1
|
Duarte S, Duarte I, Duarte M, Paiva A, Cabeças R, Silva LJG, Pereira AMPT, Lino C, Pena A. Biomonitoring Pilot Surveys of Zearalenone in Breastmilk and the Urine of Children in Central Portugal. Toxins (Basel) 2025; 17:162. [PMID: 40278660 PMCID: PMC12031104 DOI: 10.3390/toxins17040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Zearalenone (ZEA) is a mycotoxin that acts primarily as an endocrine disruptor. Biomonitoring studies are needed to assess exposure and risk, particularly among vulnerable groups. This study reports two pilot biomonitoring surveys of ZEA in 38 lactating mothers and 42 children (5-12 years old). Both were associated with a questionnaire to collect data on the sociodemographics and eating habits of the participants. About 76% of urine samples were contaminated (188.12 ± 235.99 ng/mL), with the hazard quotient reaching 2.36 in the worst-case scenario for younger children. Of the analyzed breastmilk samples, 55.26% were contaminated (158.26 ± 77.50). A statistically significant association between ZEA contamination of breastmilk and the maternal consumption of wholemeal bread, cereal flakes, sausages, smoked meat and pork was found, suggesting that these foods are determinants of higher exposure. The hazard quotient in the worst-case scenario for breastfed babies under 16 weeks was estimated as 0.61. Results confirm frequent exposure to this endocrine disruptor among these two vulnerable groups in central Portugal, showing the need for further studies.
Collapse
Affiliation(s)
- Sofia Duarte
- Centro de Investigação Vasco da Gama (CIVG)/Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, 3020–210 Coimbra, Portugal; (A.P.); (R.C.)
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - Inês Duarte
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - Myrella Duarte
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - Ana Paiva
- Centro de Investigação Vasco da Gama (CIVG)/Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, 3020–210 Coimbra, Portugal; (A.P.); (R.C.)
| | - Ricardo Cabeças
- Centro de Investigação Vasco da Gama (CIVG)/Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, 3020–210 Coimbra, Portugal; (A.P.); (R.C.)
| | - Liliana J. G. Silva
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - André M. P. T. Pereira
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - Celeste Lino
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000–548 Coimbra, Portugal; (I.D.); (M.D.); (L.J.G.S.); (A.M.P.T.P.); (C.L.); (A.P.)
| |
Collapse
|
2
|
Pallarés N, Ferrer E, Berrada H, Barba FJ, Salgado-Ramos M, Collado MC. Mind the gap regarding the knowledge of infant exposure to mycotoxins, acrylamide, bisphenols and heavy metals through human milk. Food Control 2024; 166:110731. [DOI: 10.1016/j.foodcont.2024.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Das Trisha A, Hafsa JM, Hasan A, Habib A, Tuba HR, Degen GH, Ali N. Occurrence of ochratoxin A in breast milk and urine samples of nursing mothers in Bangladesh. Mycotoxin Res 2024; 40:135-146. [PMID: 38038834 PMCID: PMC10834631 DOI: 10.1007/s12550-023-00510-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The mycotoxin ochratoxin A (OTA) is a potent nephrotoxin with carcinogenic properties and, thus, of concern as a food contaminant. Since food contaminant data are scarce in Bangladesh, we applied human biomonitoring to gain more insights into OTA exposure in the country's population. OTA concentrations in human milk and urine samples of nursing mothers were determined with the aim to assess also exposure to this mycotoxin in breastfed infants. Breastfeeding mothers (n = 74) from three districts of Bangladesh (Sylhet, Cumilla, and Mymensingh region) participated in this study. They provided demographic data, along with breast milk and urine samples. OTA levels were measured by a competitive enzyme-linked immunosorbent assay (ELISA) with a detection limit of 60 ng/L for milk and 30 ng/L for urine.OTA was detected in 62.2% of all breast milk samples (mean 74.8 ± 49.0 ng/L, range < LOD-243.3 ng/L) and in 51.4% of all urine samples (mean 44.3 ± 63.5 ng/L, range < LOD-519.3 ng/L). The differences observed between regions for mean breast milk or for urinary OTA levels were relatively small. No significant correlation was observed between OTA levels in breast milk and food consumption patterns among nursing mothers. Regarding infant exposure, the estimated average daily intake of OTA for all was 15.0 ng/kg bw/day (range 4.5-45 ng/kg bw/day). In 34.5% of these infants, their estimated daily OTA intake exceeded a preliminary TDI value set by EFSA (17 ng/kg bw/day). The mean OTA intake was slightly higher (16.2 ± 7.8 ng/kg bw/day) in 1-2 months babies than in older infants (< 2 to 12 months), although the difference was not significant. Presence of OTA in most milk and urine samples of nursing mothers documents their widespread dietary mycotoxin exposure. Although based on a relatively small number of participants, the present analysis indicates non-negligible exposure of some nursed infants in Bangladesh. Therefore, further biomonitoring studies and investigations on major sources of OTA in food commodities are encouraged.
Collapse
Affiliation(s)
- Aporajita Das Trisha
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Jaasia Momtahena Hafsa
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Akibul Hasan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Ahsan Habib
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Humaira Rashid Tuba
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Gisela H Degen
- Leibniz-Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Ardeystr. 67, D-44139, Dortmund, Germany.
| | - Nurshad Ali
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
4
|
Güneş B, Yalçın S, Yalçın SS. Longitudinal follow-up of zearalenone and deoxynivalenol mycotoxins in breast milk in the first five months of life. BMC Pharmacol Toxicol 2023; 24:37. [PMID: 37254214 DOI: 10.1186/s40360-023-00677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVES There is a possibility for exposed lactating mammalians to transfer some contaminants to their milk. This study aimed to determine the levels and changes of Zearalenone (ZEN), Deoxynivalenol (DON) mycotoxins for the first five months in human milk. METHODS Voluntary lactating mothers having infants with gestational length ≥ 37 weeks were enrolled between August 2017 and June 2018 in Şanlıurfa. Mothers and infants with chronic health problems were not included in the study. Human milk samples were taken at three different times; on enrollment (Day 6-10, visit 1), between 4 and 6 weeks postpartum (visit 2), and between 14 and 19 weeks postpartum (visit 3). Mycotoxin levels in human milk were measured utilizing Helica brand commercial kit. RESULTS Nineteen voluntary mothers and their breastfed infants with three human milk samples completed the study. The mean ages of mothers and infant (± SD) were 27.4 (± 5.4) years and 7.6 (± 0.9) days on enrollment. Median levels of ZEN and DON in human milk samples were 0.39 and 16.7 ng/mL, respectively. None of the cases had a ZEN daily intake higher than 250 ng/kg bw per day. However, three fourth of the cases had DON intake higher than > 1000 ng/kg bw per day. When adjusted for infant weight for age and sex, both ZEN levels and daily intake were decreased progressively from visit 1 to visit 3 (p < 0.001). DON levels and daily intake at visit 2 were found to be significantly lower in samples of visit 3 than that taken in visit 2 (p = 0.004 and p < 0.001, respectively). CONCLUSIONS Breast milk monitoring study revealed that ZEN and DON mycotoxins were present in the mother-infant environment. Contamination levels changed during the lactation period.
Collapse
Affiliation(s)
- Bülent Güneş
- Şanlıurfa Training and Research Hospital, Child Health and Disease Service, Şanlıurfa, Turkey
| | - Suzan Yalçın
- Department of Food Hygiene and Technology, Selcuk University Faculty of Veterinary Medicine, Konya, Turkey
| | - Sıddika Songül Yalçın
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
5
|
Jin X, Perrella SL, Lai CT, Taylor NL, Geddes DT. Oestrogens and progesterone in human milk and their effects on infant health outcomes: A narrative review. Food Chem 2023; 424:136375. [PMID: 37209436 DOI: 10.1016/j.foodchem.2023.136375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Human milk (HM) is a complex biological system that contains a wide range of bioactive components including oestrogens and progesterone. Whilst maternal oestrogens and progesterone concentrations drop rapidly after birth, they remain detectable in HM across lactation. Phytoestrogens and mycoestrogens, which are produced by plants and fungi, are also present in HM and can interact with oestrogen receptors to interfere with normal hormone functions. Despite the potential impact of HM oestrogens and progesterone on the infant, limited research has addressed their impact on the growth and health of breastfed infants. Furthermore, it is important to comprehensively understand the factors that contribute to these hormone levels in HM, in order to establish effective intervention strategies. In this review, we have summarized the concentrations of naturally occurring oestrogens and progesterone in HM from both endogenous and exogenous sources and discussed both maternal factors impacting HM levels and relationships with infant growth.
Collapse
Affiliation(s)
- Xuehua Jin
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | - Sharon Lisa Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | - Nicolas Lyndon Taylor
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | - Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, WA, Australia.
| |
Collapse
|
6
|
YU M, LIU P. Discussion on emergency management of food safety from the perspective of foodborne diseases caused by mycotoxins. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Gaige S, Barbouche R, Barbot M, Boularand S, Dallaporta M, Abysique A, Troadec JD. Constitutively active microglial populations limit anorexia induced by the food contaminant deoxynivalenol. J Neuroinflammation 2022; 19:280. [PMID: 36403004 PMCID: PMC9675145 DOI: 10.1186/s12974-022-02631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
Microglia are involved in neuroinflammatory processes during diverse pathophysiological conditions. To date, the possible contribution of these cells to deoxynivalenol (DON)-induced brain inflammation and anorexia has not yet been evaluated. DON, one of the most abundant trichothecenes found in cereals, has been implicated in mycotoxicosis in both humans and farm animals. DON-induced toxicity is characterized by reduced food intake, weight gain, and immunological effects. We previously showed that exposure to DON induces an inflammatory response within the hypothalamus and dorsal vagal complex (DVC) which contributes to DON-induced anorexia. Here, in response to anorectic DON doses, we reported microglial activation within two circumventricular organs (CVOs), the area postrema (AP) and median eminence (ME) located in the DVC and the hypothalamus, respectively. Interestingly, this microglial activation was observed while DON-induced anorexia was ongoing (i.e., 3 and 6 h after DON administration). Next, we took advantage of pharmacological microglia deletion using PLX3397, a colony-stimulating factor 1 receptor (CSF1R)-inhibitor. Surprisingly, microglia-depleted mice exhibited an increased sensitivity to DON since non-anorectic DON doses reduced food intake in PLX3397-treated mice. Moreover, low DON doses induced c-Fos expression within feeding behavior-associated structures in PLX3397-treated mice but not in control mice. In parallel, we have highlighted heterogeneity in the phenotype of microglial cells present in and around the AP and ME of control animals. In these areas, microglial subpopulations expressed IBA1, TMEM119, CD11b and CD68 to varying degrees. In addition, a CD68 positive subpopulation showed, under resting conditions, a noticeable phagocytotic/endocytotic activity. We observed that DON strongly reduced CD68 in the hypothalamus and DVC. Finally, inactivation of constitutively active microglia by intraperitoneal administration of minocycline resulted in anorexia with a DON dose ineffective in control mice. Taken together, these results strongly suggest that various populations of microglial cells residing in and around the CVOs are maintained in a functionally active state even under physiological conditions. We propose that these microglial cell populations are attempting to protect the brain parenchyma from hazardous molecules coming from the blood. This study could contribute to a better understanding of how microglia respond to environmental contaminants.
Collapse
Affiliation(s)
- Stéphanie Gaige
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Rym Barbouche
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Manon Barbot
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Sarah Boularand
- Aix-Marseille University, CNRS, Centrale Marseille, FSCM (FR1739), PRATIM, 13397, Marseille, France
| | - Michel Dallaporta
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Anne Abysique
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France.
| | - Jean-Denis Troadec
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France.
| |
Collapse
|
8
|
Duarte S, Silva LJG, Pereira AMPT, Gimbi M, Cesar C, Vidal V, Basílio R, Almeida A, Lino C, Pena A. Mycotoxins Exposure in Cabinda, Angola-A Pilot Biomonitoring Survey of Breastmilk. Toxins (Basel) 2022; 14:204. [PMID: 35324701 PMCID: PMC8954951 DOI: 10.3390/toxins14030204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Breast milk is considered the ideal form of nutrition for newborns and infants. However, it can carry over contaminants, namely mycotoxins, with biological effects to which this population is particularly vulnerable. Human biomonitoring and surveillance programs are particularly scarce in low-income countries, where food security is a more urgent priority in comparison with food safety. This pilot survey aims to assess exposure of breastfed infants to aflatoxin M1 (AFM1), zearalenone (ZEN), and ochratoxin A (OTA) in Angola, and to evaluate the main socio-demographical and food consumption determinants of lactating mothers. All 37 breast milk samples analyzed are found to be contaminated with ZEN and OTA, although none are found contaminated with AFM1. Contamination levels are lower than previously reported for ZEN but higher in the case of OTA. A significant association between ZEN levels in breast milk and the consumption of cookies by the lactating mothers is found. As for OTA, higher levels are observed in the milk from mothers with younger infants, for which high estimated daily intake (EDI) is determined. As far as the authors are aware, this is the first survey of the occurrence of mycotoxins in breast milk in Angola, so further human biomonitoring works should follow, given that mycotoxins are a global health issue that directly impact the health of populations.
Collapse
Affiliation(s)
- Sofia Duarte
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
| | - Liliana J G Silva
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - André M P T Pereira
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Marta Gimbi
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Cristiane Cesar
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Vanessa Vidal
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Rita Basílio
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Anabela Almeida
- Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Campus Universitário, Av. José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, Universidade de Coimbra, 3000-548 Coimbra, Portugal
| | - Celeste Lino
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Knowledge and Behavioral Habits to Reduce Mycotoxin Dietary Exposure at Household Level in a Cohort of German University Students. Toxins (Basel) 2021; 13:toxins13110760. [PMID: 34822544 PMCID: PMC8618271 DOI: 10.3390/toxins13110760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins pose a health concern for humans. Therefore, strategies at pre- and post-harvest and maximum levels for food have been implemented, aimed to minimize the risk of dietary exposure. Yet, consumers’ dietary habits and life style play a substantial role in overall exposure. The aim of this study was to investigate knowledge of mycotoxins and accordance to behavioral practices or habits that may affect the risk of mycotoxin dietary exposure at the household level or when food commodities are obtained from non-regulated trade markets. For this purpose, an online survey was applied to a university student cohort (n = 186). The survey consisted of 23 questions grouped in five categories: Socio-demographic and income data, general life style and habits, knowledge about mycotoxins, compliance with the “17 golden rules to prevent mycotoxin contamination” of the German Federal Institute for Risk Assessment (BfR), and measures towards reducing health risks. We paid particular attention to knowledge and compliance of a group acquiring food items in markets outside regulation and surveillance, namely, adherents of food movements such as food sharing or dumpster diving. The results of our study indicate a generally rather low level of knowledge about mycotoxins in the investigated cohort, as well as a weak perception of their associated risks compared to similar studies; around half of the cohort was unfamiliar with the term “mycotoxin” and the health risks of mycotoxins were considered comparable to those of pesticides, heavy metals, microplastics and food additives. We observed, in general, a relatively high degree of compliance with the proposed golden rules. The rules with the highest compliance related to deteriorated foods with visible signs of fungal infestation, probably because these are already considered as food waste. Rules that were less followed included those that require a specific knowledge of food storage and early fungal contamination stages, namely preventive measures related to storage of bread. Adherents of food movements did not differ significantly with the control group in terms of knowledge, risk perception and compliance with the 17 golden rules. This may be due to the homogeneity of the cohort in terms of demography, age and educational level. However, significant low compliance in the food movements group was observed with the rules “Buy fruit and vegetables that are as intact as possible, i.e., without injuries and bruises” and “Rotten fruit should neither be eaten nor further processed into compote or jam”, possibly because of ideological convictions around reducing food waste. In conclusion, mycotoxin prevention strategies should not end at the retail level; in particular, clarification and information regarding health risk from mycotoxins are suggested in order to reduce the risk of exposure in private households or in informal trade markets. The results of this study should, however, be interpreted with caution due to the specific characteristics of the cohort in terms of age and educational level and the disparity in size between the control and the food movement group. This study is a starting point for evaluating and understanding the consumer perspective on mycotoxins.
Collapse
|
10
|
Bondy GS, Curran IHC, Coady LC, Armstrong C, Bourque C, Bugiel S, Caldwell D, Kwong K, Lefebvre DE, Maurice C, Marchetti F, Pantazopoulos PP, Ross N, Gannon AM. A one-generation reproductive toxicity study of the mycotoxin ochratoxin A in Fischer rats. Food Chem Toxicol 2021; 153:112247. [PMID: 33951485 DOI: 10.1016/j.fct.2021.112247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium molds. Grain-based foods account for most human dietary exposures to OTA. OTA is a teratogen, but its reproductive and developmental effects are poorly understood. A one-generation reproductive toxicity study was conducted with groups of 16 male and 16 female Fischer rats exposed to 0, 0.026, 0.064, 0.16, 0.4 or 1.0 mg OTA/kg in diet. Dams exposed to 1.0 mg OTA/kg diet had statistically significant F1 pup losses between implantation and postnatal day (PND 4). Delays in preputial separation (PPS) and vaginal opening (VO) were indicative of delayed puberty in F1 rats. Mild renal lesions in nursing pups indicated that exposure prior to weaning impacted the kidneys. The developing kidney was more susceptible to OTA than the adult kidney. Significant increases in multi-oocyte follicles (MOFs) and proportional changes in resting and growing follicles were observed in F1 female ovaries. Plasma testosterone was reduced in F0 males, and there were negative effects on sperm quality in F0 and F1 male rats. The results confirm that continuous dietary exposure to OTA causes post-implantation fetotoxicity in dams, and renal and reproductive toxicity in their male and female offspring.
Collapse
Affiliation(s)
- G S Bondy
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - I H C Curran
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - L C Coady
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - C Armstrong
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - C Bourque
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - S Bugiel
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - D Caldwell
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - K Kwong
- Ontario Food Laboratory, Laboratories Directorate, Regulatory Operations and Enforcement Branch, Toronto, Ontario, M1P 4R7, Canada
| | - D E Lefebvre
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - C Maurice
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - F Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - P P Pantazopoulos
- Ontario Food Laboratory, Laboratories Directorate, Regulatory Operations and Enforcement Branch, Toronto, Ontario, M1P 4R7, Canada
| | - N Ross
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A M Gannon
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| |
Collapse
|
11
|
Meerpoel C, Vidal A, Andjelkovic M, De Boevre M, Tangni EK, Huybrechts B, Devreese M, Croubels S, De Saeger S. Dietary exposure assessment and risk characterization of citrinin and ochratoxin A in Belgium. Food Chem Toxicol 2020; 147:111914. [PMID: 33307117 DOI: 10.1016/j.fct.2020.111914] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022]
Abstract
Exposure to mycotoxins is a worldwide problem. To ensure public health, it is imperative to characterize the risks related to these toxins. The present study aims to conduct a dietary exposure assessment of citrinin (CIT) and ochratoxin A (OTA) in the Belgian population using consumption data of a variety of foodstuffs. A total of 367 food samples from different food categories were collected in Belgian supermarkets and analysed for CIT and OTA using a validated liquid chromatography-tandem mass spectrometry method. Daily CIT and OTA exposure to the Belgian population was calculated based on the analytical results and food consumption data in three age categories (3-9, 10-17 and 18-64 years), obtained from a national food consumption survey. Furthermore, a risk characterization was performed for CIT, in which no intake values exceeded the tolerable daily intake (TDI) of 200 ng kg-1 bw day-1, indicating no health risk. However, a CIT intake level of 187 ng kg-1 bw day-1 was detected for children in the age category of 3-9 years in the worst case scenario for rice, indicating that rice consumption could contain a potential health hazard for young children. For OTA, a potential health risk was detected in several food categories (biscuits, croissants, rice, flour, meat imitates, herbs and spices) in the higher percentiles (P99) or at maximum found concentrations when calculating the margin of exposure (MoE) for neoplastic effects. An attempt to perform a cumulative health risk assessment for both toxins was done. Although a high number of uncertainties is involved, combined margin of exposure (MoET) values indicated a potential health risk related to the combined exposure to CIT and OTA. For the first time, our study demonstrated the potential health risks of CIT and OTA after individual and combined exposure, in particular related to rice consumption. Moreover, further research is recommended concerning multiple mycotoxin exposure in young children.
Collapse
Affiliation(s)
- Celine Meerpoel
- Ghent University, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Ottergemsesteenweg 460, 9000, Ghent, Belgium; Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Arnau Vidal
- Ghent University, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Mirjana Andjelkovic
- SCIENSANO, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Marthe De Boevre
- Ghent University, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Emmanuel K Tangni
- SCIENSANO, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Bart Huybrechts
- SCIENSANO, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Mathias Devreese
- Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Siska Croubels
- Ghent University, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sarah De Saeger
- Ghent University, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Ottergemsesteenweg 460, 9000, Ghent, Belgium; University of Johannesburg, Faculty of Science, Department of Biotechnology and Food Technology, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa.
| |
Collapse
|
12
|
Trevisi P, Luise D, Spinelli E, Correa F, De Leo E, Trambajolo G, Diegoli G, Bosi P. Transfer of Mycotoxins from Lactation Feed to Colostrum of Sows. Animals (Basel) 2020; 10:ani10122253. [PMID: 33266144 PMCID: PMC7761246 DOI: 10.3390/ani10122253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/07/2023] Open
Abstract
Studies regarding the transfer of mycotoxins from sow feed to colostrum are scarce. A sample of in-house produced lactation feed and one of colostrum were collected from two or three sows per farm (total 49) from 19 farms. The feed contents of aflatoxins (AFs), fumonisins (FUs), deoxynivalenol (DON) and zearalenone (ZEA) were assessed using ELISA and confirmed by liquid chromatography-mass spectrometry (LC-MS), The values were very low (10, 12, 17 and 2 positive samples for AFs, FUs, DON and ZEA, respectively), except for two samples (one AF, one DON). Based on feed values, colostrum samples from 13 farms were tested for at least one mycotoxin (Total 35). Aflatoxins were not found in any sample. A signal for FUs was observed in 5 of 11 colostra, despite low feed values; DON was frequently present in the colostrum (10/14). On the farm where the feed exceeded the DON suggested limits, a higher colostrum content was seen, 10.9 µg/kg, approximately 1/69 of the value showing toxicity in young pigs. The absence of reference values for neonate pigs, and the risk of higher and longer ingestion of DON by sows suggested considering routine checks of sow feed; more research on DON transfer and toxicity in piglets is needed.
Collapse
Affiliation(s)
- Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy; (P.T.); (D.L.); (E.S.); (F.C.)
| | - Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy; (P.T.); (D.L.); (E.S.); (F.C.)
| | - Elisa Spinelli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy; (P.T.); (D.L.); (E.S.); (F.C.)
| | - Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy; (P.T.); (D.L.); (E.S.); (F.C.)
| | - Elena De Leo
- LAEMMEGROUP s.r.l., Via Vittime del Vajont 18, 10024 Moncalieri, Torino, Italy;
| | - Giovanna Trambajolo
- Collective Prevention and Public Health Service, Veterinary Health and Food Hygiene Area, Regione Emilia—Romagna, Viale A. Moro 21, 40127 Bologna, Italy; (G.T.); (G.D.)
| | - Giuseppe Diegoli
- Collective Prevention and Public Health Service, Veterinary Health and Food Hygiene Area, Regione Emilia—Romagna, Viale A. Moro 21, 40127 Bologna, Italy; (G.T.); (G.D.)
| | - Paolo Bosi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy; (P.T.); (D.L.); (E.S.); (F.C.)
- Correspondence:
| |
Collapse
|
13
|
The food contaminant deoxynivalenol provokes metabolic impairments resulting in non-alcoholic fatty liver (NAFL) in mice. Sci Rep 2020; 10:12072. [PMID: 32694515 PMCID: PMC7374573 DOI: 10.1038/s41598-020-68712-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
The ribotoxin deoxynivalenol (DON) is a trichothecene found on cereals responsible for mycotoxicosis in both humans and farm animals. DON toxicity is characterized by reduced food intake, diminished nutritional efficiency and immunologic effects. The present study was designed to further characterize the alterations in energy metabolism induced by DON intoxication. We demonstrated that acute DON intoxication triggered liver steatosis associated with an altered expression of genes related to lipids oxidation, lipogenesis and lipolysis. This steatosis was concomitant to anorexia, hypoglycemia and a paradoxical transient insulin release. DON treatment resulted also in stimulation of central autonomic network regulating sympathetic outflow and adrenaline and glucocorticoids secretion. Furthermore, an increased expression of genes linked to inflammation and reticulum endoplasmic stress was observed in the liver of DON-treated mice. Finally, we propose that lipids mobilization from adipose tissues (AT) induced by DON intoxication drives hepatic steatosis since (1) genes encoding lipolytic enzymes were up-regulated in AT and (2) plasma concentration of triglycerides (TGs) and non-esterified fatty acids were increased during DON intoxication. Altogether, these data demonstrate that DON induced hormonal and metabolic dysregulations associated with a spectrum of hepatic abnormalities, evocative of a non-alcoholic fatty liver disease.
Collapse
|
14
|
Silva L, Pereira A, Duarte S, Pena A, Lino C. Reviewing the Analytical Methodologies to Determine the Occurrence of Citrinin and its Major Metabolite, Dihydrocitrinone, in Human Biological Fluids. Molecules 2020; 25:E2906. [PMID: 32599786 PMCID: PMC7355619 DOI: 10.3390/molecules25122906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
Until now, the available data regarding citrinin (CIT) levels in food and the consumption of contaminated foods are insufficient to allow a reliable estimate of intake. Therefore, biomonitoring configuring analysis of parent compound and/or metabolites in biological fluids, such as urine or blood, is being increasingly applied in the assessment of human exposure to CIT and its metabolite, dihydrocitrinone (DH-CIT). Most studies report urinary levels lower for the parent compound when compared with DH-CIT. A high variability either in the mean levels or in the inter-individual ratios of CIT/DH-CIT between the reported studies has been found. Levels of DH-CIT in urine were reported as being comprised between three to seventeen times higher than the parent mycotoxin. In order to comply with this objective, sensitive analytical methodologies for determining biomarkers of exposure are required. Recent development of powerful analytical techniques, namely liquid chromatography coupled to mass spectrometry (LC-MS/MS) and ultra-high-performance liquid chromatography (UHPLC-MS/MS) have facilitated biomonitoring studies, mainly in urine samples. In the present work, evidence on human exposure to CIT through its occurrence and its metabolite, in biological fluids, urine and blood/plasma, in different countries, is reviewed. The analytical methodologies usually employed to evaluate trace quantities of these two molecules, are also presented. In this sense, relevant data on sampling (size and pre-treatment), extraction, cleanup and detection and quantification techniques and respective chromatographic conditions, as well as the analytical performance, are evidenced.
Collapse
Affiliation(s)
- Liliana Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.P.); (S.D.); (A.P.); (C.L.)
| | - André Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.P.); (S.D.); (A.P.); (C.L.)
| | - Sofia Duarte
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.P.); (S.D.); (A.P.); (C.L.)
- Vasco da Gama Research Centre—Department of Veterinary Sceinces, Escola Universitária Vasco da Gama, Av. José R. Sousa Fernandes, Campus Universitário—Bloco B, 3020-210 Coimbra, Portugal
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.P.); (S.D.); (A.P.); (C.L.)
| | - Celeste Lino
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.P.); (S.D.); (A.P.); (C.L.)
| |
Collapse
|
15
|
Arce-López B, Lizarraga E, Vettorazzi A, González-Peñas E. Human Biomonitoring of Mycotoxins in Blood, Plasma and Serum in Recent Years: A Review. Toxins (Basel) 2020; 12:E147. [PMID: 32121036 PMCID: PMC7150965 DOI: 10.3390/toxins12030147] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
This manuscript reviews the state-of-the-art regarding human biological monitoring (HBM) of mycotoxins in plasma serum and blood samples. After a comprehensive and systematic literature review, with a focus on the last five years, several aspects were analyzed and summarized: a) the biomarkers analyzed and their encountered levels, b) the analytical methodologies developed and c) the relationship between biomarker levels and some illnesses. In the literature reviewed, aflatoxin B1-lysine (AFB1-lys) and ochratoxin A (OTA) in plasma and serum were the most widely studied mycotoxin biomarkers for HBM. Regarding analytical methodologies, a clear increase in the development of methods for the simultaneous determination of multiple mycotoxins has been observed. For this purpose, the use of liquid chromatography (LC) methodologies, especially when coupled with tandem mass spectrometry (MS/MS) or high resolution mass spectrometry (HRMS), has grown. A high percentage of the samples analyzed for OTA or aflatoxin B1 (mostly as AFB1-lys) in the reviewed papers were positive, demonstrating human exposure to mycotoxins. This review confirms the importance of mycotoxin human biomonitoring and highlights the important challenges that should be faced, such as the inclusion of other mycotoxins in HBM programs, the need to increase knowledge of mycotoxin metabolism and toxicokinetics, and the need for reference materials and new methodologies for treating samples. In addition, guidelines are required for analytical method validation, as well as equations to establish the relationship between human fluid levels and mycotoxin intake.
Collapse
Affiliation(s)
- Beatriz Arce-López
- Department of Pharmaceutical Technology and Chemistry; Universidad de Navarra, 31008 Pamplona, Navarra, Spain; (B.A.-L.); (E.G.-P.)
| | - Elena Lizarraga
- Department of Pharmaceutical Technology and Chemistry; Universidad de Navarra, 31008 Pamplona, Navarra, Spain; (B.A.-L.); (E.G.-P.)
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology. School of Pharmacy and Nutrition, 31008 Pamplona, Navarra, Spain;
- IdiSNA, Institute for Health Research, 31008 Pamplona, Navarra, Spain
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry; Universidad de Navarra, 31008 Pamplona, Navarra, Spain; (B.A.-L.); (E.G.-P.)
| |
Collapse
|
16
|
Saleh I, Goktepe I. Health risk assessment of Patulin intake through apples and apple-based foods sold in Qatar. Heliyon 2019; 5:e02754. [PMID: 31844700 PMCID: PMC6895755 DOI: 10.1016/j.heliyon.2019.e02754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/29/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
This is the first report on assessing the non-carcinogenic health risk associated with Patulin exposure in Qatar. The concentrations of Patulin, as determined in previous studies, in apples, apple juice, and apple-based baby foods sold in Qatar and nearby countries were used to conduct the health risk assessment (HRA). The risk related to Patulin intake by different age groups was calculated using the USEPA risk assessment models. The intake levels (ILs) of various age groups was compared with the international standards. The highest IL in Qatar was for babies between 5-12 months old through ingesting contaminated apple-based baby foods, yet those levels were below the tolerable daily intake of Patulin set by the EU at 0.4 μg/kg BW/d. The results showed that the intake of Patulin in Qatar is lower than that in Tunisia and Iran based on the HRA analysis. The risk caused by chronic exposure to Patulin through ingesting raw apples and apple juice separately was below “1,” indicating that the overall population is not likely to be at risk of Patulin exposure. However, various uncertainties should be considered when adopting these results, mainly the low number of samples and additive exposure to other mycotoxins from different sources.
Collapse
Affiliation(s)
- Iman Saleh
- Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ipek Goktepe
- Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
17
|
Citrinin biomarkers: a review of recent data and application to human exposure assessment. Arch Toxicol 2019; 93:3057-3066. [PMID: 31501918 DOI: 10.1007/s00204-019-02570-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
The mycotoxin citrinin (CIT) deserves attention due to its known toxic effects in mammalian species and a widespread occurrence in food commodities, often along with ochratoxin A, another nephrotoxic mycotoxin. Human exposure, a key element in assessing risks related to these food contaminants, depends upon mycotoxin levels in food and on food consumption. Yet, data available for CIT levels in food are insufficient for reliable intake estimates. Now biomonitoring, i.e., analysis of parent compound and/or metabolites in human specimen (blood, urine, breast milk), is increasingly used to investigate mycotoxin exposure. Biomonitoring requires sensitive methods for determining biomarkers of exposure, combined with kinetic data to conclude on the absorbed internal dose in an individual. Recent advances in LC-MS/MS-based analytical techniques have facilitated biomonitoring studies on the occurrence of CIT biomarkers in body fluids, mainly in urine samples. This review compiles evidence on human exposure to CIT in different countries, on CIT kinetics in humans, and on biomarker-based CIT intake estimates. Human CIT exposures are discussed in light of an intake value defined as 'level of no concern for nephrotoxicity' by the European Food Safety Agency, and some uncertainties in the toxicological data base. Further studies on CIT, including biomarker-based studies are warranted along with regular food surveys for this mycotoxin to protect consumers against undesirable health effects.
Collapse
|
18
|
Foerster C, Muñoz K, Delgado-Rivera L, Rivera A, Cortés S, Müller A, Arriagada G, Ferreccio C, Rios G. Occurrence of relevant mycotoxins in food commodities consumed in Chile. Mycotoxin Res 2019; 36:63-72. [DOI: 10.1007/s12550-019-00369-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
|
19
|
Saleh I, Goktepe I. The characteristics, occurrence, and toxicological effects of patulin. Food Chem Toxicol 2019; 129:301-311. [PMID: 31029720 DOI: 10.1016/j.fct.2019.04.036] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
Mycotoxins are the secondary metabolites secreted by different types of fungi to which humans can get exposed mainly via ingestion. Patulin (C7H6O4) is a polyketide lactone produced by various fungal specifies, including Penicillium expansum as the main producer. P. expansum can infect different fruits and vegetables yet it has preference to apples in which they cause blue rot. Therefore, apples and apple-based food products are the main source of Patulin exposure for humans. Patulin was first identified in 1943 under the name of tercinin as a possible antimicrobial agent. Although it is categorized as a non-carcinogen, Patulin has been linked, in the last decades, to neurological, gastrointestinal, and immunological adverse effects, mainly causing liver and kidney damages. In this review, the characteristics of and possible human exposure pathways to Patulin are discussed. Various surveillance and toxicity studies on the levels of Patulin in various food products and effects of Patulin on cells and animal models have been documented as well. Importance of epidemiological studies and a summary of the possible toxicity mechanisms are highlighted with a case study. The commonly used control methods as described in the literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry.
Collapse
Affiliation(s)
- Iman Saleh
- Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Ipek Goktepe
- Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
20
|
Wang L, Liao Y, Peng Z, Chen L, Zhang W, Nüssler AK, Shi S, Liu L, Yang W. Food raw materials and food production occurrences of deoxynivalenol in different regions. Trends Food Sci Technol 2019; 83:41-52. [DOI: 10.1016/j.tifs.2018.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Braun D, Ezekiel CN, Abia WA, Wisgrill L, Degen GH, Turner PC, Marko D, Warth B. Monitoring Early Life Mycotoxin Exposures via LC-MS/MS Breast Milk Analysis. Anal Chem 2018; 90:14569-14577. [DOI: 10.1021/acs.analchem.8b04576] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstraße 38, 1090 Vienna, Austria
| | - Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Wilfred A. Abia
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine Medical University of Vienna, 1090 Vienna, Austria
| | - Gisela H. Degen
- Leibniz-Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, D-44139 Dortmund, Germany
| | - Paul C. Turner
- MIAEH, School of Public Health, University of Maryland, College Park, Maryland 20742, United States
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstraße 38, 1090 Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstraße 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
22
|
Jiang K, Huang Q, Fan K, Wu L, Nie D, Guo W, Wu Y, Han Z. Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Food Chem 2018; 264:218-225. [DOI: 10.1016/j.foodchem.2018.05.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
|