1
|
Ortega-Romero M, Rojas-Lima E, Rubio-Gutiérrez JC, Aztatzi-Aguilar OG, Narváez-Morales J, Esparza-García M, Barrera-Hernández Á, Mejia MÁ, Mendez-Hernández P, Medeiros M, Barbier OC. Associations among environmental exposure to trace elements and biomarkers of early kidney damage in the pediatric population. Biometals 2024; 37:721-737. [PMID: 38642266 DOI: 10.1007/s10534-024-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population. METHODS In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass. RESULTS The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters. DISCUSSION and Conclusions. Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.
Collapse
Affiliation(s)
- Manolo Ortega-Romero
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Elodia Rojas-Lima
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juan Carlos Rubio-Gutiérrez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Mariela Esparza-García
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Ángel Barrera-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Miguel Ángel Mejia
- Fundación Franco-Mexicana Para La Medicina, I.A.P, Ciudad de México, Mexico
| | - Pablo Mendez-Hernández
- Departamento de Calidad y Educación en Salud, Secretaría de Salud de Tlaxcala, Tlaxcala, Mexico
- Facultad de Ciencias de La Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Mara Medeiros
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Lin CY, Wang CK, Sung FC, Su TC. The Association among Urinary Lead and Cadmium, Serum Adiponectin, and Serum Apoptotic Microparticles in a Young Taiwanese Population. Nutrients 2023; 15:4528. [PMID: 37960181 PMCID: PMC10647776 DOI: 10.3390/nu15214528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Previous studies reported that lead (Pb) and cadmium (Cd) exposure are linked to changes in serum adiponectin; an adipokine that promotes glycolysis and inhibits gluconeogenesis to regulate glucose metabolism. However, no study has ever explored the relationship between exposure to these two heavy metals and adiponectin in adolescents and young adults. Additionally, the role of adiponectin in the relationship between Pb and Cd exposure and vascular endothelial cell apoptosis has never been investigated. In this study, 724 Taiwanese participants, aged 12 to 30 years, were enrolled to investigate the association among urinary lead and cadmium, serum adiponectin, and apoptotic microparticles (CD31+/CD42a-, CD31+/CD42a+, and CD14). The results of the current study revealed a statistically significant inverse association between urine Pb and Cd levels and adiponectin levels, as well as a positive association with apoptotic microparticles (CD31+/CD42a-, CD31+/CD42a+, and CD14). Adiponectin was also inversely correlated with CD31+/CD42a- and CD31+/CD42a+. Moreover, when subjects with both Pb and Cd levels above the 50th percentile were compared to those below it, the former group exhibited the lowest average adiponectin value. Additionally, a more pronounced positive association between heavy metals and apoptotic microparticles (CD31+/CD42a- and CD31+/CD42a+) was observed when adiponectin levels were lower. Furthermore, an interaction between adiponectin and heavy metals was identified in the relationship between these metals and CD31+/CD42a-. In conclusion, these findings suggest that Pb and Cd exposure may have an adverse effect on adiponectin, and it may play a role in the link between heavy metal exposure and the dysfunction of vascular endothelial cells. Future studies are needed to establish whether a causal relationship exists.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Chi-Kang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan;
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou 558, Taiwan
| |
Collapse
|
3
|
Zhang K, Ma Y, Luo Y, Song Y, Xiong G, Ma Y, Sun X, Kan C. Metabolic diseases and healthy aging: identifying environmental and behavioral risk factors and promoting public health. Front Public Health 2023; 11:1253506. [PMID: 37900047 PMCID: PMC10603303 DOI: 10.3389/fpubh.2023.1253506] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a progressive and irreversible pathophysiological process that manifests as the decline in tissue and cellular functions, along with a significant increase in the risk of various aging-related diseases, including metabolic diseases. While advances in modern medicine have significantly promoted human health and extended human lifespan, metabolic diseases such as obesity and type 2 diabetes among the older adults pose a major challenge to global public health as societies age. Therefore, understanding the complex interaction between risk factors and metabolic diseases is crucial for promoting well-being and healthy aging. This review article explores the environmental and behavioral risk factors associated with metabolic diseases and their impact on healthy aging. The environment, including an obesogenic environment and exposure to environmental toxins, is strongly correlated with the rising prevalence of obesity and its comorbidities. Behavioral factors, such as diet, physical activity, smoking, alcohol consumption, and sleep patterns, significantly influence the risk of metabolic diseases throughout aging. Public health interventions targeting modifiable risk factors can effectively promote healthier lifestyles and prevent metabolic diseases. Collaboration between government agencies, healthcare providers and community organizations is essential for implementing these interventions and creating supportive environments that foster healthy aging.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yujie Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
4
|
Akash MSH, Yaqoob A, Rehman K, Imran M, Assiri MA, Al-Rashed F, Al-Mulla F, Ahmad R, Sindhu S. Metabolomics: a promising tool for deciphering metabolic impairment in heavy metal toxicities. Front Mol Biosci 2023; 10:1218497. [PMID: 37484533 PMCID: PMC10357477 DOI: 10.3389/fmolb.2023.1218497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Heavy metals are the metal compounds found in earth's crust and have densities higher than that of water. Common heavy metals include the lead, arsenic, mercury, cadmium, copper, manganese, chromium, nickel, and aluminum. Their environmental levels are consistently rising above the permissible limits and they are highly toxic as enter living systems via inhalation, ingestion, or inoculation. Prolonged exposures cause the disruption of metabolism, altered gene and/or protein expression, and dysregulated metabolite profiles. Metabolomics is a state of the art analytical tool widely used for pathomolecular inv22estigations, biomarkers, drug discovery and validation of biotransformation pathways in the fields of biomedicine, nutrition, agriculture, and industry. Here, we overview studies using metabolomics as a dynamic tool to decipher the mechanisms of metabolic impairment related to heavy metal toxicities caused by the environmental or experimental exposures in different living systems. These investigations highlight the key role of metabolomics in identifying perturbations in pathways of lipid and amino acid metabolism, with a critical role of oxidative stress in metabolic impairment. We present the conclusions with future perspectives on metabolomics applications in meeting emerging needs.
Collapse
Affiliation(s)
| | - Azka Yaqoob
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
5
|
Smereczański NM, Brzóska MM. Current Levels of Environmental Exposure to Cadmium in Industrialized Countries as a Risk Factor for Kidney Damage in the General Population: A Comprehensive Review of Available Data. Int J Mol Sci 2023; 24:ijms24098413. [PMID: 37176121 PMCID: PMC10179615 DOI: 10.3390/ijms24098413] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The growing number of reports indicating unfavorable outcomes for human health upon environmental exposure to cadmium (Cd) have focused attention on the threat to the general population posed by this heavy metal. The kidney is a target organ during chronic Cd intoxication. The aim of this article was to critically review the available literature on the impact of the current levels of environmental exposure to this xenobiotic in industrialized countries on the kidney, and to evaluate the associated risk of organ damage, including chronic kidney disease (CKD). Based on a comprehensive review of the available data, we recognized that the observed adverse effect levels (NOAELs) of Cd concentration in the blood and urine for clinically relevant kidney damage (glomerular dysfunction) are 0.18 μg/L and 0.27 μg/g creatinine, respectively, whereas the lowest observed adverse effect levels (LOAELs) are >0.18 μg/L and >0.27 μg/g creatinine, respectively, which are within the lower range of concentrations noted in inhabitants of industrialized countries. In conclusion, the current levels of environmental exposure to Cd may increase the risk of clinically relevant kidney damage, resulting in, or at least contributing to, the development of CKD.
Collapse
Affiliation(s)
- Nazar M Smereczański
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
6
|
Liang Y, Zhou H, Zhang J, Li S, Shen W, Lei L. Exposure to perfluoroalkyl and polyfluoroalkyl substances and estimated glomerular filtration rate in adults: a cross-sectional study based on NHANES (2017-2018). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57931-57944. [PMID: 36971931 DOI: 10.1007/s11356-023-26384-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/07/2023] [Indexed: 05/10/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) may be important environmental risk factors affecting renal function. This study aimed to investigate the relationships between PFASs and estimated glomerular filtration rate (eGFR) in univariate exposure and multivariate co-exposure models of PFASs. A total of 1700 people over 18 years from National Health and Nutrition Examination Survey (NHANES) in 2017-2018 were selected as subjects to explore the relationships between eGFR and six PFASs (perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFUA), perfluorodecanoic acid (PFDeA), and perfluorohexane sulfonate (PFHxS)). First, multiple linear regression was used to estimate the association of each PFAS with eGFR, and the joint effect of PFAS mixtures was evaluated by Bayesian kernel machine regression (BKMR). Multiple linear regression analysis showed PFOS (β = - 0.246, p = 0.026) and PFHxS (β = 0.538, p = 0.049) were significantly associated with eGFR in total population. In BKMR analysis, there was joint effect between PFOS and PFHxS for eGFR. And there were the joint effects of multiple PFAS on eGFR, especially the significant joint effect between PFHxS and PFDeA/PFNA/PFUA. Future cohort studies need to explore the association of multiple PFASs and health.
Collapse
Affiliation(s)
- Yufen Liang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Han Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Jiachen Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuangjing Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Weitong Shen
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lijian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
7
|
Guo TT, Cao XY, An YY, Zhang XL, Yan JZ. Sulfur-Bridged Co(II)-Thiacalix[4]arene Metal-Organic Framework as an Electrochemical Sensor for the Determination of Toxic Heavy Metals. Inorg Chem 2023; 62:4485-4494. [PMID: 36893304 DOI: 10.1021/acs.inorgchem.2c04197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A novel sulfur-bridged metal-organic framework (MOF) [Co(TIC4R-I)0.25Cl2]·3CH3OH (Co-TIC4R-I) based on thiacalix[4]arene derivatives was successfully obtained using a solvothermal method. Remarkably, adjacent TIC4R-I ligands were linked via Co(II) cations to form a three-dimensional (3D) microporous architecture. Subsequently, Co-TIC4R-I was modified on a glassy carbon electrode (Co-TIC4R-I/GCE) to produce an electrochemical sensor for the detection of heavy-metal ions (HMIs), namely, Cd2+, Pb2+, Cu2+, and Hg2+, in aqueous solutions. It was found that Co-TIC4R-I/GCE exhibited wide linear detection ranges of 0.10-17.00, 0.05-16.00, 0.05-10.00, and 0.80-15.00 μM for Cd2+, Pb2+, Cu2+, and Hg2+, respectively, in addition to low limit of detection (LOD) values of 0.017, 0.008, 0.016, and 0.007 μM. Moreover, the fabricated sensor employed for the simultaneous detection of these metals has achieved LOD values of 0.0067, 0.0027, 0.0064, and 0.0037 μM for Cd2+, Pb2+, Cu2+, and Hg2+, respectively. The sensor also exhibited satisfactory selectivity, reproducibility, and stability. Furthermore, the relative standard deviation (RSD) values of Cd2+, Pb2+, Cu2+, and Hg2+ were 3.29, 3.73, 3.11, and 1.97%, respectively. Moreover, the fabricated sensor could sensitively detect HMIs in various environmental samples. The high performance of the sensor was attributed to its sulfur adsorption sites and abundant phenyl rings. Overall, the sensor described herein provides an efficient method for the determination of extremely low concentrations of HMIs in aqueous samples.
Collapse
Affiliation(s)
- Ting-Ting Guo
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P. R. China
| | - Xiang-Yu Cao
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P. R. China
| | - Yan-Yan An
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P. R. China
| | - Xiu-Ling Zhang
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P. R. China
| | - Juan-Zhi Yan
- Department of Materials Science and Chemical Engineering, Taiyuan University, Taiyuan 030000, P. R. China
| |
Collapse
|
8
|
Xu P, Lai S, Wu L, Chen W, Chen Y, Xu D, Xiang J, Cheng P, Chen Z, Wang X, Lou X, Tang J. Insights into the health status of the general population living near an electroplating industry zone: metal elevations and renal impairment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31905-31915. [PMID: 36459323 DOI: 10.1007/s11356-022-24411-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
A cross-sectional study was conducted in 2016 in Zhejiang Province, China, to evaluate the body burdens of metals and metalloids associated with renal dysfunction in populations living near electroplating industries. We recruited 236 subjects and performed physical examinations, determined the blood and urinary levels of arsenic (As), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), and selenium (Se) by an inductively coupled plasma mass spectrometer (ICP-MS), and measured three renal impairment biomarkers, namely nacetyl-β-D-glucosaminidase (NAG), retinol-binding protein (RBP), and β2-microglobulin (BMG). The proportion of abnormal nasal symptoms in the exposure group (10.1%) was much higher than in the control group (0; p < 0.05). The blood and urinary levels of As, Cd, and Se in the exposure group were significantly higher than those in the control group (p < 0.05). The blood levels of Mn and Pb, as well as the urinary levels of Cr and Ni, were significantly higher in the exposure group than in the control group (p < 0.05). The exposure group demonstrated higher levels of NAG, RBP, and BMG than the control group (0.51 vs. 0.14 mg/g creatinine, 12.79 vs. 9.26 IU/g creatinine, and 1.39 vs. 0.78 mg/g creatinine, respectively; p < 0.05). Urinary BMG was positively correlated with urinary Cd levels (r = 0.223, p < 0.05), while urinary RBP was correlated with blood Cd levels (r = 0.151, p < 0.05) and urinary Cd, Cr, Ni, and Se levels (r = 0.220, 0.303, 0.162, and 0.306, respectively; p < 0.05). In conclusion, our study indicated that a population living in the vicinity of electroplating industries had high body burdens of certain metals and metalloids associated with non-negligible renal dysfunction.
Collapse
Affiliation(s)
- Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Shiming Lai
- Quzhou Center for Disease Control and Prevention, 154 Xi'an Road, Xin'an District, Quzhou, 324003, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Weizhong Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China.
| |
Collapse
|
9
|
Absence of significant association of trace elements in nails with urinary KIM-1 biomarker among residents of Addis Ababa in Upper Awash Basin, Ethiopia: a cross-sectional study. Biometals 2022; 35:1341-1358. [PMID: 36163536 DOI: 10.1007/s10534-022-00448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
The Akaki River in the Upper Awash Basin, which flows through Addis Ababa, the capital city of Ethiopia, has been highly polluted by sewage from factories and residential areas. A population-based cross-sectional study was used to assess the association between trace elements and kidney injury from residents living in polluted areas downstream (Akaki-Kality) versus upstream (Gullele) in Sub-Cities of Addis Ababa. A total of 95 individuals (53 from Akaki-Kality and 42 from Gullele) were included in the study. Kidney injury molecule 1 (KIM-1), lead, arsenic, cadmium, cobalt, lead, manganese, zinc, iron, copper, chromium and nickel were evaluated in residents' urine and nail samples. A large proportion (74%) of the sample population contained KIM-1, including 81% residents in Akaki-Kality and 64% residents in Gullele. KIM-1 was, however, not significantly different (p = 0.05) between the two Sub-Cities, with median of 0.224 ng/mL in Akaki-Kality and 0.152 ng/mL in Gullele. Most of the analyzed elements, except Pb, As, Cd and Co, were found in all of the nail samples, with median (µg/g) in the range of 442‒714 Fe, 97.0‒246 Zn, 11.6‒24.1 Mn, 4.49‒5.85 Cu, 1.46‒1.66 Cr and 1.22‒1.41 Ni. The high incidence of KIM-1 indicates a potential for long term renal tubular damage among residents of the Sub-Cities. The concentrations of the elements in nails were, however, not significantly associated (p = 0.05) with the corresponding levels of KIM-1 in urine. Hence, the observed KIM-1 might be related to exposure to toxic substances or factors other than those included in this study.
Collapse
|
10
|
Mabood F, Hadi F, Jan AU, Ditta A, Islam Z, Siddiqui MH, Ali HM, Sabagh AEL. Assessment of Pb and Ni and potential health risks associated with the consumption of vegetables grown on the roadside soils in District Swat, Khyber Pakhtunkhwa, Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:906. [PMID: 36253629 DOI: 10.1007/s10661-022-10627-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Vegetables cultivated near roads absorb toxic metals from polluted soil, which enter the human body through the food chain and cause serious health problems to humans. The present study investigated the concentration of lead (Pb) and nickel (Ni) in soils and vegetables grown along the roadside of District Swat, Pakistan, and the health risks associated with the consumption of the tested vegetables. In results, Pb concentration was higher in plants located at the distance between 0-10 m away from the roadside than the WHO permissible limit. In such plants, Pb concentration was higher than Ni. Rumex dentatus contained the highest concentration of Pb (75.63 mg kg-1 DW) among the tested vegetables while Ni concentration (27.57 mg kg-1 DW) was highest in Trachyspermum ammi as compared to other plants. Concentration and accumulation of both the metals decreased in soil and plants with increasing distance from the road. Similarly, target hazard quotient values noted for Pb (up to 3.37) were greater than unity, which shows that there is a potential risk associated with the consumption of tested vegetables near the road. Moreover, the values of target cancer risk (up to 0.8413) were greater than 0.0001, which shows that there is a risk of cancer with the consumption of tested vegetables. In conclusion, the consumption of tested vegetables was very dangerous as it may lead to higher risks of cancer. Strict regulatory control is recommended on the cultivation of these vegetables along the roadside to avoid any contamination due to roadside exhaust.
Collapse
Affiliation(s)
- Fazal Mabood
- Department of Botany, Faculty of Science, University of Malakand, KPK, Pakistan
| | - Fazal Hadi
- Department of Biotechnology, Faculty of Science, University of Malakand, KPK, Pakistan
| | - Amin Ullah Jan
- Department of Biotechnology, Faculty of Science, Shaheed Benazir Bhutto University, Sheringal Dir (U), 18000, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Faculty of Sciences, Shaheed Benazir Bhutto University, Sheringal Dir (U), 18000, Pakistan.
- School of Biological Sciences, the University of Western Australia, Perth, WA, 6009, Australia.
| | - Ziaul Islam
- Department of Animal Sciences, Shaheed Benazir Bhutto University Sheringal Dir Upper, KPK, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman E L Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafrelsheikh, 33516, Egypt
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, 01330, Turkey
| |
Collapse
|
11
|
Pócsi I, Dockrell ME, Price RG. Nephrotoxic Biomarkers with Specific Indications for Metallic Pollutants: Implications for Environmental Health. Biomark Insights 2022; 17:11772719221111882. [PMID: 35859925 PMCID: PMC9290154 DOI: 10.1177/11772719221111882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental and occupational exposure to heavy metals and metalloids is a major global health risk. The kidney is often a site of early damage. Nephrotoxicity is both a major consequence of heavy metal exposure and potentially an early warning of greater damage. A paradigm shift occurred at the beginning of the 21st century in the field of renal medicine. The medical model of kidney failure and treatment began to give way to a social model of risk factors and prevention with important implications for environmental health. This development threw into focus the need for better biomarkers: markers of exposure to known nephrotoxins; markers of early damage for diagnosis and prevention; markers of disease development for intervention and choice of therapy. Constituents of electronic waste, e-waste or e-pollution, such as cadmium (Cd), lead (Pb), mercury (HG), arsenic (As) and silica (SiO2) are all potential nephrotoxins; they target the renal proximal tubules through distinct pathways. Different nephrotoxic biomarkers offer the possibility of identifying exposure to individual pollutants. In this review, a selection of prominent urinary markers of tubule damage is considered as potential tools for identifying environmental exposure to some key metallic pollutants.
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Mark E Dockrell
- SWT Institute of Renal Research, Carshalton, London, UK.,Department of Molecular and Clinical Sciences, St George's University, London, UK
| | - Robert G Price
- Department of Nutrition, Franklin-Wilkins Building, King's College, London, UK
| |
Collapse
|
12
|
Wei S, Wei Y, Gong Y, Chen Y, Cui J, Li L, Yan H, Yu Y, Lin X, Li G, Yi L. Metabolomics as a valid analytical technique in environmental exposure research: application and progress. Metabolomics 2022; 18:35. [PMID: 35639180 DOI: 10.1007/s11306-022-01895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In recent years, studies have shown that exposure to environmental pollutants (e.g., radiation, heavy metal substances, air pollutants, organic pollutants) is a leading cause of human non-communicable diseases. The key to disease prevention is to clarify the harmful mechanisms and toxic effects of environmental pollutants on the body. Metabolomics is a high-sensitivity, high-throughput omics technology that can obtain detailed metabolite information of an organism. It is a crucial tool for gaining a comprehensive understanding of the pathway network regulation mechanism of the organism. Its application is widespread in many research fields such as environmental exposure assessment, medicine, systems biology, and biomarker discovery. AIM OF REVIEW Recent findings show that metabolomics can be used to obtain molecular snapshots of organisms after environmental exposure, to help understand the interaction between environmental exposure and organisms, and to identify potential biomarkers and biological mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on the application of metabolomics to understand the biological effects of radiation, heavy metals, air pollution, and persistent organic pollutants exposure, and examines some potential biomarkers and toxicity mechanisms.
Collapse
Affiliation(s)
- Shuang Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuanyun Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yaqi Gong
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yonglin Chen
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jian Cui
- Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Linwei Li
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Yan
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Yueqiu Yu
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiang Lin
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guoqing Li
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
Zeng T, Liang Y, Dai Q, Tian J, Chen J, Lei B, Yang Z, Cai Z. Application of machine learning algorithms to screen potential biomarkers under cadmium exposure based on human urine metabolic profiles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Díaz de León-Martínez L, Ortega-Romero M, Gavilán-García A, Barbier OC, Carrizalez-Yáñez L, Van-Brusel E, Díaz-Barriga F, Flores-Ramírez R. Assessment of biomarkers of early kidney damage and exposure to pollutants in artisanal mercury mining workers from Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13333-13343. [PMID: 34590225 DOI: 10.1007/s11356-021-16628-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Artisanal mercury mining (AMM) is an informal economic activity that employs low technology and limited protection, and poses a risk to workers and their families; due to the extraction process, these scenarios involve exposure to complex mixtures of pollutants that synergistically aggravate the health of miners and people living near the site. Although mercury is the predominant pollutant, there are others such as polycyclic aromatic hydrocarbons (PAHs), toluene, arsenic, and lead which have been classified as nephrotoxic pollutants. Therefore, the purpose of this research was to evaluate the association between exposure to a complex mixture of pollutants (mercury, lead, arsenic, PAHs, and toluene) and kidney damage in artisanal Hg mining workers through early kidney damage proteins (KIM-1, OPN, RBP-4, NGAL, and Cys-C). The results demonstrate the presence of OH-PAHs at concentrations of 9.21 (6.57-80.63) μg/L, hippuric acid as a biomarker of exposure to toluene, As and Pb (655. 1 (203.8-1231) mg/L, 24.05 (1.24-42.98) g/g creatinine, and 4.74 (2.71-8.14) g/dL, respectively), and urinary Hg (503.4 (177.9-878.7) g/g creatinine) in the study population. As well as biomarkers of kidney damage, NGAL and RPB-4 were found in 100% of the samples, KIM-1 and Cys-C in 44.1%, and OPN in 41% of the miners. Significant correlations were found between several of the evaluated pollutants and early kidney damage proteins. Our results demonstrate the application of the early kidney damage biomarkers for the assessment of damage caused by the exposure to mixtures of pollutants and, therefore, the urgent need for monitoring in AMM areas.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Manolo Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico, Mexico
| | - Arturo Gavilán-García
- National Institute of Ecology and Climate Change, SEMARNAT, Blvd. Adolfo Ruíz Cortines 4209, Jardines en la Montaña, Ciudad de Mexico, Mexico
| | - Olivier C Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico, Mexico
| | - Leticia Carrizalez-Yáñez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Evelyn Van-Brusel
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
15
|
Cai J, Li Y, Liu S, Liu Q, Zhang J, Wei Y, Mo X, Lin Y, Tang X, Mai T, Mo C, Luo T, Huang S, Lu H, Zhang Z, Qin J. Associations between multiple heavy metals exposure and glycated hemoglobin in a Chinese population. CHEMOSPHERE 2022; 287:132159. [PMID: 34509013 DOI: 10.1016/j.chemosphere.2021.132159] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Heavy metals may play an important role as environmental risk factors in diabetes mellitus. This study aimed to explore the association of HbA1c with As, Cd, Cu, Ni, Pb, and Zn in single-metal exposure and multi-metal co-exposure models. METHODS A cross-sectional study involving 3472 participants was conducted. Plasma concentrations of heavy metals were determined by inductively coupled plasma mass spectrometry. We estimated the association of each metal with HbA1c by linear regression. Potential heterogeneities by sex, age, and smoking were investigated, and metal mixtures and interactions were assessed by the Bayesian kernel machine regression (BKMR). RESULTS In linear regression, Cu (β = 0.324, p < 0.05) and Ni (β = -0.19, p < 0.05) showed significant association with HbA1c in all participants. In BKMR analyses, all exposure-response relationships were approximately linear. Cu was significantly and positively associated with HbA1c levels in overall participants, women, participants aged 60 years old and above, and nonsmokers. Ni was significantly and negatively associated with HbA1c levels in overall participants. We did not observe the overall effect of plasma metal mixtures on HbA1c or the interaction effect of the metals on HbA1c. CONCLUSION Cu was positively correlated with HbA1c, whereas Ni was negatively correlated with HbA1c, when evaluated individually or in a metal mixture. Additional studies are necessary to confirm these correlations and to control for exposure to different metals in the general population.
Collapse
Affiliation(s)
- Jiansheng Cai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China; Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China
| | - You Li
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, PR China
| | - Shuzhen Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China
| | - Qiumei Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China
| | - Junling Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China
| | - Yanfei Wei
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China
| | - Xiaoting Mo
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China
| | - Yinxia Lin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China
| | - Xu Tang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China
| | - Tingyu Mai
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, PR China
| | - Chunbao Mo
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, PR China
| | - Tingyu Luo
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, PR China
| | - Shenxiang Huang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China
| | - Huaxiang Lu
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China
| | - Zhiyong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China; Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, PR China.
| | - Jian Qin
- Department of Environmental and Occupational Health, School of Public Health, Guangxi Medical University, Shuangyong Road No.22, Nanning, 530021, Guangxi province, PR China.
| |
Collapse
|
16
|
Tsai KF, Hsu PC, Lee CT, Kung CT, Chang YC, Fu LM, Ou YC, Lan KC, Yen TH, Lee WC. Association between Enzyme-Linked Immunosorbent Assay-Measured Kidney Injury Markers and Urinary Cadmium Levels in Chronic Kidney Disease. J Clin Med 2021; 11:156. [PMID: 35011897 PMCID: PMC8745586 DOI: 10.3390/jcm11010156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Cadmium exposure is associated with chronic kidney disease (CKD), but the optimal biomarker for early cadmium-associated nephrotoxicity in low-level exposure has not yet been established. We conducted a cross-sectional investigation involving 167 CKD patients stratified according to tertiles of urinary cadmium levels (UCd), in which enzyme-linked immunosorbent assay (ELISA)-measured novel renal biomarkers were utilized to assess the extent of renal injury associated with cadmium burden. In the analyses, urinary kidney injury molecule-1 (KIM-1) levels and age were the independent factors positively correlated with UCd after adjusting for covariates in non-dialysis-dependent CKD patients (high vs. low UCd, odds ratio (95% confidence interval), 1.0016 (1.0001-1.0032), p = 0.043, and 1.0534 (1.0091-1.0997), p = 0.018). Other conventional and novel renal biomarkers, such as serum creatinine, estimated glomerular filtration rate, CKD staging, urinary protein/creatinine ratio, urinary 8-hydroxy-2-deoxyguanosine (8-OHdG), and urinary epidermal growth factor (EGF) were not independently correlated with UCd in the analyses. In conclusion, our study found that the ELISA-measured urinary KIM-1 level could serve as an early renal injury marker in low-level cadmium exposure for non-dialysis-dependent CKD patients. In addition, age was an independent factor positively associated with UCd in this population.
Collapse
Affiliation(s)
- Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (P.-C.H.); (C.-T.L.)
| | - Pai-Chin Hsu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (P.-C.H.); (C.-T.L.)
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (P.-C.H.); (C.-T.L.)
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Yi-Chin Chang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.O.); (K.-C.L.)
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-C.O.); (K.-C.L.)
| | - Tzung-Hai Yen
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (P.-C.H.); (C.-T.L.)
| |
Collapse
|
17
|
Association of plasma lead, cadmium and selenium levels with hearing loss in adults: National Health and Nutrition Examination Survey (NHANES) 2011-2012. Br J Nutr 2021; 128:1100-1107. [PMID: 34713792 DOI: 10.1017/s0007114521004335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To determine the association between hearing loss and environmental Pb, Cd and Se exposure, a total of 1503 American adults from National Health and Nutrition Examination Survey (NHANES) (2011-2012) were assessed. The average of four audiometric frequencies (0·5, 1, 2 and 4 kHz) was used to identify speech-frequency hearing loss (SFHL), while the average of 3 audiometric frequencies (3, 4 and 6 kHz) was used to identify high-frequency hearing loss (HFHL). HFHL adjusted OR determined by comparing the highest and lowest blood Pb and Cd quartiles were 1·98 (95 % CI: 1·27, 3·10) and 1·81 (95 % CI: 1·13, 2·90), respectively. SFHL was significantly associated with blood Cd with the OR = 2·42 for the highest quartile. When further stratified by age, this association appeared to be limited to adults aged 35-52 years. After stratified by gender, except for Pb and Cd, we observed that blood Se showed a dose-dependent association with SFHL in men. In women, only Cd showed a dose-dependent association with speech and high-frequency hearing loss. Hearing loss was positively associated with blood levels of Pb and Cd. Additionally, our study provided novel evidence suggesting that excessive Se supplement would increase SFHL risk in men.
Collapse
|
18
|
He P, Yang C, He D, Zhao S, Xie Y, Wang H, Ma J. Blood Lead, Systemic Inflammation, and Blood Pressure: Exploring Associations and Mediation Effects in Workers Exposed to Lead. Biol Trace Elem Res 2021; 199:2573-2581. [PMID: 32959337 DOI: 10.1007/s12011-020-02397-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Relationships of lead exposure with blood pressure and blood lead with inflammation have been previously established yet, but the conclusions are still controversial. The objective of our study was to investigate the role of systemic inflammation in the relationships between blood lead concentration and blood pressure. We quantified the levels of blood lead and white blood cell count in 505 lead-exposed workers with 842 observations. Associations between blood lead, white blood cell count, and blood pressure were evaluated by using linear mixed models. We further performed mediation analysis to investigate the role of white blood cell count in the associations between blood lead concentration and blood pressure. We observed that each 1% increase of blood lead levels was significantly positively associated with a 0.9%, 1.7%, and 1.1% increases in systolic blood pressure, white blood cell count, and blood platelet count, respectively. Also, we found that the levels of white blood cell count were positively correlated with diastolic blood pressure and systolic blood pressure in a dose-response manner. Mediation analysis showed that the levels of white blood cell significantly mediated the associations between concentration of blood lead and systolic blood pressure. Collectively, our findings suggest that blood lead was positively associated with systolic blood pressure and that systemic inflammation might play a key role in this association.
Collapse
Affiliation(s)
- Ping He
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830091, China
| | - Chengxin Yang
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830091, China
| | - Dongkui He
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830091, China
| | - Shiyu Zhao
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830091, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Haijiao Wang
- National Center of Occupational Safety and Health, National Health Commission, Beijing, 102300, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
19
|
Wang X, Karvonen-Gutierrez CA, Mukherjee B, Herman WH, Park SK. Urinary metals and adipokines in midlife women: The Study of Women's Health Across the nation (SWAN). ENVIRONMENTAL RESEARCH 2021; 196:110426. [PMID: 33157106 PMCID: PMC8093324 DOI: 10.1016/j.envres.2020.110426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Information on the associations between metal exposures and adipokines in human populations is limited and results are inconsistent. We evaluated the associations between metals and adipokines. METHODS Urinary concentrations of 15 metals (arsenic, barium, cadmium, cobalt, cesium, copper, mercury, manganese, molybdenum, nickel, lead, antimony, tin, thallium, and zinc) were measured in 1999-2000 among 1228 women of the Study of Women's Health Across the Nation Multi-Pollutant Study. Serum adipokines including high molecular weight (HMW)-adiponectin, leptin, and soluble leptin receptor (sOB-R) were measured at the follow-up visit (2002-2003). Linear regression models with adaptive elastic-net (AENET) were fit to identify metals associated with adipokines and to compute estimated percent changes in adipokines for one standard deviation increase in log-transformed urinary metal concentrations. RESULTS After adjustment for confounders, urinary molybdenum was associated with a 5.54% higher level (95% CI: 1.36%, 9.90%), whereas cadmium was associated with a 4.53% lower level (95% CI: -8.17%, -0.76%) of HMW-adiponectin. Urinary molybdenum was also associated with a 5.95% lower leptin level (95% CI: -10.15%, -1.56%) and a 2.98% (95% CI: 0.69%, 5.32%) higher sOB-R level. Urinary cesium and lead were associated with a 3.58% (95% CI: -6.06%, -1.03%) and a 2.53% (95% CI: -4.80%, -0.21%) lower level of sOB-R, respectively. CONCLUSIONS Our findings suggest that molybdenum was associated with favorable profiles of HMW-adiponectin, leptin, and sOB-R. Exposures to cadmium, cesium, and lead were associated with adverse adipokine profiles.
Collapse
Affiliation(s)
- Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - William H Herman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Flores-Ramírez R, Ortega-Romero M, Christophe-Barbier O, Meléndez-Marmolejo JG, Rodriguez-Aguilar M, Lee-Rangel HA, Díaz de León-Martínez L. Exposure to polycyclic aromatic hydrocarbon mixtures and early kidney damage in Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23060-23072. [PMID: 33432415 DOI: 10.1007/s11356-021-12388-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The traditions and habits of indigenous communities in México include the use of wood and biomass burning to cook their food, which generates large amounts of smoke and therefore pollution inside the households. This smoke is composed of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) which at high levels of exposure cause carcinogenic, genotoxic effects and some chronic pulmonary and cardiovascular diseases; however, few studies relate kidney health with exposure to PAHs. Thus, the aim of this study was the evaluation of 10 hydroxylated metabolites of PAHs (OH-PAHs), and their correlation with biomarkers of early kidney damage renal (cystatin-C (Cys-C)), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL) in the indigenous population of the Huasteca Potosina in Mexico. The results demonstrate the presence of the OH-PAHs and kidney damage biomarkers in 100% of the study population. The OH-PAHs were shown in the following order of frequency, 1-OH-PYR > 4-OH-PHE > 2-OH-NAP > 1-OH-NAP > 9-OH-FLU > 3-OH-FLU > 2-OH-FLU > 3-OH-PHE and with the following percentages of detection 97.6, 87.8, 78, 73.2, 68.3, 31.7, 14.6, and 12.2%, respectively. NGAL and RBP-4 were present in above 85% of the population, with mean concentrations of 78.5 ± 143.9 and 139.4 ± 131.7 ng/g creatinine, respectively, OPN (64%) with a mean concentration of 642.6 ± 723.3 ng/g g creatinine, and Cys-C with a mean concentration of 33.72 ± 44.96 ng/g creatinine. Correlations were found between 1-OH-NAP, 2-OH-NAP, 9-OH-FLU, and 4-OH-PHE and the four biomarkers of early kidney damage. 3-OH-FLU with OPN and 1-OH-PYR correlated significantly with NGAL, OPN, and RPB-4.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Manolo Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Olivier Christophe-Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Jessica Guadalupe Meléndez-Marmolejo
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | | | - Héctor A Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Universidad Autonoma de San Luis Potosí, km. 14.5 Carr. San Luis Potosí-Matehuala, 78321, San Luis Potosí, SLP, Mexico
| | - Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
21
|
Hoffman JF, Vergara VB, Fan AX, Kalinich JF. Effect of embedded metal fragments on urinary metal levels and kidney biomarkers in the Sprague-Dawley rat. Toxicol Rep 2021; 8:463-480. [PMID: 33717999 PMCID: PMC7933717 DOI: 10.1016/j.toxrep.2021.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Wounds with embedded metal fragments are an unfortunate consequence of armed conflicts. In many cases the exact identity of the metal(s) and their long-term health effects, especially on the kidney, are not known. AIM OF STUDY The aim of this study was to quantitate the urinary levels of metals solubilized from surgically implanted metal pellets and to assess the effect of these metals on the kidney using a battery of biomarker assays. MATERIALS AND METHODS Using a rodent model system developed in our Institute to simulate embedded fragment injuries, eight metals considered likely components of an embedded fragment wound were individually implanted into the gastrocnemius muscle of male Sprague-Dawley rats. The rats were followed for 12 months post-implantation with urine collected prior to surgery then at 1-, 3-, 6-, 9-, and 12-months post-implantation to provide a within-subjects cohort for examination. Urinary metal levels were determined using inductively coupled plasma-mass spectrometry and urinary biomarkers assessed using commercially available kits to determine metal-induced kidney effects. RESULTS With few exceptions, most of the implanted metals rapidly solubilized and were found in the urine at significantly higher levels than in control animals as early as 1-month post-implantation. Surprisingly, many of the biomarkers measured were decreased compared to control at 1-month post-implantation before returning to normal at the later time points. However, two metals, iron and depleted uranium, showed increased levels of several markers at later time points, yet these levels also returned to normal as time progressed. CONCLUSION This study showed that metal pellets surgically implanted into the leg muscle of Sprague-Dawley rats rapidly solubilized with significant levels of the implanted metal found in the urine. Although kidney biomarker results were inconsistent, the changes observed along with the relatively low amounts of metal implanted, suggest that metal-induced renal effects need to be considered when caring for individuals with embedded metal fragment wounds.
Collapse
Key Words
- AAALAC-I, Association for Assessment and Accreditation of Laboratory Animal Care International
- AFRRI, Armed Forces Radiobiology Research Institute
- ALB, Albumin
- ALP, Alkaline phosphatase
- Al, Aluminum
- B2m, Beta-2-microglobulin
- Biomarker
- Co, Cobalt
- Cu, Copper
- DU, Depleted uranium
- DoD, Department of Defense
- Embedded metals
- Fe, Iron
- IACUC, Institutional Animal Care and Use Committee
- ICP-MS, Inductively coupled plasma-mass spectroscopy
- IL-18, Interleukin-18
- KIM-1, Kidney injury molecule-1
- Kidney
- LoD, Limit of detection
- LoQ, Limit of quantitation
- NAG, N-acetyl-beta-d-glucosaminidase
- NGAL, Neutrophil gelatinase-associated lipocalin
- Ni, Nickel
- OPN, Osteopontin
- Pb, Lead
- RBP, Retinal binding protein
- Rat
- Ta, Tantalum
- Urine
- W, Tungsten
Collapse
Affiliation(s)
- Jessica F. Hoffman
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Vernieda B. Vergara
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Anya X. Fan
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - John F. Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
22
|
Díaz de León-Martínez L, Ortega-Romero M, Grimaldo-Galeana JM, Barbier O, Vargas-Berrones K, García-Arreola ME, Rodriguez-Aguilar M, Flores-Ramírez R. Assessment of kidney health and exposure to mixture pollutants in the Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34557-34566. [PMID: 32557022 DOI: 10.1007/s11356-020-09619-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 05/18/2023]
Abstract
The indigenous population is one of the most vulnerable to suffer from contaminated environments. One of the target organs to suffer early deterioration from exposure to toxins is the kidney. The objective of this article was to evaluate biomarkers of exposure to organic and inorganic toxins and biomarkers of early kidney damage in urine from an indigenous Tenek population in Mexico. The biomarkers of exposure were Li, Be, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Sn, Ba, and Pb evaluated by ICP-MS and hippuric acid for toluene exposure evaluated by UV-coupled with liquid chromatography; the biomarkers of kidney damage were cystatin C (Cys-C), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL). Thirty-one urine samples were obtained from indigenous people; 16, 42, 45.1, and 45.2% of the population exceeded the reference values for Pb, Zn, As, and hippuric acid respectively. Our results demonstrate significant correlations between the metals tested and the proteins associated with renal damage; Cys-C, OPN, and RPB4 showed a significant correlation with Li, B, and Mo, as well as hippuric acid in the case of Cys-C and Zn in OPN and RPB-4; NGAL did not present significant correlations with any of the pollutants of the study. This pilot study contributes to the evidence of great inequity in health associated to environmental pollution matters faced by indigenous people and addresses the need of initiatives for mitigation under the perspective that health is a fundamental human right.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Manolo Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, México
| | - José Moisés Grimaldo-Galeana
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, México
| | - Karla Vargas-Berrones
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - María Elena García-Arreola
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Maribel Rodriguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México.
| |
Collapse
|
23
|
Pukanha K, Yimthiang S, Kwanhian W. The Immunotoxicity of Chronic Exposure to High Levels of Lead: An Ex Vivo Investigation. TOXICS 2020; 8:toxics8030056. [PMID: 32823721 PMCID: PMC7560427 DOI: 10.3390/toxics8030056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 01/12/2023]
Abstract
Lead (Pb) is a toxic metal known for its wide-ranging adverse health effects. However, a compound of Pb is still used in the caulking process to repair wooden fishing boats. The present study aimed to measure Pb exposure and its immunologic effects in boatyard workers in Nakhon Si Thammarat province, Thailand, in comparison with an age-matched control group of farmers. The age, body mass index, and smoking history in workers (n = 14) and controls (n = 16) did not differ. The median blood Pb concentration was 8.7-fold higher in workers than controls (37.1 versus 4.3 µg/dL, p < 0.001). Workers had 8.4% lower phagocytic active cells than controls (89.9% versus 98.1%, p = 0.019). In response to a mitogen stimulation, the peripheral blood mononuclear cells (PBMCs) from workers produced 2-fold higher ratios of interleukin-4 (IL-4) to interferon-γ than the PBMCs from controls (p = 0.026). Furthermore, Pb-exposed workers had 33.9% lower cytotoxic T (Tc) cells than controls (24.3% versus 36.8%, p = 0.004). In stark contrast, the percentage of regulatory T (Treg) cells in workers was 2.7-fold higher than controls (6.1% versus 2.3%, p < 0.001). In all subjects, blood Pb showed positive correlations with the percentages of Treg cells (r = 0.843, p < 0.001) and IL-4 (r = 0.473, p = 0.041) while showing an inverse correlation with the percentages of Tc cells (r = −0.563, p = 0.015). These findings indicate that chronic high Pb exposure may cause a shift towards humoral immune response, together with a suppression of cellular immunity, thereby suggesting an elevation in cancer risk in Pb-exposed workers.
Collapse
Affiliation(s)
- Kawinsaya Pukanha
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand;
| | - Supabhorn Yimthiang
- School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Wiyada Kwanhian
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand;
- Correspondence:
| |
Collapse
|
24
|
Pittman EH, D'Souza N, Mathis TN, Joshee L, Barkin JL, Bridges CC. Sex differences in renal handling of inorganic mercury in aged rats. Curr Res Toxicol 2020; 1:1-4. [PMID: 34345831 PMCID: PMC8320637 DOI: 10.1016/j.crtox.2020.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
The sex of an individual/animal has been shown to play an important role in many biological processes. Furthermore, sex may also be a factor in the way environmental toxicants, such as heavy metals, are handled by organisms. However, the effect of sex on the handling and disposition of heavy metals, such as mercury (Hg), has not been shown. Aging has also been shown to be a factor in the accumulation of heavy metals in that older individuals tend to have higher burdens of these metals. Therefore, the purpose of the current study was to evaluate the effect of sex on the accumulation of mercury in aged animals. Aged male and female rats were injected intravenously with 0.5 μmol or 2.0 μmol·kg−1 HgCl2 (containing radioactive Hg) and organs were harvested after 24 h. In general, the renal accumulation of Hg was significantly greater in males than in females. Similarly, urinary excretion of Hg was greater in males than in females. There were no significant differences between males and females in the burden of Hg in other organs. Sex differences in the renal accumulation of Hg may be related to differences in the expression of membrane transporters involved in the uptake of mercuric species into tubular epithelial cells. The results of the current study illustrate the need to evaluate both sexes when assessing the renal effects of environmental toxicants. Renal accumulation of mercury is greater in aged male rats than aged female rats. Mercury accumulation differed among zones of the kidney. Sex did not appear to alter accumulation of mercury in other organs studied.
Collapse
Affiliation(s)
- Elizabeth H Pittman
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Nigel D'Souza
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Taylor N Mathis
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lucy Joshee
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jennifer L Barkin
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA, USA
| | - Christy C Bridges
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
25
|
Xiao L, Zhou Y, Ma J, Cao L, Zhu C, Li W, Wang D, Fan L, Ye Z, Chen W. Roles of C-reactive protein on the association between urinary cadmium and type 2 diabetes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113341. [PMID: 31610512 DOI: 10.1016/j.envpol.2019.113341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that is widely distributed in the environment. However, the mechanisms linking Cd exposure and type 2 diabetes risks are not completely elucidated. In this study, we aim to investigate the roles of C-reactive protein (CRP) on the association between urinary Cd and type 2 diabetes risk. We determined urinary Cd and plasma CRP concentrations among 3,140 adults from Wuhan-Zhuhai cohort. Dose-response relationships between urinary Cd, plasma CRP, and type 2 diabetes were explored using multivariate logistic regression and linear mixed regression models. Mediation analysis was performed to investigate the role of plasma CRP in the associations between urinary Cd and type 2 diabetes risk. With adjustment for potential confounders, the odds ratios (ORs) of type 2 diabetes showed an upward trend when urinary Cd concentration gradually increased (P trend <0.01). Significantly positive dose-response relationships were observed between urinary Cd and plasma CRP, as well as between plasma CRP and type 2 diabetes risk. Compared to those when both Cd and CRP levels were low, the adjusted ORs (95%CI) of type 2 diabetes was the highest [2.053(1.395-3.020)] in individuals with high levels of urinary Cd and plasma CRP. Mediation analysis estimated that plasma CRP mediated 4.01% of the association between urinary Cd and type 2 diabetes risk [mediating effect: OR (95%CI) = 1.019(1.002-1.057)]. Individuals with high levels of urinary Cd and plasma CRP had a much higher risk of type 2 diabetes. Plasma CRP may serve as a mediator in the association between urinary Cd and type 2 diabetes risk, providing clues for further study on the biological pathway for type 2 diabetes related to Cd exposure.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
26
|
Hasan MN, Sabrin F, Rokeya B, Khan MSH, Ahmed MU, Matondo A, Billah MM, Akter S. Glucose and lipid lowering effects of Enhydra fluctuans extract in cadmium treated normal and type-2 diabetic model rats. Altern Ther Health Med 2019; 19:278. [PMID: 31640743 PMCID: PMC6805336 DOI: 10.1186/s12906-019-2667-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/30/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent epidemiological and experimental studies suggest that cadmium and diabetes-related hyperglycemia may act synergistically to worsen metabolic regulation. The present study aims to evaluate the potential effects of Enhydra fluctuans extract in diabetes and dyslipidemia in cadmium (CdCl2) induced- normal and type 2 diabetic model rats. METHOD Forty-eight Long-Evans rats were divided equally into the following six groups: Normal Control (N-C), Normal treated with CdCl2 (N-Cd), Normal treated with plant extract (N-P), Normal treated with both plant extract and CdCl2 (N-PCd), Diabetic treated with plant extract (DM-P) and Diabetic treated with both plant extract and CdCl2 (DM-PCd). Blood glucose and other biochemical parameters were estimated by the enzymatic colorimetric method. Histological analysis of liver and heart was done by the hematoxylin-eosin (H & E) method. RESULTS Twenty-one days treatment of E. fluctuans extracts at a dose of 200 mg/kg significantly reduced blood glucose level in N-PCd and DM-PCd (p < 0.05), and DM-P (p < 0.01) group. The plant extract had no direct effects on total blood lipids but, it had beneficial effects on TG/HDL-C ratio in N-P and DM-PCd groups (p < 0.05). Cd induction significantly reduced body weight [(N-Cd, N-PCd, DM-PCd) (p < 0.01)], and induced liver [N-Cd (p < 0.05), N-PCd, p < 0.001] and renal impairment [N-Cd (p < 0.05)]. In bi-variate association, a significant positive correlation between serum glucose and SGPT (p < 0.05) as well as SGPT and TG/HDL ratio (p = 0.019) was found in DM-P and in the merged group. The histology of liver and heart showed severe damages including inflammation, nuclear pyknosis, loss of myocardial fibers, necrosis and fibrosis in the Cd treated groups compared to plant treated groups. CONCLUSION E. fluctuans seems to have potent antihyperglycemic effects in diabetes and Cd toxicity along with partial antidyslipidemic properties in euglycemic and diabetic rats. Our study suggests a novel oral antihyperglycemic agent in the present environmental context.
Collapse
|