inhibits the invasion and migration of pancreatic cancer cells by upregulating TFPI-2 to regulate ERK- and JNK-mediated epithelial-mesenchymal transition. Eur J Nutr 2024; 63:639-651. [PMID: 38129361 DOI: 10.1007/s00394-023-03296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Pancreatic cancer (PC) is one of the most deadly human malignancies. Curcumin is a natural polyphenolic compound with wide-ranging pharmacological effects. Growing evidence suggests that curcumin has anticancer activity against PC, but the mechanism remains incompletely elucidated. This study aimed to investigate the effects and mechanisms of curcumin on the invasion and migration of PC cells. METHODS Effect of curcumin on tissue factor pathway inhibitor (TFPI)-2 mRNA expression in PC cells was initially identified using qRT-PCR. Cytotoxicity of curcumin was assessed with MTT assays and IC50 was calculated. Involvement of ERK and JNK pathways, as well as protein expression of TFPI-2 and epithelial-mesenchymal transition (EMT)-related markers, were detected using immunoblotting. Invasion and migration of PC cells were examined using Transwell assays. TFPI-2 expression was manipulated by transfection with siRNA and shRNA. Rescue assays were used to validate the effect of curcumin on cell invasion and migration via TFPI-2. RESULTS Curcumin increased the expression of TFPI-2 mRNA and protein in PC cells and attenuated cell invasion and migration. Curcumin also inhibited ERK and JNK pathways and EMT in PC cells. Knockdown of TFPI-2 partially reversed the inhibition of ERK and JNK pathways and EMT by curcumin. Mechanistically, curcumin upregulated TFPI-2, thereby inhibiting the ERK and JNK pathways, leading to the inhibition of EMT in PC cells. CONCLUSION Collectively, curcumin inhibits ERK- and JNK-mediated EMT through upregulating TFPI-2, which in turn suppresses the migration and invasion of PC cells. These findings provide new insights into the antitumor mechanism of curcumin.
Collapse
Affiliation(s)
- Lu-Lu Zhai
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, People's Republic of China
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, People's Republic of China
| | - Wei-Bo Li
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, People's Republic of China
| | - Long-Jiang Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, People's Republic of China
| | - Wei Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, People's Republic of China
| | - Tong-Fa Ju
- Department of General Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China.
| | - Da-Long Yin
- Department of General Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, People's Republic of China.
| |
Collapse
|
5
|
Gad HA, Diab AM, Elsaied BE, Tayel AA. Biopolymer-based formulations for curcumin delivery toward cancer management. CURCUMIN-BASED NANOMEDICINES AS CANCER THERAPEUTICS 2024:309-338. [DOI: 10.1016/b978-0-443-15412-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Şahin TÖ, Yılmaz B, Yeşilyurt N, Cicia D, Szymanowska A, Amero P, Ağagündüz D, Capasso R. Recent insights into the nutritional immunomodulation of cancer-related microRNAs. Phytother Res 2023; 37:4375-4397. [PMID: 37434291 DOI: 10.1002/ptr.7937] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Cancer is the most common cause of death worldwide, following cardiovascular diseases. Cancer is a multifactorial disease and many reasons such as physical, chemical, biological, and lifestyle-related factors. Nutrition, which is one of the various factors that play a role in the prevention, development, and treatment of many types of cancer, affects the immune system, which is characterized by disproportionate pro-inflammatory signaling in cancer. Studies investigating the molecular mechanisms of this effect have shown that foods rich in bioactive compounds, such as green tea, olive oil, turmeric, and soybean play a significant role in positively changing the expression of miRNAs involved in the regulation of genes associated with oncogenic/tumor-suppressing pathways. In addition to these foods, some diet models may change the expression of specific cancer-related miRNAs in different ways. While Mediterranean diet has been associated with anticancer effects, a high-fat diet, and a methyl-restricted diet are considered to have negative effects. This review aims to discuss the effects of specific foods called "immune foods," diet models, and bioactive components on cancer by changing the expression of miRNAs in the prevention and treatment of cancer.
Collapse
Affiliation(s)
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | | | - Donatella Cicia
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
7
|
Das A, Adhikari S, Deka D, Baildya N, Sahare P, Banerjee A, Paul S, Bisgin A, Pathak S. An Updated Review on the Role of Nanoformulated Phytochemicals in Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040685. [PMID: 37109643 PMCID: PMC10143464 DOI: 10.3390/medicina59040685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
The most common cancer-related cause of death worldwide is colorectal cancer. It is initiated with the formation of polyps, which further cause the development of colorectal cancer in multistep phases. Colorectal cancer mortality is high despite recent treatment breakthroughs and a greater understanding of its pathophysiology. Stress is one of the major causes of triggering different cellular signalling cascades inside the body and which might turn toward the development of cancer. Naturally occurring plant compounds or phytochemicals are being studied for medical purposes. Phytochemicals' benefits are being analyzed for inflammatory illnesses, liver failure, metabolic disorders, neurodegenerative disorders, and nephropathies. Cancer treatment with fewer side effects and better outcomes has been achieved by combining phytochemicals with chemotherapy. Resveratrol, curcumin, and epigallocatechin-3-gallate have been studied for their chemotherapeutic and chemopreventive potentiality, but hydrophobicity, solubility, poor bioavailability, and target selectivity limit the clinical uses of these compounds. The therapeutic potential is maximized by utilizing nanocarriers such as liposomes, micelles, nanoemulsions, and nanoparticles to increase phytochemical bioavailability and target specificity. This updated literature review discusses the clinical limitations, increased sensitivity, chemopreventive and chemotherapeutic effects, and the clinical limitations of the phytochemicals.
Collapse
Affiliation(s)
- Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Suman Adhikari
- Department of Chemistry, Govt. Degree College, Dharmanagar 799253, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | | | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla 76230, Querétaro, Mexico
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, San Pablo 76130, Querétaro, Mexico
| | - Atil Bisgin
- Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Medical Genetics Department of Medical Faculty, Cukurova University, Adana 01330, Turkey
- InfoGenom RD Laboratories of Cukurova Technopolis, Adana 01330, Turkey
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
8
|
Hayakawa S, Ohishi T, Oishi Y, Isemura M, Miyoshi N. Contribution of Non-Coding RNAs to Anticancer Effects of Dietary Polyphenols: Chlorogenic Acid, Curcumin, Epigallocatechin-3-Gallate, Genistein, Quercetin and Resveratrol. Antioxidants (Basel) 2022; 11:antiox11122352. [PMID: 36552560 PMCID: PMC9774417 DOI: 10.3390/antiox11122352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Growing evidence has been accumulated to show the anticancer effects of daily consumption of polyphenols. These dietary polyphenols include chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin, and resveratrol. These polyphenols have similar chemical and biological properties in that they can act as antioxidants and exert the anticancer effects via cell signaling pathways involving their reactive oxygen species (ROS)-scavenging activity. These polyphenols may also act as pro-oxidants under certain conditions, especially at high concentrations. Epigenetic modifications, including dysregulation of noncoding RNAs (ncRNAs) such as microRNAs, long noncoding RNAs, and circular RNAs are now known to be involved in the anticancer effects of polyphenols. These polyphenols can modulate the expression/activity of the component molecules in ROS-scavenger-triggered anticancer pathways (RSTAPs) by increasing the expression of tumor-suppressive ncRNAs and decreasing the expression of oncogenic ncRNAs in general. Multiple ncRNAs are similarly modulated by multiple polyphenols. Many of the targets of ncRNAs affected by these polyphenols are components of RSTAPs. Therefore, ncRNA modulation may enhance the anticancer effects of polyphenols via RSTAPs in an additive or synergistic manner, although other mechanisms may be operating as well.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
- Correspondence: (S.H.); (N.M.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5531 (N.M.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Correspondence: (S.H.); (N.M.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5531 (N.M.)
| |
Collapse
|
9
|
Zhai W, Hu Y, Zhang Y, Zhang G, Chen H, Tan X, Zheng Y, Gao W, Wei Y, Wu J. A systematic review of phytochemicals from Chinese herbal medicines for non-coding RNAs-mediated cancer prevention and treatment: From molecular mechanisms to potential clinical applications. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, Al-Mannai S, Therachiyil L, Mir R, Elfaki I, Mir MM, Jamal F, Masoodi T, Uddin S, Singh M, Haris M, Macha M, Bhat AA. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed Pharmacother 2022; 150:113054. [PMID: 35658225 DOI: 10.1016/j.biopha.2022.113054] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is one of the leading causes of death and significantly burdens the healthcare system. Due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. The use of natural products as anticancer agents is an acceptable therapeutic approach due to accessibility, applicability, and reduced cytotoxicity. Natural products have been an incomparable source of anticancer drugs in the modern era of drug discovery. Along with their derivatives and analogs, natural products play a major role in cancer treatment by modulating the cancer microenvironment and different signaling pathways. These compounds are effective against several signaling pathways, mainly cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch pathway, Wnt pathway, and Hedgehog pathway). The historical record of natural products is strong, but there is a need to investigate the current role of natural products in the discovery and development of cancer drugs and determine the possibility of natural products being an important source of future therapeutic agents. Many target-specific anticancer drugs failed to provide successful results, which accounts for a need to investigate natural products with multi-target characteristics to achieve better outcomes. The potential of natural products to be promising novel compounds for cancer treatment makes them an important area of research. This review explores the significance of natural products in inhibiting the various signaling pathways that serve as drivers of carcinogenesis and thus pave the way for developing and discovering anticancer drugs.
Collapse
Affiliation(s)
- Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | | | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Sharefa Al-Mannai
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| | - Rashid Mir
- Prince Fahd Bin Sultan Research chair, Department Of Medical Lab Technology, FAMS, University of Tabuk,Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Saudi Arabia
| | - Farrukh Jamal
- Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Muzafar Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India.
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
11
|
Huang Q, Zhang Y, Zheng Y, Yang H, Yang Y, Mo Y, Li L, Zhang H. Molecular Mechanism of Curcumin and Its Analogs as Multifunctional Compounds against Pancreatic Cancer. Nutr Cancer 2022; 74:3096-3108. [PMID: 35583289 DOI: 10.1080/01635581.2022.2071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors with a poor prognosis and high mortality. Surgical resection is the most effective treatment for PC; however, only a minority of patients have resectable tumors. Chemotherapy is the primary treatment for PC. Curcumin is a natural chemical substance obtained from plants with a wide range of pharmacological activities. Research evidence suggests that curcumin can influence PC development through multiple molecular mechanisms. The synthesis of novel curcumin analogs and preparation of curcumin nano-formulations are effective strategies to overcome the low bioavailability of curcumin in the treatment of PC. This review aims to summarize the mechanisms of action of curcumin in preclinical and clinical studies on PC and research progress in enhancing its bioavailability.
Collapse
Affiliation(s)
- Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Zhang
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanlin Zheng
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjing Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Mo
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuying Li
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Zigong City, Zigong, China
| | - Hong Zhang
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Ojo OA, Adeyemo TR, Rotimi D, Batiha GES, Mostafa-Hedeab G, Iyobhebhe ME, Elebiyo TC, Atunwa B, Ojo AB, Lima CMG, Conte-Junior CA. Anticancer Properties of Curcumin Against Colorectal Cancer: A Review. Front Oncol 2022; 12:881641. [PMID: 35530318 PMCID: PMC9072734 DOI: 10.3389/fonc.2022.881641] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and reoccurring diseases, as well as the world’s second largest cause of mortality. Despite existing preventative, diagnostic, and treatment methods, such as chemotherapy, the number of instances rises year after year. As a result, new effective medications targeting specific checkpoints should be developed to combat CRC. Natural compounds, such as curcumin, have shown significant anti-colorectal cancer characteristics among medications that can be used to treat CRC. These chemicals are phenolic compounds that belong to the curcuminoids category. Curcumin exerts its anti-proliferative properties against CRC cell lines in vitro and in vivo via a variety of mechanisms, including the suppression of intrinsic and extrinsic apoptotic signaling pathways, the stoppage of the cell cycle, and the activation of autophagy. Curcumin also has anti-angiogenesis properties. Thus, this review is aimed at emphasizing the biological effect and mode of action of curcumin on CRC. Furthermore, the critical role of these substances in CRC chemoprevention was emphasized.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Bowen University, Iwo, Nigeria
- *Correspondence: Oluwafemi Adeleke Ojo,
| | - Temiloluwa Rhoda Adeyemo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Damilare Rotimi
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Sakaka, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Matthew Eboseremen Iyobhebhe
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Tobiloba Christiana Elebiyo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Bukola Atunwa
- Department of Physical Sciences, Chemistry Unit, Landmark University, Omu-Aran, Nigeria
| | | | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETED), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
14
|
Veeraraghavan VP, Mony U, Renu K, Mohan SK, Ammar RB, AlZahrani AM, Ahmed EA, Rajendran P. Effects of Polyphenols on ncRNAs in cancer - An update. Clin Exp Pharmacol Physiol 2022; 49:613-623. [PMID: 35275419 DOI: 10.1111/1440-1681.13641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
In recent years, oncotherapy has received considerable attention concerning plant polyphenols. Increasing evidence suggests that due to the efficiency of polyphenols, they may have antitumor effects in various cancers. However, their regulatory structures remain elusive. Long non-coding RNAs (LncRNAs) have been identified in the regulation of various forms of tumorigenesis and tumor development. Long non-coding RNAs (LncRNAs) have recently emerged as regulatory eukaryotic transcripts and therapeutic targets with important and diverse functions in health and diseases. LncRNAs may be associated with the initiation, development, and progression of cancer. This review summarizes the research on the modulatory effects of LncRNAs and their roles in mediating cellular processes. The mechanisms of action of polyphenols underlying their therapeutic effects on cancers are also discussed. Based on our review, polyphenols might facilitate a significant epigenetic modification as part of their tissue-/cell-related biological effects. This finding may be attributed to their interaction with cellular signaling pathways involved in chronic diseases. Certain LncRNAs might be the target of specific polyphenols, and some critical signaling processes involved in the intervention of cancers might mediate the therapeutic roles of polyphenols. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surapaneni Krishna Mohan
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills& Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India
| | - Rebai Ben Ammar
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia.,Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopole of Borj-Cedria PBOX 901, 2050, Hammam-Lif, Tunisia
| | - Abdullah M AlZahrani
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Emad A Ahmed
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia.,Molecular Physiology Laboratory, Zoology department, Faculty of Science, Assiut University, Egypt
| | - Peramaiyan Rajendran
- College of Science, Department of Biological Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
15
|
Li M, Tang D, Yang T, Qian D, Xu R. Apoptosis Triggering, an Important Way for Natural Products From Herbal Medicines to Treat Pancreatic Cancers. Front Pharmacol 2022; 12:796300. [PMID: 35222011 PMCID: PMC8863938 DOI: 10.3389/fphar.2021.796300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer, a poor prognosis and high morbidity and mortality cancer, is a malignant tumor occurring in pancreatic exocrine glands. Currently, surgery and gemcitabine (Gem) are commonly used to treat pancreatic cancers. However, the high recurrence rate and resistance makes the therapeutic effects still unsatisfied. Apoptosis is comprehensively recognized as one of the major ways of the programmed cell death, refers to the autonomous and orderly death process of cells in order to maintain the stability of the body's environment after receiving a certain signal or stimulation. Currently, it has also been proven to be a promising way for the treatment of pancreatic cancer. Nowadays, some active ingredients from herbal medicine have been reported to be effective for the treatment of pancreatic cancer via inducing cells apoptosis. Therefore, this article reviews the current references regarding anti pancreatic cancer effects of natural products derived from herbal medicines via triggering apoptosis, and summarizes the related potential signal pathways, including death receptors mediated apoptotic pathway, mitochondrial dependent apoptotic pathway, NF-κB mediated apoptotic pathways, MAPK mediated apoptotic pathway, ERS mediated apoptotic pathway, PI3K-Akt mediated apoptotic pathway, and other pathways such as JAK-STAT signal pathway, which can lay a certain foundation for the research and development of new natural products against pancreatic cancer.
Collapse
Affiliation(s)
- Meiyan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Qian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runchun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, Ahmadian E, Eftekhari A, Forouhandeh H, Rahbar Saadat Y, Sharifi S, Zununi Vahed S. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36:1156-1181. [PMID: 35129230 DOI: 10.1002/ptr.7389] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Health innovation and acceleration center, Tabriz University of Medical Sciences, Tabriz, Iran.,Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
| | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
17
|
TRPM2 Non-Selective Cation Channels in Liver Injury Mediated by Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10081243. [PMID: 34439491 PMCID: PMC8389341 DOI: 10.3390/antiox10081243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
TRPM2 channels admit Ca2+ and Na+ across the plasma membrane and release Ca2+ and Zn2+ from lysosomes. Channel activation is initiated by reactive oxygen species (ROS), leading to a subsequent increase in ADP-ribose and the binding of ADP-ribose to an allosteric site in the cytosolic NUDT9 homology domain. In many animal cell types, Ca2+ entry via TRPM2 channels mediates ROS-initiated cell injury and death. The aim of this review is to summarise the current knowledge of the roles of TRPM2 and Ca2+ in the initiation and progression of chronic liver diseases and acute liver injury. Studies to date provide evidence that TRPM2-mediated Ca2+ entry contributes to drug-induced liver toxicity, ischemia–reperfusion injury, and the progression of non-alcoholic fatty liver disease to cirrhosis, fibrosis, and hepatocellular carcinoma. Of particular current interest are the steps involved in the activation of TRPM2 in hepatocytes following an increase in ROS, the downstream pathways activated by the resultant increase in intracellular Ca2+, and the chronology of these events. An apparent contradiction exists between these roles of TRPM2 and the role identified for ROS-activated TRPM2 in heart muscle and in some other cell types in promoting Ca2+-activated mitochondrial ATP synthesis and cell survival. Inhibition of TRPM2 by curcumin and other “natural” compounds offers an attractive strategy for inhibiting ROS-induced liver cell injury. In conclusion, while it has been established that ROS-initiated activation of TRPM2 contributes to both acute and chronic liver injury, considerable further research is needed to elucidate the mechanisms involved, and the conditions under which pharmacological inhibition of TRPM2 can be an effective clinical strategy to reduce ROS-initiated liver injury.
Collapse
|
18
|
Otsuka K, Ochiya T. Possible connection between diet and microRNA in cancer scenario. Semin Cancer Biol 2021; 73:4-18. [DOI: 10.1016/j.semcancer.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
19
|
Akbari A, Sedaghat M, Heshmati J, Tabaeian SP, Dehghani S, Pizarro AB, Rostami Z, Agah S. Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers. Biomed Pharmacother 2021; 141:111849. [PMID: 34214729 DOI: 10.1016/j.biopha.2021.111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a bioactive ingredient found in the Rhizomes of Curcuma longa. Curcumin is well known for its chemopreventive and anti-cancer properties. Recent findings have demonstrated several pharmacological and biological impacts of curcumin, related to the control and the management of gastrointestinal cancers. Mechanistically, curcumin exerts its biological impacts via antioxidant and anti-inflammatory effects through the interaction with various transcription factors and signaling molecules. Moreover, epigenetic modulators such as microRNAs (miRNAs) have been revealed as novel targets of curcumin. Curcumin was discovered to regulate the expression of numerous pathogenic miRNAs in gastric, colorectal, esophageal and liver cancers. The present systematic review was performed to identify miRNAs that are modulated by curcumin in gastrointestinal cancers.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Dehghani
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Rostami
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Gamal AA, Abbas HY, Abdelwahed NAM, Kashef MT, Mahmoud K, Esawy MA, Ramadan MA. Optimization strategy of Bacillus subtilis MT453867 levansucrase and evaluation of levan role in pancreatic cancer treatment. Int J Biol Macromol 2021; 182:1590-1601. [PMID: 34015407 DOI: 10.1016/j.ijbiomac.2021.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Pancreatic cancer is the fourth most lethal cancer type worldwide. Due to multiple levan applications including anticancer activities, studies related to levansucrase production are of interest. To our knowledge, levan effect on pancreatic cancer cells has not been tested previously. In this work, among eighteen bacterial honey isolates, Bacillus subtilis MT453867 showed the highest levan yield (33 g/L) and levansucrase production (8.31 U/mL). One-factor-at-a-time technique increased levansucrase activity by 60% when MgSO4 was eliminated. The addition of 60 g/L banana peels enhanced the enzyme activity (192 U/mL). Placket Burman design determined the media composition for maximum levan yield (54.8 g/L) and levansucrase production (505 U/mL). The identification of levan was confirmed by thin-layer chromatography, Fourier-Transform Infrared spectrometric analysis, 13C-nuclear-magnetic resonance, and 1H-nuclear-magnetic resonance. Both crude and dialyzed levan completely inhibited the pancreatic cancer cell line at 100 ppm with no cytotoxicity on the normal retinal cell line. The LD50 of crude levan was 4833 mg/kg body weight. Levan had strong antioxidant activity and significantly reduced the expression of CXCR4 and MCM7 genes in pancreatic cancer cells with significant DNA fragmentation. In conclusion, Bacillus subtilis MT453867 levan is a promising adjunct to pancreatic-anticancer agents with both anti-cancer and chemoprotective effects.
Collapse
Affiliation(s)
- Amira A Gamal
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Heba Y Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City
| | - Nayera A M Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University
| | - Khaled Mahmoud
- Pharmacognosy Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth st.(former El Tahrir st.), P.O 12622, Dokki, Cairo, Egypt.
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University
| |
Collapse
|
22
|
Sadoughi F, Maleki Dana P, Asemi Z, Yousefi B. Targeting microRNAs by curcumin: implication for cancer therapy. Crit Rev Food Sci Nutr 2021; 62:7718-7729. [PMID: 33905266 DOI: 10.1080/10408398.2021.1916876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In spite of all the investigations in the past 20 years that established a great body of knowledge in cancer therapy, utilizing some elderly methods such as plant compound administration might still be useful. Curcumin is a bioactive polyphenol, which has many anticancer properties but its capability in modulating miRNA expression has opened new doors in the field of cancer-targeted therapy. MiRNAs are a class of small noncoding RNAs that are able to regulate gene expression and signaling. In addition, some other effects of these RNAs such as modulating cell differentiation and regulation of cell cycle have made miRNAs great candidates for personalized cancer treatment. In this review, we try to find some answers to the questions on how curcumin exerts its impacts on cancer hallmarks through miRNAs and whether chemotherapy can be replaced by this beneficial plant compound.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Wu L, Yu K, Cue Y, Zhu X, Yang Z, Ma J. [Speckle-type POZ protein up-regulates c-Jun protein expression and promotes proliferation and invasion of renal carcinoma cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:447-452. [PMID: 33849838 DOI: 10.12122/j.issn.1673-4254.2021.03.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of speckle-type POZ protein (SPOP) on proliferation, apoptosis, migration and invasion of renal cell carcinoma (RCC) and explore the potential mechanisms. OBJECTIVE Renal carcinoma cell lines (786-O, A704, and Caki-2) cultured in vitro were transfected with a SPOP-overexpressing plasmid, and the changes in proliferation of the cells were detected using colony formation and MTT assay; TUNEL assay was used to assess apoptosis of the cells. The changes in migration and invasion abilities of the cells were examined using wound healing assay and Transwell assay. The mRNA and protein levels of SPOP and c-Jun in the transfected cells were measured using real-time PCR and Western blotting. OBJECTIVE SPOP over-expression obviously promoted the proliferation, migration and invasion of 786-O, A704 and Caki-2 cells (P < 0.05). Compared with the control cells, 786-o and Caki-2 cells over-expressing SPOP exhibited significantly lowered apoptosis rates (P < 0.05). The results of real-time PCR demonstrated that the transfected cells did not show obvious changes in the mRNA level of c-Jun, but the protein expressions of SPOP and c-jun increased significantly as shown by Western blotting (P < 0.05). OBJECTIVE SPOP can promote proliferation, migration, and invasion and suppress apoptosis of renal carcinoma cells possibly by promoting the expression of c-Jun.
Collapse
Affiliation(s)
- L Wu
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, China
| | - K Yu
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, China
| | - Y Cue
- Department of Clinical Laboratory, Fuyang Women and Children's Hospital, Fuyang 236000, China
| | - X Zhu
- Department of Laboratory Medicine, Bengbu 233030, China
| | - Z Yang
- Department of Laboratory Medicine, Bengbu 233030, China
| | - J Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
24
|
Oliveira C, Calmeiro J, Carrascal MA, Falcão A, Gomes C, Miguel Neves B, Teresa Cruz M. Exosomes as new therapeutic vectors for pancreatic cancer treatment. Eur J Pharm Biopharm 2021; 161:4-14. [PMID: 33561524 DOI: 10.1016/j.ejpb.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers with a very short rate of survival and commonly without symptoms in its early stage. This absence of symptoms can lead to a late diagnosis associated with an advanced metastasis process, for which therapy is not effective. Although with extensive research in this field, the 5-year survival rate has not increased significantly. Notwithstanding, novel insights on risk factors, genetic mutations and molecular mechanisms pave the way for novel therapeutics that urge with a significant part of PC patients presenting resistance to chemotherapy treatments. Exosomes are presented as a promising strategy, working as delivery systems, since they can transport and release their cargoes after fusing with the membrane of pancreatic cells. Exosomes present advantages over liposomes, being less toxic and reaching higher levels in the bloodstream, working as molecule carriers that can inhibit oncogenes, activating tumor suppressor genes and inducing immune responses as well as controlling cell growth. This review intends to provide an overview about the scientific and clinical studies regarding the entire process, from isolation and purification of exosomes, to their design and transformation into anti-oncogenic drug delivering systems, particularly to target PC cells.
Collapse
Affiliation(s)
- Constança Oliveira
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Calmeiro
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Mylène A Carrascal
- Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal; Tecnimede Group, 2710-089 Sintra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, 300-504 Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
25
|
Choi HJ, Park JH, Kim OH, Kim KH, Hong HE, Seo H, Kim SJ. Combining Everolimus and Ku0063794 Promotes Apoptosis of Hepatocellular Carcinoma Cells via Reduced Autophagy Resulting from Diminished Expression of miR-4790-3p. Int J Mol Sci 2021; 22:ijms22062859. [PMID: 33799789 PMCID: PMC7998287 DOI: 10.3390/ijms22062859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
It is challenging to overcome the low response rate of everolimus in the treatment of patients with hepatocellular carcinoma (HCC). To overcome this challenge, we combined everolimus with Ku0063794, the inhibitor of mTORC1 and mTORC2, to achieve higher anticancer effects. However, the precise mechanism for the synergistic effects is not clearly understood yet. To achieve this aim, the miRNAs were selected that showed the most significant variation in expression according to the mono- and combination therapy of everolimus and Ku0063794. Subsequently, the roles of specific miRNAs were determined in the processes of the treatment modalities. Compared to individual monotherapies, the combination therapy significantly reduced viability, increased apoptosis, and reduced autophagy in HepG2 cells. The combination therapy led to significantly lower expression of miR-4790-3p and higher expression of zinc finger protein225 (ZNF225)—the predicted target of miR-4790-3p. The functional study of miR-4790-3p and ZNF225 revealed that regarding autophagy, miR-4790-3p promoted it, while ZNF225 inhibited it. In addition, regarding apoptosis, miR-4790-3p inhibited it, while ZNF225 promoted it. It was also found that HCC tissues were characterized by higher expression of miR-4790-3p and lower expression of ZNF225; HCC tissues were also characterized by higher autophagic flux. We, thus, conclude that the potentiated anticancer effect of the everolimus and Ku0063794 combination therapy is strongly associated with reduced autophagy resulting from diminished expression of miR-4790-3p, as well as higher expression of ZNF225.
Collapse
Affiliation(s)
- Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (H.E.H.); (H.S.); (S.-J.K.)
- Correspondence:
| | - Jung Hyun Park
- Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea;
| | - Ok-Hee Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (H.E.H.); (H.S.); (S.-J.K.)
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Kee-Hwan Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Korea
| | - Ha Eun Hong
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (H.E.H.); (H.S.); (S.-J.K.)
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Haeyeon Seo
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (H.E.H.); (H.S.); (S.-J.K.)
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (H.E.H.); (H.S.); (S.-J.K.)
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| |
Collapse
|
26
|
Wang F, Fan K, Zhao Y, Xie ML. Apigenin attenuates TGF-β1-stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR-155-5p/c-Ski/Smad pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113195. [PMID: 32800930 DOI: 10.1016/j.jep.2020.113195] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apigenin is a natural flavonoid compound present in chamomile (Matricaia chamomilla L.) from the Asteraceae family, which is used in the treatment of cardiovascular diseases by traditional healers, but its effects on differentiation and extracellular matrix (ECM) production of cardiac fibroblasts (CFs) induced by transforming growth factor beta 1 (TGF-β1) are poorly understood. AIM OF THE STUDY This study aimed to examine these effects and potential molecular mechanisms and to provide a new application of apigenin in the prevention and treatment of cardiac fibrosis. MATERIALS AND METHODS The TGF-β1-stimulated CFs or the combination of TGF-β1-stimulated and microRNA-155-5p (miR-155-5p) inhibitor- or mimic-transfected CFs were treated with or without apigenin. The expression levels of intracellular related mRNA and proteins were detected by real-time polymerase chain reaction and Western blot methods, respectively. The luciferase reporter gene containing cellular Sloan-Kettering Institute (c-Ski) wild or mutant type 3'-UTR was used and the luciferase activity was examined to verify the direct link of miR-155-5p and c-Ski. RESULTS After treatment of TGF-β1-stimulated CFs with 6-24 μM apigenin, the expression of c-Ski was increased, while levels of miR-155-5p, α-smooth muscle actin, collagen Ⅰ/Ⅲ, Smad2/3, and p-Smad2/3 were decreased. After transfection of CFs with the miR-155-5p inhibitor or mimic, the similar or inverse results were respectively observed as well. The combination of TGF-β1 and miR-155-5p inhibitor or mimic might cause an antagonistical or synergistic effect, respectively, and apigenin addition could enhance the effects of the inhibitor and antagonize the effects of the mimic. Luciferase reporter gene assay demonstrated that c-Ski was a direct target of miR-155-5p. CONCLUSION These findings suggested that apigenin could inhibit the differentiation and ECM production in TGF-β1-stimulated CFs, and its mechanisms might partly be attributable to the reduction of miR-155-5p expression and subsequent increment of c-Ski expression, which might result in the inhibition of Smad2/3 and p-Smad2/3 expressions.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Ke Fan
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Ying Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Mei-Lin Xie
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China.
| |
Collapse
|
27
|
Hao J, Dai X, Gao J, Li Y, Hou Z, Chang Z, Wang Y. Curcumin suppresses colorectal tumorigenesis via the Wnt/β-catenin signaling pathway by downregulating Axin2. Oncol Lett 2021; 21:186. [PMID: 33574925 PMCID: PMC7816292 DOI: 10.3892/ol.2021.12447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with high incidence and mortality rates. Conventional therapies, including surgery, chemotherapy and radiation, are extensively used for the treatment of CRC. However, patients present with adverse effects, such as toxicity, hepatic injury and drug resistance. Thus, there is an urgent requirement to identify effective and safe therapy for CRC. Curcumin (CUR), a polyphenol substrate extracted from the rhizome of Curcuma longa, has been extensively studied for the treatment of CRC due to its high efficacy and fewer side effects. Previous studies have reported that several signaling pathways, such as NF-κB, Wnt/β-catenin, are involved in the antitumor effects of CUR in vitro. However, the effect and mechanisms in vivo are not yet fully understood. The present study aimed to determine the molecular mechanism of colorectal cancer in vivo. Reverse transcription-quantitative PCR, western blot and immunohistochemistry analyses were performed to determine the underlying molecular mechanism of curcumin's anti-cancer effect in azoxymethane-dextran sodium sulfate induced colorectal cancer. The results of the present study demonstrated that CUR suppressed tumorigenesis in AOM-DSS induced CRC in mice, and anticancer effects were exerted by suppressing the expression of pro-inflammatory cytokines, and downregulating Axin2 in the Wnt/β-catenin signaling pathway. Taken together, these results exhibit the potential in vivo mechanisms of the anticancer effects of CUR, and highlight Axin2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jiaxue Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xufen Dai
- Food and Drug Technology Research Center, Shaanxi Province Food and Drug Supervision and Inspection Research, Shaanxi Institute for Food and Drug Control, Xi'an, Shaanxi 710065, P.R. China
| | - Juan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yuexuan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Zhaoling Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Zhongman Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yuxin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| |
Collapse
|
28
|
Kaleem M, Alhosin M, Khan K, Ahmad W, Hosawi S, Nur SM, Choudhry H, Zamzami MA, Al-Abbasi FA, Javed MDN. Epigenetic Basis of Polyphenols in Cancer Prevention and Therapy. POLYPHENOLS-BASED NANOTHERAPEUTICS FOR CANCER MANAGEMENT 2021:189-238. [DOI: 10.1007/978-981-16-4935-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
29
|
MiRNAs directly targeting the key intermediates of biological pathways in pancreatic cancer. Biochem Pharmacol 2020; 189:114357. [PMID: 33279497 DOI: 10.1016/j.bcp.2020.114357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic Cancer (PC) is a severe form of malignancy all over the world. Delayed diagnosis and chemoresistance are the major factors contributing to its poor prognosis and high mortality rate. The genetic and epigenetic regulations of biological pathways further complicate the progression and chemotherapy response to this cancer. MicroRNAs (MiRNAs) involvement has been observed in all types of cancers including PC. The understanding and categorization of miRNAs according to their specific targets are very important to develop early diagnostic and therapeutic interventions. The current review, emphasizing recent research findings, has categorized miRNAs that directly target the potential onco-factors that act as central converging signal-nodes in five major cancer-related pathways i.e., MAPK/ERK, JAK/STAT, Wnt/β-catenin, AKT/mTOR, and TGFβ in PC. The therapeutic perspectives of miRNAs in PC have also been discussed. This will help to understand the interplay of various miRNAs within foremost signaling pathways and develop a multifactorial approach to treat difficult-to-treat PC.
Collapse
|
30
|
Khaket TP, Singh MP, Khan I, Kang SC. In vitro and in vivo studies on potentiation of curcumin-induced lysosomal-dependent apoptosis upon silencing of cathepsin C in colorectal cancer cells. Pharmacol Res 2020; 161:105156. [DOI: 10.1016/j.phrs.2020.105156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022]
|
31
|
Gu Y, Zhang S. High-throughput sequencing identification of differentially expressed microRNAs in metastatic ovarian cancer with experimental validations. Cancer Cell Int 2020; 20:517. [PMID: 33100909 PMCID: PMC7579798 DOI: 10.1186/s12935-020-01601-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Background Ovarian cancer (OC) is a common gynecological cancer and characterized by high metastatic potential. MicroRNAs (miRNAs, miRs) have the promise to be harnessed as prognostic and therapeutic biomarkers for OC. Herein, we sought to identify differentially expressed miRNAs and mRNAs in metastatic OC, and to validate them with functional experiments. Methods Differentially expressed miRNAs and mRNAs were screened from six pairs of primary OC tissues and metastatic tissues using a miRStar™ Human Cancer Focus miRNA and Target mRNA PCR Array. Then, gene expression profiling results were verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot assays. The binding affinity between miR-7-5p and TGFβ2 was validated by dual-luciferase reporter assay. Expression of miR-7-5p and TGFβ2 was manipulated to assess their roles in malignant phenotypes of highly metastatic HO-8910PM cells. Results MiRNA profiling and sequencing identified 12 miRNAs and 10 mRNAs that were differentially expressed in metastatic tissues. Gene ontology and Pathway analyses determined that 3 differentially expressed mRNAs (ITGB3, TGFβ2 and TNC) were related to OC metastasis. The results of RT-qPCR confirmed that the decrease of miR-7-5p was most significant in OC metastasis, while TGFβ2 was up-regulated in OC metastasis. Moreover, miR-7-5p targeted and negatively regulated TGFβ2. MiR-7-5p overexpression accelerated HO-8910PM cell viability and invasion, and TGFβ2 overexpression reversed the results. Meanwhile, simultaneous miR-7-5p and TGFβ2 overexpression rescued the cell activities. Conclusions This study characterizes differentially expressed miRNAs and mRNAs in metastatic OC, where miR-7-5p and its downstream target were most closely associated with metastatic OC. Overexpression of miR-7-5p targets and inhibits TGFβ2 expression, thereby inhibiting the growth and metastasis of OC.
Collapse
Affiliation(s)
- Yang Gu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning P. R. China
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning P. R. China
| |
Collapse
|
32
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
33
|
Han S, Zhang T, Kusumanchi P, Huda N, Jiang Y, Liangpunsakul S, Yang Z. Role of microRNA-7 in liver diseases: a comprehensive review of the mechanisms and therapeutic applications. J Investig Med 2020; 68:1208-1216. [PMID: 32843369 PMCID: PMC9303053 DOI: 10.1136/jim-2020-001420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA-7 (miR-7) is a small non-coding RNA, which plays critical roles in regulating gene expression of multiple key cellular processes. MiR-7 exhibits a tissue-specific pattern of expression, with abundant levels found in the brain, spleen, and pancreas. Although it is expressed at lower levels in other tissues, including the liver, miR-7 is involved in both the development of organs and biological functions of cells. In this review, we focus on the mechanisms by which miR-7 controls cell growth, proliferation, invasion, metastasis, metabolism, and inflammation. We also summarize the specific roles of miR-7 in liver diseases. MiR-7 is considered as a tumor suppressor miRNA in hepatocellular carcinoma and is involved in the pathogenesis of hepatic steatosis and hepatitis. Future studies to further define miR-7 functions and its mechanism in association with other types of liver diseases should be explored. An improved understanding from these studies will provide us a useful perspective leading to mechanism-based intervention by targeting miR-7 for the treatment of liver diseases.
Collapse
Affiliation(s)
- Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, Beijing, China
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
34
|
Guo W, Zhao L, Wei G, Liu P, Zhang Y, Fu L. Blocking circ_0013912 Suppressed Cell Growth, Migration and Invasion of Pancreatic Ductal Adenocarcinoma Cells in vitro and in vivo Partially Through Sponging miR-7-5p. Cancer Manag Res 2020; 12:7291-7303. [PMID: 32884344 PMCID: PMC7434577 DOI: 10.2147/cmar.s255808] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Background Circular RNAs have been emerging as biomarkers in diagnosis and prognosis of pancreatic ductal adenocarcinoma (PDAC). The hsa_circ_0013912 (circ_0013912) has been retrieved to be upregulated in PDAC. Here, we further investigated its role in PDAC cells, as well as its mechanism via serving as competing endogenous RNA (ceRNA) for miRNA (miR)-7-5p, which is abundant in pancreas and suppresses the development of PDAC. Materials and Methods The clinical human tissues were harvested from Gene Expression Omnibus (GEO) database and PDAC patients, and expression of circ_0013912 and miR-7-5p was detected by real-time quantitative PCR. The interaction between both was confirmed by dual-luciferase reporter assay, RNA immunoprecipitation and biotin-miRNA pull-down assay. Functional experiments were performed using Cell Counting Kit-8 assay, colony formation assay, fluorescence-activated cell separation method, caspase 3 activity assay kit, Western blotting, transwell assays, and xenograft tumor model. Results circ_0013912 was upregulated in PDAC tumors and cells; besides, circ_0013912 upregulation was associated with TNM stage and lymph node metastasis. Silencing circ_0013912 inhibited cell viability, colony formation ability, cell cycle entrance, migration and invasion, but facilitated apoptosis rate and caspase 3 activity in PANC-1 and AsPC-1 cells, accompanied with decreased c-myc, cyclin D1 and vimentin, and increased E-cadherin. Furthermore, miR-7-5p was a target of circ_0013912. Blocking miR-7-5p could promote cell growth, migration and invasion of PANC-1 and AsPC-1 cells with circ_0013912 silencing or not. Tumor growth was also restrained by circ_0013912 downregulation. Conclusion Circ_0013912 knockdown could suppress cell growth and metastasis of PDAC cells via sponging miR-7-5p.
Collapse
Affiliation(s)
- Weisheng Guo
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Lin Zhao
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Guangya Wei
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Peng Liu
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450002, People's Republic of China
| | - Liran Fu
- Department of Traditional Chinese Medicine, People's Hospital of Zhengzhou, Zhengzhou 450000, Henan, People's Republic of China
| |
Collapse
|
35
|
Mandzhieva B, Shobar R, Jalil A, Zafar H, Rashid MU, Kumar R, Khetpal A, Ahmad S. Molecular Pathways Involved in the Pathogenesis of Pancreatic Cancer: Role of Phytochemicals in Targeting the Clinical Outcomes. PHYTOCHEMICALS TARGETING TUMOR MICROENVIRONMENT IN GASTROINTESTINAL CANCERS 2020:223-260. [DOI: 10.1007/978-3-030-48405-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
36
|
Peng F, Xie X, Peng C. Chinese Herbal Medicine-Based Cancer Therapy: Novel Anticancer Agents Targeting MicroRNAs to Regulate Tumor Growth and Metastasis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1711-1735. [PMID: 31801358 DOI: 10.1142/s0192415x19500873] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs, small non-coding RNA molecules, have gained a reputation of the most substantial regulators in gene network with the ability to down-regulate their targets. Accumulating evidence shifted insight toward microRNAs regulation as the key element of cancer initiation, development, and aggression. Recent studies have attached the importance of traditional Chinese medicine (TCM) to the treatment of various cancers, and the functional natural compounds have been considered as novel anticancer agents to directly inhibit tumor progression. In more recent decades, a wide range of biologically active components of TCM has gained increasing attention to their applications in the modulation of microRNAs. This review is on the purpose of demonstrating the significance of TCM bioactive ingredients in microRNAs regulation for cancer treatment according to the reports mainly in the recent six years, providing the evidence of efficient Chinese herbal medicine-based therapy and effective pro-diagnosis focusing on microRNAs expression of cancer patients.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xiaofang Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, P. R. China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, Chengdu, P. R. China
| |
Collapse
|
37
|
Song J, Liu Y, Lin L, Zhao Y, Wang X, Zhong M, Xie T, Luo Y, Li S, Yang R, Li H. Glycyrrhetinic acid modified and pH-sensitive mixed micelles improve the anticancer effect of curcumin in hepatoma carcinoma cells. RSC Adv 2019; 9:40131-40145. [PMID: 35541419 PMCID: PMC9076264 DOI: 10.1039/c9ra07250k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023] Open
Abstract
Curcumin (CUR), a natural polyphenolic compound existing in plants, exhibits anticancer potential in inhibiting the growth of various types of human cancer. However, the poor aqueous solubility and low bioavailability limit its clinical applications. pH-sensitive macromolecule F68-acetal-PCL (FAP) and active targeting macromolecule F68-glycyrrhetinic acid (FGA) were designed to fabricate mixed micelles for efficient delivery of CUR. The thin film hydration method was used to prepare CUR loaded mixed (MIX/CUR) micelles. The drug loading rate (DL) of MIX/CUR micelles was 6.31 ± 0.92%, which remained stable for 15 days at 4 °C. The particle size and zeta potential of the MIX/CUR micelles were 91.06 ± 1.37 nm and -9.79 ± 0.47 mV, respectively. The MIX/CUR micelles exhibited pH sensitivity in a weak acid environment, and showed rapid particle size variation and drug release. In addition, in vitro tests demonstrated that MIX/CUR micelles induced higher cytotoxicity and apoptosis than free CUR, non-pH-sensitive F68-PCL (FBP)/CUR micelles and pH-sensitive FAP/CUR micelles in SMMC7721 and Hepa1-6 cells. Besides, mixed micelles were more effective than FBP and FAP micelles in a cell uptake experiment, which was medicated by a GA receptor. All in all, these results indicated that MIX/CUR micelles could be regarded as an ideal drug administration strategy against hepatoma carcinoma cells.
Collapse
Affiliation(s)
- Jizheng Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ye Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Xiuqing Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ming Zhong
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science Nanning 530022 China
| | - Tanggui Xie
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science Nanning 530022 China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Shaojing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ruocong Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
38
|
Wang Q, Li Z, Hu Y, Zheng W, Tang W, Zhai C, Gu Z, Tao J, Wang H. Circ-TFCP2L1 Promotes the Proliferation and Migration of Triple Negative Breast Cancer through Sponging miR-7 by Inhibiting PAK1. J Mammary Gland Biol Neoplasia 2019; 24:323-331. [PMID: 31776835 DOI: 10.1007/s10911-019-09440-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
CircRNAs are essential factors that have been verified to regulate various forms of carcinogenesis. However, the role of circRNAs in triple negative breast cancer (TNBC) tumourigenesis is not well clarified. In this study, we explored the circRNA expression profiles and possible modulation mechanism of circRNAs on triple negative breast cancer tumourigenesis. We used three pairs of triple negative breast cancer tissues and adjacent noncancerous tissues to perform a human circRNA microarray for screening of circRNA expression patterns in TNBC. The results showed that circ-TFCP2L1 was significantly up-regulated in TNBC tissues and cells, tending to have a shorter disease-free survival of TNBC patients. In vitro loss-of-function experiments showed that knockdown of circ-TFCP2L1 significantly suppressed the proliferation and migration of TNBC cells. Moreover, the results showed that the proliferation and migration capabilities and PAK1 expression in TNBC cells treated with si-circ-TFCP2L1 + miR-7 mimics were significantly suppressed compared with the normal group. Therefore, circ-TFCP2L1 was identified as a sponge of miR-7 functionally targeting PAK1 and further promoting the proliferation and migration of TNBC cells. Taken together, the results from our study reveal a novel regulatory mechanism and offer novel insight into the role of circ-TFCP2L1 in progression of triple negative breast cancer.
Collapse
Affiliation(s)
- Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Yun Hu
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changyuan Zhai
- Department of General Surgery, Nanjing Pukou Hospital, Nanjing Medical University, Nanjing, China
| | - Zhutong Gu
- Department of General Surgery, Nanjing Pukou Hospital, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Tao
- Department of General Surgery, Nanjing Pukou Hospital, Nanjing Medical University, Nanjing, China.
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
39
|
Fahmy HM. In vitro study of the cytotoxicity of thymoquinone/curcumin fluorescent liposomes. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1465-1476. [PMID: 31377882 DOI: 10.1007/s00210-019-01688-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/28/2019] [Indexed: 01/14/2023]
Abstract
In the present study, thymoquinone-loaded liposomes (Lip (TQ)), curcumin-encapsulated liposome (Lip (CUR)), and thymoquinone/curcumin-encapsulated liposome (Lip (TQ + CUR)) in addition to rhodamine-labeled thymoquinone/curcumin liposome (Lip (TQ + CUR + ROD)) were prepared with encapsulation efficiency exceeding 99%. The aim of the present study was to evaluate the effect of the different prepared formulations either labeled with the fluorescent dye (rhodamine B) or not on A549 lung cancer cells. Cytotoxicity of different formulations was assessed by MTT assay. Proliferation of A549 cells was significantly inhibited by the different formulations in a concentration-dependent manner in 72 h. The Lip (TQ + CUR + ROD) formulation demonstrated the lowest IC50 value. To investigate its mechanism of action on A549 lung cancer cells, the Comet assay (for DNA damage) was done, the measurement of some oxidative stress parameters in addition to performing inverted fluorescence microscopy imaging. The results of the present study demonstrated the increased DNA damage, oxidative stress damage, and cell apoptosis in A549 treated with TQ, CUR, and rhodamine-encapsulated fluorescent liposome formulation as compared to untreated cells. The results obtained from the present study demonstrate the significant role of the TQ/CUR fluorescent liposomes on decreasing the viability of A549 lung cancer cells. Graphical abstract.
Collapse
Affiliation(s)
- Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 16 El Zafer Street, Haram, Giza, Egypt.
| |
Collapse
|
40
|
Liu Y, Sun H, Makabel B, Cui Q, Li J, Su C, Ashby CR, Chen Z, Zhang J. The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review). Oncol Rep 2019; 42:20-34. [PMID: 31059075 PMCID: PMC6549103 DOI: 10.3892/or.2019.7148] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Curcumin [(1E,6E)‑1,7‑bis(4‑hydroxy‑3‑-methoxyphenyl) hepta‑1,6‑diene‑3,5‑dione] is a natural polyphenol that is derived from the turmeric plant (curcuma longa L.). Curcumin is widely used in food coloring, preservatives, and condiments. Curcumin possesses anti‑tumor, anti‑oxidative and anti‑inflammatory efficacy, as well as other pharmacological effects. Emerging evidence indicates that curcumin alters microRNAs (miRNAs) and long non‑coding RNAs (lncRNAs) in various types of cancers. Both miRNAs and lncRNAs are non‑coding RNAs that can epigenetically modulate the expression of multiple genes via post‑transcriptional regulation. In the present review, the interactions between curcumin and non‑coding RNAs are summarized in numerous types of cancers, including lung, colorectal, prostate, breast, nasopharyngeal, pancreatic, blood, and ovarian cancer, and the vital non‑coding RNAs and their downstream targets are described.
Collapse
Affiliation(s)
- Yun Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Hongmei Sun
- Infinitus (China) Company Ltd., Jiangmen, Guangdong 529156, P.R. China
| | - Bolat Makabel
- Xinjiang Institute of Materia Medica, Urumqi, Xinjiang 830004, P.R. China
| | - Qingbin Cui
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY 11439, USA
- College of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jiajun Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Chaoyue Su
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY 11439, USA
| | - Zhesheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY 11439, USA
| | - Jianye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
41
|
PDS5B regulates cell proliferation and motility via upregulation of Ptch2 in pancreatic cancer cells. Cancer Lett 2019; 460:65-74. [PMID: 31233836 DOI: 10.1016/j.canlet.2019.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Pds5b (precocious dissociation of sisters 5B) is involved in both tumorigenesis and cancer progression; however, the functions and molecular mechanisms of Pds5b in pancreatic cancer (PC) are unknown. Several approaches were conducted to investigate the molecular basis of Pds5b-related PC progression, including transfection, MTT, FACS, western blotting, wound healing assay, transwell chamber invasion assay, and immunohistochemical methods. Pds5b overexpression inhibited cell growth and induced apoptosis, whereas the inhibition of Pds5b promoted growth of PC cells. Moreover, Pds5b overexpression inhibited cell migration and invasion, while the downregulation of Pds5b enhanced cell motility. Furthermore, reduced Pds5b expression was associated with survival in PC patients. Mechanistically, Pds5b positively regulated the expression of Ptch2 to influence the Sonic hedgehog signaling pathway. Consistently, Ptch2 downregulation enhanced cell growth, migration, and invasion, while inhibiting cell apoptosis. Notably, the downregulation of Ptch2 abolished Pds5b-mediated anti-tumor activity in PC cells. Strikingly, Pds5b expression was positively associated with levels of Ptch2 in PC patient samples, suggesting that the Pds5b/Ptch2 axis regulates cell proliferation and invasion in PC cells. Our findings indicate that targeting Pds5b and Ptch2 may represent a novel therapeutic approach for PC.
Collapse
|
42
|
Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Bioactive Ingredients in Chinese Herbal Medicines That Target Non-coding RNAs: Promising New Choices for Disease Treatment. Front Pharmacol 2019; 10:515. [PMID: 31178721 PMCID: PMC6537929 DOI: 10.3389/fphar.2019.00515] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal medicines (CHMs) are widely used in China and have long been a powerful method to treat diseases in Chinese people. Bioactive ingredients are the main components extracted from herbs that have therapeutic properties. Since artemisinin was discovered to inhibit malaria by Nobel laureate Youyou Tu, extracts from natural plants, particularly bioactive ingredients, have aroused increasing attention among medical researchers. The bioactive ingredients of some CHMs have been found to target various non-coding RNA molecules (ncRNAs), especially miRNAs, lncRNAs, and circRNAs, which have emerged as new treatment targets in numerous diseases. Here we review the evidence that, by regulating the expression of ncRNAs, these ingredients exert protective effects, including pro-apoptosis, anti-proliferation and anti-migration, anti-inflammation, anti-atherosclerosis, anti-infection, anti-senescence, and suppression of structural remodeling. Consequently, they have potential as treatment agents in diseases such as cancer, cardiovascular disease, nervous system disease, inflammatory bowel disease, asthma, infectious diseases, and senescence-related diseases. Although research has been relatively limited and inadequate to date, the promising choices and new alternatives offered by bioactive ingredients for the treatment of the above diseases warrant serious investigation.
Collapse
Affiliation(s)
- Yan Dong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Wang M, Jiang S, Zhou L, Yu F, Ding H, Li P, Zhou M, Wang K. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. Int J Biol Sci 2019; 15:1200-1214. [PMID: 31223280 PMCID: PMC6567807 DOI: 10.7150/ijbs.33710] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Despite significant progressions in treatment modalities over the last decade, either cancer incidence or mortality is continuously on the rise throughout the world. Current anticancer agents display limited efficacy, accompanied by severe side effects. In order to improve therapeutic outcomes in patients with cancer, it is crucial to identify novel, highly efficacious pharmacological agents. Curcumin, a hydrophobic polyphenol extracted from turmeric, has gained increasing attention due to its powerful anticancer properties. Curcumin can inhibit the growth, invasion and metastasis of various cancers. The anticancer mechanisms of curcumin have been extensively studied. The anticancer effects of curcumin are mainly mediated through its regulation of multiple cellular signaling pathways, including Wnt/β-catenin, PI3K/Akt, JAK/STAT, MAPK, p53 and NF-ĸB signaling pathways. Moreover, curcumin also orchestrates the expression and activity of oncogenic and tumor-suppressive miRNAs. In this review, we summarized the regulation of these signaling pathways by curcumin in different cancers. We also discussed the modulatory function of curcumin in the downregulation of oncogenic miRNAs and the upregulation of tumor-suppressive miRNAs. An in-depth understanding of the anticancer mechanisms of curcumin will be helpful for developing this promising compound as a therapeutic agent in clinical management of cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan 430071, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Meng Zhou
- Department of Dermatology, Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
44
|
Wong KE, Ngai SC, Chan KG, Lee LH, Goh BH, Chuah LH. Curcumin Nanoformulations for Colorectal Cancer: A Review. Front Pharmacol 2019; 10:152. [PMID: 30890933 PMCID: PMC6412150 DOI: 10.3389/fphar.2019.00152] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent form of cancer, after lung cancer and breast cancer, with the second highest death incidence. Over the years, natural compounds have been explored as an alternative to conventional cancer therapies such as surgery, radiotherapy, and chemotherapy. Curcumin, an active constituent of turmeric has been associated with various health benefits. It has gained much attention as an anticancer agent due to its ability to regulate multiple cell signaling pathways, including NF-κB, STAT3, activated protein-1 (AP-1), epidermal growth response-1 (Egr-1), and p53, which are crucial in cancer development and progression. Nevertheless, the clinical application of curcumin is greatly restricted because of its low water solubility, poor oral absorption, and rapid metabolism. These issues have led to the development of curcumin nanoformulations to overcome the limitations of the compound. Nanotechnology-based delivery systems have been widely used in improving the delivery of poorly-water soluble drugs. Besides, these systems also come with the added benefits of possible cellular targeting and improvement in cellular uptake. An ideal improved formulation should display a greater anticancer activity compared to free curcumin, and at the same time be non-toxic to the normal cells. In this review, we focus on the design and development of various nanoformulations to deliver curcumin for use in CRC such as liposomes, micelles, polymer nanoparticles, nanogels, cyclodextrin complexes, solid lipid nanoparticles (SLN), phytosomes, and gold nanoparticles. We also discuss the current pre-clinical and clinical evidences of curcumin nanoformulations in CRC therapy, analyse the research gap, and address the future direction of this research area.
Collapse
Affiliation(s)
- Kar En Wong
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Siew Ching Ngai
- Faculty of Science, School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Learn-Han Lee
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Centre of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Centre of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
45
|
Ye T, Yang M, Huang D, Wang X, Xue B, Tian N, Xu X, Bao L, Hu H, Lv T, Huang Y. MicroRNA-7 as a potential therapeutic target for aberrant NF-κB-driven distant metastasis of gastric cancer. J Exp Clin Cancer Res 2019; 38:55. [PMID: 30728051 PMCID: PMC6364399 DOI: 10.1186/s13046-019-1074-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dysregulated miR-7 and aberrant NF-κB activation were reported in various human cancers. However, the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in human gastric cancers (GC) metastasis remain largely unknown. This study is to investigate the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in GC and to explore the potential therapeutic effect of miR-7 to GC distant metastasis. METHODS TCGA STAD and NCBI GEO database were used to investigate the expression profile of miR-7 and NF-κB RelA/p65 and clinical relevance. Lentivirus-mediated gene delivery was applied to explore the therapeutic effect of miR-7 in GC. Real-time PCR, FACS, IHC, IF, reporter gene assay, IP, pre-miRNA-7 processing and binding assays were performed. RESULTS Low miR-7 correlated with high RelA/p65 in GC with a clinical relevance that low miR-7 and high RelA/p65 as prognostic indicators of poor survival outcome of GC patients. Moreover, an impaired pre-miR-7 processing caused by dysregulated Dicer1 expression is associated with downregulated miR-7 in GC cells. Functionally, delivery of miR-7 displays therapeutic effects to GC lung and liver metastasis by alleviating hemangiogenesis, lymphangiogenesis as well as inflammation cells infiltration. Mechanistically, miR-7 suppresses NF-κB transcriptional activity and its downstream metastasis-related molecules Vimentin, ICAM-1, VCAM-1, MMP-2, MMP-9 and VEGF by reducing p65 and p-p65-ser536 expression. Pharmacologic prevention of NF-κB activator LPS obviously restored miR-7-suppressed NF-κB transcriptional activation and significantly reverted miR-7-inhibited cell migration and invasion. CONCLUSIONS Our data suggest loss of miR-7 in GC promotes p65-mediated aberrant NF-κB activation, facilitating GC metastasis and ultimately resulting in the worse clinical outcome. Thus, miR-7 may act as novel prognostic biomarker and potential therapeutic target for aberrant NF-κB-driven GC distant metastasis.
Collapse
Affiliation(s)
- Tingbo Ye
- Chongqing key Laboratory of Child Infection and Immunity, Chongqing key Laboratory of Pediatric, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology cooperation base of Child development and Critical disorders, Children’s Hospital of Chongqing Medical University, No.136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014 China
| | - Meihua Yang
- Department of Neurosurgery, Xinqiao Hospital of Army Medical University, Chongqing, 400037 People’s Republic of China
| | - Daochao Huang
- Chongqing key Laboratory of Child Infection and Immunity, Chongqing key Laboratory of Pediatric, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology cooperation base of Child development and Critical disorders, Children’s Hospital of Chongqing Medical University, No.136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014 China
| | - Xin Wang
- Chongqing key Laboratory of Child Infection and Immunity, Chongqing key Laboratory of Pediatric, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology cooperation base of Child development and Critical disorders, Children’s Hospital of Chongqing Medical University, No.136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014 China
| | - Bingqian Xue
- Chongqing key Laboratory of Child Infection and Immunity, Chongqing key Laboratory of Pediatric, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology cooperation base of Child development and Critical disorders, Children’s Hospital of Chongqing Medical University, No.136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014 China
| | - Na Tian
- Chongqing key Laboratory of Child Infection and Immunity, Chongqing key Laboratory of Pediatric, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology cooperation base of Child development and Critical disorders, Children’s Hospital of Chongqing Medical University, No.136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014 China
| | - Xiaohui Xu
- Chongqing key Laboratory of Child Infection and Immunity, Chongqing key Laboratory of Pediatric, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology cooperation base of Child development and Critical disorders, Children’s Hospital of Chongqing Medical University, No.136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014 China
| | - Liming Bao
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Huajian Hu
- Chongqing key Laboratory of Child Infection and Immunity, Chongqing key Laboratory of Pediatric, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology cooperation base of Child development and Critical disorders, Children’s Hospital of Chongqing Medical University, No.136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014 China
| | - Tiewei Lv
- Chongqing key Laboratory of Child Infection and Immunity, Chongqing key Laboratory of Pediatric, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology cooperation base of Child development and Critical disorders, Children’s Hospital of Chongqing Medical University, No.136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014 China
| | - Yi Huang
- Chongqing key Laboratory of Child Infection and Immunity, Chongqing key Laboratory of Pediatric, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology cooperation base of Child development and Critical disorders, Children’s Hospital of Chongqing Medical University, No.136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014 China
| |
Collapse
|
46
|
Ma J, Cao T, Cui Y, Zhang F, Shi Y, Xia J, Wang ZP. miR-223 Regulates Cell Proliferation and Invasion via Targeting PDS5B in Pancreatic Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:583-592. [PMID: 30776580 PMCID: PMC6378631 DOI: 10.1016/j.omtn.2019.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
Emerging evidence has demonstrated that miR-223 is critically involved in the progression of pancreatic cancer (PC); however, the underlying mechanisms are not fully elucidated. In the present study, we explored the molecular basis of miR-223-mediated tumor progression in PC. We performed numerous approaches including MTT, FACS, transfection, RT-PCR, western blotting, Transwell, and animal studies to determine the physiological role of miR-223 in PC cells. We found that sister chromatid cohesion protein PDS5 homolog B (PDS5B) is a direct target of miR-223 in PC. Moreover, PDS5B exhibits tumor-suppressive function in PC cells. Consistently, ectopic overexpression of PDS5B reversed miR-223-mediated tumor progression in PC cells. These results suggest that the miR-223/PDS5B axis regulates cell proliferation and invasion in PC cells. Our findings indicated that downregulation of miR-223 could be a novel therapeutic approach for PC.
Collapse
Affiliation(s)
- Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China
| | - Tong Cao
- Department of Clinical Laboratorial Examination, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Yue Cui
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Anhui 233030, China
| | - Fan Zhang
- Department of Pharmacology, Adagene Limited Company, Suzhou, Jiangsu 215000, China
| | - Ying Shi
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Mizumoto A, Ohashi S, Kamada M, Saito T, Nakai Y, Baba K, Hirohashi K, Mitani Y, Kikuchi O, Matsubara J, Yamada A, Takahashi T, Lee H, Okuno Y, Kanai M, Muto M. Combination treatment with highly bioavailable curcumin and NQO1 inhibitor exhibits potent antitumor effects on esophageal squamous cell carcinoma. J Gastroenterol 2019; 54:687-698. [PMID: 30737573 PMCID: PMC6647399 DOI: 10.1007/s00535-019-01549-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most intractable cancers, so the development of novel therapeutics has been required to improve patient outcomes. Curcumin, a polyphenol from Curcuma longa, exhibits various health benefits including antitumor effects, but its clinical utility is limited because of low bioavailability. Theracurmin® (THC) is a highly bioavailable curcumin dispersed with colloidal submicron particles. METHODS We examined antitumor effects of THC on ESCC cells by cell viability assay, colony and spheroid formation assay, and xenograft models. To reveal its mechanisms, we investigated the levels of reactive oxygen species (ROS) and performed microarray gene expression analysis. According to those analyses, we focused on NQO1, which involved in the removal of ROS, and examined the effects of NQO1-knockdown or overexpression on THC treatment. Moreover, the therapeutic effect of THC and NQO1 inhibitor on ESCC patient-derived xenografts (PDX) was investigated. RESULTS THC caused cytotoxicity in ESCC cells, and suppressed the growth of xenografted tumors more efficiently than curcumin. THC increased ROS levels and activated the NRF2-NMRAL2P-NQO1 expressions. Inhibition of NQO1 in ESCC cells by shRNA or NQO1 inhibitor resulted in an increased sensitivity of cells to THC, whereas overexpression of NQO1 antagonized it. Notably, NQO1 inhibitor significantly enhanced the antitumor effects of THC in ESCC PDX tumors. CONCLUSIONS These findings suggest the potential usefulness of THC and its combination with NQO1 inhibitor as a therapeutic option for ESCC.
Collapse
Affiliation(s)
- Ayaka Mizumoto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mayumi Kamada
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, 53 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoki Saito
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yukie Nakai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kiichiro Baba
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenshiro Hirohashi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yosuke Mitani
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Osamu Kikuchi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, 866-408-DFCI (3324), Boston, MA, 02215, USA
| | - Junichi Matsubara
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Yamada
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tsukasa Takahashi
- Theravalues Corporation, 3-12 Kioicho, Chiyoda-ku, Tokyo, 102-0094, Japan
| | - Hyunjin Lee
- Theravalues Corporation, 3-12 Kioicho, Chiyoda-ku, Tokyo, 102-0094, Japan
| | - Yasushi Okuno
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, 53 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
48
|
Liu HY, Fu X, Li YF, Li XL, Ma ZY, Zhang Y, Gao QC. miR-15b-5p targeting amyloid precursor protein is involved in the anti-amyloid eflect of curcumin in swAPP695-HEK293 cells. Neural Regen Res 2019; 14:1603-1609. [PMID: 31089060 PMCID: PMC6557094 DOI: 10.4103/1673-5374.255979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Curcumin exerts a neuroprotective effect on Alzheimer's disease; however, it is not known whether microRNAs are involved in this protective effect. This study was conducted using swAPP695-HEK293 cells as an Alzheimer's disease cell model. swAPP695-HEK293 cells were treated with 0, 0.5, 1, 2, 5, and 10 μM curcumin for 24 hours. The changes in miR-15b-5p, miR-19a-3p, miR-195-5p, miR-101-3p, miR-216b-5p, miR-16-5p and miR-185-5p expression were assessed by real-time quantitative polymerase chain reaction. The mRNA and protein levels of amyloid precursor protein, amyloid-β40 and amyloid-β42 were evaluated by quantitative real-time polymerase chain reaction, western blot assays and enzyme-linked immunosorbent assays. swAPP695-HEK293 cells were transfected with miR-15b-5p mimic, or treated with 1 μM curcumin 24 hours before miR-15b-5p inhibitor transfection. The effects of curcumin on amyloid precursor protein, amyloid-β40 and amyloid-β42 levels were evaluated by western blot assays and enzyme-linked immunosorbent assay. Luciferase assays were used to analyze the interaction between miR-15b-5p and the 3'-untranslated region of amyloid precursor protein. The results show that amyloid precursor protein and amyloid-β expression were enhanced in swAPP695-HEK293 cells compared with HEK293 parental cells. Curcumin suppressed the expression of amyloid precursor protein and amyloid-β and up-regulated the expression of miR-15b-5p in swAPP695-HEK293 cells. In addition, we found a negative association of miR-15b-5p expression with amyloid precursor protein and amyloid-β levels in the curcumin-treated cells. Luciferase assays revealed that miR-15b-5p impaired the luciferase activity of the plasmid harboring the 3'-untranslated region of amyloid precursor protein. These findings indicate that curcumin down-regulates the expression of amyloid precursor protein and amyloid-β in swAPP695-HEK293 cells, which was partially mediated by miR-15b-5p via targeting of the 3'-untranslated region of amyloid precursor protein.
Collapse
Affiliation(s)
- Hong-Ying Liu
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xian Fu
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - You-Fu Li
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xian-Liang Li
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhen-Yu Ma
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ying Zhang
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qing-Chun Gao
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
49
|
Sohn EJ, Bak KM, Nam YK, Park HT. Upregulation of microRNA 344a-3p is involved in curcumin induced apoptosis in RT4 schwannoma cells. Cancer Cell Int 2018; 18:199. [PMID: 30534000 PMCID: PMC6278133 DOI: 10.1186/s12935-018-0693-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
Background Schwannoma arising from peripheral nervous sheaths is a benign tumor. Methods To evaluate cell cytotoxicity, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction and terminal deoxynucleotidyltransferase UTP nick-end labeling (TUNEL) assays were used. A microRNA (miRNA) array was used to identify the miRNAs involved in curcumin-induced apoptosis. To examine miRNA expression, quantitative RT-PCR was used. Results In this study, curcumin exerted cellular cytotoxicity against RT4 schwannoma cells, with an increase in TUNEL-positive cells. Curcumin also activated the expression of apoptotic proteins, such as polyADP ribose polymerase, caspase-3, and caspase-9. The miRNA array revealed that seven miRNAs (miRNA 350, miRNA 17-2-3p, let 7e-3p, miRNA1224, miRNA 466b-1-3p, miRNA 18a-5p, and miRNA 322-5p) were downregulated following treatment with both 10 and 20 μM curcumin in RT4 cells, while four miRNAs (miRNA122-5p, miRNA 3473, miRNA182, and miRNA344a-3p) were upregulated. Interestingly, transfection with a miRNA 344a-3p mimic downregulated the mRNA expression of Bcl2 and upregulated that of Bax, Curcumin treatment in RT 4 cells also reduced the mRNA expression of Bcl2 and enhanced expression of Bax, Overexpression of miRNA344a-3p mimic combined with curcumin treatment activated the expression of apoptotic proteins, including procaspase-9 and cleaved caspase-3 while inhibition of miRNA 344a-3p using miR344a-3p inhibitor repressed cleaved caspase-3 and -9 in curcumin treated RT-4 cells compared to control. Conclusions Our findings demonstrate that curcumin induces apoptosis in schwannoma cells via miRNA 344a-3p. Thus, curcumin may serve as a potent therapeutic agent for the treatment of schwannoma.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Peripheral Neuropathy Research Center, Department of Molecular Neuroscience, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714 South Korea
| | - Kyoung-Mi Bak
- Peripheral Neuropathy Research Center, Department of Molecular Neuroscience, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714 South Korea
| | - Yun-Kyeong Nam
- Peripheral Neuropathy Research Center, Department of Molecular Neuroscience, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714 South Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Molecular Neuroscience, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714 South Korea
| |
Collapse
|
50
|
Biersack B. Relations between approved platinum drugs and non-coding RNAs in mesothelioma. Noncoding RNA Res 2018; 3:161-173. [PMID: 30809599 PMCID: PMC6260483 DOI: 10.1016/j.ncrna.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Malignant mesothelioma diseases feature an increasing risk due to their severe forms and their association with asbestos exposure. Platinum(II) complexes such as cisplatin and carboplatin are clinically approved for the therapy of mesothelioma often in combination with antimetabolites such as pemetrexed or gemcitabine. It was observed that pathogenic properties of mesothelioma cells and the response of mesothelioma tumors towards platinum-based drugs are strongly influenced by non-coding RNAs, in particular, by small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These non-coding RNAs controlled drug sensitivity and the development of tumor resistance towards platinum drugs. An overview of the interactions between platinum drugs and non-coding RNAs is given and the influence of non-coding RNAs on platinum drug efficacy in mesothelioma is discussed. Suitable non-coding RNA-modulating agents with potentially beneficial effects on cisplatin treatment of mesothelioma diseases are mentioned. The understanding of mesothelioma diseases concerning the interactions of non-coding RNAs and platinum drugs will optimize existing therapy schemes and pave the way to new treatment options in future.
Collapse
Key Words
- ABC, ATP-binding cassette
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- AKI, acute kidney injury
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- CAF, cancer-associated fibroblast
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3′-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- MRP1, multidrug resistance protein 1
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TNBC, triple-negative breast cancer
- TSA, trichostatin A
Collapse
|