1
|
Chepurna O, Yakovliev A, Ziniuk R, Grebinyk A, Xu H, Nikolaeva OA, Marynin AI, Vretik LO, Qu J, Ohulchanskyy TY. Polymeric nanoparticles with a thermoresponsive shell loaded with fluorescent molecules allow for thermally enhanced fluorescence imaging and singlet oxygen generation. NANOSCALE ADVANCES 2025; 7:1946-1961. [PMID: 39936116 PMCID: PMC11809228 DOI: 10.1039/d4na00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025]
Abstract
A thermosensitive polymeric nanoformulation (NF) was fabricated for thermally enhanced near-infrared (NIR) fluorescence imaging (FLI). It comprised core-shell nanoparticles (NPs) with a polystyrene core and a thermosensitive shell of a co-polymer of N-isopropylacrylamide and acrylamide [poly(NIPAM-co-AA)], which underwent a reversible conformational transition at 38-40 °C (corresponding to a lower critical solution temperature, LCST), leading to a reversible shrinkage of NPs from ∼250 nm to ∼140 nm for temperatures above LCST. The NIR dye 3782SL or photosensitizer HPPH were loaded to the NP shells. While the fluorescence of 3782SL and HPPH was quenched in water, it recovered in the NPs dispersion as a result of adsorption by NPs. Fluorescence for 3782SL and HPPH in NF increased when the temperature increased above LCST. Heating of HPPH-loaded NFs led to the elongation of the HPPH fluorescence lifetime and increased the generation of singlet oxygen (1O2). This occurred as a result of the NP shrinkage, corresponding shell compaction and NP aggregation, which hindered the internal conversion for photoexcited molecules adsorbed by NPs, and resulted in an increase in other deactivation pathways, namely fluorescence emission and intersystem crossing. The latter led to an increase in the triplet yield and, consequently, in singlet oxygen generation. Fluorescence microscopy revealed a 2-3-fold increase in the 3782SL or HPPH fluorescence signal from the NF-treated cells after they were heated up to 40 °C. Comparable results were obtained for the FLI of mice in vivo, after subcutaneous, intravenous, or intratumoral NF injections and localized heating by NIR (1.3 μm) laser irradiation. The developed NF holds immense potential for thermally enhanced FLI and photodynamic therapy.
Collapse
Affiliation(s)
- Oksana Chepurna
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong P. R. China
- Department of Neurosurgery, Cedars-Sinai Medical Center Los Angeles CA USA
| | - Artem Yakovliev
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong P. R. China
| | - Roman Ziniuk
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong P. R. China
| | - Anna Grebinyk
- Deutsches Elektronen-Synchrotron DESY Zeuthen Germany
| | - Hao Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong P. R. China
| | | | | | | | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong P. R. China
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology Shanghai P. R. China
| | - Tymish Y Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong P. R. China
| |
Collapse
|
2
|
Takanezawa Y, Sakai K, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. The predominant role of p62/SQSTM1 over NBR1 in methylmercury-induced cytotoxicity and cellular defense. Biochem Biophys Res Commun 2025; 752:151461. [PMID: 39946983 DOI: 10.1016/j.bbrc.2025.151461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
p62/SQSTM1 (p62) and neighbor of BRCA1 gene 1 (NBR1) are two important cargo receptors involved in selective autophagy. While p62 is known to safeguard cells against the toxic effects of the environmental toxicant methylmercury (MeHg), the specific functions of p62 and NBR1 in MeHg-exposed cells remain unclear. In this study, we aimed to elucidate the distinct roles of p62 and NBR1 in conferring protection against cytotoxicity induced by MeHg. We found that MeHg increased both the mRNA and protein levels of p62 while decreasing those of NBR1. Upon exposure to MeHg, p62-knockout (KO) cells exhibited an approximately 30 % reduction in cell viability compared to wild-type (WT) cells; however, no such reduction was observed in NBR1KO cells. Additionally, p62KO cells exhibited a 1.5-fold increase in intracellular mercury (Hg) concentration compared to the WT following MeHg exposure, whereas NBR1KO cells had Hg levels comparable to those of WT cells. Upon exposure to MeHg, Nrf2 signaling activation was significantly reduced in p62KO cells compared to that in WT cells, whereas NBR1KO cells displayed Nrf2 activation levels similar to those of WT cells. Overall, these results suggest that p62, rather than NBR1, plays a crucial role in mitigating MeHg-induced cytotoxicity by reducing intracellular Hg levels through the activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Kazuma Sakai
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
3
|
Nakamura R, Iwai T, Takanezawa Y, Shirahata T, Konishi N, Ohshiro Y, Uraguchi S, Tanabe M, Kobayashi Y, Sakamoto K, Nakahara T, Yamamoto M, Kiyono M. Oleanolic acid-3-glucoside, a synthetic oleanane-type saponin, ameliorates methylmercury-induced dysfunction of synaptic transmission in mice. Toxicology 2024; 506:153867. [PMID: 38906242 DOI: 10.1016/j.tox.2024.153867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Methylmercury (MeHg) is widely distributed in nature and is known to cause neurotoxic effects. This study aimed to examine the anti-MeHg activity of oleanolic acid-3-glucoside (OA3Glu), a synthetic oleanane-type saponin derivative, by evaluating its effects on motor function, pathology, and electrophysiological properties in a mouse model of MeHg poisoning. Mice were orally administered 2 or 4 mg·kg-1·d-1 MeHg with or without 100 µg·kg-1·d-1 OA3Glu 5x/week for four weeks. Motor function was evaluated using beam-walking and dynamic weight-bearing (DWB) tests. High-dose MeHg exposure significantly increased the frequency of stepping off the hind leg while crossing the beam in the beam-walking test, and increased weight on forelegs when moving freely in the DWB test. OA3Glu treatment alleviated motor abnormality caused by high-dose MeHg exposure in both motor function tests. Additionally, OA3Glu treatment reduced the number of contracted Purkinje cells frequently observed in the cerebellum of MeHg-treated groups, although cerebrum histology was similar in all experimental groups. The synaptic potential amplitude in the cerebellum decreased as MeHg exposure increased, which was restored by OA3Glu treatment. Even in the cerebrum, where the effects of MeHg were not observed, the amplitude of the field potential was suppressed with increasing MeHg exposure but was restored with OA3Glu treatment. Taken together, the study findings suggest that OA3Glu improves neurotransmission and movement disorders associated with MeHg exposure via protection of Purkinje cells in the cerebellum while ameliorating pre/post-synaptic deficits in the cerebral cortex in which no changes were observed at the tissue level, potentially providing a treatment to mitigate MeHg toxicity.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Iwai
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasukazu Takanezawa
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Ohshiro
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mitsuo Tanabe
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tsutomu Nakahara
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Megumi Yamamoto
- Department of Environment and Public Health, National Institute for Minamata Disease, 4058-18, Hama, Minamata, Kumamoto 867-0008, Japan
| | - Masako Kiyono
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
4
|
Li X, Ma K, Tian T, Pang H, Liu T, Li M, Li J, Luo Z, Hu H, Hou S, Yu J, Hou Q, Song X, Zhao C, Du H, Li J, Du Z, Jin M. Methylmercury induces inflammatory response and autophagy in microglia through the activation of NLRP3 inflammasome. ENVIRONMENT INTERNATIONAL 2024; 186:108631. [PMID: 38588609 DOI: 10.1016/j.envint.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with neurotoxicity, which can easily crosses the blood-brain barrier and cause irreversible damage to the human central nervous system (CNS). CNS inflammation and autophagy are known to be involved in the pathology of neurodegenerative diseases. Meanwhile, MeHg has the potential to induce microglia-mediated neuroinflammation as well as autophagy. This study aims to further explore the exact molecular mechanism of MeHg neurotoxicity. We conducted in vitro studies using BV2 microglial cell from the central nervous system of mice. The role of inflammation and autophagy in the damage of BV2 cells induced by MeHg was determined by detecting cell viability, cell morphology and structure, reactive oxygen species (ROS), antioxidant function, inflammatory factors, autophagosomes, inflammation and autophagy-related proteins. We further investigated the relationship between the inflammatory response and autophagy induced by MeHg by inhibiting them separately. The results indicated that MeHg could invade cells, change cell structure, activate NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and autophagosome, release a large amount of inflammatory factors and trigger the inflammatory response and autophagy. It was also found that MeHg could disrupt the antioxidant function of cells. In addition, the inhibition of NLRP3 inflammasome alleviated both cellular inflammation and autophagy, while inhibition of autophagy increased cellular inflammation. Our current research suggests that MeHg might induce BV2 cytotoxicity through inflammatory response and autophagy, which may be mediated by the NLRP3 inflammasome activated by oxidative stress.
Collapse
Affiliation(s)
- Xinyue Li
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Kai Ma
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Tiantian Tian
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Huan Pang
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Tianxiang Liu
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Meng Li
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Jiali Li
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Zhixuan Luo
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Huiyuan Hu
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Shanshan Hou
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Jing Yu
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Qiaohong Hou
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Xiuling Song
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Chao Zhao
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Haiying Du
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China
| | - Jinhua Li
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China.
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, PR China.
| | - Minghua Jin
- School of Public Health Jilin University, Changchun, Jilin,130021, PR China.
| |
Collapse
|
5
|
Takanezawa Y, Ishikawa K, Nakayama S, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Conversion of methylmercury into inorganic mercury via organomercurial lyase (MerB) activates autophagy and aggresome formation. Sci Rep 2023; 13:19958. [PMID: 37968352 PMCID: PMC10651920 DOI: 10.1038/s41598-023-47110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
Methylmercury (MeHg) is converted to inorganic mercury (iHg) in several organs; however, its impact on tissues and cells remains poorly understood. Previously, we established a bacterial organomercury lyase (MerB)-expressing mammalian cell line to overcome the low cell permeability of iHg and investigate its effects. Here, we elucidated the cytotoxic effects of the resultant iHg on autophagy and deciphered their relationship. Treatment of MerB-expressing cells with MeHg significantly increases the mRNA and protein levels of LC3B and p62, which are involved in autophagosome formation and substrate recognition, respectively. Autophagic flux assays using the autophagy inhibitor chloroquine (CQ) revealed that MeHg treatment activates autophagy in MerB-expressing cells but not in wild-type cells. Additionally, MeHg treatment induces the accumulation of ubiquitinated proteins and p62, specifically in MerB-expressing cells. Confocal microscopy revealed that large ubiquitinated protein aggregates (aggresomes) associated with p62 are formed transiently in the perinuclear region of MerB-expressing cells upon MeHg exposure. Meanwhile, inhibition of autophagic flux decreases the MeHg-induced cell viability of MerB-expressing cells. Overall, our results imply that cells regulate aggresome formation and autophagy activation by activating LC3B and p62 to prevent cytotoxicity caused by iHg. These findings provide insights into the role of autophagy against iHg-mediated toxicity.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kouhei Ishikawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shunsuke Nakayama
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
6
|
Takanezawa Y, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Gadolinium-based contrast agents suppress adipocyte differentiation in 3T3-L1 cells. Toxicol Lett 2023; 383:S0378-4274(23)00218-7. [PMID: 37437671 DOI: 10.1016/j.toxlet.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are widely used in magnetic resonance imaging (MRI) to improve the sensitivity and enhance diagnostic performance. GBCAs are mostly eliminated from the body through the kidney after administration; however small amounts of gadolinium are retained in the brain and other tissues. Although there is increasing concern about the adverse health effects of gadolinium, the cellular effects of GBCAs remains poorly understood. Here, we elucidated the potential cytotoxicity of the GBCAs Omniscan and Gadovist in 12 different cell lines, especially 3T3-L1 adipocyte cell line. Omniscan and Gadovist treatments significantly increased intracellular gadolinium levels in 3T3-L1 cells in a time- and dose-dependent manner. Additionally, Omniscan and Gadovist treatments downregulated the expression of adipocyte differentiation markers, including peroxisome proliferator-activated receptor γ (PPARG), adiponectin (ADIPOQ), and fatty acid-binding protein (FABP4), in 3T3-L1 cells, especially during early differentiation (day 0-2). Moreover, histological analysis using Oil red O staining showed that gadolinium chloride (GdCl3) treatment suppressed lipid droplet accumulation and the expression of adipocyte differentiation markers. Overall, the results showed that Omniscan and Gadovist treatment suppressed adipocyte differentiation in 3T3-L1 cells, contributing to the understanding of the potential toxic effects of GBCA exposure.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
7
|
Qiu K, Zou W, Fang Z, Wang Y, Bell S, Zhang X, Tian Z, Xu X, Ji B, Li D, Huang T, Diao J. 2D MoS 2 and BN Nanosheets Damage Mitochondria through Membrane Penetration. ACS NANO 2023; 17:4716-4728. [PMID: 36848459 DOI: 10.1021/acsnano.2c11003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the progression of nanotechnology, a growing number of nanomaterials have been created and incorporated into organisms and ecosystems, which raises significant concern about potential hazards of these materials on human health, wildlife, and the environment. Two-dimensional (2D) nanomaterials are one type of nanomaterials with thicknesses ranging from that of a single atom or of several atoms and have been proposed for a variety of biomedical applications such as drug delivery and gene therapy, but the toxicity thereof on subcellular organelles remains to be studied. In this work, we studied the impact of two typical 2D nanomaterials, MoS2 and BN nanosheets, on mitochondria, which are a type of membranous subcellular organelle that provides energy to cells. While 2D nanomaterials at a low dose exhibited a negligible cell mortality rate, significant mitochondrial fragmentation and partially reduced mitochondrial functions occurred; cells initiate mitophagy in response to mitochondrial damages, which cleans damaged mitochondria to avoid damage accumulation. Moreover, the molecular dynamics simulation results revealed that both MoS2 and BN nanosheets can spontaneously penetrate the mitochondrial lipid membrane through the hydrophobic interaction. The membrane penetration induced heterogeneous lipid packing resulting in damages. Our results demonstrate that even at a low dose 2D nanomaterials can physically damage mitochondria by penetrating the membrane, which draws attention to carefully evaluating the cytotoxicity of 2D nanomaterials for the potential biomedical application.
Collapse
Affiliation(s)
- Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Weiwei Zou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Zhou Fang
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yuxin Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Sam Bell
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Xiuqiong Xu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Baohua Ji
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Dechang Li
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University at Buffalo, 1001 Main Street, Buffalo, New York 14203, United States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| |
Collapse
|
8
|
Takanezawa Y, Kashiwano Y, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Methylmercury drives lipid droplet formation and adipokine expression during the late stages of adipocyte differentiation in 3T3-L1 cells. Toxicology 2023; 486:153446. [PMID: 36708982 DOI: 10.1016/j.tox.2023.153446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Chronic exposure to methylmercury (MeHg) is positively associated with obesity and metabolic syndromes. However, the effect of MeHg on adipogenesis has not been thoroughly investigated. This study investigated the effects of continuous exposure to 0.5 µM MeHg on adipocyte differentiation in 3T3-L1 cells. Oil Red O staining and triglycerides (TG) assays demonstrated that MeHg enhanced the TG content in 3T3-L1 cells. MeHg enhanced the mRNA and protein expression of adipocyte differentiation markers including peroxisome proliferator-activated receptor γ, adiponectin, and fatty acid-binding protein, and their expression levels were prominent during the late stages (days 6-8) after the induction of differentiation. In addition, 0.5 µM MeHg promoted the expression of autophagy-related genes, including light chain 3 B-II and p62, after induction of differentiation. Treatment of 3T3-L1 cells with chloroquine (CQ), an autophagy inhibitor, during the early stages (days 0-2) after induction of differentiation inhibited cellular lipid accumulation in the presence of 0.5 µM MeHg. However, treatment with CQ during the late stages (days 6-8) had little effect on the MeHg-induced increase in TG content and the expression of adipocyte differentiation markers. Although the underlying mechanisms in the late stages remain to be completely elucidated, but the present data suggest that autophagy and other mechanisms play critical roles in adipogenesis during MeHg-induced differentiation. Collectively, our results suggest that continuous exposure to MeHg induces TG accumulation and expression of genes related to adipogenesis, especially during the late stages of 3T3-L1 differentiation, which may contribute to an improved understanding of MeHg-induced adipogenesis.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yui Kashiwano
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
9
|
Takanezawa Y, Sakai K, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Inhibition of p38 Mitogen-Activated Protein Kinases Attenuates Methylmercury Toxicity in SH-SY5Y Neuroblastoma Cells. Biol Pharm Bull 2023; 46:1203-1210. [PMID: 37661399 DOI: 10.1248/bpb.b23-00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is a toxic metal that causes irreversible damage to the nervous system, making it a risk factor for neuronal degeneration and diseases. MeHg activates various cell signaling pathways, particularly the mitogen-activated protein kinase (MAPK) cascades, which are believed to be important determinants of stress-induced cell fate. However, little is known about the signaling pathways that mitigate the neurotoxic effects of MeHg. Herein, we showed that pretreatment with a p38 MAPK-specific inhibitor, SB203580, attenuates MeHg toxicity in human neuroblastoma SH-SY5Y cells, whereas pretreatment with the extracellular signaling-regulated kinase inhibitor U0126 and the c-Jun N-terminal kinase inhibitor SP600125 does not. Specifically, we quantified the levels of intracellular mercury (Hg) and found that pretreatment with SB203580 reduced Hg levels compared to MeHg treatment alone. Further analysis showed that pretreatment with SB203580 increased multidrug resistance-associated protein 2 (MRP2) mRNA levels after MeHg treatment. These results indicate that detoxification of MeHg by p38 MAPK inhibitors may involve an efflux function of MeHg by inducing MRP2 expression.
Collapse
Affiliation(s)
| | - Kazuma Sakai
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University
| |
Collapse
|
10
|
Uraguchi S, Ohshiro Y, Otsuka Y, Wada E, Naruse F, Sugaya K, Nagai K, Wongkaew A, Nakamura R, Takanezawa Y, Clemens S, Ohkama-Ohtsu N, Kiyono M. Phytochelatin-mediated metal detoxification pathway is crucial for an organomercurial phenylmercury tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2022; 109:563-577. [PMID: 34837578 DOI: 10.1007/s11103-021-01221-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
An organomercurial phenylmercury activates AtPCS1, an enzyme known for detoxification of inorganic metal(loid) ions in Arabidopsis and the induced metal-chelating peptides phytochelatins are essential for detoxification of phenylmercury. Small thiol-rich peptides phytochelatins (PCs) and their synthases (PCSs) are crucial for plants to mitigate the stress derived from various metal(loid) ions in their inorganic form including inorganic mercury [Hg(II)]. However, the possible roles of the PC/PCS system in organic mercury detoxification in plants remain elusive. We found that an organomercury phenylmercury (PheHg) induced PC synthesis in Arabidopsis thaliana plants as Hg(II), whereas methylmercury did not. The analyses of AtPCS1 mutant plants and in vitro assays using the AtPCS1-recombinant protein demonstrated that AtPCS1, the major PCS in A. thaliana, was responsible for the PheHg-responsive PC synthesis. AtPCS1 mutants cad1-3 and cad1-6, and the double mutant of PC-metal(loid) complex transporters AtABCC1 and AtABCC2 showed enhanced sensitivity to PheHg as well as to Hg(II). The hypersensitivity of cad1-3 to PheHg stress was complemented by the own-promoter-driven expression of AtPCS1-GFP. The confocal microscopy of the complementation lines showed that the AtPCS1-GFP was preferentially expressed in epidermal cells of the mature and elongation zones, and the outer-most layer of the lateral root cap cells in the meristematic zone. Moreover, in vitro PC-metal binding assay demonstrated that binding affinity between PC and PheHg was comparable to Hg(II). However, plant ionomic profiles, as well as root morphology under PheHg and Hg(II) stress, were divergent. These results suggest that PheHg phytotoxicity is different from Hg(II), but AtPCS1-mediated PC synthesis, complex formation, and vacuolar sequestration by AtABCC1 and AtABCC2 are similarly functional for both PheHg and Hg(II) detoxification in root surficial cell types.
Collapse
Affiliation(s)
- Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan.
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuto Otsuka
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan
| | - Emiko Wada
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan
| | - Fumii Naruse
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan
| | - Kakeru Sugaya
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan
| | - Kenichiro Nagai
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan
| | - Arunee Wongkaew
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan
| | - Stephan Clemens
- Department of Plant Physiology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95447, Bayreuth, Germany
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
11
|
Takanezawa Y, Harada R, Shibagaki Y, Kashiwano Y, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Protective function of the SQSTM1/p62-NEDD4 complex against methylmercury toxicity. Biochem Biophys Res Commun 2022; 609:134-140. [PMID: 35452957 DOI: 10.1016/j.bbrc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
SQSTM1/p62, hereinafter referred to as p62, is a stress-induced cellular protein that interacts with various signaling proteins as well as ubiquitinated proteins to regulate a variety of cellular functions and cell survival. Methylmercury (MeHg) exposure increases the levels of p62, the latter playing a protective role in MeHg-induced toxicity. However, the underlying mechanism by which p62 alleviates MeHg toxicity remains poorly understood. Herein, we report the interaction of p62 with neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), a HECT E3 ubiquitin ligase. The region of p62 where NEDD4 binds is located at the proline- and arginine (PR)-rich region (amino acids: 102-119), C-terminal extension of the Phox and Bem1 (PB1) domain. To evaluate the importance of the p62-NEDD4 complex, we examined the compensation of deletion mutant (GFP-Δ102-119 p62) for the lack of endogenous p62 in MEFs. GFP-p62/p62KO cells exhibited significantly higher cell viability than GFP-Δ102-119 p62/p62KO cells after treatment with MeHg. Our findings suggest novel mechanisms to alleviate MeHg toxicity through p62-NEDD4 complex formation.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Ryohei Harada
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshio Shibagaki
- Division of Biochemistry, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yui Kashiwano
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
12
|
Ni L, Wei Y, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. Shedding New Light on Methylmercury-induced Neurotoxicity Through the Crosstalk Between Autophagy and Apoptosis. Toxicol Lett 2022; 359:55-64. [PMID: 35122893 DOI: 10.1016/j.toxlet.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/23/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023]
Abstract
Methylmercury (MeHg) is a bio-accumulative global environmental contaminant present in fish and seafood. MeHg accumulates in the aquatic environment and eventually reaches the human system via the food chain by bio-magnification. The central nervous system is the primary target of toxicity and is particularly vulnerable during development. It is well documented that developmental MeHg exposure can lead to neurological alterations, including cognitive and motor dysfunction. Apoptosis is a primary characteristic of MeHg-induced neurotoxicity, and may be regulated by autophagic activity. However, mechanisms mediating the interaction between apoptosis and autophagy remains to be explored. Autophagy is an adaptive response under stressful conditions, and the basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy can regulate cell fate through different crosstalk signaling pathways. A complex interplay between autophagy and apoptosis determines the degree of apoptosis and the progression of MeHg-induced neurotoxicity as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances in the roles of autophagy and apoptosis in MeHg neurotoxicity and thoroughly explores the relationship between them. The autophagic pathway may be a potential therapeutic target in MeHg neurotoxicity through modulation of apoptosis.
Collapse
Affiliation(s)
- Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| |
Collapse
|
13
|
Calycosin Alleviates Paraquat-Induced Neurodegeneration by Improving Mitochondrial Functions and Regulating Autophagy in a Drosophila Model of Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11020222. [PMID: 35204105 PMCID: PMC8868496 DOI: 10.3390/antiox11020222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder with limited clinical treatments. The occurrence of PD includes both genetic and environmental toxins, such as the pesticides paraquat (PQ), as major contributors to PD pathology in both invertebrate and mammalian models. Calycosin, an isoflavone phytoestrogen, has multiple pharmacological properties, including neuroprotective activity. However, the paucity of information regarding the neuroprotective potential of calycosin on PQ-induced neurodegeneration led us to explore whether calycosin can mitigate PD-like phenotypes and the underlying molecular mechanisms. We used a PQ-induced PD model in Drosophila as a cost-effective in vivo screening platform to investigate the neuroprotective efficacy of natural compounds on PD. We reported that calycosin shows a protective role in preventing dopaminergic (DA) neuronal cell death in PQ-exposed Canton S flies. Calycosin-fed PQ-exposed flies exhibit significant resistance against PQ-induced mortality and locomotor deficits in terms of reduced oxidative stress, loss of DA neurons, the depletion of dopamine content, and phosphorylated JNK-caspase-3 levels. Additionally, mechanistic studies show that calycosin administration improves PQ-induced mitochondrial dysfunction and stimulates mitophagy and general autophagy with reduced pS6K and p4EBP1 levels, suggestive of a maintained energy balance between anabolic and catabolic processes, resulting in the inhibition of neuronal cell death. Collectively, this study substantiates the protective effect of calycosin against PQ-induced neurodegeneration by improving DA neurons' survival and reducing apoptosis, likely via autophagy induction, and it is implicated as a novel therapeutic application against toxin-induced PD pathogenesis.
Collapse
|
14
|
p62/sequestosome 1 attenuates methylmercury-induced endoplasmic reticulum stress in mouse embryonic fibroblasts. Toxicol Lett 2021; 353:93-99. [PMID: 34678407 DOI: 10.1016/j.toxlet.2021.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023]
Abstract
Methylmercury (MeHg) is a hazardous environmental pollutant that causes serious toxicity in humans and animals, as well as proteotoxic stress. In our previous study, we found that MeHg induces the expression of p62/sequestosome 1 (p62) that selectively targets ubiquitinated proteins for degradation via autophagy, and that p62 might protect cells against MeHg toxicity. To further investigate the role of p62 in MeHg-induced stress responses, we evaluated the role of p62 in MeHg-induced endoplasmic reticulum (ER) stress in p62 knockout (p62KO) mouse embryonic fibroblasts (MEFs). Treatment of wild-type (WT) MEFs were treated with MeHg (1 μM) increased mRNA levels of Chop encoding C/EBP homologous protein, Trib3 encoding Tribbles homolog 3, and Dnajb9 encoding DnaJ heat-shock protein family (Hsp40) member B9 increased, suggesting that ER stress is elicited by MeHg stress. Additionally, p62KO MEFs treated with MeHg showed a higher mRNA expression of Chop and Trib3 relative to that in WT MEFs. Furthermore, knock-in of GFP-p62 to p62KO cells diminished the Chop and Trib3 induction responses to MeHg stress and resulted in a higher cell viability than that of p62KO MEFs. These results suggest that the protective role of p62 against MeHg toxicity is partly mediated by suppressing the ER stress response.
Collapse
|
15
|
Gebril M, Aboelmaaty A, Al Balah O, Taha T, Abbassy A, Elnoury MAH. Bio-modulated mice epithelial endometrial organoids by low-level laser therapy serves as an invitro model for endometrial regeneration. Reprod Biol 2021; 21:100564. [PMID: 34662815 DOI: 10.1016/j.repbio.2021.100564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Endometrial regeneration is a dynamic process that is not well understood. The destruction of the endometrium with the formation of intrauterine adhesions is known as Asherman's syndrome. The lesions range from minor to severe adhesions and their impact on pregnancy is well documented. Operative hysteroscopy is the mainstay of diagnosis and treatment of intrauterine adhesions. Nevertheless, the recurrence rates remain high. It was recorded that low-level laser therapy in low doses has a stimulatory effect on different tissues while the high dose produces a suppressive effect. Organoid is a three-dimensional assembly that displays architectures and functionalities similar to in vivo organs that are being developed from human or animal stem cells or organ-specific progenitors through a self-organization process. Our prospective was to study the effect of Low-Level Laser Therapy (LLLT) on mouse epithelial endometrial organoids regarding cell proliferation and endometrial regeneration as a new modality of treatment. An in vitro clinical trial to generate mouse epithelial organoid model and testing LLLT using He:Ne 632.8 nm device on organoids proliferation, function, and their response to ovarian hormones was performed. Trying endometrial regeneration by culturing organoids with decellularized uterine matrix (DUM) and studying the LLLT effect on the regeneration process. LLLT produced a proliferative effect on the epithelial mouse organoids confirmed by Ki67 and PCNA IHC. The organoids could regenerate the epithelial layer of the endometrium in vitro on DUM and LLLT could help in this process. In conclusion, organoids whether control or bio-stimulated proved a new modality to regenerate the endometrium.
Collapse
Affiliation(s)
- Mona Gebril
- Department of Reproductive Health and Family Planning, National Research Centre, 33th El Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Amal Aboelmaaty
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, 33th El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Osama Al Balah
- Department of Medical Application of Laser, National Institute of Laser Enhanced Sciences, Cairo University, 1 Gamaa Street, Giza, 12613, Egypt
| | - Tamer Taha
- Department of Reproductive Health and Family Planning, National Research Centre, 33th El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Amr Abbassy
- Department of Reproductive Health and Family Planning, National Research Centre, 33th El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed Amr H Elnoury
- Department of Medical Application of Laser, National Institute of Laser Enhanced Sciences, Cairo University, 1 Gamaa Street, Giza, 12613, Egypt
| |
Collapse
|
16
|
Ni L, Wei Y, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. The effects of mTOR or Vps34-mediated autophagy on methylmercury-induced neuronal apoptosis in rat cerebral cortex. Food Chem Toxicol 2021; 155:112386. [PMID: 34242720 DOI: 10.1016/j.fct.2021.112386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 01/13/2023]
Abstract
Methylmercury (MeHg) is a environmental contaminant, which can induce neurotoxic effects. So far, the exact molecular mechanisms of autophagy and its effect on apoptosis in MeHg-induced neurotoxicity have not been elucidated. Here, rats were exposed to MeHg (4, 8, or 12 μmol/kg) for 4 weeks to evaluate the dose-effect relationship between MeHg and apoptosis, or autophagy in cerebral cortex. On this basis, rapamycin (Rapa) or 3-methyladenine (3-MA) was administrated to further explore the regulatory mechanisms of autophagy on MeHg-induced neuronal apoptosis. The pathological changes, autophagy or apoptosis levels, expression of autophagic or apoptotic-associated factors such as mTOR, S6K1, 4EBP1, Vps34, Beclin1, p62, LC3, Bcl-2/Bax, caspase, or MAPKs were investigated. Results showed that MeHg dose-dependently induced pathological changes in cerebral cortex, and the levels of autophagy and apoptosis were increased. Furthermore, Rapa pretreatment antagonized MeHg-induced apoptosis, whereas 3-MA further aggravated apoptosis, which were supported by findings that Rapa activated mTOR-mediated autophagy while 3-MA inhibited Vps34-related autophagy, further affect neuronal apoptosis through regulation of apoptotic factors mentioned above. In conclusion, the findings indicated that MeHg dose-dependently induced autophagy or apoptosis, and mTOR or Vps34 may play important roles in mediating autophagy, which further regulated apoptosis through MAPKs or mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.
| |
Collapse
|
17
|
Zheng Z, Ma Y, Wang L, Deng H, Wang Z, Li J, Xu Z. Chinese herbal medicine Feiyanning cooperates with cisplatin to enhance cytotoxicity to non-small-cell lung cancer by inhibiting protective autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114196. [PMID: 33984457 DOI: 10.1016/j.jep.2021.114196] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Feiyanning (FYN), the Chinese herbal medicine (CHM), has been used to manage non-small cell lung cancer (NSCLC) for the past 23 years. Chemotherapeutic drugs can induce autophagy in cancer cells to protect themselves from death. However, FYN can inhibit the protective autophagy in cancer cells. We investigated the biological mechanisms on the synergistic effects of FYN combined with chemotherapy in lung cancer cells. MATERIALS AND METHODS We analyzed the effective chemical components for the quality control of FYN using the UPLC-Q-TOF-MS.The cell proliferation ability was detected by the cell counting kit-8 (CCK-8) and colony formation. The cell apoptosis was determined with Flow cytometry. Expression of important differential proteins were detected by western blot. Autophagy structure was observed by TEM (Tansmission electron microscopy). Tandem mCherry-EGFP-LC3B immunofluorescence was used to measure autophagic flux. RESULTS Both FYN and cisplatin significantly induced apoptosis and inhibited cell proliferation in A549 cells. FYN reduced cell viability and increased apoptotic cell populations less effectively than cisplatin. FYN cooperated with cisplatin suppressed the cell viability, colony formation, as well as increased the cell apoptosis rate, and the expression of cleaved caspase-3 and PARP. FYN inhibited autophagy in A549 cells, which characterized by the decrease of autophagosome formation, lysosomal fusion, LC3B-II accumulation and SQSTM1 degradation, down-regulation of ATG5 and ATG7. Protective autophagy in A549 cells was induced by cisplatin. Suppression of the autophagic response using chloroquine (CQ) which is autophagy inhibitor improved the ability of cisplatin to kill cancer cells, as did FYN combined with cisplatin. CONCLUSION In summary, we revealed that the synergistic mechanism of FYN and cisplatin is that FYN inhibited the protective autophagy induced by cisplatin in A549 cells.
Collapse
Affiliation(s)
- Zhan Zheng
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China.
| | - Yue Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China.
| | - Lifang Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China.
| | - Haibin Deng
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China.
| | - Zhongqi Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China.
| | - Jianwen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China.
| | - Zhenye Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China.
| |
Collapse
|
18
|
Yuan L, Shi X, Tang BZ, Wang WX. Real-time in vitro monitoring of the subcellular toxicity of inorganic Hg and methylmercury in zebrafish cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105859. [PMID: 34004410 DOI: 10.1016/j.aquatox.2021.105859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is a prominent environmental contaminant and can cause various subcellular effects. Elucidating the different subcellular toxicities of inorganic Hg (Hg2+) and methylmercury (MeHg) is critical for understanding their overall cytotoxicity. In this study, we employed aggregation-induced emission (AIE) probes to investigate the toxicity of Hg at the subcellular level using an aquatic embryonic zebrafish fibroblast cell line ZF4 as a model. The dynamic monitoring of lysosomal pH and the mapping of pH distribution during Hg2+ or MeHg exposure were successfully realized for the first time. We found that both Hg2+ and MeHg decreased the mean lysosomal pH, but with contrasting effects and mechanisms. Hg2+ had a greater impact on lysosomal pH than MeHg at a similar intracellular concentration. In addition, Hg2+ in comparison to MeHg exposure led to an increased number of lysosomes, probably because of their different effects on autophagy. We further showed that MeHg (200 nM) exposure had an inverse effect on mitochondrial respiratory function. A high dose (1000 nM) of Hg2+ increased the amount of intracellular lipid droplets by 13%, indicating that lipid droplets may potentially play a role in Hg2+detoxification. Our study suggested that, compared with other parameters, lysosome pH was most sensitive to Hg2+ and MeHg. Therefore, lysosomal pH can be used as a potential biomarker to assess the cellular toxicity of Hg in vitro.
Collapse
Affiliation(s)
- Liuliang Yuan
- Division of Life Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiujuan Shi
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China.
| |
Collapse
|
19
|
Hernández-Fernández J, Pinzón-Velasco A, López EA, Rodríguez-Becerra P, Mariño-Ramírez L. Transcriptional Analyses of Acute Exposure to Methylmercury on Erythrocytes of Loggerhead Sea Turtle. TOXICS 2021; 9:70. [PMID: 33805397 PMCID: PMC8066450 DOI: 10.3390/toxics9040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
To understand changes in enzyme activity and gene expression as biomarkers of exposure to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and 5 mg L-1 of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregulated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity, autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg, evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The RBCs maintained a constitutive expression of proteins that represented a good part of the defense against reactive oxygen species (ROS) induced by MeHg.
Collapse
Affiliation(s)
- Javier Hernández-Fernández
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
- Faculty of Sciences, Department of Biology, Pontificia Universidad Javeriana, Calle 45, Cra. 7, Bogotá 110231, Colombia
| | - Andrés Pinzón-Velasco
- Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Calle 45, Cra. 30, Bogotá 111321, Colombia;
| | - Ellie Anne López
- IDEASA Research Group-Environment and Sustainability, Institute of Environmental Studies and Services, Sergio Arboleda University, Bogotá 111711, Colombia;
| | - Pilar Rodríguez-Becerra
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
| | - Leonardo Mariño-Ramírez
- NCBI, NLM, NIH Computational Biology Branch, Building 38A, Room 6S614M 8600 Rockville Pike, MSC 6075, Bethesda, MD 20894-6075, USA;
| |
Collapse
|
20
|
Go YY, Kim SR, Kim DY, Chae SW, Song JJ. Cannabidiol enhances cytotoxicity of anti-cancer drugs in human head and neck squamous cell carcinoma. Sci Rep 2020; 10:20622. [PMID: 33244087 PMCID: PMC7692486 DOI: 10.1038/s41598-020-77674-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Cannabidiol (CBD) has anti-tumorigenic activity. However, the anti-cancer effect of CBD on head and neck squamous cell carcinoma (HNSCC) remains unclear. The cytotoxicity of CBD on HNSCC was analyzed using cell survival and colony-forming assays in vitro. RNA-seq was used for determining the mechanism underlying CBD-induced cell death. Xenograft mouse models were used to determine CBD’s effects in vivo. CBD treatment significantly reduced migration/invasion and viability of HNSCC cells in a dose- and time-dependent manner. HNSCC mouse xenograft models revealed anti-tumor effects of CBD. Furthermore, combinational treatment with CBD enhanced the efficacy of chemotherapy drugs. Apoptosis and autophagy processes were involved in CBD-induced cytotoxicity of HNSCCs. RNA-seq identified decreased expression of genes associated with DNA repair, cell division, and cell proliferation, which were involved in CBD-mediated cytotoxicity toward HNSCCs. We identified CBD as a new potential anti-cancer compound for single or combination therapy of HNSCC.
Collapse
Affiliation(s)
- Yoon Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, South Korea.,Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Su Ra Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, South Korea
| | - Do Yeon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, South Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, South Korea. .,Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Guo Y, Wang Y, Huang B. The acute toxicity effects of hexavalent chromium in antioxidant system and gonad development to male clam Geloina coaxans. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1775318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Y. Guo
- Ocean College, Hainan University, Haikou, Hainan, PR China
- A State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, PR China
| | - Y. Wang
- Ocean College, Hainan University, Haikou, Hainan, PR China
- A State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, PR China
| | - B. Huang
- Ocean College, Hainan University, Haikou, Hainan, PR China
- A State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, PR China
| |
Collapse
|
22
|
Takanezawa Y, Nakamura R, Kusaka T, Ohshiro Y, Uraguchi S, Kiyono M. Significant contribution of autophagy in mitigating cytotoxicity of gadolinium ions. Biochem Biophys Res Commun 2020; 526:206-212. [PMID: 32201079 DOI: 10.1016/j.bbrc.2020.03.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Gadolinium-based contrast agents (GBCAs) are widely used in clinical magnetic resonance imaging (MRI). Free gadolinium ions (Gd3+) released from GBCAs potentially increase the risk of GBCA-related toxicity. However, the cellular responses to Gd3+ and the underlying mechanisms responsible for protection against Gd3+ remain poorly understood. Recently, autophagy has been considered a cell survival mechanism against various toxic metals. Here, we investigated the relationship between Gd3+ and autophagy, as well as the effect of autophagy inhibition on the survival of cells exposed to Gd3+. We found that the increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II, a marker protein of autophagy, in Gd3+-exposed human embryonic kidney 293 (HEK293) cells. Moreover, we found a greater accumulation of LC3-II after exposure to an autophagy inhibitor, chloroquine (CQ), combined with Gd3+ than that after exposure to CQ alone, suggesting that Gd3+ activated autophagy in HEK293 cells. Furthermore, we found that Gd3+ reduced cell viability, which was more pronounced after CQ treatment. Our findings indicated that autophagy exerted a cytoprotective effect against Gd3+ toxicity, suggesting a potential link between autophagy and GBCA-associated adverse events.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoya Kusaka
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
23
|
Lonicera caerulea Extract Attenuates Non-Alcoholic Fatty Liver Disease in Free Fatty Acid-Induced HepG2 Hepatocytes and in High Fat Diet-Fed Mice. Nutrients 2019; 11:nu11030494. [PMID: 30813654 PMCID: PMC6471428 DOI: 10.3390/nu11030494] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Honeyberry (Lonicera caerulea) has been used for medicinal purposes for thousands of years. Its predominant anthocyanin, cyanidin-3-O-glucoside (C3G), possesses antioxidant and many other potent biological activities. We aimed to investigate the effects of honeyberry extract (HBE) supplementation on HepG2 cellular steatosis induced by free fatty acids (FFA) and in diet-induced obese mice. HepG2 cells were incubated with 1 mM FFA to induce lipid accumulation with or without HBE. Obesity in mice was induced by a 45% high fat diet (HFD) for 6 weeks and subsequent supplementation of 0.5% HBE (LH) and 1% HBE (MH) for 6 weeks. HBE suppressed fatty acid synthesis and ameliorated lipid accumulation in HepG2 cells induced by FFA. Moreover, HBE also decreased lipid accumulation in the liver in the supplemented HBE group (LH, 0.5% or MH, 1%) compared with the control group. The expressions of adipogenic genes involved in hepatic lipid metabolism of sterol regulatory element-binding protein-1 (SREBP-1c), CCAAT/enhancer-binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), and fatty acid synthase (FAS) were decreased both in the HepG2 cells and in the livers of HBE-supplemented mice. In addition, HBE increased mRNA and protein levels of carnitine palmitoyltransferase (CPT-1) and peroxisome proliferator-activated receptor α (PPARα), which are involved in fatty acid oxidation. Furthermore, HBE treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and Acetyl-CoA Carboxylase (ACC). Honeyberry effectively reduced triglyceride accumulation through down-regulation of hepatic lipid metabolic gene expression and up-regulation of the activation of AMPK and ACC signaling in both the HepG2 cells as well as in livers of diet-induced obese mice. These results suggest that HBE may actively ameliorate non-alcoholic fatty liver disease.
Collapse
|
24
|
Takanezawa Y, Nakamura R, Sone Y, Uraguchi S, Kiyono M. An autophagy deficiency promotes methylmercury-induced multinuclear cell formation. Biochem Biophys Res Commun 2019; 511:460-467. [PMID: 30797556 DOI: 10.1016/j.bbrc.2019.02.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
Methylmercury (MeHg) is a highly toxic pollutant, and is considered hazardous to human health. In our previous study, we found that MeHg induces autophagy and that Atg5-dependent autophagy plays a protective role against MeHg toxicity. To further characterize the role of autophagy in MeHg-induced toxicity, we examined the impact of autophagy on microtubules and nuclei under MeHg exposure using Atg5KO mouse embryonic fibroblasts (MEFs). Low concentrations of MeHg induced a decrease in α-tubulin and acetylated-tubulin in both wild-type and Atg5KO cells. While α-tubulin acetylation was promoted by treatment with tubacin, a selective inhibitor of histone deacetylase 6, MeHg treatment inhibits the increase of tubacin-induced acetylated-tubulin. However, similar effects were observed for treatment with either tubacin or tubacin + MeHg in wild-type and Atg5KO cells. We also found a significant increase in the number of multinuclear cells upon MeHg exposure in Atg5KO MEFs compared to wild-type MEFs. In addition, DNA double strand breaks (DSBs), measured by phosphorylation of the core histone H2A variant (H2AX) on serine 139 (γH2AX), markedly increased in Atg5KO MEFs compared to wild-type MEFs. Our results therefore suggest that autophagy is not a simple elimination pathway of MeHg-induced damaged proteins, but that it also plays a protective role in the context of MeHg-associated DSBs.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Sone
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, Japan, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
25
|
Nakamura R, Shirahata T, Konishi N, Takanezawa Y, Sone Y, Uraguchi S, Kobayashi Y, Kiyono M. Oleanolic acid 3-glucoside, a synthetic oleanane-type saponin, alleviates methylmercury toxicity in vitro and in vivo. Toxicology 2019; 417:15-22. [PMID: 30776458 DOI: 10.1016/j.tox.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Methylmercury (MeHg) is one of the most toxic environmental pollutants, presenting a serious health hazard worldwide. In this study, we examined the potential of derivatives of oleanolic acid (OA), such as OA 3-glucoside, OA 28-glucoside, and OA 3,28-diglucoside, to mitigate MeHg toxicity in vitro and in vivo. We found that OA 3-glucoside suppressed the cellular MeHg uptake by 63.4% compared with that of the control and improved the cell viability from 75.4% to 107.9% upon exposure to cytotoxic MeHg in Caco-2 cells. To verify the anti-MeHg activity of OA 3-glucoside, mice were orally administered MeHg (0, 1.0, or 5.0 mg kg-1·d-1), with or without OA 3-glucoside, and then mercury accumulation was measured in various organs of the mice. The mice co-treated with MeHg and OA 3-glucoside showed significantly lower mercury content in organs such as the cerebrum, cerebellum, liver, kidney, and spleen, with 83.1%, 68.7%, 71.7%, 82.1%, and 18.2% of those in the OA 3-glucoside-untreated group, respectively. This suggested OA 3-glucoside had the potential as an anti-MeHg compound, owing to its ability to suppress the distribution of MeHg into organs. Supporting this hypothesis, the mice treated with MeHg and OA 3-glucoside showed a tendency to survive one day longer than the control mice. Our findings suggest OA 3-glucoside administration alleviates the toxicity of MeHg by suppressing MeHg accumulation in organs.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasukazu Takanezawa
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Sone
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Kiyono
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
26
|
Takanezawa Y, Nakamura R, Hamaguchi M, Yamamoto K, Sone Y, Uraguchi S, Kiyono M. Docosahexaenoic acid enhances methylmercury-induced endoplasmic reticulum stress and cell death and eicosapentaenoic acid potentially attenuates these effects in mouse embryonic fibroblasts. Toxicol Lett 2019; 306:35-42. [PMID: 30769081 DOI: 10.1016/j.toxlet.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
Fish consumption has both the risk of methylmercury (MeHg) poisoning and the benefit of obtaining n-3 polyunsaturated fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). However, the cellular interaction between MeHg and PUFAs remains unknown. Therefore, the aim of this study was to investigate the effects of MeHg and n-3 PUFA exposure on mouse embryonic fibroblasts (MEFs). The results showed that EPA had a negligible effect on MeHg-induced cell death, whereas DHA promoted it. Thiobarbituric acid reactive substance (TBARS) concentrations in cells exposed to DHA and MeHg were higher than in those exposed to EPA and MeHg. Treatment with DHA and MeHg markedly induced the expression of endoplasmic reticulum (ER) stress (CHOP and DNAJB9) and Nrf2 target gene (p62 and HMOX-1) mRNA levels. Unexpectedly, EPA supplementation in addition to DHA and MeHg attenuated DHA- and MeHg-induced cell death and suppressed ER stress and expression of Nrf2 target genes. Our results revealed a differential impact of DHA and EPA on MeHg-induced cell death, and combined treatment with DHA and EPA along with MeHg attenuated MeHg-induced toxicity.
Collapse
Affiliation(s)
- Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miho Hamaguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kanae Yamamoto
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Sone
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
27
|
Xie W, Zhou P, Sun Y, Meng X, Dai Z, Sun G, Sun X. Protective Effects and Target Network Analysis of Ginsenoside Rg1 in Cerebral Ischemia and Reperfusion Injury: A Comprehensive Overview of Experimental Studies. Cells 2018; 7:cells7120270. [PMID: 30545139 PMCID: PMC6316103 DOI: 10.3390/cells7120270] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Cerebral ischemia-reperfusion is a complicated pathological process. The injury and cascade reactions caused by cerebral ischemia and reperfusion are characterized by high mortality, high recurrence, and high disability. However, only a limited number of antithrombotic drugs, such as recombinant tissue plasminogen activator (r-TPA), aspirin, and heparin, are currently available for ischemic stroke, and its safety concerns is inevitable which associated with reperfusion injury and hemorrhage. Therefore, it is necessary to further explore and examine some potential neuroprotective agents with treatment for cerebral ischemia and reperfusion injury to reduce safety concerns caused by antithrombotic drugs in ischemic stroke. Ginseng Rg1 (G-Rg1) is a saponin composed of natural active ingredients and derived from the roots or stems of Panax notoginseng and ginseng in traditional Chinese medicine. Its pharmacological effects exert remarkable neurotrophic and neuroprotective effects in the central nervous system. To explore and summarize the protective effects and mechanisms of ginsenoside Rg1 against cerebral ischemia and reperfusion injury, we conducted this review, in which we searched the PubMed database to obtain and organize studies concerning the pharmacological effects and mechanisms of ginsenoside Rg1 against cerebral ischemia and reperfusion injury. This study provides a valuable reference and clues for the development of new agents to combat ischemic stroke. Our summarized review and analysis show that the pharmacological effects of and mechanisms underlying ginsenoside Rg1 activity against cerebral ischemia and reperfusion injury mainly involve 4 sets of mechanisms: anti-oxidant activity and associated apoptosis via the Akt, Nrf2/HO-1, PPARγ/HO-1, extracellular regulated protein kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) pathways (or mitochondrial apoptosis pathway) and the caspase-3/ROCK1/MLC pathway; anti-inflammatory and immune stimulatory-related activities that involve apoptosis or necrosis via MAPK pathways (the JNK1/2 + ERK1/2 and PPARγ/HO-1 pathways), endoplasmic reticulum stress (ERS), high mobility group protein1 (HMGB1)-induced TLR2/4/9 and receptor for advanced glycation end products (RAGE) pathways, and the activation of NF-κB; neurological cell cycle, proliferation, differentiation, and regeneration via the MAPK pathways (JNK1/2 + ERK1/2, PI3K-Akt/mTOR, PKB/Akt and HIF-1α/VEGF pathways); and energy metabolism and the regulation of cellular ATP levels, the blood-brain barrier and other effects via N-methyl-D-aspartic acid (NMDA) receptors, ERS, and AMP/AMPK-GLUT pathways. Collectively, these mechanisms result in significant neuroprotective effects against cerebral ischemic injury. These findings will be valuable in that they should further promote the development of candidate drugs and provide more information to support the application of previous findings in stroke clinical trials.
Collapse
Affiliation(s)
- Weijie Xie
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Ping Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Yifan Sun
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing 100020, China.
| | - Xiangbao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Ziru Dai
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| |
Collapse
|
28
|
Ke T, Gonçalves FM, Gonçalves CL, Dos Santos AA, Rocha JBT, Farina M, Skalny A, Tsatsakis A, Bowman AB, Aschner M. Post-translational modifications in MeHg-induced neurotoxicity. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2068-2081. [PMID: 30385410 DOI: 10.1016/j.bbadis.2018.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
Mercury (Hg) exposure remains a major public health concern due to its widespread distribution in the environment. Organic mercurials, such as MeHg, have been extensively investigated especially because of their congenital effects. In this context, studies on the molecular mechanism of MeHg-induced neurotoxicity are pivotal to the understanding of its toxic effects and the development of preventive measures. Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and acetylation are essential for the proper function of proteins and play important roles in the regulation of cellular homeostasis. The rapid and transient nature of many PTMs allows efficient signal transduction in response to stress. This review summarizes the current knowledge of PTMs in MeHg-induced neurotoxicity, including the most commonly PTMs, as well as PTMs induced by oxidative stress and PTMs of antioxidant proteins. Though PTMs represent an important molecular mechanism for maintaining cellular homeostasis and are involved in the neurotoxic effects of MeHg, we are far from understanding the complete picture on their role, and further research is warranted to increase our knowledge of PTMs in MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Cinara Ludvig Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | | | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105900 Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, SC, Brazil
| | - Anatoly Skalny
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 105064, Russia; Orenburg State University, Pobedy Ave., 13, Orenburg 460352, Russia
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
29
|
Unoki T, Akiyama M, Kumagai Y, Gonçalves FM, Farina M, da Rocha JBT, Aschner M. Molecular Pathways Associated With Methylmercury-Induced Nrf2 Modulation. Front Genet 2018; 9:373. [PMID: 30271424 PMCID: PMC6146031 DOI: 10.3389/fgene.2018.00373] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Methylmercury (MeHg) is a potent neurotoxin that affects particularly the developing brain. Since MeHg is a potent electrophilic agent, a wide range of intracellular effects occur in response to its exposure. Yet, the molecular mechanisms associated with MeHg-induced cell toxicity have yet to be fully understood. Activation of cell defense mechanisms in response to metal exposure, including the up-regulation of Nrf2- (nuclear factor erythroid 2-related factor 2)-related genes has been previously shown. Nrf2 is a key regulator of cellular defenses against oxidative, electrophilic and environmental stress, regulating the expression of antioxidant proteins, phase-II xenobiotic detoxifying enzymes as well phase-III xenobiotic transporters. Analogous to other electrophiles, MeHg activates Nrf2 through modification of its repressor Keap1 (Kelch-like ECH-associated protein 1). However, recent findings have also revealed that Keap1-independent signal pathways might contribute to MeHg-induced Nrf2 activation and cytoprotective responses against MeHg exposure. These include, Akt phosphorylation (Akt/GSK-3β/Fyn-mediated Nrf2 activation pathway), activation of the PTEN/Akt/CREB pathway and MAPK-induced autophagy and p62 expression. In this review, we summarize the state-of-the-art knowledge regarding Nrf2 up-regulation in response to MeHg exposure, highlighting the modulation of signaling pathways related to Nrf2 activation. The study of these mechanisms is important in evaluating MeHg toxicity in humans, and can contribute to the identification of the molecular mechanisms associated with MeHg exposure.
Collapse
Affiliation(s)
- Takamitsu Unoki
- Department of Basic Medical Sciences, National Institute for Minamata Diseasexy3Minamata, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
30
|
Sequestosome1/p62 protects mouse embryonic fibroblasts against low-dose methylercury-induced cytotoxicity and is involved in clearance of ubiquitinated proteins. Sci Rep 2017; 7:16735. [PMID: 29196648 PMCID: PMC5711938 DOI: 10.1038/s41598-017-17112-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/22/2017] [Indexed: 01/07/2023] Open
Abstract
Methylmercury (MeHg) is a widely distributed environmental pollutant that causes a series of cytotoxic effects. However, molecular mechanisms underlying MeHg toxicity are not fully understood. Here, we report that sequestosome1/p62 protects mouse embryonic fibroblasts (MEFs) against low-dose MeHg cytotoxicity via clearance of MeHg-induced ubiquitinated proteins. p62 mRNA and protein expression in MEFs were temporally induced by MeHg exposure p62-deficient MEFs exhibited higher sensitivity to MeHg exposure compared to their wild-type (WT) counterparts. An earlier and higher level of accumulation of ubiquitinated proteins was detected in p62-deficient cells compared with WT MEFs. Confocal microscopy revealed that p62 and ubiquitinated proteins co-localized in the perinuclear region of MEFs following MeHg treatment. Further analysis of MEFs revealed that ubiquitinated proteins co-localized with LC3-positive puncta upon co-treatment with MeHg and chloroquine, an autophagy inhibitor. In contrast, there was minimal co-localization in p62-deficient MEFs. The present study, for the first time, examined the expression and distribution of p62 and ubiquitinated proteins in cells exposed to low-dose MeHg. Our findings suggest that p62 is crucial for cytoprotection against MeHg-induced toxicity and is required for MeHg-induced ubiquitinated protein clearance.
Collapse
|
31
|
Takanezawa Y, Nakamura R, Sone Y, Uraguchi S, Kobayashi K, Tomoda H, Kiyono M. Variation in the activity of distinct cytochalasins as autophagy inhibitiors in human lung A549 cells. Biochem Biophys Res Commun 2017; 494:641-647. [DOI: 10.1016/j.bbrc.2017.10.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
|
32
|
Akr1 attenuates methylmercury toxicity through the palmitoylation of Meh1 as a subunit of the yeast EGO complex. Biochim Biophys Acta Gen Subj 2017; 1861:1729-1736. [DOI: 10.1016/j.bbagen.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 02/05/2023]
|
33
|
Shao BZ, Ke P, Xu ZQ, Wei W, Cheng MH, Han BZ, Chen XW, Su DF, Liu C. Autophagy Plays an Important Role in Anti-inflammatory Mechanisms Stimulated by Alpha7 Nicotinic Acetylcholine Receptor. Front Immunol 2017; 8:553. [PMID: 28559895 PMCID: PMC5432615 DOI: 10.3389/fimmu.2017.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) has been reported to alleviate neuroinflammation. Here, we aimed to determine the role of autophagy in α7nAChR-mediated inhibition of neuroinflammation and its underlying mechanism. Experimental autoimmune encephalomyelitis (EAE) mice and lipopolysaccharide-stimulated BV2 microglia were used as in vivo and in vitro models of neuroinflammation, respectively. The severity of EAE was evaluated with neurological scoring. Autophagy-related proteins (Beclin 1, LC3-II/I, p62/SQSTM1) were detected by immunoblot. Autophagosomes were observed using transmission electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy flux. The mRNA levels of interleukin-6 (IL-6), IL-1β, IL-18, and tumor necrosis factor-α (TNF-α) were detected by real-time PCR. We used 3-methyladenine (3-MA) and autophagy-related gene 5 small interfering RNA (Atg5 siRNA) to block autophagy in vivo and in vitro, respectively. Activating α7nAChR with PNU282987 ameliorates EAE severity and spinal inflammatory infiltration in EAE mice. PNU282987 treatment also enhanced monocyte/microglia autophagy (Beclin 1, LC3-II/I ratio, p62/SQSTM1, colocalization of CD45- or CD68-positive cells with LC3) both in spinal cord and spleen from EAE mice. The beneficial effects of PNU282987 on EAE mice were partly abolished by 3-MA, an autophagy inhibitor. In vitro, PNU282987 treatment increased autophagy and promoted autophagy flux. Blockade of autophagy by Atg5 siRNA or bafilomycin A1 attenuated the inhibitory effect of PNU282987 on IL-6, IL-1β, IL-18, and TNF-α mRNA. Our results demonstrate for the first time that activating α7nAChR enhances monocyte/microglia autophagy, which suppresses neuroinflammation and thus plays an alleviative role in EAE.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Wei Wei
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ming-He Cheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Bin-Ze Han
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiong-Wen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
34
|
Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells. Int J Mol Sci 2016; 17:ijms17122058. [PMID: 27941687 PMCID: PMC5187858 DOI: 10.3390/ijms17122058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms. Here, the sensitivity of immortalized human neural progenitor cells (ihNPCs) upon exposure to MeHg was investigated. We found that MeHg altered cell viability and the number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells. We also observed that low-dose MeHg exposure increased the mRNA expression of cell cycle regulators. We observed that MeHg induced ROS production in a dose-dependent manner. In addition, mRNA levels of peroxisome-proliferator-activated receptor gammacoactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM) and p53-controlled ribonucleotide reductase (p53R2) were significantly elevated, which were correlated with the increase of mitochondrial DNA (mtDNA) copy number at a concentration as low as 10 nM. Moreover, we examined the expression of microRNAs (miRNAs) known as regulatory miRNAs of p53 (i.e., miR-30d, miR-1285, miR-25). We found that the expression of these miRNAs was significantly downregulated upon MeHg treatment. Furthermore, the overexpression of miR-25 resulted in significantly reducted p53 protein levels and decreased mRNA expression of genes involved in mitochondrial biogenesis regulation. Taken together, these results demonstrated that MeHg could induce developmental neurotoxicity in ihNPCs through altering mitochondrial functions and the expression of miRNA.
Collapse
|