1
|
Li J, Lu P, Pan Q, Wang B, Wang Y, Li J. ER-PM tether Syt1 limits cell-to-cell connectivity via plasmodesmata during innate immune responses in Arabidopsis. Cell Rep 2025; 44:115672. [PMID: 40319474 DOI: 10.1016/j.celrep.2025.115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/06/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
Upon perception of microbe-associated molecular patterns (MAMPs), plants close plasmodesmata (PD) as part of their innate immune responses. However, the signaling cascades and molecular mechanisms underlying MAMP-induced PD closure require further investigation. Here, we show that the endoplasmic reticulum (ER)-plasma membrane (PM) tether Synaptotagmin 1 (Syt1) modulates the response of PD to MAMPs. Following MAMP stimulation, Syt1 rapidly accumulates to PD and further recruits a putative calcium-permeable transporter, ANN4, to promote a localized, PD-associated Ca2+ elevation, leading to callose-dependent PD closure. Moreover, Syt1 can sense the increased level of PI(4,5)P2 at the PD-PM via its C2 domain. Disrupting the interaction between Syt1 and PM lipids by pharmaceutical approaches or site-directed mutagenesis leads to impaired PD response to MAMPs. Collectively, our findings reveal that Syt1 integrates phospholipid signaling from the PD-PM to regulate PD-localized Ca2+ elevation, thereby modulating intercellular communication for restricting the spread of bacterial infection.
Collapse
Affiliation(s)
- Jiajing Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
| | - Pengfei Lu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Qing Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Bingxiao Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China; Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Knothe Tate ML. The Flow of Life: Convergent Approaches to Understanding Musculoskeletal Health from Molecular- to Meso-Length Scales. FRONT BIOSCI-LANDMRK 2025; 30:25231. [PMID: 40302317 DOI: 10.31083/fbl25231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 05/02/2025]
Abstract
In the current perspective and review article, we address the human body as a living ecosystem with collecting watersheds and draining hydrosheds; we integrate our discoveries over the past quarter of a century and pose the critical open research questions to be addressed going forward, with the aim to improve cell, tissue, organ and organismal health. First, we address the flow of fluid through the tissues of the musculoskeletal system, after which we describe the interactions of the fluid, at multiple lengths and time scales, with the molecular to macroscopic non-fluid tissue components, discussing bone and tissues in the context of "living" chromatography and/or electrophoresis columns. Thereafter, we discuss the implications of functional barrier integrity, and the effects of cytokines on active barrier function and molecular transport between organ systems, tissue compartments, and within tissues. In addition, we address the fluid and its flow and the multi-physics implications thereof for the living inhabitants of tissues, i.e., the cells. Finally, we describe the implications of the solid and fluid components and the cellular inhabitants on ecosystem health, where the tissues and organs comprise the organism form interacting ecosystems throughout life and in the context of health and disease. By taking convergent approaches to understanding musculoskeletal, human and environmental health (which themselves are interdependent), we hope to pave new paths of innovation and discovery, to improve the lives of our worlds' inhabitants, from the worlds of our bone and joints and bodies to the interacting ecosystems of our Earth to unknown worlds beyond our current understanding.
Collapse
Affiliation(s)
- Melissa Louise Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute, Blue Mountains National Park, NSW 2782, Australia
| |
Collapse
|
3
|
Takata S, Kawano S, Mine A, Mise K, Takano Y, Ohtsu M, Kaido M. Unveiling crucial amino acid residues in the red clover necrotic mosaic virus movement protein for dynamic subcellular localization and viral cell-to-cell movement. Virology 2024; 600:110215. [PMID: 39255728 DOI: 10.1016/j.virol.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Emerging evidence suggests that the localization of viral movement proteins (MPs) to both plasmodesmata (PD) and viral replication complexes (VRCs) is the key to viral cell-to-cell movement. However, the molecular mechanism that establishes the subcellular localization of MPs is not fully understood. Here, we investigated the PD localization pathway of red clover necrotic mosaic virus (RCNMV) MP and the functional regions of MP that are crucial for MP localization to PD and VRCs. Disruption analysis of the transport pathway suggested that RCNMV MP does not rely on the ER-Golgi pathway or the cytoskeleton for the localization to the PD. Furthermore, mutagenesis analysis identified amino acid residues within the alpha helix regions responsible for localization to the PD or VRCs. These α-helix regions were also essential for efficient viral cell-to-cell movement, highlighting the importance of these dynamic localization of the MPs for viral infection.
Collapse
Affiliation(s)
- Shota Takata
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Saho Kawano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mina Ohtsu
- Laboratory of Plant Symbiosis, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Li Z, Liu SL, Montes-Serey C, Walley JW, Aung K. PLASMODESMATA-LOCATED PROTEIN 6 regulates plasmodesmal function in Arabidopsis vasculature. THE PLANT CELL 2024; 36:3543-3561. [PMID: 38842334 PMCID: PMC11371196 DOI: 10.1093/plcell/koae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Plasmodesmata connect adjoining plant cells, allowing molecules to move between the connected cells for communication and sharing resources. It has been well established that the plant polysaccharide callose is deposited at plasmodesmata, regulating their aperture and function. Among proteins involved in maintaining callose homeostasis, PLASMODESMATA-LOCATED PROTEINSs (PDLPs) promote callose deposition at plasmodesmata. This study explored the function of PDLP5 and PDLP6 in different cell types. We discovered that PDLP5 and PDLP6 are expressed in nonoverlapping cell types in Arabidopsis (Arabidopsis thaliana). The overexpression of PDLP5 and PDLP6 results in the overaccumulation of plasmodesmal callose at different cell interfaces, indicating that PDLP5 and PDLP6 are active in different cell types. We also observed 2 distinct patterns of starch accumulation in mature leaves of PDLP5 and PDLP6 overexpressors. An enzyme-catalyzed proximity labeling approach was used to identify putative functional partners of the PDLPs. We identified SUCROSE SYNTHASE 6 (SUS6) as a functional partner of PDLP6 in the vasculature. We further demonstrated that PDLP6 physically and genetically interacts with SUS6. In addition, CALLOSE SYNTHASE 7 (CALS7) physically interacts with SUS6 and PDLP6. Genetic interaction studies showed that CALS7 is required for PDLP6 function. We propose that PDLP6 functions with SUS6 and CALS7 in the vasculature to regulate plasmodesmal function.
Collapse
Affiliation(s)
- Zhongpeng Li
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Su-Ling Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Christian Montes-Serey
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, IA 50011, USA
| | - Kyaw Aung
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Armer VJ, Urban M, Ashfield T, Deeks MJ, Hammond-Kosack KE. The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13485. [PMID: 38877764 PMCID: PMC11178975 DOI: 10.1111/mpp.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.
Collapse
Affiliation(s)
- Victoria J Armer
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Biosciences, University of Exeter, Exeter, UK
| | - Martin Urban
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Tom Ashfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Crop Health and Protection (CHAP), Rothamsted Research, Harpenden, UK
| | | | | |
Collapse
|
6
|
Chien CC, Chang CH, Ting HM. A novel lectin receptor kinase gene, AtG-LecRK-I.2, enhances bacterial pathogen resistance through regulation of stomatal immunity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112071. [PMID: 38508495 DOI: 10.1016/j.plantsci.2024.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/24/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
The S-locus lectin receptor kinases (G-LecRKs) have been suggested as receptors for microbe/damage-associated molecular patterns (MAMPs/DAMPs) and to be involved in the pathogen defense responses, but the functions of most G-LecRKs in biotic stress response have not been characterized. Here, we identified a member of this family, G-LecRK-I.2, that positively regulates flg22- and Pseudomonas syringae pv. tomato (Pst) DC3000-induced stomatal closure. G-LecRK-I.2 was rapidly phosphorylated under flg22 treatment and could interact with the FLS2/BAK1 complex. Two T-DNA insertion lines, glecrk-i.2-1 and glecrk-i.2-2, had lower levels of reactive oxygen species (ROS) and nitric oxide (NO) production in guard cells, as compared with the wild-type Col-0, under Pst DC3000 infection. Also, the immunity marker genes CBP60g and PR1 were induced at lower levels under Pst DC3000 hrcC- infection in glecrk-i.2-1 and glecrk-i.2-2. The GUS reporter system also revealed that G-LecRK-I.2 was expressed only in guard cells. We also found that G-LecRK-I.2 could interact H+-ATPase AHA1 to regulate H+-ATPase activity in the guard cells. Taken together, our results show that G-LecRK-I.2 plays an important role in regulating stomatal closure under flg22 and Pst DC3000 treatments and in ROS and NO signaling specifically in guard cells.
Collapse
Affiliation(s)
- Chih-Cheng Chien
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan; Institute of Plant Biology, National Taiwan University, Taipei, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
| | - Chuan-Hsin Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Hieng-Ming Ting
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Sankoh AF, Adjei J, Roberts DM, Burch-Smith TM. Comparing Methods for Detection and Quantification of Plasmodesmal Callose in Nicotiana benthamiana Leaves During Defense Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:427-431. [PMID: 38377039 DOI: 10.1094/mpmi-09-23-0152-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Callose, a β-(1,3)-d-glucan polymer, is essential for regulating intercellular trafficking via plasmodesmata (PD). Pathogens manipulate PD-localized proteins to enable intercellular trafficking by removing callose at PD or, conversely, by increasing callose accumulation at PD to limit intercellular trafficking during infection. Plant defense hormones like salicylic acid regulate PD-localized proteins to control PD and intercellular trafficking during immune defense responses such as systemic acquired resistance. Measuring callose deposition at PD in plants has therefore emerged as a popular parameter for assessing likely intercellular trafficking activity during plant immunity. Despite the popularity of this metric, there is no standard for how these measurements should be made. In this study, three commonly used methods for identifying and quantifying plasmodesmal callose by aniline blue staining were evaluated to determine the most effective in the Nicotiana benthamiana leaf model. The results reveal that the most reliable method used aniline blue staining and fluorescence microscopy to measure callose deposition in fixed tissue. Manual or semiautomated workflows for image analysis were also compared and found to produce similar results, although the semiautomated workflow produced a wider distribution of data points. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Amie F Sankoh
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, U.S.A
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Joseph Adjei
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Daniel M Roberts
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, U.S.A
| | | |
Collapse
|
8
|
Wu J, Bisaro DM. Cell-cell communication and initial population composition shape the structure of potato spindle tuber viroid quasispecies. THE PLANT CELL 2024; 36:1036-1055. [PMID: 38252648 PMCID: PMC10980348 DOI: 10.1093/plcell/koae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
RNA viruses and viroids replicate with high mutation rates, forming quasispecies, population of variants centered around dominant sequences. The mechanisms governing quasispecies remain unclear. Plasmodesmata regulate viroid movement and were hypothesized to impact viroid quasispecies. Here, we sequenced the progeny of potato spindle tuber viroid intermediate (PSTVd-I) strain from mature guard cells lacking plasmodesmal connections and from in vitro-cultivated mesophyll cell protoplasts from systemic leaves of early-infected tomato (Solanum lycopersicum) plants. Remarkably, more variants accumulated in guard cells compared to whole leaves. Similarly, after extended cell culture, we observed more variants in cultivated mesophyll protoplasts. Coinfection and single-cell sequencing experiments demonstrated that the same plant cell can be infected multiple times by the same or different PSTVd sequences. To study the impact of initial population composition on PSTVd-I quasispecies, we conducted coinfections with PSTVd-I and variants. Two inoculum ratios (10:1 or 1:10) established quasispecies with or without PSTVd-I as the master sequence. In the absence of the master sequence, the percentage of novel variants initially increased. Moreover, a 1:1 PSTVd-I/variant RNA ratio resulted in PSTVd-I dominating (>50%), while the variants reached 20%. After PSTVd-I-only infection, the variants reached around 10%, while after variant-only infection, the variants were significantly more than 10%. These results emphasize the role of cell-to-cell communication and initial population composition in shaping PSTVd quasispecies.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Roy A, Mandal M, Das S, Popek R, Rakwal R, Agrawal GK, Awasthi A, Sarkar A. The cellular consequences of particulate matter pollutants in plants: Safeguarding the harmonious integration of structure and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169763. [PMID: 38181950 DOI: 10.1016/j.scitotenv.2023.169763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Particulate matter (PM) pollution is one of the pressing environmental concerns confronting human civilization in the face of the Anthropocene era. Plants are continuously exposed to an accelerating PM, threatening their growth and productivity. Although plants and plant-based infrastructures can potentially reduce ambient air pollutants, PM still affects them morphologically, anatomically, and physiologically. This review comprehensively summarizes an up-to-date review of plant-PM interaction among different functional plant groups, PM deposition and penetration through aboveground and belowground plant parts, and plants' cellular strategies. Upon exposure, PM represses lipid desaturases, eventually leading to modification of cell wall and membrane and altering cell fluidity; consequently, plants can sense the pollutants and, thus, adapt different cellular strategies. The PM also causes a reduction in the photosynthetically active radiation. The study demonstrated that plants reduce stomatal density to avoid PM uptake and increase stomatal index to compensate for decreased gaseous exchange efficiency and transpiration rates. Furthermore, genes and gene sets associated with photosynthesis, glycolysis, gluconeogenesis, and the TCA cycle were dramatically lowered by PM stress. Several transcription factors, including MYB, C2H2, C3H, G2-like, and WRKY were induced, and metabolites such as proline and soluble sugar were accumulated to increase resistance against stressors. In addition, enzymatic and non-enzymatic antioxidants were also accumulated to scavenge the PM-induced reactive oxygen species (ROS). Taken together, this review provides an insight into plants' underlying cellular mechanisms and gene regulatory networks in response to the PM to determine strategies to preserve their structural and functional blend in the face of particulate pollution. The study concludes by recommending that future research should precisely focus on plants' response to short- and long-term PM exposure.
Collapse
Affiliation(s)
- Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Sujit Das
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; GRADE Academy (Pvt.) Ltd., Birgunj, Nepal
| | | | - Amit Awasthi
- Department of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India.
| |
Collapse
|
10
|
Khalilzadeh M, Lin CY, Wang C, El-Mohtar CA, Levy A. Stem-pitting caused by Citrus tristeza virus is associated with increased phloem occlusion. Virology 2024; 589:109918. [PMID: 37944362 DOI: 10.1016/j.virol.2023.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Stem-pitting (SP) disease results from disruption of normal phloem and xylem development. In citrus, a characteristic manifestation of SP caused by Citrus tristeza virus (CTV) is phloem regeneration. We hypothesized that phloem regeneration occurs due to reduced functionality of CTV infected phloem cells. To examine phloem cell occlusions in CTV-SP, we analyzed callose and phloem-protein (PP) accumulation in Citrus macrophylla trees infected with CTV mutants exhibiting different SP phenotypes from very mild (CTVΔp13) to severe (CTVΔp33), in addition to full-length CTV and healthy plants. CTV infection was accompanied by callose and PP accumulation in the phloem. With the increase in the SP symptoms from very mild to severe, there was a constant increase in the levels of callose and PP, accompanied by an increase in PHLOEM-PROTEIN 2 and a decrease in BETA-1,3-GLUCANASE gene expression levels. These results indicate that SP symptom development is associated with increased phloem occlusion.
Collapse
Affiliation(s)
- Maryam Khalilzadeh
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Choaa Amine El-Mohtar
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA; Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
11
|
Lv M, Dai Y, Xie L, Guo J, Liao Z, Shang W, Zhao X, Hong J, Zhang HM. Volume electron microscopy reconstruction uncovers a physical barrier that limits virus to phloem. THE NEW PHYTOLOGIST 2024; 241:343-362. [PMID: 37858933 DOI: 10.1111/nph.19319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Most plant reoviruses are phloem-limited, but the mechanism has remained unknown for more than half a century. Southern rice black-streaked dwarf virus (Fijivirus, Reoviridae) causes phloem-derived tumors, where its virions, genomes, and proteins accumulate, and it was used as a model to explore how its host plant limits the virus within its phloem. High-throughput volume electron microscopy revealed that only sieve plate pores and flexible gateways rather than plasmodesmata had a sufficiently large size exclusion limit (SEL) to accommodate virions and potentially serve as pathways of virion movement. The large SEL gateways were enriched within the proliferated sieve element (SE) layers of tumors. The lack of such connections out of the SE-enriched regions of tumors defined a size-dependent physical barrier to high flux transportation of virions. A working model is proposed to demonstrate the mechanism underlying limitation of virus within phloem.
Collapse
Affiliation(s)
- Mingfang Lv
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuanxing Dai
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li Xie
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiansheng Guo
- Department of Biophysics, Zhejiang University School of Medicine and Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, 310058, China
| | - Zhenfeng Liao
- Public Lab, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weina Shang
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohuan Zhao
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Hong
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
12
|
Sankoh AF, Adjei J, Roberts DM, Burch-Smith TM. Reliable detection and quantification of plasmodesmal callose in Nicotiana benthamiana leaves during defense responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560305. [PMID: 37873219 PMCID: PMC10592870 DOI: 10.1101/2023.09.30.560305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Callose, a beta-(1,3)-D-glucan polymer, is essential for regulating intercellular trafficking via plasmodesmata (PD). Pathogens manipulate PD-localized proteins to enable intercellular trafficking by removing callose at PD, or conversely by increasing callose accumulation at PD to limit intercellular trafficking during infection. Plant defense hormones like salicylic acid regulate PD-localized proteins to control PD and intercellular trafficking during innate immune defense responses such as systemic acquired resistance. Measuring callose deposition at PD in plants has therefore emerged as a popular parameter for assessing the intercellular trafficking activity during plant immunity. Despite the popularity of this metric there is no standard for how these measurements should be made. In this study, three commonly used methods for identifying and quantifying PD callose by aniline blue staining were evaluated to determine the most effective in the Nicotiana benthamiana leaf model. The results reveal that the most reliable method used aniline blue staining and fluorescent microscopy to measure callose deposition in fixed tissue. Manual or semi-automated workflows for image analysis were also compared and found to produce similar results although the semi-automated workflow produced a wider distribution of data points.
Collapse
Affiliation(s)
- Amie F. Sankoh
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996 USA
- Donald Danforth Plant Science Center, Saint Louis, MO 63132 USA
| | - Joseph Adjei
- Donald Danforth Plant Science Center, Saint Louis, MO 63132 USA
| | - Daniel M. Roberts
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996 USA
| | | |
Collapse
|
13
|
Barr ZK, Werner T, Tilsner J. Heavy Metal-Associated Isoprenylated Plant Proteins (HIPPs) at Plasmodesmata: Exploring the Link between Localization and Function. PLANTS (BASEL, SWITZERLAND) 2023; 12:3015. [PMID: 37631227 PMCID: PMC10459601 DOI: 10.3390/plants12163015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are a metallochaperone-like protein family comprising a combination of structural features unique to vascular plants. HIPPs possess both one or two heavy metal-binding domains and an isoprenylation site, facilitating a posttranslational protein lipid modification. Recent work has characterized individual HIPPs across numerous different species and provided evidence for varied functionalities. Interestingly, a significant number of HIPPs have been identified in proteomes of plasmodesmata (PD)-nanochannels mediating symplastic connectivity within plant tissues that play pivotal roles in intercellular communication during plant development as well as responses to biotic and abiotic stress. As characterized functions of many HIPPs are linked to stress responses, plasmodesmal HIPP proteins are potentially interesting candidate components of signaling events at or for the regulation of PD. Here, we review what is known about PD-localized HIPP proteins specifically, and how the structure and function of HIPPs more generally could link to known properties and regulation of PD.
Collapse
Affiliation(s)
- Zoe Kathleen Barr
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Tomáš Werner
- Department of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
14
|
Panstruga R, Antonin W, Lichius A. Looking outside the box: a comparative cross-kingdom view on the cell biology of the three major lineages of eukaryotic multicellular life. Cell Mol Life Sci 2023; 80:198. [PMID: 37418047 PMCID: PMC10329083 DOI: 10.1007/s00018-023-04843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.
Collapse
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Alexander Lichius
- inncellys GmbH, Dorfstrasse 20/3, 6082, Patsch, Austria
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
15
|
Wang X, Prokhnevsky AI, Skarjinskaia M, Razzak MA, Streatfield SJ, Lee J. Facilitating viral vector movement enhances heterologous protein production in an established plant system. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:635-645. [PMID: 36511837 PMCID: PMC9946140 DOI: 10.1111/pbi.13977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Molecular farming technology using transiently transformed Nicotiana plants offers an economical approach to the pharmaceutical industry to produce an array of protein targets including vaccine antigens and therapeutics. It can serve as a desirable alternative approach for those proteins that are challenging or too costly to produce in large quantities using other heterologous protein expression systems. However, since cost metrics are such a critical factor in selecting a production host, any system-wide modifications that can increase recombinant protein yields are key to further improving the platform and making it applicable for a wider range of target molecules. Here, we report on the development of a new approach to improve target accumulation in an established plant-based expression system that utilizes viral-based vectors to mediate transient expression in Nicotiana benthamiana. We show that by engineering the host plant to support viral vectors to spread more effectively between host cells through plasmodesmata, protein target accumulation can be increased by up to approximately 60%.
Collapse
Affiliation(s)
- Xu Wang
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareDelawareNewarkUSA
- Present address:
Department of Plant Physiology and BiochemistryUniversity of HohenheimBaden‐WürttembergStuttgartGermany
| | | | - Marina Skarjinskaia
- Fraunhofer USA Inc.Center Mid‐Atlantic, Biotechnology DivisionDelawareNewarkUSA
| | - Md Abdur Razzak
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareDelawareNewarkUSA
| | | | - Jung‐Youn Lee
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareDelawareNewarkUSA
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareDelawareNewarkUSA
- Delaware Biotechnology InstituteUniversity of DelawareDelawareNewarkUSA
| |
Collapse
|
16
|
Cai L, Liu J, Wang S, Gong Z, Yang S, Xu F, Hu Z, Zhang M, Yang J. The coiled-coil protein gene WPRb confers recessive resistance to Cucumber green mottle mosaic virus. PLANT PHYSIOLOGY 2023; 191:369-381. [PMID: 36179097 PMCID: PMC9806632 DOI: 10.1093/plphys/kiac466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) is one of the major global quarantine viruses and causes severe symptoms in Cucurbit crops, particularly with regard to fruit decay. However, the genetic mechanisms that control plant resistance to CGMMV have yet to be elucidated. Here, we found that WPRb, a weak chloroplast movement under blue light 1 and plastid movement impaired 2-related protein family gene, is recessively associated with CGMMV resistance in watermelon (Citrullus lanatus). We developed a reproducible marker based on a single non-synonymous substitution (G1282A) in WPRb, which can be used for marker-assisted selection for CGMMV resistance in watermelon. Editing of WPRb conferred greater tolerance to CGMMV. We found WPRb targets to the plasmodesmata (PD) and biochemically interacts with the CGMMV movement protein, facilitating viral intercellular movement by affecting the permeability of PD. Our findings enable us to genetically control CGMMV resistance in planta by using precise genome editing techniques targeted to WPRb.
Collapse
Affiliation(s)
- Lingmin Cai
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Liu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Weimeng Seed Co. Ltd, Ningbo 315000, China
| | - Shuchang Wang
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zihui Gong
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Siyu Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Fengyuan Xu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
17
|
Kurotani KI, Kawakatsu Y, Kikkawa M, Tabata R, Kurihara D, Honda H, Shimizu K, Notaguchi M. Analysis of plasmodesmata permeability using cultured tobacco BY-2 cells entrapped in microfluidic chips. JOURNAL OF PLANT RESEARCH 2022; 135:693-701. [PMID: 35834070 DOI: 10.1007/s10265-022-01406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plasmodesmata are unique channel structures in plants that link the fluid cytoplasm between adjacent cells. Plants have evolved these microchannels to allow trafficking of nutritious substances as well as regulatory factors for intercellular communication. However, tracking the behavior of plasmodesmata in real time is difficult because they are located inside tissues. Hence, a system was constructed to monitor the movement of substances by plasmodesmata using tobacco BY-2 cells, which are linearly organized cells, and a microfluidic device that traps them in place and facilitates observation. After targeting one cell for photobleaching, recovery of the lost H2B-GFP protein was detected within 200 min. No recovery was detected in that time frame by photobleaching the entire cell filaments. This suggested that the recovery of H2B-GFP protein was not due to de novo protein synthesis, but rather to translocation from neighboring cells. The transport of H2B-GFP protein was not observed when sodium chloride, a compound known to cause plasmodesmata closure, was present in the microfluid channel. Thus, using the microfluidic device and BY-2 cells, it was confirmed that the behavior of plasmodesmata could be observed in real time under controllable conditions.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Masahiro Kikkawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ryo Tabata
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daisuke Kurihara
- JST PRESTO, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan.
| |
Collapse
|
18
|
Iswanto ABB, Vu MH, Pike S, Lee J, Kang H, Son GH, Kim J, Kim SH. Pathogen effectors: What do they do at plasmodesmata? MOLECULAR PLANT PATHOLOGY 2022; 23:795-804. [PMID: 34569687 PMCID: PMC9104267 DOI: 10.1111/mpp.13142] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins. Several studies have indicated that plasmodesmata (PD), symplasmic pores that facilitate cell-to-cell communication between a cell and neighbouring cells, are one of the targets of pathogen effectors. However, in contrast to plant-pathogenic viruses, reports of fungal- and bacterial-encoded effectors that localize to and exploit PD are limited. Surprisingly, a recent study of PD-associated bacterial effectors has shown that a number of bacterial effectors undergo cell-to-cell movement via PD. Here we summarize and highlight recent advances in the study of PD-associated fungal/oomycete/bacterial effectors. We also discuss how pathogen effectors interfere with host defence mechanisms in the context of PD regulation.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Minh Huy Vu
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sharon Pike
- Division of Plant SciencesChristopher S. Bond Life Sciences Center and Interdisciplinary Plant GroupUniversity of MissouriColumbiaMissouriUSA
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jae‐Yean Kim
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
19
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
20
|
Shimizu K, Kawakatsu Y, Kurotani KI, Kikkawa M, Tabata R, Kurihara D, Honda H, Notaguchi M. Development of microfluidic chip for entrapping tobacco BY-2 cells. PLoS One 2022; 17:e0266982. [PMID: 35421187 PMCID: PMC9009702 DOI: 10.1371/journal.pone.0266982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The tobacco BY-2 cell line has been used widely as a model system in plant cell biology. BY-2 cells are nearly transparent, which facilitates cell imaging using fluorescent markers. As cultured cells are drifted in the medium, therefore, it was difficult to observe them for a long period. Hence, we developed a microfluidic device that traps BY-2 cells and fixes their positions to allow monitoring the physiological activity of cells. The device contains 112 trap zones, with parallel slots connected in series at three levels in the flow channel. BY-2 cells were cultured for 7 days and filtered using a sieve and a cell strainer before use to isolate short cell filaments consisting of only a few cells. The isolated cells were introduced into the flow channel, resulting in entrapment of cell filaments at 25 out of 112 trap zones (22.3%). The cell numbers increased through cell division from 1 to 4 days after trapping with a peak of mitotic index on day 2. Recovery experiments of fluorescent proteins after photobleaching confirmed cell survival and permeability of plasmodesmata. Thus, this microfluidic device and one-dimensional plant cell samples allowed us to observe cell activity in real time under controllable conditions.
Collapse
Affiliation(s)
- Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Masahiro Kikkawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ryo Tabata
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daisuke Kurihara
- JST PRESTO, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Michitaka Notaguchi
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
21
|
Tabassum N, Blilou I. Cell-to-Cell Communication During Plant-Pathogen Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:98-108. [PMID: 34664986 DOI: 10.1094/mpmi-09-21-0221-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Being sessile, plants are continuously challenged by changes in their surrounding environment and must survive and defend themselves against a multitude of pathogens. Plants have evolved a mode for pathogen recognition that activates signaling cascades such as reactive oxygen species, mitogen-activated protein kinase, and Ca2+ pathways, in coordination with hormone signaling, to execute the defense response at the local and systemic levels. Phytopathogens have evolved to manipulate cellular and hormonal signaling and exploit hosts' cell-to-cell connections in many ways at multiple levels. Overall, triumph over pathogens depends on how efficiently the pathogens are recognized and how rapidly the plant response is initiated through efficient intercellular communication via apoplastic and symplastic routes. Here, we review how intercellular communication in plants is mediated, manipulated, and maneuvered during plant-pathogen interaction.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Naheed Tabassum
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ikram Blilou
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
22
|
David L, Kang J, Nicklay J, Dufresne C, Chen S. Identification of DIR1-Dependant Cellular Responses in Guard Cell Systemic Acquired Resistance. Front Mol Biosci 2022; 8:746523. [PMID: 34977152 PMCID: PMC8718647 DOI: 10.3389/fmolb.2021.746523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
After localized invasion by bacterial pathogens, systemic acquired resistance (SAR) is induced in uninfected plant tissues, resulting in enhanced defense against a broad range of pathogens. Although SAR requires mobilization of signaling molecules via the plant vasculature, the specific molecular mechanisms remain elusive. The lipid transfer protein defective in induced resistance 1 (DIR1) was identified in Arabidopsis thaliana by screening for mutants that were defective in SAR. Here, we demonstrate that stomatal response to pathogens is altered in systemic leaves by SAR, and this guard cell SAR defense requires DIR1. Using a multi-omics approach, we have determined potential SAR signaling mechanisms specific for guard cells in systemic leaves by profiling metabolite, lipid, and protein differences between guard cells in the wild type and dir1-1 mutant during SAR. We identified two long-chain 18 C and 22 C fatty acids and two 16 C wax esters as putative SAR-related molecules dependent on DIR1. Proteins and metabolites related to amino acid biosynthesis and response to stimulus were also changed in guard cells of dir1-1 compared to the wild type. Identification of guard cell-specific SAR-related molecules may lead to new avenues of genetic modification/molecular breeding for disease-resistant plants.
Collapse
Affiliation(s)
- Lisa David
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States
| | - Jianing Kang
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States.,College of Life Science, Northeast Agricultural University, Harbin, China
| | - Josh Nicklay
- Thermo Fisher Scientific, Somerset, NJ, United States
| | - Craig Dufresne
- Thermo Training Institute, Thermo Fisher Scientific, West Palm Beach, FL, United States
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Huang C, Mutterer J, Heinlein M. In Vivo Aniline Blue Staining and Semiautomated Quantification of Callose Deposition at Plasmodesmata. Methods Mol Biol 2022; 2457:151-165. [PMID: 35349138 DOI: 10.1007/978-1-0716-2132-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The deposition and turnover of callose (beta-1,3 glucan polymer) in the cell wall surrounding the neck regions of plasmodesmata (PD) controls the cell-to-cell diffusion rate of molecules and, therefore, plays an important role in the regulation of intercellular communication in plants.Here we describe a simple and fast in vivo staining procedure for the imaging and quantification of callose at PD. We also introduce calloseQuant, a plug-in for semiautomated image analysis and non-biased quantification of callose levels at PD using ImageJ.
Collapse
Affiliation(s)
- Caiping Huang
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jerôme Mutterer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
24
|
Abstract
In plants, plasmodesmata (PD) are plasmamembrane-lined pores that traverse the cell wall to establish cytoplasmic and endomembrane continuity between neighboring cells. As intercellular channels, PD play pivotal roles in plant growth and development, defense responses, and are also co-opted by viruses to spread cell-to-cell to establish systemic infection. Proteomic analyses of PD-enriched fractions may provide critical insights on plasmodesmal biology and PD-mediated virus-host interactions. However, it is difficult to isolate PD from plant tissues as they are firmly embedded in the cell wall. Here, we describe a protocol for the purification of PD from Nicotiana benthamiana leaves for proteomic analysis.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Mark A Bernards
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| |
Collapse
|
25
|
Jones K, Zhu J, Jenkinson CB, Kim DW, Pfeifer MA, Khang CH. Disruption of the Interfacial Membrane Leads to Magnaporthe oryzae Effector Re-location and Lifestyle Switch During Rice Blast Disease. Front Cell Dev Biol 2021; 9:681734. [PMID: 34222251 PMCID: PMC8248803 DOI: 10.3389/fcell.2021.681734] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
To cause the devastating rice blast disease, the hemibiotrophic fungus Magnaporthe oryzae produces invasive hyphae (IH) that are enclosed in a plant-derived interfacial membrane, known as the extra-invasive hyphal membrane (EIHM), in living rice cells. Little is known about when the EIHM is disrupted and how the disruption contributes to blast disease. Here we show that the disruption of the EIHM correlates with the hyphal growth stage in first-invaded susceptible rice cells. Our approach utilized GFP that was secreted from IH as an EIHM integrity reporter. Secreted GFP (sec-GFP) accumulated in the EIHM compartment but appeared in the host cytoplasm when the integrity of the EIHM was compromised. Live-cell imaging coupled with sec-GFP and various fluorescent reporters revealed that the loss of EIHM integrity preceded shrinkage and eventual rupture of the rice vacuole. The vacuole rupture coincided with host cell death, which was limited to the invaded cell with presumed closure of plasmodesmata. We report that EIHM disruption and host cell death are landmarks that delineate three distinct infection phases (early biotrophic, late biotrophic, and transient necrotrophic phases) within the first-invaded cell before reestablishment of biotrophy in second-invaded cells. M. oryzae effectors exhibited infection phase-specific localizations, including entry of the apoplastic effector Bas4 into the host cytoplasm through the disrupted EIHM during the late biotrophic phase. Understanding how infection phase-specific cellular dynamics are regulated and linked to host susceptibility will offer potential targets that can be exploited to control blast disease.
Collapse
Affiliation(s)
- Kiersun Jones
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Jie Zhu
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Cory B Jenkinson
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Dong Won Kim
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Mariel A Pfeifer
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Chang Hyun Khang
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
26
|
Liu J, Zhang L, Yan D. Plasmodesmata-Involved Battle Against Pathogens and Potential Strategies for Strengthening Hosts. FRONTIERS IN PLANT SCIENCE 2021; 12:644870. [PMID: 34149749 PMCID: PMC8210831 DOI: 10.3389/fpls.2021.644870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/28/2021] [Indexed: 06/01/2023]
Abstract
Plasmodesmata (PD) are membrane-lined pores that connect adjacent cells to mediate symplastic communication in plants. These intercellular channels enable cell-to-cell trafficking of various molecules essential for plant development and stress responses, but they can also be utilized by pathogens to facilitate their infection of hosts. Some pathogens or their effectors are able to spread through the PD by modifying their permeability. Yet plants have developed various corresponding defense mechanisms, including the regulation of PD to impede the spread of invading pathogens. In this review, we aim to illuminate the various roles of PD in the interactions between pathogens and plants during the infection process. We summarize the pathogenic infections involving PD and how the PD could be modified by pathogens or hosts. Furthermore, we propose several hypothesized and promising strategies for enhancing the disease resistance of host plants by the appropriate modulation of callose deposition and plasmodesmal permeability based on current knowledge.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Ma Z, Liu X, Nath S, Sun H, Tran TM, Yang L, Mayor S, Miao Y. Formin nanoclustering-mediated actin assembly during plant flagellin and DSF signaling. Cell Rep 2021; 34:108884. [PMID: 33789103 DOI: 10.1016/j.celrep.2021.108884] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/11/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Plants respond to bacterial infection acutely with actin remodeling during plant immune responses. The mechanisms by which bacterial virulence factors (VFs) modulate plant actin polymerization remain enigmatic. Here, we show that plant-type-I formin serves as the molecular sensor for actin remodeling in response to two bacterial VFs: Xanthomonas campestris pv. campestris (Xcc) diffusible signal factor (DSF), and pathogen-associated molecular pattern (PAMP) flagellin in pattern-triggered immunity (PTI). Both VFs regulate actin assembly by tuning the clustering and nucleation activity of formin on the plasma membrane (PM) at the nano-sized scale. By being integrated within the cell-wall-PM-actin cytoskeleton (CW-PM-AC) continuum, the dynamic behavior and function of formins are highly dependent on each scaffold layer's composition within the CW-PM-AC continuum during both DSF and PTI signaling. Our results reveal a central mechanism for rapid actin remodeling during plant-bacteria interactions, in which bacterial signaling molecules fine tune plant formin nanoclustering in a host mechanical-structure-dependent manner.
Collapse
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xiaolin Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sangeeta Nath
- Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore 560065, India; Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore 560065, India
| | - He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen 518055, China
| | - Satyajit Mayor
- Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore 560065, India; National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
28
|
Chen C, Vanneste S, Chen X. Review: Membrane tethers control plasmodesmal function and formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110800. [PMID: 33568299 DOI: 10.1016/j.plantsci.2020.110800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Cell-to-cell communication is crucial in coordinating diverse biological processes in multicellular organisms. In plants, communication between adjacent cells occurs via nanotubular passages called plasmodesmata (PD). The PD passage is composed of an appressed endoplasmic reticulum (ER) internally, and plasma membrane (PM) externally, that traverses the cell wall, and associates with the actin-cytoskeleton. The coordination of the ER, PM and cytoskeleton plays a potential role in maintaining the architecture and conductivity of PD. Many data suggest that PD-associated proteins can serve as tethers that connect these structures in a functional PD, to regulate cell-to-cell communication. In this review, we summarize the organization and regulation of PD activity via tethering proteins, and discuss the importance of PD-mediated cell-to-cell communication in plant development and defense against environmental stress.
Collapse
Affiliation(s)
- Chaofan Chen
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China; FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Department of Plants and Crops, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Xu Chen
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
29
|
Wang Y, Li X, Fan B, Zhu C, Chen Z. Regulation and Function of Defense-Related Callose Deposition in Plants. Int J Mol Sci 2021; 22:ijms22052393. [PMID: 33673633 PMCID: PMC7957820 DOI: 10.3390/ijms22052393] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/15/2023] Open
Abstract
Plants are constantly exposed to a wide range of potential pathogens and to protect themselves, have developed a variety of chemical and physical defense mechanisms. Callose is a β-(1,3)-D-glucan that is widely distributed in higher plants. In addition to its role in normal growth and development, callose plays an important role in plant defense. Callose is deposited between the plasma membrane and the cell wall at the site of pathogen attack, at the plasmodesmata, and on other plant tissues to slow pathogen invasion and spread. Since it was first reported more than a century ago, defense-related callose deposition has been extensively studied in a wide-spectrum of plant-pathogen systems. Over the past 20 years or so, a large number of studies have been published that address the dynamic nature of pathogen-induced callose deposition, the complex regulation of synthesis and transport of defense-related callose and associated callose synthases, and its important roles in plant defense responses. In this review, we summarize our current understanding of the regulation and function of defense-related callose deposition in plants and discuss both the progresses and future challenges in addressing this complex defense mechanism as a critical component of a plant immune system.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
| | - Baofang Fan
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-86836090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (Y.W.); (X.L.)
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-86836090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
30
|
Iswanto ABB, Shelake RM, Vu MH, Kim JY, Kim SH. Genome Editing for Plasmodesmal Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:679140. [PMID: 34149780 PMCID: PMC8207191 DOI: 10.3389/fpls.2021.679140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
Plasmodesmata (PD) are cytoplasmic canals that facilitate intercellular communication and molecular exchange between adjacent plant cells. PD-associated proteins are considered as one of the foremost factors in regulating PD function that is critical for plant development and stress responses. Although its potential to be used for crop engineering is enormous, our understanding of PD biology was relatively limited to model plants, demanding further studies in crop systems. Recently developed genome editing techniques such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associate protein (CRISPR/Cas) might confer powerful approaches to dissect the molecular function of PD components and to engineer elite crops. Here, we assess several aspects of PD functioning to underline and highlight the potential applications of CRISPR/Cas that provide new insight into PD biology and crop improvement.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Minh Huy Vu
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jae-Yean Kim
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
- Jae-Yean Kim,
| | - Sang Hee Kim
- Division of Applied Life Sciences (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Sciences, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Sang Hee Kim,
| |
Collapse
|
31
|
Pitzalis N, Amari K, Graindorge S, Pflieger D, Donaire L, Wassenegger M, Llave C, Heinlein M. Turnip mosaic virus in oilseed rape activates networks of sRNA-mediated interactions between viral and host genomes. Commun Biol 2020; 3:702. [PMID: 33230160 PMCID: PMC7683744 DOI: 10.1038/s42003-020-01425-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
Virus-induced plant diseases in cultivated plants cause important damages in yield. Although the mechanisms of virus infection are intensely studied at the cell biology level, only little is known about the molecular dialog between the invading virus and the host genome. Here we describe a combinatorial genome-wide approach to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus (TuMV) infection sites in Brassica napus leaves. We show that the induction of host-encoded, virus-activated small interfering RNAs (vasiRNAs) observed in virus-infected tissues is accompanied by site-specific cleavage events on both viral and host RNAs that recalls the activity of small RNA-induced silencing complexes (RISC). Cleavage events also involve virus-derived siRNA (vsiRNA)–directed cleavage of target host transcripts as well as cleavage of viral RNA by both host vasiRNAs and vsiRNAs. Furthermore, certain coding genes act as virus-activated regulatory hubs to produce vasiRNAs for the targeting of other host genes. The observations draw an advanced model of plant-virus interactions and provide insights into the complex regulatory networking at the plant-virus interface within cells undergoing early stages of infection. Pitzalis et al. use replicative RNAseq, small RNA (sRNA)seq, and parallel analysis of RNA ends (PARE)seq analysis to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus infection sites. This study provides insights into the complex regulatory networking at the plantvirus interface within cells undergoing early stages of infection.
Collapse
Affiliation(s)
- Nicolas Pitzalis
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Khalid Amari
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.,Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Strasse 27, 06484, Quedlinburg, Germany
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France
| | - Livia Donaire
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Department of Biology of Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, 30100, Murcia, Spain
| | - Michael Wassenegger
- RLP Agroscience, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany.,Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - César Llave
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (IBMP-CNRS), Université de Strasbourg, F-67000, Strasbourg, France.
| |
Collapse
|
32
|
Intercellular trafficking via plasmodesmata: molecular layers of complexity. Cell Mol Life Sci 2020; 78:799-816. [PMID: 32920696 PMCID: PMC7897608 DOI: 10.1007/s00018-020-03622-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Plasmodesmata are intercellular pores connecting together most plant cells. These structures consist of a central constricted form of the endoplasmic reticulum, encircled by some cytoplasmic space, in turn delimited by the plasma membrane, itself ultimately surrounded by the cell wall. The presence and structure of plasmodesmata create multiple routes for intercellular trafficking of a large spectrum of molecules (encompassing RNAs, proteins, hormones and metabolites) and also enable local signalling events. Movement across plasmodesmata is finely controlled in order to balance processes requiring communication with those necessitating symplastic isolation. Here, we describe the identities and roles of the molecular components (specific sets of lipids, proteins and wall polysaccharides) that shape and define plasmodesmata structural and functional domains. We highlight the extensive and dynamic interactions that exist between the plasma/endoplasmic reticulum membranes, cytoplasm and cell wall domains, binding them together to effectively define plasmodesmata shapes and purposes.
Collapse
|
33
|
Kappagantu M, Collum TD, Dardick C, Culver JN. Viral Hacks of the Plant Vasculature: The Role of Phloem Alterations in Systemic Virus Infection. Annu Rev Virol 2020; 7:351-370. [PMID: 32453971 DOI: 10.1146/annurev-virology-010320-072410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For plant viruses, the ability to load into the vascular phloem and spread systemically within a host is an essential step in establishing a successful infection. However, access to the vascular phloem is highly regulated, representing a significant obstacle to virus loading, movement, and subsequent unloading into distal uninfected tissues. Recent studies indicate that during virus infection, phloem tissues are a source of significant transcriptional and translational alterations, with the number of virus-induced differentially expressed genes being four- to sixfold greater in phloem tissues than in surrounding nonphloem tissues. In addition, viruses target phloem-specific components as a means to promote their own systemic movement and disrupt host defense processes. Combined, these studies provide evidence that the vascular phloem plays a significant role in the mediation and control of host responses during infection and as such is a site of considerable modulation by the infecting virus. This review outlines the phloem responses and directed reprograming mechanisms that viruses employ to promote their movement through the vasculature.
Collapse
Affiliation(s)
- Madhu Kappagantu
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA;
| | - Tamara D Collum
- Foreign Disease-Weed Science Research Unit, US Department of Agriculture Agricultural Research Service, Frederick, Maryland 21702, USA
| | - Christopher Dardick
- Appalachian Fruit Research Station, US Department of Agriculture Agricultural Research Service, Kearneysville, West Virginia 25430, USA
| | - James N Culver
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA; .,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
34
|
Wu J, Zhou C, Li J, Li C, Tao X, Leontis NB, Zirbel CL, Bisaro DM, Ding B. Functional analysis reveals G/U pairs critical for replication and trafficking of an infectious non-coding viroid RNA. Nucleic Acids Res 2020; 48:3134-3155. [PMID: 32083649 PMCID: PMC7102988 DOI: 10.1093/nar/gkaa100] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 01/19/2023] Open
Abstract
While G/U pairs are present in many RNAs, the lack of molecular studies to characterize the roles of multiple G/U pairs within a single RNA limits our understanding of their biological significance. From known RNA 3D structures, we observed that the probability a G/U will form a Watson-Crick (WC) base pair depends on sequence context. We analyzed 17 G/U pairs in the 359-nucleotide genome of Potato spindle tuber viroid (PSTVd), a circular non-coding RNA that replicates and spreads systemically in host plants. Most putative G/U base pairs were experimentally supported by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). Deep sequencing PSTVd genomes from plants inoculated with a cloned master sequence revealed naturally occurring variants, and showed that G/U pairs are maintained to the same extent as canonical WC base pairs. Comprehensive mutational analysis demonstrated that nearly all G/U pairs are critical for replication and/or systemic spread. Two selected G/U pairs were found to be required for PSTVd entry into, but not for exit from, the host vascular system. This study identifies critical roles for G/U pairs in the survival of an infectious RNA, and increases understanding of structure-based regulation of replication and trafficking of pathogen and cellular RNAs.
Collapse
Affiliation(s)
- Jian Wu
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.,Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Cuiji Zhou
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - James Li
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Chun Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Neocles B Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Craig L Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.,Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Biao Ding
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.,Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Liu NJ, Zhang T, Liu ZH, Chen X, Guo HS, Ju BH, Zhang YY, Li GZ, Zhou QH, Qin YM, Zhu YX. Phytosphinganine Affects Plasmodesmata Permeability via Facilitating PDLP5-Stimulated Callose Accumulation in Arabidopsis. MOLECULAR PLANT 2020; 13:128-143. [PMID: 31698047 DOI: 10.1016/j.molp.2019.10.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 05/14/2023]
Abstract
Plant plasmodesmata (PDs) are specialized channels that enable communication between neighboring cells. The intercellular permeability of PDs, which affects plant development, defense, and responses to stimuli, must be tightly regulated. However, the lipid compositions of PD membrane and their impact on PD permeability remain elusive. Here, we report that the Arabidopsis sld1 sld2 double mutant, lacking sphingolipid long-chain base 8 desaturases 1 and 2, displayed decreased PD permeability due to a significant increase in callose accumulation. PD-located protein 5 (PDLP5) was significantly enriched in the leaf epidermal cells of sld1 sld2 and showed specific binding affinity to phytosphinganine (t18:0), suggesting that the enrichment of t18:0-based sphingolipids in sld1 sld2 PDs might facilitate the recruitment of PDLP5 proteins to PDs. The sld1 sld2 double mutant seedlings showed enhanced resistance to the fungal-wilt pathogen Verticillium dahlia and the bacterium Pseudomonas syringae pv. tomato DC3000, which could be fully rescued in sld1 sld2 pdlp5 triple mutant. Taken together, these results indicate that phytosphinganine might regulate PD functions and cell-to-cell communication by modifying the level of PDLP5 in PD membranes.
Collapse
Affiliation(s)
- Ning-Jing Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Zhao-Hui Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Bai-Hang Ju
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China
| | - Guo-Zhu Li
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qiang-Hui Zhou
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yong-Mei Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China.
| | - Yu-Xian Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
36
|
Reagan BC, Burch-Smith TM. Viruses Reveal the Secrets of Plasmodesmal Cell Biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:26-39. [PMID: 31715107 DOI: 10.1094/mpmi-07-19-0212-fi] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plasmodesmata (PD) are essential for intercellular trafficking of molecules required for plant life, from small molecules like sugars and ions to macromolecules including proteins and RNA molecules that act as signals to regulate plant development and defense. As obligate intracellular pathogens, plant viruses have evolved to manipulate this communication system to facilitate the initial cell-to-cell and eventual systemic spread in their plant hosts. There has been considerable interest in how viruses manipulate the PD that connect the protoplasts of neighboring cells, and viruses have yielded invaluable tools for probing the structure and function of PD. With recent advances in biochemistry and imaging, we have gained new insights into the composition and structure of PD in the presence and absence of viruses. Here, we first discuss viral strategies for manipulating PD for their intercellular movement and examine how this has shed light on our understanding of native PD function. We then address the controversial role of the cytoskeleton in trafficking to and through PD. Finally, we address how viruses could alter PD structure and consider possible mechanisms of the phenomenon described as 'gating'. This discussion supports the significance of virus research in elucidating the properties of PD, these persistently enigmatic plant organelles.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
37
|
Wu J, Leontis NB, Zirbel CL, Bisaro DM, Ding B. A three-dimensional RNA motif mediates directional trafficking of Potato spindle tuber viroid from epidermal to palisade mesophyll cells in Nicotiana benthamiana. PLoS Pathog 2019; 15:e1008147. [PMID: 31644572 PMCID: PMC6827988 DOI: 10.1371/journal.ppat.1008147] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/04/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a circular non-coding RNA of 359 nucleotides that replicates and spreads systemically in host plants, thus all functions required to establish an infection are mediated by sequence and structural elements in the genome. The PSTVd secondary structure contains 26 Watson-Crick base-paired stems and 27 loops. Most of the loops are believed to form three-dimensional (3D) structural motifs through non-Watson-Crick base pairing, base stacking, and other local interactions. Homology-based prediction using the JAR3D online program revealed that loop 27 (nucleotides 177-182) most likely forms a 3D structure similar to the loop of a conserved hairpin located in the 3' untranslated region of histone mRNAs in animal cells. This stem-loop, which is involved in 3'-end maturation, is not found in polyadenylated plant histone mRNAs. Mutagenesis showed that PSTVd genomes containing base substitutions in loop 27 predicted by JAR3D to disrupt the 3D structure were unable to replicate in Nicotiana benthamiana leaves following mechanical rub inoculation, with one exception: a U178G/U179G double mutant was replication-competent and able to spread within the upper epidermis of inoculated leaves, but was confined to this cell layer. Remarkably, direct delivery of the U178G/U179G mutant into the vascular system by needle puncture inoculation allowed it to spread systemically and enter mesophyll cells and epidermal cells of upper leaves. These findings highlight the importance of RNA 3D structure for PSTVd replication and intercellular trafficking and indicate that loop 27 is required for epidermal exit, but not epidermal entry or transit between other cell types. Thus, requirements for RNA trafficking between epidermal and underlying palisade mesophyll cells are unique and directional. Our findings further suggest that 3D structure and RNA-protein interactions constrain RNA sequence evolution, and validate JAR3D as a tool to predict RNA 3D structure.
Collapse
Affiliation(s)
- Jian Wu
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Infectious Diseases Institute, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Neocles B. Leontis
- Department of Chemistry and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Infectious Diseases Institute, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Biao Ding
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Infectious Diseases Institute, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
38
|
van Bel AJE, Musetti R. Sieve element biology provides leads for research on phytoplasma lifestyle in plant hosts. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3737-3755. [PMID: 30972422 DOI: 10.1093/jxb/erz172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Phytoplasmas reside exclusively in sieve tubes, tubular arrays of sieve element-companion cell complexes. Hence, the cell biology of sieve elements may reveal (ultra)structural and functional conditions that are of significance for survival, propagation, colonization, and effector spread of phytoplasmas. Electron microscopic images suggest that sieve elements offer facilities for mobile and stationary stages in phytoplasma movement. Stationary stages may enable phytoplasmas to interact closely with diverse sieve element compartments. The unique, reduced sieve element outfit requires permanent support by companion cells. This notion implies a future focus on the molecular biology of companion cells to understand the sieve element-phytoplasma inter-relationship. Supply of macromolecules by companion cells is channelled via specialized symplasmic connections. Ca2+-mediated gating of symplasmic corridors is decisive for the communication within and beyond the sieve element-companion cell complex and for the dissemination of phytoplasma effectors. Thus, Ca2+ homeostasis, which affects sieve element Ca2+ signatures and induces a range of modifications, is a key issue during phytoplasma infection. The exceptional physical and chemical environment in sieve elements seems an essential, though not the only factor for phytoplasma survival.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Giessen, Germany
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
39
|
Konch TJ, Bora AP, Raidongia K. Disposable Fluidic Devices of Bionanochannels for Enzymatic Monitoring and Energy Harvesting. ACS APPLIED BIO MATERIALS 2019; 2:2549-2556. [PMID: 35030709 DOI: 10.1021/acsabm.9b00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature produces a plethora of nanochannels to carry out highly complex biological tasks in a sophisticated manner. There have been several studies to understand the characteristics of these channels; however, efforts to apply them for technological advancements are still scarce. Here, we have demonstrated that the fluidic channels of biomaterials can be harvested as nanofluidic devices to produce energy from enzymatic chemical reactions. The bionanochannel-based nanofluidic devices exhibit various nanofluidic phenomena like surface-charged-governed ionic conductivity and development of the transmembrane potential. The mobility of ions in the hydrated bionanochannels are found to be higher than that of bulk water. The cation-selective nature of the biochannels was also exploited to harvest a continuous supply of power up to 74 mW m-2 for 3 h from the enzymatic decomposition of urea. The transmembrane potential across the biochannels was also explored for label-free electrical monitoring of the enzymatic reaction inside the biological medium. Electrical monitoring on the kinetics of urease at different reaction temperatures suggested that inside biological medium the reaction goes through a pathway of lower activation energy (31.1 kJ) than that in the bulk environment (34.1 kJ). Enzyme urease was found to be more sustainable in bionanochannels than in glass vials.
Collapse
Affiliation(s)
- Tukhar Jyoti Konch
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Akash Protim Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Kalyan Raidongia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
40
|
Sarkate A, Saini SS, Gaid M, Teotia D, Mir JI, Agrawal PK, Beerhues L, Sircar D. Molecular cloning and functional analysis of a biphenyl phytoalexin-specific O-methyltransferase from apple cell suspension cultures. PLANTA 2019; 249:677-691. [PMID: 30357505 DOI: 10.1007/s00425-018-3031-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
This manuscript describes the cloning and functional characterization of a biphenyl phytoalexin biosynthetic gene, 3,5-dihydroxybiphenyl O-methyltransferase from elicitor-treated cell cultures of scab resistant apple cultivar 'Florina'. Apples belong to the subtribe Malinae of the Rosaceae family. Biphenyls and dibenzofurans are the specialized phytoalexins of Malinae, of which aucuparin is the most widely distributed biphenyl. The precursor of aucuparin, 3,5-dihydroxybiphenyl, is a benzoate-derived polyketide, which is formed by the sequential condensation of three molecules of malonyl-CoA and one molecule of benzoyl-CoA in a reaction catalyzed by biphenyl synthase (BIS). This 3,5-dihydroxybiphenyl then undergoes sequential 5-O-methylation, 4-hydroxylation, and finally 3-O-methylation to form aucuparin. A cDNA encoding O-methyltransferase (OMT) was isolated and functionally characterized from the cell cultures of scab-resistant apple cultivar 'Florina' (Malus domestica cultivar 'Florina'; MdOMT) after treatment with elicitor prepared from the apple scab causing fungus Venturia inaequalis. MdOMT catalyzed the regiospecific O-methylation of 3,5-dihydroxybiphenyl at the 5-position to form 3-hydroxy-5-methoxybiphenyl. The enzyme showed absolute substrate preference for 3,5-dihydroxybiphenyl. The elicitor-treated apple cell cultures showed transient increases in the MdOMT (GenBank ID MF740747) and MdBIS3 (GenBank ID JQ390523) transcript levels followed by the accumulation of biphenyls (aucuparin and noraucuparin) and dibenzofuran (eriobofuran) phytoalexins. MdOMT fused with N- and C-terminal yellow fluorescent protein showed cytoplasmic localization in the epidermis of Nicotiana benthamiana leaves. In scab inoculated greenhouse-grown 'Florina' plants, the expression of MdOMT was transiently induced in the stem followed by the accumulation of biphenyl phytoalexins.
Collapse
Affiliation(s)
- Amol Sarkate
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shashank Sagar Saini
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, 38106, Braunschweig, Germany
| | - Deepa Teotia
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Javid Iqbal Mir
- Plant Biotechnology Department, Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190005, Jammu and Kashmir, India
| | | | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, 38106, Braunschweig, Germany
| | - Debabrata Sircar
- Plant Molecular Biology Group, Biotechnology Department, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
41
|
Sun Y, Huang D, Chen X. Dynamic regulation of plasmodesmatal permeability and its application to horticultural research. HORTICULTURE RESEARCH 2019; 6:47. [PMID: 30962940 PMCID: PMC6441653 DOI: 10.1038/s41438-019-0129-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 05/10/2023]
Abstract
Effective cell-to-cell communication allows plants to fine-tune their developmental processes in accordance with the prevailing environmental stimuli. Plasmodesmata (PD) are intercellular channels that span the plant cell wall and serve as cytoplasmic bridges to facilitate efficient exchange of signaling molecules between neighboring cells. The identification of PD-associated proteins and the subsequent elucidation of the regulation of PD structure have provided vital insights into the role of PD architecture in enforcing crucial cellular processes, including callose deposition, ER-Golgi-based secretion, cytoskeleton dynamics, membrane lipid raft organization, chloroplast metabolism, and cell wall formation. In this review, we summarize the emerging discoveries from recent studies that elucidated the regulatory mechanisms involved in PD biogenesis and the dynamics of PD opening-closure. Retrospectively, PD-mediated cell-to-cell communication has been implicated in diverse cellular and physiological processes that are fundamental for the development of horticultural plants. The potential application of PD biotechnological engineering represents a powerful approach for improving agronomic traits in horticultural crops in the future.
Collapse
Affiliation(s)
- Yanbiao Sun
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Dingquan Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
42
|
Li Z, Zhang Y, Jiang Z, Jin X, Zhang K, Wang X, Han C, Yu J, Li D. Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cell-to-cell movement of Barley stripe mosaic virus. MOLECULAR PLANT PATHOLOGY 2018; 19:1222-1237. [PMID: 28872759 PMCID: PMC6638131 DOI: 10.1111/mpp.12612] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 05/18/2023]
Abstract
Barley stripe mosaic virus (BSMV) Triple Gene Block1 (TGB1) is a multifunctional movement protein with RNA-binding, ATPase and helicase activities which mainly localizes to the plasmodesmata (PD) in infected cells. Here, we show that TGB1 localizes to the nucleus and the nucleolus, as well as the cytoplasm, and that TGB1 nuclear-cytoplasmic trafficking is required for BSMV cell-to-cell movement. Prediction analyses and laser scanning confocal microscopy (LSCM) experiments verified that TGB1 possesses a nucleolar localization signal (NoLS) (amino acids 95-104) and a nuclear localization signal (NLS) (amino acids 227-238). NoLS mutations reduced BSMV cell-to-cell movement significantly, whereas NLS mutations almost completely abolished movement. Furthermore, neither the NoLS nor NLS mutant viruses could infect Nicotiana benthamiana systemically, although the NoLS mutant virus was able to establish systemic infections of barley. Protein interaction experiments demonstrated that TGB1 interacts directly with the glycine-arginine-rich (GAR) domain of the nucleolar protein fibrillarin (Fib2). Moreover, in BSMV-infected cells, Fib2 accumulation increased by about 60%-70% and co-localized with TGB1 in the plasmodesmata. In addition, BSMV cell-to-cell movement in fib2 knockdown transgenic plants was reduced to less than one-third of that of non-transgenic plants. Fib2 also co-localized with both TGB1 and BSMV RNA, which are the main components of the ribonucleoprotein (RNP) movement complex. Collectively, these results show that TGB1-Fib2 interactions play a direct role in cell-to-cell movement, and we propose that Fib2 is hijacked by BSMV TGB1 to form a BSMV RNP which functions in cell-to-cell movement.
Collapse
Affiliation(s)
- Zhenggang Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Xuejiao Jin
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Kun Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Xianbing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| |
Collapse
|
43
|
Lukan T, Baebler Š, Pompe-Novak M, Guček K, Zagorščak M, Coll A, Gruden K. Cell Death Is Not Sufficient for the Restriction of Potato Virus Y Spread in Hypersensitive Response-Conferred Resistance in Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:168. [PMID: 29497431 PMCID: PMC5818463 DOI: 10.3389/fpls.2018.00168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/30/2018] [Indexed: 05/25/2023]
Abstract
Hypersensitive response (HR)-conferred resistance to viral infection restricts the virus spread and is accompanied by the induction of cell death, manifested as the formation of necrotic lesions. While it is known that salicylic acid is the key component in the orchestration of the events restricting viral spread in HR, the exact function of the cell death in resistance is still unknown. We show that potato virus Y (PVY) can be detected outside the cell death zone in Ny-1-mediated HR in potato plants (cv. Rywal), observed as individual infected cells or small clusters of infected cells outside the cell death zone. By exploiting the features of temperature dependent Ny-1-mediated resistance, we confirmed that the cells at the border of the cell death zone are alive and harbor viable PVY that is able to reinitiate infection. To get additional insights into this phenomenon we further studied the dynamics of both cell death zone expansion and occurrence of viral infected cell islands outside it. We compared the response of Rywal plants to their transgenic counterparts, impaired in SA accumulation (NahG-Rywal), where the lesions occur but the spread of the virus is not restricted. We show that the virus is detected outside the cell death zone in all lesion developmental stages of HR lesions. We also measured the dynamics of lesions expansion in both genotypes. We show that while rapid lesion expansion is observed in SA-depleted plants, virus spread is even faster. On the other hand the majority of analyzed lesions slowly expand also in HR-conferred resistance opening the possibility that the infected cells are eventually engulfed by cell death zone. Taken altogether, we suggest that the HR cell death is separated from the resistance mechanisms which lead to PVY restriction in Ny-1 genetic background. We propose that HR should be regarded as a process where the dynamics of events is crucial for effectiveness of viral arrest albeit the exact mechanism conferring this resistance remains unknown.
Collapse
Affiliation(s)
- Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maruša Pompe-Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Katja Guček
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
44
|
Keppler BD, Song J, Nyman J, Voigt CA, Bent AF. 3-Aminobenzamide Blocks MAMP-Induced Callose Deposition Independently of Its Poly(ADPribosyl)ation Inhibiting Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:1907. [PMID: 30619442 PMCID: PMC6305757 DOI: 10.3389/fpls.2018.01907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/07/2018] [Indexed: 05/15/2023]
Abstract
Cell wall reinforcement with callose is a frequent plant response to infection. Poly(ADP-ribosyl)ation is a protein post-translational modification mediated by poly(ADP-ribose) polymerases (PARPs). Poly(ADP-ribosyl)ation has well-known roles in DNA damage repair and has more recently been shown to contribute to plant immune responses. 3-aminobenzamide (3AB) is an established PARP inhibitor and it blocks the callose deposition elicited by flg22 or elf18, two microbe-associated molecular patterns (MAMPs). However, we report that an Arabidopsis parp1parp2parp3 triple mutant does not exhibit loss of flg22-induced callose deposition. Additionally, the more specific PARP inhibitors PJ-34 and INH2BP inhibit PARP activity in Arabidopsis but do not block MAMP-induced callose deposition. These data demonstrate off-target activity of 3AB and indicate that 3AB inhibits callose deposition through a mechanism other than poly(ADP-ribosyl)ation. POWDERY MILDEW RESISTANT 4 (PMR4) is the callose synthase responsible for the majority of MAMP- and wound-induced callose deposition in Arabidopsis. 3AB does not block wound-induced callose deposition, and 3AB does not reduce the PMR4 mRNA abundance increase in response to flg22. Levels of PMR4-HA protein increase in response to flg22, and increase even more in flg22 + 3AB despite no callose being produced. The callose synthase inhibitor 2-deoxy-D-glucose does not cause similar impacts on PMR4-HA protein levels. Beyond MAMPs, we find that 3AB also reduces callose deposition induced by powdery mildew (Golovinomyces cichoracearum) and impairs the penetration resistance of a PMR4 overexpression line. 3AB thus reveals pathogenesis-associated pathways that activate callose synthase enzymatic activity distinct from those that elevate PMR4 mRNA and protein abundance.
Collapse
Affiliation(s)
- Brian D. Keppler
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
| | - Junqi Song
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
| | - Jackson Nyman
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
| | - Christian A. Voigt
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Andrew F. Bent
- Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, United States
- *Correspondence: Andrew F. Bent,
| |
Collapse
|
45
|
|
46
|
Lv MF, Xie L, Song XJ, Hong J, Mao QZ, Wei TY, Chen JP, Zhang HM. Phloem-limited reoviruses universally induce sieve element hyperplasia and more flexible gateways, providing more channels for their movement in plants. Sci Rep 2017; 7:16467. [PMID: 29184063 PMCID: PMC5705664 DOI: 10.1038/s41598-017-15686-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Virion distribution and ultrastructural changes induced by the infection of maize or rice with four different reoviruses were examined. Rice black streaked dwarf virus (RBSDV, genus Fijivirus), Rice ragged stunt virus (RRSV, genus Oryzavirus), and Rice gall dwarf virus (RGDV, genus Phytoreovirus) were all phloem-limited and caused cellular hyperplasia in the phloem resulting in tumors or vein swelling and modifying the cellular arrangement of sieve elements (SEs). In contrast, virions of Rice dwarf virus (RDV, genus Phytoreovirus) were observed in both phloem and mesophyll and the virus did not cause hyperplasia of SEs. The three phloem-limited reoviruses (but not RDV) all induced more flexible gateways at the SE-SE interfaces, especially the non-sieve plate interfaces. These flexible gateways were also observed for the first time at the cellular interfaces between SE and phloem parenchyma (PP). In plants infected with any of the reoviruses, virus-like particles could be seen within the flexible gateways, suggesting that these gateways may serve as channels for the movement of plant reoviruses with their large virions between SEs or between SEs and PP. SE hyperplasia and the increase in flexible gateways may be a universal strategy for the movement of phloem-limited reoviruses.
Collapse
Affiliation(s)
- Ming-Fang Lv
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Li Xie
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Public Lab, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xi-Jiao Song
- Public Lab, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian Hong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Zhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tai-Yun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Ping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Heng-Mu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
47
|
Kraner ME, Müller C, Sonnewald U. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:696-709. [PMID: 28865150 DOI: 10.1111/tpj.13702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 05/23/2023]
Abstract
In plants, intercellular communication and exchange are highly dependent on cell wall bridging structures between adhering cells, so-called plasmodesmata (PD). In our previous genetic screen for PD-deficient Arabidopsis mutants, we described choline transporter-like 1 (CHER1) being important for PD genesis and maturation. Leaves of cher1 mutant plants have up to 10 times less PD, which do not develop to complex structures. Here we utilize the T-DNA insertion mutant cher1-4 and report a deep comparative proteomic workflow for the identification of cell-wall-embedded PD-associated proteins. Analyzing triplicates of cell-wall-enriched fractions in depth by fractionation and quantitative high-resolution mass spectrometry, we compared > 5000 proteins obtained from fully developed leaves. Comparative data analysis and subsequent filtering generated a list of 61 proteins being significantly more abundant in Col-0. This list was enriched for previously described PD-associated proteins. To validate PD association of so far uncharacterized proteins, subcellular localization analyses were carried out by confocal laser-scanning microscopy. This study confirmed the association of PD for three out of four selected candidates, indicating that the comparative approach indeed allowed identification of so far undescribed PD-associated proteins. Performing comparative cell wall proteomics of Nicotiana benthamiana tissue, we observed an increase in abundance of these three selected candidates during sink to source transition. Taken together, our comparative proteomic approach revealed a valuable data set of potential PD-associated proteins, which can be used as a resource to unravel the molecular composition of complex PD and to investigate their function in cell-to-cell communication.
Collapse
Affiliation(s)
- Max E Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| | - Carmen Müller
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| |
Collapse
|
48
|
Yu X, Feng B, He P, Shan L. From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:109-137. [PMID: 28525309 PMCID: PMC6240913 DOI: 10.1146/annurev-phyto-080516-035649] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) are detected as nonself by host pattern recognition receptors (PRRs) and activate pattern-triggered immunity (PTI). Microbial invasions often trigger the production of host-derived endogenous signals referred to as danger- or damage-associated molecular patterns (DAMPs), which are also perceived by PRRs to modulate PTI responses. Collectively, PTI contributes to host defense against infections by a broad range of pathogens. Remarkable progress has been made toward demonstrating the cellular and physiological responses upon pattern recognition, elucidating the molecular, biochemical, and genetic mechanisms of PRR activation, and dissecting the complex signaling networks that orchestrate PTI responses. In this review, we present an update on the current understanding of how plants recognize and respond to nonself patterns, a process from which the seemingly chaotic responses form into a harmonic defense.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843;
| | - Baomin Feng
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Ping He
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | - Libo Shan
- Department of Plant Pathology and Microbiology and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843;
| |
Collapse
|
49
|
Ye ZW, Chen QF, Chye ML. Arabidopsis thaliana Acyl-CoA-binding protein ACBP6 interacts with plasmodesmata-located protein PDLP8. PLANT SIGNALING & BEHAVIOR 2017; 12:e1359365. [PMID: 28786767 PMCID: PMC5616145 DOI: 10.1080/15592324.2017.1359365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 05/22/2023]
Abstract
In Arabidopsis thaliana, six acyl-CoA-binding proteins (ACBPs), designated as AtACBP1 to AtACBP6, have been identified to function in various events related to plant stress and development. The 10-kDa AtACBP6 is the smallest in this protein family, and recombinant AtACBP6 interacts with lipids in vitro by binding to acyl-CoA esters and phosphatidylcholine. Using anti-AtACBP6 antibodies in immunoelectron microscopy, we have localized AtACBP6 in the Arabidopsis phloem. The detection of immunogold grains in the plasmodesmata suggested that AtACBP6 could move from the companion cells to the sieve elements via the plasmodesmata. As AtACBP6 has been identified in a membrane-based interactome analysis to be a potential protein partner of Plasmodesmata-Localized Protein, PDLP8, AtACBP6-PDLP8 interaction was investigated herein utilizing isothermal titration calorimetry, as well as pull-down and bimolecular fluorescence complementation assays (BiFC). Notably, BiFC data revealed that AtACBP6-PDLP8 interaction occurred at the plasma membrane, which was unexpected as AtACBP6 has been previously identified in the cytosol. AtACBP6 expression was generally higher than PDLP8 in β-glucuronidase (GUS) assays on transgenic Arabidopsis transformed with AtACBP6 or PDLP8 promoter-driven GUS, consistent with qRT-PCR and microarray results. Furthermore, western blot analysis using anti-AtACBP6 antibodies showed a reduction in AtACBP6 expression in the pdlp8 T-DNA insertional mutant, suggesting that PDLP8 may possibly influence AtACBP6 accumulation in the sieve elements, probably in the plasmodesmata, where PDLP8 is confined and to where AtACBP6 has been immunodetected.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Qin-Fang Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Xu B, Cheval C, Laohavisit A, Hocking B, Chiasson D, Olsson TSG, Shirasu K, Faulkner C, Gilliham M. A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses. THE NEW PHYTOLOGIST 2017; 215:77-84. [PMID: 28513846 PMCID: PMC5488192 DOI: 10.1111/nph.14599] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Plants sense microbial signatures via activation of pattern recognition receptors (PPRs), which trigger a range of cellular defences. One response is the closure of plasmodesmata, which reduces symplastic connectivity and the capacity for direct molecular exchange between host cells. Plasmodesmal flux is regulated by a variety of environmental cues but the downstream signalling pathways are poorly defined, especially the way in which calcium regulates plasmodesmal closure. Here, we identify that closure of plasmodesmata in response to bacterial flagellin, but not fungal chitin, is mediated by a plasmodesmal-localized Ca2+ -binding protein Calmodulin-like 41 (CML41). CML41 is transcriptionally upregulated by flg22 and facilitates rapid callose deposition at plasmodesmata following flg22 treatment. CML41 acts independently of other defence responses triggered by flg22 perception and reduces bacterial infection. We propose that CML41 enables Ca2+ -signalling specificity during bacterial pathogen attack and is required for a complete defence response against Pseudomonas syringae.
Collapse
Affiliation(s)
- Bo Xu
- Australian Research Council Centre of Excellence in Plant Energy BiologyWaite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
- School of Agriculture, Food and WineWaite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | - Cécilia Cheval
- John Innes CentreNorwich Research ParkColney LaneNorwichNR4 7UHUK
| | - Anuphon Laohavisit
- RIKEN Centre for Sustainable Resource ScienceTsurumi‐kuYokohama230‐0045Japan
| | - Bradleigh Hocking
- Australian Research Council Centre of Excellence in Plant Energy BiologyWaite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
- School of Agriculture, Food and WineWaite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | - David Chiasson
- School of Agriculture, Food and WineWaite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | | | - Ken Shirasu
- RIKEN Centre for Sustainable Resource ScienceTsurumi‐kuYokohama230‐0045Japan
| | | | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy BiologyWaite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
- School of Agriculture, Food and WineWaite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| |
Collapse
|