1
|
Nyquist NF, Burri L, Jensen RB. Effect of dietary krill oil supplementation on horse red blood cell membrane fatty acid composition and blood parameters. J Anim Physiol Anim Nutr (Berl) 2023; 107:1251-1261. [PMID: 37144326 DOI: 10.1111/jpn.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Supplementation with marine-derived n-3 long-chain polyunsaturated fatty acids (LC PUFAs), eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) is linked to beneficial health effects in both humans and horses. Krill oil (KO), which is extracted from the Antarctic krill (Euphausia superba), is well documented as a safe and biologically available dietary supplement in humans and several animal species, but there is a lack of documentation regarding its effect as a dietary ingredient for horses. The objective of this study was to test whether KO as a dietary supplement had the ability to raise horse red blood cell (RBC) membrane EPA and DHA, expressed as the n-3 index. Five nonworking Norwegian cold-blooded trotter horse geldings (body weight [BW]: 567 ± 38 kg) were supplemented with KO (10 mL/100 kg BW) for 35 days in a longitudinal study. Blood samples were analysed for RBC membrane fatty acid (FA) profile, haematology and serum biochemistry every 7th day. KO was well accepted by all horses, and no adverse health effects were observed during the 35-day trial period. KO supplementation affected the RBC membrane FA profile by increasing the n-3 index from Day 0 to 35 (Day 0: 0.53% vs. Day 35: 4.05% of total RBC FAs). The observed increase in the sum of EPA and DHA (p < 0.001), total n-3 FAs (p < 0.001) and the reduction of n-6 FAs (p < 0.044) resulted in a lower n-6:n-3 ratio (p < 0.001) by Day 35 of KO supplementation. In conclusion, the RBC n-3 index was increased and the general n-6:n-3 ratio was decreased in horses receiving 35-day dietary KO supplementation.
Collapse
Affiliation(s)
- Nicole Frost Nyquist
- Department of Paraclinical Sciences, Faculty of Veterinary Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lena Burri
- Aker BioMarine Antarctic AS, Lysaker, Norway
| | - Rasmus Bovbjerg Jensen
- Department of Animal and Aquacultural Sciences, Faculty of Bioscience, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Hill WS, Dohnalek MH, Ha Y, Kim SJ, Jung JC, Kang SB. A Multicenter, Randomized, Double-Blinded, Placebo-Controlled Clinical Trial to Evaluate the Efficacy and Safety of a Krill Oil, Astaxanthin, and Oral Hyaluronic Acid Complex on Joint Health in People with Mild Osteoarthritis. Nutrients 2023; 15:3769. [PMID: 37686801 PMCID: PMC10490060 DOI: 10.3390/nu15173769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis is a significant global health problem. Many patients seek more effective alternatives to nonsteroidal anti-inflammatory medicines or commercial supplements to manage joint pain and inflammation. FlexPro MD® (FP-MD) combines krill oil, astaxanthin, and lower molecular weight hyaluronic acid to support joint health. A 12-week, randomized, double-blind, placebo-controlled trial compared the efficacy and safety of FP-MD and placebo once daily in participants (n = 100) with mild osteoarthritis of the knee or hip joint. For the primary endpoint of joint pain score, per-protocol participants (n = 75) in the FP-MD group (n = 37) had a statistically significantly greater mean reduction from baseline in the Korean Visual Analog Scale (K-VAS) at week 12 compared with participants in the placebo group (n = 38) (20.8 ± 16.16 mm vs. 10.6 ± 17.58, p = 0.0105). The Korean Western Ontario and McMaster Universities Osteoarthritis Index (K-WOMAC) total score was also significantly improved in the FP-MD group at week 12 compared with placebo (-13.0 ± 13.62 vs. -5.5 ± 18.08, p = 0.0489), especially an improvement in pain score (-2.5 ± 2.92 vs. -1.3 ± 3.94, p = 0.02635). FP-MD group had greater improvement in joint function scoring by investigator assessment (p = 0.0127) and by group participants (p = 0.0070). A statistically significantly greater number of patients reported adverse events in the placebo group compared with the FP-MD group (16% vs. 4%, p = 0.0455), most commonly gastrointestinal disorders in both of the groups. These findings suggest that FP-MD is well tolerated and can be effectively used to address joint pain in patients diagnosed with mild osteoarthritis, the main symptom of this condition.
Collapse
Affiliation(s)
- W. Stephen Hill
- US Nutraceuticals, Inc. d/b/a Valensa International, Eustis, FL 32726, USA; (W.S.H.); (M.H.D.)
| | - Margaret H. Dohnalek
- US Nutraceuticals, Inc. d/b/a Valensa International, Eustis, FL 32726, USA; (W.S.H.); (M.H.D.)
| | - Yejin Ha
- NOVAREX Co., Ltd., 80, Osongsaengmyeong 14-ro, Osong-eup, Chueongju-si 28220, Republic of Korea;
| | - Seok-Jung Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Cheonbo-ro, Uijeongbu-si 11765, Republic of Korea;
| | - Jae-Chul Jung
- NOVAREX Co., Ltd., 80, Osongsaengmyeong 14-ro, Osong-eup, Chueongju-si 28220, Republic of Korea;
| | - Seung-Baik Kang
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Boramae Hospital, Seoul 07061, Republic of Korea
| |
Collapse
|
3
|
Kim H, Roh Y, Yong Park S, Lee C, Lim S, Cho S, Lee HY, Auck Hong S, Jin Lee T, Chul Myung S, Yun SJ, Hyun Choi Y, Kim WJ, Moon SK. In vitro and in vivo anti-tumor efficacy of krill oil against bladder cancer: Involvement of tumor-associated angiogenic vasculature. Food Res Int 2022; 156:111144. [DOI: 10.1016/j.foodres.2022.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
|
4
|
Ogino M, Nakazawa A, Shiokawa KI, Kikuchi H, Sato H, Onoue S. Krill oil-based self-emulsifying drug delivery system to improve oral absorption and renoprotective function of ginger extract. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2021.100285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Jayathilake AG, Kadife E, Kuol N, Luwor RB, Nurgali K, Su XQ. Krill oil supplementation reduces the growth of CT-26 orthotopic tumours in Balb/c mice. BMC Complement Med Ther 2022; 22:34. [PMID: 35120511 PMCID: PMC8817584 DOI: 10.1186/s12906-022-03521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/25/2022] [Indexed: 12/09/2022] Open
Abstract
Background We have previously reported that the free fatty acid extract (FFAE) of krill oil (KO) significantly inhibits the proliferation and migration, and induces apoptosis of colorectal cancer (CRC) cells. This study aimed to investigate the in vivo efficacy of various doses of KO supplementation on the inhibition of CRC tumour growth, molecular markers of proliferation, angiogenesis, apoptosis, the epidermal growth factor receptor (EGFR) and its downstream molecular signalling. Methods Male Balb/c mice were randomly divided into four groups with five in each group. The control (untreated) group received standard chow diet; and other three groups received KO supplementation at 5%, 10%, and 15% of their daily dietary intake respectively for three weeks before and after the orthotopic implantation of CT-26 CRC cells in their caecum. The expression of cell proliferation marker Ki-67 and angiogenesis marker CD-31 were assessed by immunohistochemistry. The expression of EGFR, phosphorylated EGFR (pEGFR), protein kinase B (AKT), pAKT, extracellular signal-regulated kinase (ERK1/2), pERK1/2, cleaved caspase-7, cleaved poly (ADP-ribose) polymerase (PARP), and DNA/RNA damage were determined by western blot. Results KO supplementation reduced the CRC tumour growth in a dose-dependent manner; with 15% of KO being the most effective in reduction of tumour weight and volume (68.5% and 68.3% respectively, P < 0.001), inhibition of cell proliferation by 69.9% (P < 0.001) and microvessel density by 72.7% (P < 0.001). The suppressive effects of KO on EGFR and its downstream signalling, ERK1/2 and AKT, were consistent with our previous in vitro observations. Furthermore, KO exhibited pro-apoptotic effects on tumour cells as indicated by an increase in the expression of cleaved PARP by 3.9-fold and caspase-7 by 8.9-fold. Conclusions This study has demonstrated that KO supplementation reduces CRC tumour growth by inhibiting cancer cell proliferation and blood vessel formation and inducing apoptosis of tumour cells. These anti-cancer effects are associated with the downregulation of the EGFR signalling pathway and activation of caspase-7, PARP cleavage, and DNA/RNA damage. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03521-4.
Collapse
Affiliation(s)
| | - Elif Kadife
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia
| | - Nyanbol Kuol
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia
| | - Rodney Brain Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia.,Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Sciences (AIMSS), Melbourne, Australia
| | - Xiao Qun Su
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia.
| |
Collapse
|
6
|
Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications. Mar Drugs 2021; 19:md19060306. [PMID: 34073184 PMCID: PMC8226823 DOI: 10.3390/md19060306] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Euphausia superba, commonly known as krill, is a small marine crustacean from the Antarctic Ocean that plays an important role in the marine ecosystem, serving as feed for most fish. It is a known source of highly bioavailable omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In preclinical studies, krill oil showed metabolic, anti-inflammatory, neuroprotective and chemo preventive effects, while in clinical trials it showed significant metabolic, vascular and ergogenic actions. Solvent extraction is the most conventional method to obtain krill oil. However, different solvents must be used to extract all lipids from krill because of the diversity of the polarities of the lipid compounds in the biomass. This review aims to provide an overview of the chemical composition, bioavailability and bioaccessibility of krill oil, as well as the mechanisms of action, classic and non-conventional extraction techniques, health benefits and current applications of this marine crustacean.
Collapse
|
7
|
Zhang N, Jin L, Liu C, Zhang R, Siebert HC, Li Y, Loers G, Petridis AK, Xia Z, Dong H, Zheng X. An antarctic krill oil-based diet elicits neuroprotective effects by inhibiting oxidative stress and rebalancing the M1/M2 microglia phenotype in a cuprizone model for demyelination. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
8
|
Single and Repeated Dose 28-Day and 13-Week Toxicity Studies of Oil Prepared from the Internal Organs of the Japanese Giant Scallop ( Patinopecten yessoensis) in Mice. Foods 2020; 9:foods9060691. [PMID: 32471117 PMCID: PMC7353646 DOI: 10.3390/foods9060691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 11/23/2022] Open
Abstract
Internal organs of discarded scallops are rich in omega-3 polyunsaturated fatty acids, but it is not used as a food ingredient due to the presence of toxic substances. Recently, our research team prepared high-quality scallop oil (SCO) from the internal organs of the Japanese giant scallop (Patinopecten yessoensis), in which cadmium and diarrhetic shellfish toxin are below regulated levels. In this study, SCO was prepared from the internal organs of scallops obtained from Mutsu and Uchiura bays in Japan, and was referred to as SCO-M (scallop oil from Mutsu bay) and SCO-U (scallop oil from Uchiura bay), respectively. Acute and subacute toxicity studies were performed to assess the safety of the prepared SCO. In acute toxicity study, mice were orally administered SCO-M and SCO-U at a single dose of 5,000 mg/kg body weight. In a 28-day repeated oral dose toxicity study, the mice were fed diets containing 1% and 5% SCO-M and SCO-U; and in a 13-week repeated oral dose toxicity study, the mice were fed 5% SCO-M and SCO-U. There were no toxicologically significant changes in clinical signs, hematology, blood chemistry, and organ weights at any dose during the experiment. Therefore, it was concluded that SCO-M and SCO-U are safe for use as food ingredients under the experimental conditions of this study.
Collapse
|
9
|
Ong KJ, Ede JD, Pomeroy-Carter CA, Sayes CM, Mulenos MR, Shatkin JA. A 90-day dietary study with fibrillated cellulose in Sprague-Dawley rats. Toxicol Rep 2020; 7:174-182. [PMID: 32021807 PMCID: PMC6994281 DOI: 10.1016/j.toxrep.2020.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/31/2022] Open
Abstract
Novel forms of fibrillated cellulose offer improved attributes for use in foods. Conventional cellulose and many of its derivatives are already widely used as food additives and are authorized as safe for use in foods in many countries. However, novel forms have not yet been thoroughly investigated using standardized testing methods. This study assesses the 90-day dietary toxicity of fibrillated cellulose, as compared to a conventional cellulose, Solka Floc. Sprague Dawley rats were fed 2 %, 3 %, or 4 % fibrillated cellulose for 90 consecutive days, and parallel Solka Floc groups were used as controls. Survival, clinical observations, body weight, food consumption, ophthalmologic evaluations, hematology, serum chemistry, urinalysis, post-mortem anatomic pathology, and histopathology were monitored and performed. No adverse observations were noted in relation to the administration of fibrillated cellulose. Under the conditions of this study and based on the toxicological endpoints evaluated, the no-observed-adverse-effect level (NOAEL) for fibrillated cellulose was 2194.2 mg/kg/day (males) and 2666.6 mg/kg/day (females), corresponding to the highest dose tested (4 %) for male and female Sprague Dawley rats. These results demonstrate that fibrillated cellulose behaves similarly to conventional cellulose and raises no safety concerns when used as a food ingredient at these concentrations.
Collapse
Key Words
- % RET, percent reticulocyte
- 90-day subchronic study
- ABAS, absolute basophil
- AEOS, absolute eosinophil
- ALB, albumin
- ALKP, alkaline phosphatase
- ALT, alanine aminotransferase
- ALUC, absolute large unstained cell
- ALYM, absolute lymphocyte
- AMON, absolute monocyte
- ANEU, absolute neutrophil
- ANOVA, one-way analysis of variance
- ARET, absolute reticulocyte
- AST, aspartate aminotransferase
- BUN, urea nitrogen
- CAS, Chemical Abstracts Service
- CHOL, cholesterol
- CREAT, creatinine
- Cellulose
- DLS, dynamic light scattering
- EDXS, energy-dispersive X-ray spectroscopy
- EFSA, European Food Safety Authority
- FDA, U.S. Food and Drug Administration
- Fibrillated cellulose
- GLOB, globulin
- GLP, good laboratory practice
- GLU, glucose
- GRAS, generally recognized as safe
- HBG, hemoglobin
- HCT, hematocrit
- MCH, mean corpuscular cell hemoglobin
- MCHC, mean corpuscular cell hemoglobin concentration
- MCV, mean corpuscular cell volume
- NOAEL
- NOAEL, no-observed-adverse-effect level
- OECD 408
- OECD, Organisation for Economic Co-operation and Development
- Oral exposure
- PLT, platelet count
- RBC, red blood cell count
- RDW, red cell distribution width
- SCOGS, Select Committee on GRAS Substances
- SDH, sorbitol dehydrogenase
- SEM, scanning electron microscopy
- TBA, total bile acids
- TBIL, total bilirubin
- TEM, transmission electron microscopy
- TEMPO, 2,2,6,6-tetramethyl-piperidinyloxyl
- TP, total protein
- TRIG, triglycerides
- WBC, white blood cell count
Collapse
Affiliation(s)
| | - James D. Ede
- Vireo Advisors, LLC, Boston, MA 02130-4323, United States
| | | | - Christie M. Sayes
- Baylor University, Department of Environmental Science, One Bear Place #97266, Waco, TX 76798- 7266, United States
| | - Marina R. Mulenos
- Baylor University, Department of Environmental Science, One Bear Place #97266, Waco, TX 76798- 7266, United States
| | | |
Collapse
|
10
|
Krill oil protects PC12 cells against methamphetamine-induced neurotoxicity by inhibiting apoptotic response and oxidative stress. Nutr Res 2018; 58:84-94. [DOI: 10.1016/j.nutres.2018.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/05/2023]
|
11
|
Castro-Gómez P, Garcia-Serrano A, Visioli F, Fontecha J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins Leukot Essent Fatty Acids 2015; 101:41-51. [PMID: 26242691 DOI: 10.1016/j.plefa.2015.07.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/07/2023]
Abstract
Glycerophospholipids and sphingolipids participate in a variety of indispensable metabolic, neurological, and intracellular signaling processes. In this didactic paper we review the biological roles of phospholipids and try to unravel the precise nature of their putative healthful activities. We conclude that the biological actions of phospholipids activities potentially be nutraceutically exploited in the adjunct therapy of widely diffused pathologies such as neurodegeneration or the metabolic syndrome. As phospholipids can be recovered from inexpensive sources such as food processing by-products, ad-hoc investigation is warranted.
Collapse
Affiliation(s)
- P Castro-Gómez
- Department of Bioactivity and Food Analysis, Group of Lipids, Instituto de Investigación en Ciencias de la Alimentación (CIAL CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain
| | - A Garcia-Serrano
- Department of Bioactivity and Food Analysis, Group of Lipids, Instituto de Investigación en Ciencias de la Alimentación (CIAL CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain
| | - F Visioli
- Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| | - J Fontecha
- Department of Bioactivity and Food Analysis, Group of Lipids, Instituto de Investigación en Ciencias de la Alimentación (CIAL CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 9, Madrid 28049, Spain.
| |
Collapse
|
12
|
Burri L, Johnsen L. Krill products: an overview of animal studies. Nutrients 2015; 7:3300-21. [PMID: 25961320 PMCID: PMC4446753 DOI: 10.3390/nu7053300] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022] Open
Abstract
Many animal studies have been performed with krill oil (KO) and this review aims to summarize their findings and give insight into the mechanism of action of KO. Animal models that have been used in studies with KO include obesity, depression, myocardial infarction, chronic low-grade and ulcerative inflammation and are described in detail. Moreover, studies with KO in the form of krill powder (KP) and krill protein concentrate (KPC) as a mix of lipids and proteins are mentioned and compared to the effects of KO. In addition, differences in tissue uptake of the long-chain omega-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), when delivered in either phospholipid or triglyceride form, are addressed and the differential impact the delivery form has on gene expression profiles is explained. In our outlook, we try to highlight the potential of KO and KP supplementation in clinical settings and discuss health segments that have a high potential of showing krill product specific health benefits and warrant further clinical investigations.
Collapse
Affiliation(s)
- Lena Burri
- Aker BioMarine Antarctic AS, Fjordalléen 16, NO-0115 Oslo, Norway.
| | - Line Johnsen
- Aker BioMarine Antarctic AS, Fjordalléen 16, NO-0115 Oslo, Norway.
| |
Collapse
|
13
|
Berge K, Robertson B, Burri L. Safety assessment of Superba™ krill powder: Subchronic toxicity study in rats. Toxicol Rep 2014; 2:144-151. [PMID: 28962346 PMCID: PMC5598319 DOI: 10.1016/j.toxrep.2014.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022] Open
Abstract
The safety of krill powder was assessed in a subchronic 13-week toxicity study where rats were fed krill powder or control diets. The krill powder inclusion in the test diet was 9.67% (w/w). There were no differences noted in body weight or food consumption in either gender. Differences in clinical chemistry values were noted in the krill powder-treated animals, but these findings were of no toxicological significance. A significant decrease in absolute heart weight, but not relative heart weight, was observed in both sexes given krill powder, although no corresponding histological changes were observed. Hepatocyte vacuolation was noted histologically in males fed krill powder. This finding was not associated with other indications of hepatic dysfunction. The no observed adverse effect level (NOAEL) for the conditions of this study was considered to be 9.67% krill powder.
Collapse
Affiliation(s)
- Kjetil Berge
- Aker BioMarine Antarctic AS, Fjordalléen 16, PO Box 1423 Vika, NO-0115 Oslo, Norway
| | | | - Lena Burri
- Aker BioMarine Antarctic AS, Fjordalléen 16, PO Box 1423 Vika, NO-0115 Oslo, Norway
| |
Collapse
|