1
|
Zhang Y, Liu Y, Zhang C, Xie T, Xia J, Ma R, Wang J, You H, Ke L, Hua X. HSCA2 G87D point mutation enhances Arabidopsis proline tolerance via boosting mitochondrial Fe-S cluster assembly. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109916. [PMID: 40250014 DOI: 10.1016/j.plaphy.2025.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
As a mitochondrial HSP70 chaperone, HSCA2 orchestrates iron-sulfur (Fe-S) cluster assembly through dynamic interactions with scaffold protein ISU1, facilitating Fe-S cluster transfer to recipient proteins critical for electron transport chain (ETC) function. However, its regulatory roles in plant development and stress adaptation remain elusive. This study investigated the potential stress resistance function and molecular mechanisms of a novel G87D mutation in Arabidopsis HSCA2 (HSCA2m). We found that HSCA2m mutant exhibited increased resistance to high proline levels without altering proline uptake capacity. Under proline treatment, HSCA2m seedlings displayed lower malondialdehyde (MDA) and reactive oxygen species (ROS) levels, and higher superoxide dismutase (SOD) activity, indicating reduced stress damage. Molecular characterization revealed the induction of mitochondrial stress-related marker genes AOX1a and AT12CYS-2 in HSCA2m was suppressed. Strikingly, the G87D substitution enhanced intrinsic ATPase activity without disrupting ISU1 binding, while promoting HSCA2 transcript up-regulation under proline stress. Additionally, HSCA2m demonstrated increased tolerance to higher Fe2+ concentrations. These findings suggested that this mutation might enhance the supply of Fe-S clusters to Fe-S proteins, thereby mitigating proline-induced mitochondrial stress. Transgenic Arabidopsis overexpressing HSCA2m, but not HSCA2, showed enhanced proline resistance, highlighting the potential of HSCA2m as an elite allele for improving plant stress tolerance.
Collapse
Affiliation(s)
- Yifan Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yunhui Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Chunni Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Tao Xie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Jibenben Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Rong Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Jieyao Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Huiyu You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Liping Ke
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Xuejun Hua
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
2
|
Jwa NS, Hwang BK. Ferroptosis in plant immunity. PLANT COMMUNICATIONS 2025:101299. [PMID: 40057824 DOI: 10.1016/j.xplc.2025.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/13/2025]
Abstract
Plant cell death is mediated by calcium, iron, and reactive oxygen species (ROS) signaling in plant immunity. The reconstruction of a nucleotide-binding leucine-rich-repeat receptor (NLR) supramolecular structure, called the resistosome, is intimately involved in the hypersensitive response (HR), a type of cell death involved in effector-triggered immunity (ETI). Iron is a crucial redox catalyst in various cellular reactions. Ferroptosis is a regulated, non-apoptotic form of iron- and ROS-dependent cell death in plants. Pathogen infections trigger iron accumulation and ROS bursts in plant cells, leading to lipid peroxidation via the Fenton reaction and subsequent ferroptosis in plant cells similar to that in mammalian cells. The small-molecule inducer erastin triggers iron-dependent lipid ROS accumulation and glutathione depletion, leading to HR cell death in plant immunity. Calcium (Ca2+) is another major mediator of plant immunity. Cytoplasmic Ca2+ influx through calcium-permeable channels, the resistosomes, mediates iron- and ROS-dependent ferroptotic cell death under reduced glutathione reductase (GR) expression levels in the ETI response. Acibenzolar-S-methyl (ASM), a plant defense activator, enhances Ca2+ influx, ROS and iron accumulation, and lipid peroxidation to trigger ferroptotic cell death. These breakthroughs suggest a potential role for Ca2+ signaling in ferroptosis and its coordination with iron and ROS signaling in plant immunity. In this review, we highlight the essential roles of calcium, iron, and ROS signaling in ferroptosis during plant immunity and discuss advances in the understanding of how Ca2+-mediated ferroptotic cell death orchestrates effective plant immune responses against invading pathogens.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea.
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
3
|
Mohammadnia S, Haghighi M, Mozafarian M, Geösel A. Impact of Mycorrhiza Inoculations and Iron Amino Chelate on Growth and Physiological Changes of Cucumber Seedlings Across Different pH Levels. PLANTS (BASEL, SWITZERLAND) 2025; 14:341. [PMID: 39942902 PMCID: PMC11819710 DOI: 10.3390/plants14030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
Cucumber, a vital greenhouse crop, thrives in soils with a pH range of 5.5-6.5, yet the combined effects of arbuscular mycorrhizal fungi (AMF) and iron amino chelates on its growth and physiological responses across varying pH levels remain underexplored. This study used a factorial design in a completely randomized setup with three replications and was conducted at the Horticulture Department of Isfahan University of Technology. The aim of this study was to investigate the effects of AMF inoculation (Glomus mosseae) and iron amino chelates on the growth and physiological responses of cucumber plants at various pH levels. Treatments included two levels of AMF inoculation (non-inoculated as m1 and inoculated as m2), three levels of iron concentration (f1: no iron, f2: Johnson's nutrient solution, f3: Johnson's solution with iron amino chelate), and three pH levels (pH 5 (p1), pH 7 (p2), and pH 8 (p3)). The moisture was maintained at field capacity throughout the study. The results demonstrated that mycorrhizal inoculation at pH 7 significantly improved key traits, including chlorophyll content, photosynthesis rate, stomatal conductance, phenol content, and antioxidant activity. Mycorrhizal inoculation combined with 2 ppm of Fe amino chelate at pH 7 led to the highest improvement in shoot fresh weight of cucumber and physiological traits. However, at pH 7 without mycorrhiza, stress indicators such as ABA levels and antioxidant enzyme activities (SOD, POD, CAT, and APX) increased, highlighting the protective role of AMF under neutral pH conditions. In contrast, pH 5 was most effective for enhancing root and stem fresh weight. The lower pH may have facilitated better nutrient solubility and uptake, promoting root development and overall plant health by optimizing the availability of essential nutrients and reducing competition for resources under more acidic conditions. These findings highlight the potential of combining mycorrhizal inoculation with iron amino chelates at pH 7 not only to enhance cucumber growth and resilience in nutrient-limited environments but also to contribute to sustainable agricultural practices that address global challenges in food security and soil health.
Collapse
Affiliation(s)
- Saber Mohammadnia
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Haghighi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Mozafarian
- Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - András Geösel
- Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| |
Collapse
|
4
|
Li S, Li X, Jing P, Li M, Sun Y, Wang L, Shi Q, Yu Y. The Transcription Factor VvbHLH053 Regulates the Expression of Copper Homeostasis-Associated Genes VvCTr5/6 and VvFRO4 and Confers Root Development in Grapevine. Int J Mol Sci 2024; 26:128. [PMID: 39795986 PMCID: PMC11719594 DOI: 10.3390/ijms26010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Chlormequat chloride (CCC) has been demonstrated to inhibit plant growth and strengthen seedlings. The present study demonstrated that the root growth of Thompson seedless grapevine seedlings was significantly enhanced by the application of CCC treatment. Nevertheless, the precise mechanism by which CCC regulates plant root growth remains to be elucidated. Consequently, an RNA-sequencing (RNA-Seq) analysis was conducted on grapevine roots subjected to CCC treatment and those undergoing natural growth. A total of 819 differentially expressed genes were identified. Subsequently, Gene Ontology (GO) functional enrichment and weighted gene co-expression network analysis (WGCNA) identified the Copper (Cu) homeostasis-associated genes, VvCTr4/5/6/8 and VvFRO4, which play a pivotal role in mediating the effect of CCC. To further elucidate the transcription factor regulating these Cu homeostasis-associated genes, the key transcription factor VvbHLH053 was identified based on the PlantTFDB database, WGCNA results, and expression patterns under CCC treatment. Furthermore, multiple bHLH binding sites were identified on the promoters of VvCTr4/5/6 and VvFRO4. The GUS activity analysis and dual-luciferase assay demonstrated that VvbHLH053 can directly regulate the expression of VvCTr5/6 and VvFRO4. These findings reveal the feedback mechanism of grapevine root growth mediated by CCC and establish a direct functional relationship between CCC, VvbHLH053, and Cu homeostasis-associated genes that regulate root growth.
Collapse
Affiliation(s)
- Songqi Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (S.L.); (X.L.); (P.J.); (M.L.); (Y.S.); (L.W.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Xufei Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (S.L.); (X.L.); (P.J.); (M.L.); (Y.S.); (L.W.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Pengwei Jing
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (S.L.); (X.L.); (P.J.); (M.L.); (Y.S.); (L.W.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Min Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (S.L.); (X.L.); (P.J.); (M.L.); (Y.S.); (L.W.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Yadan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (S.L.); (X.L.); (P.J.); (M.L.); (Y.S.); (L.W.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Leilei Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (S.L.); (X.L.); (P.J.); (M.L.); (Y.S.); (L.W.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Qiaofang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (S.L.); (X.L.); (P.J.); (M.L.); (Y.S.); (L.W.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| | - Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (S.L.); (X.L.); (P.J.); (M.L.); (Y.S.); (L.W.); (Q.S.)
- Henan Provincial Engineering Research Center on Characteristic Berry Germplasm Innovation & Utilization, Luoyang 471023, China
| |
Collapse
|
5
|
Liu Y, Lin H, Liu M, Lin L, Wen Y. Establishment of a Mitochondrial Metabolism-Related Diagnostic Model in Schizophrenia Based on LASSO Algorithm. Psychiatry Investig 2024; 21:618-628. [PMID: 38960439 PMCID: PMC11222072 DOI: 10.30773/pi.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Schizophrenia is a common mental disorder, and mitochondrial function represents a potential therapeutic target for psychiatric diseases. The role of mitochondrial metabolism-related genes (MRGs) in the diagnosis of schizophrenia remains unknown. This study aimed to identify candidate genes that may influence the diagnosis and treatment of schizophrenia based on MRGs. METHODS Three schizophrenia datasets were obtained from the Gene Expression Omnibus database. MRGs were collected from relevant literature. The differentially expressed genes between normal samples and schizophrenia samples were screened using the limma package. Venn analysis was performed to identify differentially expressed MRGs (DEMRGs) in schizophrenia. Based on the STRING database, hub genes in DEMRGs were identified using the MCODE algorithm in Cytoscape. A diagnostic model containing hub genes was constructed using LASSO regression and logistic regression analysis. The relationship between hub genes and drug sensitivity was explored using the DSigDB database. An interaction network between miRNA-transcription factor (TF)-hub genes was created using the Network-Analyst website. RESULTS A total of 1,234 MRGs, 172 DEMRGs, and 6 hub genes with good diagnostic performance were identified. Ten potential candidate drugs (rifampicin, fulvestrant, pentadecafluorooctanoic acid, etc.) were selected. Thirty-four miRNAs targeting genes in the diagnostic model (ANGPTL4, CPT2, GLUD1, MED1, and MED20), as well as 137 TFs, were identified. CONCLUSION Six potential candidate genes showed promising diagnostic significance. rifampicin, fulvestrant, and pentadecafluorooctanoic acid were potential drugs for future research in the treatment of schizophrenia. These findings provided valuable evidence for the understanding of schizophrenia pathogenesis, diagnosis, and drug treatment.
Collapse
Affiliation(s)
- Yinfang Liu
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Han Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Meicen Liu
- Department of Pharmacy, The First Hospital of Longyan, Longyan, China
| | - Liping Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Yaohui Wen
- Department of Laboratory Medicine, The Third Hospital of Longyan, Longyan, China
| |
Collapse
|
6
|
Sadoine M, De Michele R, Župunski M, Grossmann G, Castro-Rodríguez V. Monitoring nutrients in plants with genetically encoded sensors: achievements and perspectives. PLANT PHYSIOLOGY 2023; 193:195-216. [PMID: 37307576 PMCID: PMC10469547 DOI: 10.1093/plphys/kiad337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023]
Abstract
Understanding mechanisms of nutrient allocation in organisms requires precise knowledge of the spatiotemporal dynamics of small molecules in vivo. Genetically encoded sensors are powerful tools for studying nutrient distribution and dynamics, as they enable minimally invasive monitoring of nutrient steady-state levels in situ. Numerous types of genetically encoded sensors for nutrients have been designed and applied in mammalian cells and fungi. However, to date, their application for visualizing changing nutrient levels in planta remains limited. Systematic sensor-based approaches could provide the quantitative, kinetic information on tissue-specific, cellular, and subcellular distributions and dynamics of nutrients in situ that is needed for the development of theoretical nutrient flux models that form the basis for future crop engineering. Here, we review various approaches that can be used to measure nutrients in planta with an overview over conventional techniques, as well as genetically encoded sensors currently available for nutrient monitoring, and discuss their strengths and limitations. We provide a list of currently available sensors and summarize approaches for their application at the level of cellular compartments and organelles. When used in combination with bioassays on intact organisms and precise, yet destructive analytical methods, the spatiotemporal resolution of sensors offers the prospect of a holistic understanding of nutrient flux in plants.
Collapse
Affiliation(s)
- Mayuri Sadoine
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Roberto De Michele
- Institute of Biosciences and Bioresources, National Research Council of Italy, Palermo 90129, Italy
| | - Milan Župunski
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
7
|
Li Y, Li R, Ren X, Wang T, Yu H, Liu Q. Nano-Fe promotes accumulation of phytoestrogens and volatile compounds in Trifolium pratense flowers. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2023; 35:247-262. [DOI: 10.1007/s40626-023-00280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/11/2023] [Indexed: 01/06/2025]
|
8
|
Vinhas S, Ivanova G, de Castro B, Rangel M. NMR and EPR study of the interaction of tris(3-hydroxy-4-pyridinonato) Ga(III) complexes with liposomes that mimic plant membranes. Biophys Chem 2023; 298:107021. [PMID: 37182237 DOI: 10.1016/j.bpc.2023.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
We performed an NMR and EPR study of the interaction of four [Ga(3,4-HPO)3] chelates with liposomes derived from a soybean extract (SEL) and simpler formulations using POPC (100%) and POPE:POPC (50%). Parent [Fe(3,4-HPO)3] chelates are eligible to prevent Iron Deficiency Chlorosis and we took advantage of the likenesses of the ions Fe (III) and Ga (III), and the fact their metal ion complexes are isostructural, to perform a combined NMR and EPR study to get information about the permeation properties of the complexes. The results demonstrate the presence of liposomes loaded with Ga-chelates and that the distribution of complexes alongside the bilayer is dependent on their structure. Two compounds, [Ga(mpp)3] and [Ga(etpp)3], have a higher affinity for the polar region of the liposome bilayer thus suggesting that their structure facilitates their permanence at the root-rhizosphere interface. Chelates [Ga(dmpp)3] and [Ga(mrb13)3] interact with all types of protons of the lipid bilayer thus implying that they travel all along the bilayer structure indicating their higher permeation properties through soybean membranes. The results obtained for compound, [Ga(mrb13)3], which has been included in this work but was not yet tested in plant supplementation experiments, encourage its testing in in vivo plant studies once this study revealed that it interacts strongly with the model membranes. If the results of the future experiments in plants are positive and consistent with the present membrane-interaction studies the latter could constitute a good screening test for future compounds thus saving reagents and time.
Collapse
Affiliation(s)
- Sílvia Vinhas
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Galya Ivanova
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Baltazar de Castro
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Maria Rangel
- REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
9
|
Tran LH, Kim JG, Jung S. Expression of the Arabidopsis Mg-chelatase H subunit alleviates iron deficiency-induced stress in transgenic rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1098808. [PMID: 36938029 PMCID: PMC10017980 DOI: 10.3389/fpls.2023.1098808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 06/12/2023]
Abstract
The most common symptom of iron (Fe) deficiency in plants is leaf chlorosis caused by impairment of chlorophyll biosynthesis. Magnesium (Mg)-chelatase H subunit (CHLH) is a key component in both chlorophyll biosynthesis and plastid signaling, but its role in Fe deficiency is poorly understood. Heterologous expression of the Arabidopsis thaliana Mg-chelatase H subunit gene (AtCHLH) increased Mg-chelatase activity by up to 6-fold and abundance of its product, Mg-protoporphyrin IX (Mg-Proto IX), by 60-75% in transgenic rice (Oryza sativa) seedlings compared to wild-type (WT) controls. Noticeably, the transgenic seedlings showed alleviation of Fe deficiency symptoms, as evidenced by their less pronounced leaf chlorosis and lower declines in shoot growth, chlorophyll contents, and photosynthetic efficiency, as indicated by F v/F m and electron transport rate, compared to those in WT seedlings under Fe deficiency. Porphyrin metabolism was differentially regulated by Fe deficiency between WT and transgenic seedlings, particularly with a higher level of Mg-Proto IX in transgenic lines, showing that overexpression of AtCHLH reprograms porphyrin metabolism in transgenic rice. Leaves of Fe-deficient transgenic seedlings exhibited greater upregulation of deoxymugineic acid biosynthesis-related genes (i.e., NAS, NAS2, and NAAT1), YSL2 transporter gene, and Fe-related transcription factor genes IRO2 and IDEF2 than those of WT, which may also partly contribute to alleviating Fe deficiency. Although AtCHLH was postulated to act as a receptor for abscisic acid (ABA), exogenous ABA did not alter the phenotypes of Fe-deficient WT or transgenic seedlings. Our study demonstrates that modulation of porphyrin biosynthesis through expression of AtCHLH in transgenic rice alleviates Fe deficiency-induced stress, suggesting a possible role for CHLH in Fe deficiency responses.
Collapse
|
10
|
Pagani MA, Gomez-Casati DF. Advances in Iron Retrograde Signaling Mechanisms and Uptake Regulation in Photosynthetic Organisms. Methods Mol Biol 2023; 2665:121-145. [PMID: 37166598 DOI: 10.1007/978-1-0716-3183-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Iron (Fe) is an essential metal for the growth and development of different organisms, including plants and algae. This metal participates in different biological processes, among which are cellular respiration and photosynthesis. Fe is found associated with heme groups and as part of inorganic Fe-S groups as cofactors of numerous cellular proteins. Although Fe is abundant in soils, it is often not bioavailable due to soil pH. For this reason, photosynthetic organisms have developed different strategies for the uptake, the sensing of Fe intracellular levels but also different mechanisms that maintain and regulate adequate concentrations of this metal in response to physiological needs. This work focuses on discussing recent advances in the characterization of the mechanisms of Fe homeostasis and Fe retrograde signaling in photosynthetic organisms.
Collapse
Affiliation(s)
- Maria A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
11
|
Muhammad D, Clark NM, Haque S, Williams CM, Sozzani R, Long TA. POPEYE intercellular localization mediates cell-specific iron deficiency responses. PLANT PHYSIOLOGY 2022; 190:2017-2032. [PMID: 35920794 PMCID: PMC9614487 DOI: 10.1093/plphys/kiac357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/01/2022] [Indexed: 05/28/2023]
Abstract
Plants must tightly regulate iron (Fe) sensing, acquisition, transport, mobilization, and storage to ensure sufficient levels of this essential micronutrient. POPEYE (PYE) is an iron responsive transcription factor that positively regulates the iron deficiency response, while also repressing genes essential for maintaining iron homeostasis. However, little is known about how PYE plays such contradictory roles. Under iron-deficient conditions, pPYE:GFP accumulates in the root pericycle while pPYE:PYE-GFP is localized to the nucleus in all Arabidopsis (Arabidopsis thaliana) root cells, suggesting that PYE may have cell-specific dynamics and functions. Using scanning fluorescence correlation spectroscopy and cell-specific promoters, we found that PYE-GFP moves between different cells and that the tendency for movement corresponds with transcript abundance. While localization to the cortex, endodermis, and vasculature is required to manage changes in iron availability, vasculature and endodermis localization of PYE-GFP protein exacerbated pye-1 defects and elicited a host of transcriptional changes that are detrimental to iron mobilization. Our findings indicate that PYE acts as a positive regulator of iron deficiency response by regulating iron bioavailability differentially across cells, which may trigger iron uptake from the surrounding rhizosphere and impact root energy metabolism.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Biomathematics Graduate Program, Raleigh, North Carolina 27695, USA
| | - Samiul Haque
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Cranos M Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Biomathematics Graduate Program, Raleigh, North Carolina 27695, USA
| | - Terri A Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
12
|
Nguyen NK, Wang J, Liu D, Hwang BK, Jwa NS. Rice iron storage protein ferritin 2 (OsFER2) positively regulates ferroptotic cell death and defense responses against Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:1019669. [PMID: 36352872 PMCID: PMC9639352 DOI: 10.3389/fpls.2022.1019669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ferritin is a ubiquitous iron storage protein that regulates iron homeostasis and oxidative stress in plants. Iron plays an important role in ferroptotic cell death response of rice (Oryza sativa) to Magnaporthe oryzae infection. Here, we report that rice ferritin 2, OsFER2, is required for iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death and defense response against the avirulent M. oryzae INA168. The full-length ferritin OsFER2 and its transit peptide were localized to the chloroplast, the most Fe-rich organelle for photosynthesis. This suggests that the transit peptide acts as a signal peptide for the rice ferritin OsFER2 to move into chloroplasts. OsFER2 expression is involved in rice resistance to M. oryzae infection. OsFER2 knock-out in wild-type rice HY did not induce ROS and ferric ion (Fe3+) accumulation, lipid peroxidation and hypersensitive response (HR) cell death, and also downregulated the defense-related genes OsPAL1, OsPR1-b, OsRbohB, OsNADP-ME2-3, OsMEK2 and OsMPK1, and vacuolar membrane transporter OsVIT2 expression. OsFER2 complementation in ΔOsfer2 knock-out mutants restored ROS and iron accumulation and HR cell death phenotypes during infection. The iron chelator deferoxamine, the lipid-ROS scavenger ferrostatin-1, the actin microfilament polymerization inhibitor cytochalasin E and the redox inhibitor diphenyleneiodonium suppressed ROS and iron accumulation and HR cell death in rice leaf sheaths. However, the small-molecule inducer erastin did not trigger iron-dependent ROS accumulation and HR cell death induction in ΔOsfer2 mutants. These combined results suggest that OsFER2 expression positively regulates iron- and ROS-dependent ferroptotic cell death and defense response in rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Dongping Liu
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| |
Collapse
|
13
|
Kurt F, Kurt B, Filiz E, Yildiz K, Akbudak MA. Mitochondrial iron transporter (MIT) gene in potato (Solanum tuberosum): comparative bioinformatics, physiological and expression analyses in response to drought and salinity. Biometals 2022; 35:875-887. [PMID: 35764832 DOI: 10.1007/s10534-022-00411-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
Abstract
Mitochondrial iron transporter (MIT) genes are essential for mitochondrial acquisition/import of iron and vital to proper functioning of mitochondria. Unlike other organisms, research on the MITs in plants is limited. The present study provides comparative bioinformatics assays for the potato MIT gene (StMIT) as well as gene expression analyses. The phylogenetic analyses revealed monocots-dicot divergence in MIT proteins and it was also found clade specific motif diversity. In addition, docking analyses indicated that Asp172 and Gly100 residues to be identified as the closest residues binding to ferrous iron. The percentage of structure overlap of the StMIT 3D protein model with Arabidopsis, maize and rice MIT proteins was found between 80.18% and 85.71%. The transcript analyses exhibited that the expression of StMIT was triggered under drought and salinity stresses. The findings of the present study would provide valuable leads for further studies targeting specifically the MIT gene and generally the plant iron metabolism.
Collapse
Affiliation(s)
- Firat Kurt
- Faculty of Applied Sciences, Plant Production and Technologies, Mus Alparslan University, Muş, Turkey
| | - Baris Kurt
- Department of Mathematics, Faculty of Education, Mus Alparslan University, Muş, Turkey
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, Duzce, Turkey.
| | - Kubra Yildiz
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - M Aydın Akbudak
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
14
|
Cheng S, Li S, Liang Z, Huang F, Wu X, Han Z, Huang X, Huang X, Ren Y. Effect of application of iron (Fe) and α-ketoglutaric acid on growth, photosynthesis, and Fe content in fragrant rice seedlings. PHOTOSYNTHETICA 2022; 60:293-303. [PMID: 39650768 PMCID: PMC11558503 DOI: 10.32615/ps.2022.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2024]
Abstract
At a three-leaf stage, two Fe treatments [0 mg kg-1 (Fe-) and 20 mg·kg-1 (Fe+) in the form of FeCl3] were used in the soil of the pot and then two concentrations of α-ketoglutaric acid [0 mg L-1 (A-) and 50 mg L-1 (A+)] were sprayed to the rice plants of Meixiangzhan and Yuxiangyouzhan cultivars. We showed that seedlings exhibited an increased length and fresh and dry mass of shoots and roots with treatments Fe+A- and Fe-A+, as well as the Fe content increased greatly. Both treatments increased the morphological characteristic values of roots and promoted photosynthesis. Interestingly, Fe+A+ notably affected the photosynthesis of fragrant rice seedlings; however, it exerted no significant differences on other parameters. Overall, Fe and α-ketoglutaric acid had the potential for improving the growth of fragrant rice seedlings. The interaction between Fe and α-ketoglutaric acid regulated photosynthesis in seedling leaves, which provided evidence for further improvement of rice cultivation.
Collapse
Affiliation(s)
- S.R. Cheng
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - S.S. Li
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Z.W. Liang
- Research Office of Yulin Normal University, Yulin, China
| | - F.C. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.Q. Wu
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Z.Y. Han
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.B. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.M. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Y. Ren
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| |
Collapse
|
15
|
Perea-García A, Puig S, Peñarrubia L. The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1735-1750. [PMID: 34849747 DOI: 10.1093/jxb/erab521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Copper and iron proteins have a wide range of functions in living organisms. Metal assembly into metalloproteins is a complex process, where mismetalation is detrimental and energy consuming to cells. Under metal deficiency, metal distribution is expected to reach a metalation ranking, prioritizing essential versus dispensable metalloproteins, while avoiding interference with other metals and protecting metal-sensitive processes. In this review, we propose that post-transcriptional modulators of metalloprotein mRNA (ModMeR) are good candidates in metal prioritization under metal-limited conditions. ModMeR target high quota or redundant metalloproteins and, by adjusting their synthesis, ModMeR act as internal metal distribution valves. Inappropriate metalation of ModMeR targets could compete with metal delivery to essential metalloproteins and interfere with metal-sensitive processes, such as chloroplastic photosynthesis and mitochondrial respiration. Regulation of ModMeR targets could increase or decrease the metal flow through interconnected pathways in cellular metal distribution, helping to achieve adequate differential metal requirements. Here, we describe and compare ModMeR that function in response to copper and iron deficiencies. Specifically, we describe copper-miRNAs from Arabidopsis thaliana and diverse iron ModMeR from yeast, mammals, and bacteria under copper and iron deficiencies, as well as the influence of oxidative stress. Putative functions derived from their role as ModMeR are also discussed.
Collapse
Affiliation(s)
- Ana Perea-García
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
16
|
Sági-Kazár M, Zelenyánszki H, Müller B, Cseh B, Gyuris B, Farkas SZ, Fodor F, Tóth B, Kovács B, Koncz A, Visnovitz T, Buzás EI, Bánkúti B, Bánáti F, Szenthe K, Solti Á. Supraoptimal Iron Nutrition of Brassica napus Plants Suppresses the Iron Uptake of Chloroplasts by Down-Regulating Chloroplast Ferric Chelate Reductase. FRONTIERS IN PLANT SCIENCE 2021; 12:658987. [PMID: 34093616 PMCID: PMC8172622 DOI: 10.3389/fpls.2021.658987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 05/31/2023]
Abstract
Iron (Fe) is an essential micronutrient for plants. Due to the requirement for Fe of the photosynthetic apparatus, the majority of shoot Fe content is localised in the chloroplasts of mesophyll cells. The reduction-based mechanism has prime importance in the Fe uptake of chloroplasts operated by Ferric Reductase Oxidase 7 (FRO7) in the inner chloroplast envelope membrane. Orthologue of Arabidopsis thaliana FRO7 was identified in the Brassica napus genome. GFP-tagged construct of BnFRO7 showed integration to the chloroplast. The time-scale expression pattern of BnFRO7 was studied under three different conditions: deficient, optimal, and supraoptimal Fe nutrition in both leaves developed before and during the treatments. Although Fe deficiency has not increased BnFRO7 expression, the slight overload in the Fe nutrition of the plants induced significant alterations in both the pattern and extent of its expression leading to the transcript level suppression. The Fe uptake of isolated chloroplasts decreased under both Fe deficiency and supraoptimal Fe nutrition. Since the enzymatic characteristics of the ferric chelate reductase (FCR) activity of purified chloroplast inner envelope membranes showed a significant loss for the substrate affinity with an unchanged saturation rate, protein level regulation mechanisms are suggested to be also involved in the suppression of the reduction-based Fe uptake of chloroplasts together with the saturation of the requirement for Fe.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Helga Zelenyánszki
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Cseh
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Gyuris
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Sophie Z. Farkas
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Tóth
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Anna Koncz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I. Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Barbara Bánkúti
- RT-Europe Non-profit Research Ltd., Mosonmagyaróvár, Hungary
| | - Ferenc Bánáti
- RT-Europe Non-profit Research Ltd., Mosonmagyaróvár, Hungary
| | - Kálmán Szenthe
- Carlsbad Research Organization Center Ltd., Újrónafõ, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
17
|
Bashir K, Ahmad Z, Kobayashi T, Seki M, Nishizawa NK. Roles of subcellular metal homeostasis in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2083-2098. [PMID: 33502492 DOI: 10.1093/jxb/erab018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Improvement of crop production in response to rapidly changing environmental conditions is a serious challenge facing plant breeders and biotechnologists. Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrients for plant growth and reproduction. These minerals are critical to several cellular processes including metabolism, photosynthesis, and cellular respiration. Regulating the uptake and distribution of these minerals could significantly improve plant growth and development, ultimately leading to increased crop production. Plant growth is limited by mineral deficiency, but on the other hand, excess Fe, Mn, Cu, and Zn can be toxic to plants; therefore, their uptake and distribution must be strictly regulated. Moreover, the distribution of these metals among subcellular organelles is extremely important for maintaining optimal cellular metabolism. Understanding the mechanisms controlling subcellular metal distribution and availability would enable development of crop plants that are better adapted to challenging and rapidly changing environmental conditions. Here, we describe advances in understanding of subcellular metal homeostasis, with a particular emphasis on cellular Fe homeostasis in Arabidopsis and rice, and discuss strategies for regulating cellular metabolism to improve plant production.
Collapse
Affiliation(s)
- Khurram Bashir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore, Pakistan
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
| | - Zarnab Ahmad
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Motoaki Seki
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
18
|
Balparda M, Armas AM, Gomez-Casati DF, Pagani MA. PAP/SAL1 retrograde signaling pathway modulates iron deficiency response in alkaline soils. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110808. [PMID: 33568304 DOI: 10.1016/j.plantsci.2020.110808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential micronutrient for plants and is present abundantly in the Earth's crust. However, Fe bioavailability in alkaline soils is low due to the decreased solubility of the ferric ions. Previously, we have demonstrated the relationship between the PAP/SAL1 retrograde signaling pathway, the activity of Strategy I Fe uptake genes (FIT, FRO2, IRT1), and ethylene signaling. In this work, we have characterized mutant lines that are deficient in this retrograde signaling pathway and their ability to grow in alkaline soils. This adverse growth condition caused less impact on mutant plants, which showed less reduced rosette area, and higher carotenoid, chlorophyll and Fe content than wild-type plants. Several genes involved in the biosynthesis and excretion of secondary metabolites derived from the phenylpropanoid pathway, which improve Fe uptake, were elevated in mutant plants. Finally, we observed an increase in excreted fluorescent phenolic compounds in mutant lines compared to wild-type plants. In this way, PAP/SAL1 mutants showed alterations in the biosynthesis of metabolites that mobilize Fe, which ultimately improved these plants ability to grow in alkaline soils. Results agree with the existence of a link between the PAP/SAL1 retrograde signaling pathway and the regulation of Fe deficiency responses in Arabidopsis.
Collapse
Affiliation(s)
- Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Alejandro M Armas
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - María Ayelén Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
19
|
Tewari RK, Horemans N, Watanabe M. Evidence for a role of nitric oxide in iron homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:990-1006. [PMID: 33196822 DOI: 10.1093/jxb/eraa484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO), once regarded as a poisonous air pollutant, is now understood as a regulatory molecule essential for several biological functions in plants. In this review, we summarize NO generation in different plant organs and cellular compartments, and also discuss the role of NO in iron (Fe) homeostasis, particularly in Fe-deficient plants. Fe is one of the most limiting essential nutrient elements for plants. Plants often exhibit Fe deficiency symptoms despite sufficient tissue Fe concentrations. NO appears to not only up-regulate Fe uptake mechanisms but also makes Fe more bioavailable for metabolic functions. NO forms complexes with Fe, which can then be delivered into target cells/tissues. NO generated in plants can alleviate oxidative stress by regulating antioxidant defense processes, probably by improving functional Fe status and by inducing post-translational modifications in the enzymes/proteins involved in antioxidant defense responses. It is hypothesized that NO acts in cooperation with transcription factors such as bHLHs, FIT, and IRO to regulate the expression of enzymes and proteins essential for Fe homeostasis. However, further investigations are needed to disentangle the interaction of NO with intracellular target molecules that leads to enhanced internal Fe availability in plants.
Collapse
Affiliation(s)
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang, Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, Belgium
| | - Masami Watanabe
- Laboratory of Plant Biochemistry, Chiba University, Inage-ward, Yayoicho, Chiba, Japan
| |
Collapse
|
20
|
Wang X, Deng S, Zhou Y, Long J, Ding D, Du H, Lei M, Chen C, Tie BQ. Application of different foliar iron fertilizers for enhancing the growth and antioxidant capacity of rice and minimizing cadmium accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7828-7839. [PMID: 33040291 DOI: 10.1007/s11356-020-11056-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 09/28/2020] [Indexed: 05/22/2023]
Abstract
Iron (Fe) fertilizer can reduce cadmium (Cd) uptake and toxicity in rice, but the underlying mechanisms of Cd mitigation by different fertilizers are poorly understood. Here, pot experiments in rice were conducted to characterize the effects of four types of foliar-applied Fe fertilizer (chelated ferrous Fe, ferric Fe, ionic ferrous Fe, and ferric Fe) at three doses (20, 50, and 100 mg L-1) on photosynthetic capacity, antioxidant ability, yield, and Cd accumulation in Cd-contaminated soil. The results showed that foliar Fe application increased the net photosynthesis rate by 19.3%, peroxidase (POD) by 18.2%, superoxide dismutase (SOD) by 26.9%, and catalase (CAT) by 19.6%, and led to a 7.2% increase in grain yield compared with the control. Moreover, foliar Fe application significantly reduced Cd accumulation by 15.9% in brown rice and decreased the translocation of Cd from roots to other plant tissues. Overall, application of moderate doses (50 mg L-1) of chelated ferrous Fe was the most effective method for reducing Cd uptake (decreasing the Cd concentration in brown rice by 29.0%) and toxicity in rice (decreasing malondialdehyde by 23.2% and increasing POD, SOD, and CAT by 54.4%, 51.6%, and 45.7%, respectively), which may stem from the fact that chelated ferrous Fe was a more stable and bioavailable source of Fe for rice. The Cd concentration in rice had negative relationship with Fe concentration, and the translocation of Cd from root to the other tissues was reduced by the higher Fe nutrition status in leaf, suggesting that a high Fe supply may decrease Cd content by inhibiting the expression of the Fe transport system. These results indicate that foliar application of chelated ferrous Fe provides a promising alternative approach for enhancing growth and controlling Cd accumulation in rice plants. Furthermore, these results advance our understanding of the associations between plant Fe nutrition status and Cd accumulation.
Collapse
Affiliation(s)
- Xinqi Wang
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Sihan Deng
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Yimin Zhou
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jiumei Long
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- College of Environment and Life Science, Hengyang Normal University, Hengyang, 421001, People's Republic of China
| | - Dan Ding
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - HuiHui Du
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Ming Lei
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Congying Chen
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Bai Qing Tie
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| |
Collapse
|
21
|
Kumar S, Kumar S, Mohapatra T. Interaction Between Macro- and Micro-Nutrients in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665583. [PMID: 34040623 PMCID: PMC8141648 DOI: 10.3389/fpls.2021.665583] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients required for optimum growth, development, and productivity of plants. The deficiency of any of these nutrients may lead to defects in plant growth and decreased productivity. Plant responses to the deficiency of N, P, S, Fe, or Zn have been studied mainly as a separate event, and only a few reports discuss the molecular basis of biological interaction among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting pathways for each other but also affect micro-nutrient pathways. Limited reports are available on the investigation of two-by-two or multi-level nutrient interactions in plants. Such studies on the nutrient interaction pathways suggest that an MYB-like transcription factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identified to be involved in modulating nutrient responses in Arabidopsis. This review focuses on the recent advances in our understanding of how plants coordinate the acquisition, transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the molecular level. Identification of the important candidate genes for interactions between N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve nutrient use efficiency and yield/quality of crop plants. Integrated studies on pathways interactions/cross-talks between macro- and micro-nutrients in the agronomically important crop plants would be essential for sustainable agriculture around the globe, particularly under the changing climatic conditions.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | | | |
Collapse
|
22
|
Cui M, Gu M, Lu Y, Zhang Y, Chen C, Ling HQ, Wu H. Glutamate synthase 1 is involved in iron-deficiency response and long-distance transportation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1925-1941. [PMID: 32584503 DOI: 10.1111/jipb.12985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential microelement for plant growth. After uptake from the soil, iron is chelated by ligands and translocated from roots to shoots for subsequent utilization. However, the number of ligands involved in iron chelation is unclear. In this study, we identified and demonstrated that GLU1, which encodes a ferredoxin-dependent glutamate synthase, was involved in iron homeostasis. First, the expression of GLU1 was strongly induced by iron deficiency condition. Second, lesion of GLU1 results in reduced transcription of many iron-deficiency-responsive genes in roots and shoots. The mutant plants revealed a decreased iron concentration in the shoots, and displayed severe leaf chlorosis under the condition of Fe limitation, compared to wild-type. Third, the product of GLU1, glutamate, could chelate iron in vivo and promote iron transportation. Last, we also found that supplementation of glutamate in the medium can alleviate cadmium toxicity in plants. Overall, our results provide evidence that GLU1 is involved in iron homeostasis through affecting glutamate synthesis under iron deficiency conditions in Arabidopsis.
Collapse
Affiliation(s)
- Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengjun Gu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaru Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunlin Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
23
|
Zang J, Huo Y, Liu J, Zhang H, Liu J, Chen H. Maize YSL2 is required for iron distribution and development in kernels. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5896-5910. [PMID: 32687576 DOI: 10.1093/jxb/eraa332] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/13/2020] [Indexed: 05/22/2023]
Abstract
Iron (Fe) is an essential micronutrient and plays an irreplaceable role in plant growth and development. Although its uptake and translocation are important biological processes, little is known about the molecular mechanism of Fe translocation within seed. Here, we characterized a novel small kernel mutant yellow stripe like 2 (ysl2) in maize (Zea mays). ZmYSL2 was predominantly expressed in developing endosperm and was found to encode a plasma membrane-localized metal-nicotianamine (NA) transporter ZmYSL2. Analysis of transporter activity revealed ZmYSL2-mediated Fe transport from endosperm to embryo during kernel development. Dysfunction of ZmYSL2 resulted in the imbalance of Fe homeostasis and abnormality of protein accumulation and starch deposition in the kernel. Significant changes of nitric oxide accumulation, mitochondrial Fe-S cluster content, and mitochondrial morphology indicated that the proper function of mitochondria was also affected in ysl2. Collectively, our study demonstrated that ZmYSL2 had a pivotal role in mediating Fe distribution within the kernel and kernel development in maize.
Collapse
Affiliation(s)
- Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Prity SA, Sajib SA, Das U, Rahman MM, Haider SA, Kabir AH. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status. PROTOPLASMA 2020; 257:1373-1385. [PMID: 32535729 DOI: 10.1007/s00709-020-01517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/05/2020] [Indexed: 05/26/2023]
Abstract
Sustainable management of iron (Fe) deficiency through the microbial association is highly desirable to ensure crop yield. This study elucidates whether and how arbuscular mycorrhizal fungi (AMF) ameliorate Fe deficiency symptoms in sorghum. AMF inoculation showed a significant improvement in plant biomass, chlorophyll score, Fv/Fm (quantum efficiency of photosystem II), and Pi_ABS (photosynthesis performance index), suggesting its potentiality to diminish Fe deficiency symptoms in sorghum. This AMF-driven prevention of Fe deficiency was further supported by the improvement of biochemical stress indicators, such as cell death, electrolyte leakage, hydrogen peroxide, and superoxide anion. In this study, AMF showed a significant increase in phytosiderophore (PS) release as well as Fe and S concentrations in sorghum under Fe deficiency. Quantitative real-time PCR analysis demonstrated the consistent upregulation of SbDMAS2 (deoxymugineic acid synthase 2), SbNAS2 (nicotianamine synthase 2), and SbYS1 (Fe-phytosiderophore transporter yellow stripe) in roots due to AMF with Fe deficiency. It suggests that the enhancement of Fe due to AMF is related to the mobilization of Fe(III)-PS in the rhizosphere supported by the long-distance transport of Fe by SbYS1 transporter in sorghum. Our study further showed that the elevation of S mainly in the presence of AMF possibly enhances the S-containing antioxidant metabolites (Met, Cys, and GSH) as well as enzymes (CAT, SOD, and GR) to counteract H2O2 and O2- for the restoration of redox status in Fe-deprived sorghum. Moreover, S possibly participates in Strategy II responses revealing its crucial role as a signaling molecule for Fe homeostasis in sorghum.
Collapse
Affiliation(s)
- Sadia Akter Prity
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Urmi Das
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Mostafizur Rahman
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Ali Haider
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
25
|
Liu H, Yang L, Li N, Zhou C, Feng H, Yang J, Han X. Cadmium toxicity reduction in rice (Oryza sativa L.) through iron addition during primary reaction of photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110746. [PMID: 32450439 DOI: 10.1016/j.ecoenv.2020.110746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/22/2023]
Abstract
Cadmium (Cd) pollution is a worldwide concern due to its biotoxicity. Because Cd and Fe are closely associated during plant photosynthesis, this study aims at investigating the mechanism governing Cd toxicity during photosynthetic primary reaction in rice by adjusting Fe concentration. The results show that moderate Fe concentration (1.0 g kg-1) added to soil can increase the stomatal conductance (Gs) and SPAD value by stimulating the stomatal opening and chlorophyll synthesis. Moderate Fe concentration can also improve the maximum fluorescence (Fm) and the maximal photochemical efficiency (Fv/Fm) to keep the high reaction center activity and electronic transfer efficiency in photosystems I and II. Thus, moderate Fe can eliminate Cd-induced decrease in Gs, intercellular CO2 concentration (Ci) and net photosynthetic rate (Pn) as well as the disorder of antioxidative system under Cd concentration of 2.0 mg kg-1 in the soil. When its application is increased to 2.0 g kg-1, Fe can notably decrease Pn, and result in remarkable decrease in the biomass of shoots and grains. Decrease in Pn can be mainly attributed to high Fe concentration which can greatly destroy chloroplast structure and, meanwhile, inhibit the electron transfer between acceptor and donator in photosynthetic chain especially from quinone A (QA) to quinone B (QB). Unlike the situation under moderate Fe concentration, the high Fe application cannot mitigate the Cd-induced decrease in photosynthetic index. Our results indicate that the moderate Fe application is necessary to promote rice performance and production and, in the meantime, to inhibit Cd toxicity in the extensively polluted soils.
Collapse
Affiliation(s)
- Houjun Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Lei Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Na Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chongjun Zhou
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA
| | - Jinfeng Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaori Han
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
26
|
Wang X, Xiao C, Ji C, Liu Z, Song X, Liu Y, Li C, Yan D, Li H, Qin Y, Liu X. Isolation and characterization of endophytic bacteria for controlling root rot disease of Chinese jujube. J Appl Microbiol 2020; 130:926-936. [PMID: 32777121 DOI: 10.1111/jam.14818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022]
Abstract
AIM Fusarium oxysporum is the primary pathogen causing root rot disease that severely affects cultivation of jujube fruit in the Xinjiang province of China. The aim of this study was to identify endophytic bacteria in healthy jujube organs that could effectively suppress F. oxysporum growth. METHODS AND RESULTS Different plant organs (leaves, twigs and roots) were collected from healthy Chinese jujube cultivated in southern Xinjiang province of China. The endophytic bacterium Brevibacterium halotolerans JZ7 was selected for its strong antagonistic activity and growth-promoting characteristics. Gas-chromatography mass-spectrometry analysis showed that acetoin, 2,3-butanediol and fenretinide were the three dominant volatile organic compounds produced by strain JZ7. Fenretinide strongly suppressed spore germination of F. oxysporum in vitro. Pot experiments showed that strain JZ7 colonized both the roots and rhizosphere soil of Chinese jujube and significantly reduced F. oxysporum level in jujube rhizosphere soil. CONCLUSION We demonstrated that B. halotolerans JZ7 can be developed into a biological control agent to combat root rot disease of Chinese jujube in the Xinjiang province of China. SIGNIFICANCE AND IMPACT OF THE STUDY The suggested strategy for biological control of jujube root rot disease is fully in accordance with the current principles of sustainability.
Collapse
Affiliation(s)
- X Wang
- College of Horticulture, Shandong Agricultural Universities, Taian, Shandong, China.,Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao, China
| | - C Xiao
- College of Forestry, Shandong Agricultural Universities, Taian, Shandong, China
| | - C Ji
- College of Forestry, Shandong Agricultural Universities, Taian, Shandong, China
| | - Z Liu
- College of Forestry, Shandong Agricultural Universities, Taian, Shandong, China
| | - X Song
- College of Forestry, Shandong Agricultural Universities, Taian, Shandong, China
| | - Y Liu
- College of Forestry, Shandong Agricultural Universities, Taian, Shandong, China
| | - C Li
- College of Forestry, Shandong Agricultural Universities, Taian, Shandong, China
| | - D Yan
- College of Forestry, Shandong Agricultural Universities, Taian, Shandong, China
| | - H Li
- College of Forestry, Shandong Agricultural Universities, Taian, Shandong, China
| | - Y Qin
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao, China
| | - X Liu
- College of Forestry, Shandong Agricultural Universities, Taian, Shandong, China
| |
Collapse
|
27
|
Robe K, Gao F, Bonillo P, Tissot N, Gaymard F, Fourcroy P, Izquierdo E, Dubos C. Sulphur availability modulates Arabidopsis thaliana responses to iron deficiency. PLoS One 2020; 15:e0237998. [PMID: 32817691 PMCID: PMC7440645 DOI: 10.1371/journal.pone.0237998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/06/2020] [Indexed: 11/23/2022] Open
Abstract
Among the mineral nutrients that are required for plant metabolism, iron (Fe) and sulphur (S) play a central role as both elements are needed for the activity of several proteins involved in essential cellular processes. A combination of physiological, biochemical and molecular approaches was employed to investigate how S availability influences plant response to Fe deficiency, using the model plant Arabidopsis thaliana. We first observed that chlorosis symptom induced by Fe deficiency was less pronounced when S availability was scarce. We thus found that S deficiency inhibited the Fe deficiency induced expression of several genes associated with the maintenance of Fe homeostasis. This includes structural genes involved in Fe uptake (i.e. IRT1, FRO2, PDR9, NRAMP1) and transport (i.e. FRD3, NAS4) as well as a subset of their upstream regulators, namely BTS, PYE and the four clade Ib bHLH. Last, we found that the over accumulation of manganese (Mn) in response to Fe shortage was reduced under combined Fe and S deficiencies. These data suggest that S deficiency inhibits the Fe deficiency dependent induction of the Fe uptake machinery. This in turn limits the transport into the root and the plant body of potentially toxic divalent cations such as Mn and Zn, thus limiting the deleterious effect of Fe deprivation.
Collapse
Affiliation(s)
- Kevin Robe
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Fei Gao
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Pauline Bonillo
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Nicolas Tissot
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Frédéric Gaymard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Pierre Fourcroy
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Esther Izquierdo
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- * E-mail:
| |
Collapse
|
28
|
Schmidt SB, Eisenhut M, Schneider A. Chloroplast Transition Metal Regulation for Efficient Photosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:817-828. [PMID: 32673582 DOI: 10.1016/j.tplants.2020.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 05/24/2023]
Abstract
Plants require sunlight, water, CO2, and essential nutrients to drive photosynthesis and fulfill their life cycle. The photosynthetic apparatus resides in chloroplasts and fundamentally relies on transition metals as catalysts and cofactors. Accordingly, chloroplasts are particularly rich in iron (Fe), manganese (Mn), and copper (Cu). Owing to their redox properties, those metals need to be carefully balanced within the cell. However, the regulation of transition metal homeostasis in chloroplasts is poorly understood. With the availability of the arabidopsis genome information and membrane protein databases, a wider catalogue for searching chloroplast metal transporters has considerably advanced the study of transition metal regulation. This review provides an updated overview of the chloroplast transition metal requirements and the transporters involved for efficient photosynthesis in higher plants.
Collapse
Affiliation(s)
- Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Marion Eisenhut
- Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
29
|
Bacterial Compound N, N-Dimethylhexadecylamine Modulates Expression of Iron Deficiency and Defense Response Genes in Medicago truncatula Independently of the Jasmonic Acid Pathway. PLANTS 2020; 9:plants9050624. [PMID: 32422878 PMCID: PMC7285375 DOI: 10.3390/plants9050624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
Abstract
Plants face a variety of biotic and abiotic stresses including attack by microbial phytopathogens and nutrient deficiencies. Some bacterial volatile organic compounds (VOCs) activate defense and iron-deficiency responses in plants. To establish a relationship between defense and iron deficiency through VOCs, we identified key genes in the defense and iron-deprivation responses of the legume model Medicago truncatula and evaluated the effect of the rhizobacterial VOC N,N-dimethylhexadecylamine (DMHDA) on the gene expression in these pathways by RT-qPCR. DMHDA increased M. truncatula growth 1.5-fold under both iron-sufficient and iron-deficient conditions compared with untreated plants, whereas salicylic acid and jasmonic acid decreased growth. Iron-deficiency induced iron uptake and defense gene expression. Moreover, the effect was greater in combination with DMHDA. Salicylic acid, Pseudomonas syringae, jasmonic acid, and Botrytis cinerea had inhibitory effects on growth and iron response gene expression but activated defense genes. Taken together, our results showed that the VOC DMHDA activates defense and iron-deprivation pathways while inducing a growth promoting effect unlike conventional phytohormones, highlighting that DMHDA does not mimic jasmonic acid but induces an alternative pathway. This is a novel aspect in the complex interactions between biotic and abiotic stresses.
Collapse
|
30
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
31
|
Balparda M, Armas AM, Estavillo GM, Roschzttardtz H, Pagani MA, Gomez-Casati DF. The PAP/SAL1 retrograde signaling pathway is involved in iron homeostasis. PLANT MOLECULAR BIOLOGY 2020; 102:323-337. [PMID: 31900819 DOI: 10.1007/s11103-019-00950-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 05/24/2023]
Abstract
There is a link between PAP/SAL retrograde pathway, ethylene signaling and Fe metabolism in Arabidopsis. Nuclear gene expression is regulated by a diversity of retrograde signals that travel from organelles to the nucleus in a lineal or classical model. One such signal molecule is 3'-phosphoadenisine-5'-phosphate (PAP) and it's in vivo levels are regulated by SAL1/FRY1, a phosphatase enzyme located in chloroplast and mitochondria. This metabolite inhibits the action of a group of exorribonucleases which participate in post-transcriptional gene expression regulation. Transcriptome analysis of Arabidopsis thaliana mutant plants in PAP-SAL1 pathway revealed that the ferritin genes AtFER1, AtFER3, and AtFER4 are up-regulated. In this work we studied Fe metabolism in three different mutants of the PAP/SAL1 retrograde pathway. Mutant plants showed increased Fe accumulation in roots, shoots and seeds when grown in Fe-sufficient condition, and a constitutive activation of the Strategy I Fe uptake genes. As a consequence, they grew more vigorously than wild type plants in Fe-deficient medium. However, when mutant plants grown in Fe-deficient conditions were sprayed with Fe in their leaves, they were unable to deactivate root Fe uptake. Ethylene synthesis inhibition revert the constitutive Fe uptake phenotype. We propose that there is a link between PAP/SAL pathway, ethylene signaling and Fe metabolism.
Collapse
Affiliation(s)
- Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Alejandro M Armas
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | | | - Hannetz Roschzttardtz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
32
|
Lande NV, Barua P, Gayen D, Kumar S, Varshney S, Sengupta S, Chakraborty S, Chakraborty N. Dehydration-induced alterations in chloroplast proteome and reprogramming of cellular metabolism in developing chickpea delineate interrelated adaptive responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:337-348. [PMID: 31785520 DOI: 10.1016/j.plaphy.2019.11.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Chloroplast, the energy organelle unique to photosynthetic eukaryotes, executes several crucial functions including photosynthesis. While chloroplast development and function are controlled by the nucleus, environmental stress modulated alterations perceived by the chloroplasts are communicated to the nucleus via retrograde signaling. Notably, coordination of chloroplast and nuclear gene expression is synchronized by anterograde and retrograde signaling. The chloroplast proteome holds significance for stress responses and adaptation. We unraveled dehydration-induced alterations in the chloroplast proteome of a grain legume, chickpea and identified an array of dehydration-responsive proteins (DRPs) primarily involved in photosynthesis, carbohydrate metabolism and stress response. Notably, 12 DRPs were encoded by chloroplast genome, while the rest were nuclear-encoded. We observed a coordinated expression of different multi-subunit protein complexes viz., RuBisCo, photosystem II and cytochrome b6f, encoded by both chloroplast and nuclear genome. Comparison with previously reported stress-responsive chloroplast proteomes showed unique and overlapping components. Transcript abundance of several previously reported markers of retrograde signaling revealed relay of dehydration-elicited signaling events between chloroplasts and nucleus. Additionally, dehydration-triggered metabolic adjustments demonstrated alterations in carbohydrate and amino acid metabolism. This study offers a panoramic catalogue of dehydration-responsive signatures of chloroplast proteome and associated retrograde signaling events, and cellular metabolic reprograming.
Collapse
Affiliation(s)
- Nilesh Vikam Lande
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dipak Gayen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunil Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi, 110 020, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi, 110 020, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
33
|
Dos Santos MS, Sanglard LMPV, Martins SCV, Barbosa ML, de Melo DC, Gonzaga WF, DaMatta FM. Silicon alleviates the impairments of iron toxicity on the rice photosynthetic performance via alterations in leaf diffusive conductance with minimal impacts on carbon metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:275-285. [PMID: 31536896 DOI: 10.1016/j.plaphy.2019.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Iron (Fe) toxicity is often observed in lowland rice (Oryza sativa L.) plants, disrupting cell homeostasis and impairing growth and crop yields. Silicon (Si) can mitigate the effects of Fe excess on rice by decreasing tissue Fe concentrations, but no information exists whether Si could prevent the harmful effects of Fe toxicity on the photosynthesis and carbon metabolism. Two rice cultivars with contrasting abilities to tolerate Fe excess were hydroponically grown under two Fe levels (25 μM or 5 mM) and amended or not with Si (0 or 2 mM). Fe toxicity caused decreases in net photosynthetic rate (A), particularly in the sensitive cultivar. These decreases were correlated with reductions in stomatal (gs) and mesophyll (gm) conductances, as well as with increasing photorespiration. Photochemical (e.g. electron transport rate) and biochemical (e.g., maximum RuBisCO carboxylation capacity and RuBisCO activity) parameters of photosynthesis, and activities of a range of carbon metabolism enzymes, were minimally, if at all, affected by the treatments. Si attenuated the decreases in A by presumably reducing the Fe content. In fact, A as well as gs and gm, correlated significantly with leaf Fe contents. In summary, our data suggest a remarkable metabolic homeostasis under Fe toxicity, and that Si attenuated the impairments of Fe excess on the photosynthetic apparatus by affecting the leaf diffusive conductance with minimal impacts on carbon metabolism.
Collapse
Affiliation(s)
- Martielly S Dos Santos
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - Lílian M P V Sanglard
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - Samuel C V Martins
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - Marcela L Barbosa
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - Danilo C de Melo
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - William F Gonzaga
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil
| | - Fábio M DaMatta
- Departamento Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 3570-900, Viçosa, MG, Brazil.
| |
Collapse
|
34
|
Vigani G, Costa A. Harnessing the new emerging imaging technologies to uncover the role of Ca 2+ signalling in plant nutrient homeostasis. PLANT, CELL & ENVIRONMENT 2019; 42:2885-2901. [PMID: 31286524 DOI: 10.1111/pce.13611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 05/26/2023]
Abstract
Increasing crop yields by using ecofriendly practices is of high priority to tackle problems regarding food security and malnutrition worldwide. A sustainable crop production requires a limited use of fertilizer and the employment of plant varieties with improved ability to acquire nutrients from soil. To reach these goals, the scientific community aims to understand plant nutrients homeostasis by deciphering the nutrient sensing and signalling mechanisms of plants. Several lines of evidence about the involvement of Ca2+ as the signal of an impaired nutrient availability have been reported. Ca2+ signalling is a tightly regulated process that requires specific protein toolkits to perceive external stimuli and to induce the specific responses in the plant needed to survive. Here, we summarize both older and recent findings concerning the involvement of Ca2+ signalling in the homeostasis of nutrients. In this review, we present new emerging technologies, based on the use of genetically encoded Ca2+ sensors and advanced microscopy, which offer the chance to perform in planta analyses of Ca2+ dynamics at cellular resolution. The harnessing of these technologies with different genetic backgrounds and subjected to different nutritional stresses will provide important insights to the still little-known mechanisms of nutrient sensing in plants.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10135, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| |
Collapse
|
35
|
Vigani G, Solti ÏDM, Thomine SB, Philippar K. Essential and Detrimental - an Update on Intracellular Iron Trafficking and Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1420-1439. [PMID: 31093670 DOI: 10.1093/pcp/pcz091] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/22/2023]
Abstract
Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, via Quarello 15/A, Turin I, Italy
| | - Ï Dï M Solti
- Department of Plant Physiology and Molecular Plant Biology, E�tv�s Lor�nd University, Budapest H, Hungary
| | - Sï Bastien Thomine
- Institut de Biologie Int�grative de la Cellule, CNRS, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Campus A2.4, Saarbr�cken D, Germany
| |
Collapse
|
36
|
Vigani G, Murgia I. Iron-Requiring Enzymes in the Spotlight of Oxygen. TRENDS IN PLANT SCIENCE 2018; 23:874-882. [PMID: 30077479 DOI: 10.1016/j.tplants.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/01/2018] [Accepted: 07/11/2018] [Indexed: 05/24/2023]
Abstract
Iron (Fe) is a cofactor required for a variety of essential redox reactions in plant metabolism. Thus, plants have developed a complex network of interacting pathways to withstand Fe deficiency, including metabolic reprogramming. This opinion aims at revisiting such reprogramming by focusing on: (i) the functional relationships of Fe-requiring enzymes (FeREs) with respect to oxygen; and (ii) the progression of FeREs engagement, occurring under Fe deficiency stress. In particular, we considered such progression of FeREs engagement as strain responses of increasing severity during the stress phases of alarm, resistance, and exhaustion. This approach can contribute to reconcile the variety of experimental results obtained so far from different plant species and/or different Fe supplies.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, via Quarello 15/A 10135, Torino, Italy.
| | - Irene Murgia
- Department of Biosciences, University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
37
|
Vigani G, Pii Y, Celletti S, Maver M, Mimmo T, Cesco S, Astolfi S. Mitochondria dysfunctions under Fe and S deficiency: is citric acid involved in the regulation of adaptive responses? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:86-96. [PMID: 29514113 DOI: 10.1016/j.plaphy.2018.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 05/24/2023]
Abstract
Within the last years, extensive information has been accumulated on the reciprocal influence between S and Fe nutrition at both physiological and molecular level in several plant species, but the mechanisms regulating S and Fe sensing and signaling are not fully understood. Fe and S interact for the building of Fe-S clusters, and mitochondria is one of the cellular compartments where Fe-S cluster assembly takes place. Therefore, it would be expected that mitochondria might play a central role in the regulation of Fe and S interaction. The Fe deficiency-induced alteration in the synthesis of mitochondria-derived carboxylic acids, such as citric acid, and the evidence that such molecules have already been identified as important players of metabolite signaling in several organisms, further support this hypothesis. Tomato plants were grown under single or combined Fe and S deficiency with the aim of verifying whether mitochondria activities played a role in Fe/S interaction. Both Fe and S deficiencies determined similar alteration of respiratory chain activity: a general decrease of Fe-S containing complexes as well as an increase of alternative NAD(P)H activities was observed in both Fe and S deficient-plants. However, the content of Krebs cycle-related organic acids in roots was substantially different in response to treatments, being the accumulation of citric acid always increased, while the others (i.e. succinic, malic, fumaric acids) always decreased. Interestingly, citric acid levels significantly correlated with the expression of some Fe and S deficiency induced genes. Our results contribute to existing knowledge on the complexity of the S/Fe interaction, suggesting a model in which endogenous alteration of citric acid content in plant tissues might act as signal molecule for the regulation of some nuclear-encoded and nutrient-responsive genes and also provide a basis for further study of the mechanism underlying S and Fe sensing and signalling.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dept Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy.
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | | | - Mauro Maver
- Dept Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy.
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | | |
Collapse
|
38
|
Vigani G, Bohic S, Faoro F, Vekemans B, Vincze L, Terzano R. Cellular Fractionation and Nanoscopic X-Ray Fluorescence Imaging Analyses Reveal Changes of Zinc Distribution in Leaf Cells of Iron-Deficient Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1112. [PMID: 30123229 PMCID: PMC6085429 DOI: 10.3389/fpls.2018.01112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/10/2018] [Indexed: 05/07/2023]
Abstract
Multilevel interactions among nutrients occur in the soil-plant system. Among them, Fe and Zn homeostasis in plants are of great relevance because of their importance for plant and human nutrition. However, the mechanisms underlying the interplay between Fe and Zn in plants are still poorly understood. In order to elucidate how Zn interacts with Fe homeostasis, it is crucial to assess Zn distribution either in the plant tissues or within the cells. In this study, we investigated the subcellular Zn distribution in Fe-deficient leaf cells of cucumber plants by using two different approaches: cellular fractionation coupled with inductively coupled plasma mass spectrometry (ICP/MS) and nanoscopic synchrotron X-ray fluorescence imaging. Fe-deficient leaves showed a strong accumulation of Zn as well as a strong alteration of the organelles' ultrastructure at the cellular level. The cellular fractionation-ICP/MS approach revealed that Zn accumulates in both chloroplasts and mitochondria of Fe deficient leaves. Nano-XRF imaging revealed Zn accumulation in chloroplast and mitochondrial compartments, with a higher concentration in chloroplasts. Such results show that (i) both approaches are suitable to investigate Zn distribution at the subcellular level and (ii) cellular Fe and Zn interactions take place mainly in the organelles, especially in the chloroplasts.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milano, Milan, Italy
- *Correspondence: Gianpiero Vigani, ; Roberto Terzano,
| | - Sylvain Bohic
- European Synchrotron Radiation Facility, NINA Beamline, Grenoble, France
| | - Franco Faoro
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milano, Milan, Italy
| | - Bart Vekemans
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
| | - Lazlo Vincze
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
| | - Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
- *Correspondence: Gianpiero Vigani, ; Roberto Terzano,
| |
Collapse
|
39
|
Selby-Pham J, Lutz A, Moreno-Moyano LT, Boughton BA, Roessner U, Johnson AAT. Diurnal Changes in Transcript and Metabolite Levels during the Iron Deficiency Response of Rice. RICE (NEW YORK, N.Y.) 2017; 10:14. [PMID: 28429296 PMCID: PMC5398970 DOI: 10.1186/s12284-017-0152-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/04/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is highly susceptible to iron (Fe) deficiency due to low secretion levels of the mugineic acid (MA) family phytosiderophore (PS) 2'-deoxymugineic acid (DMA) into the rhizosphere. The low levels of DMA secreted by rice have proved challenging to measure and, therefore, the pattern of DMA secretion under Fe deficiency has been less extensively studied relative to other graminaceous monocot species that secrete high levels of PS, such as barley (Hordeum vulgare L.). RESULTS Gene expression and metabolite analyses were used to characterise diurnal changes occurring during the Fe deficiency response of rice. Iron deficiency inducible genes involved in root DMA biosynthesis and secretion followed a diurnal pattern with peak induction occurring 3-5 h after the onset of light; a result consistent with that of other Strategy II plant species such as barley and wheat. Furthermore, triple quadrupole mass spectrometry identified 3-5 h after the onset of light as peak time of DMA secretion from Fe-deficient rice roots. Metabolite profiling identified accumulation of amines associated with metal chelation, metal translocation and plant oxidative stress responses occurring with peak induction 10-12 h after the onset of light. CONCLUSION The results of this study confirmed that rice shares a similar peak time of Fe deficiency associated induction of DMA secretion compared to other Strategy II plant species but has less prominent daily fluctuations of DMA secretion. It also revealed metabolic changes associated with the remediation of Fe deficiency and mitigation of damage from resulting stress in rice roots. This study complements previous studies on the genetic changes in response to Fe deficiency in rice and constitutes an important advance towards our understanding of the molecular mechanisms underlying the rice Fe deficiency response.
Collapse
Affiliation(s)
- Jamie Selby-Pham
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Adrian Lutz
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Australia, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Berin A Boughton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Australia, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Australia, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
40
|
Fan W, Wang H, Wu Y, Yang N, Yang J, Zhang P. H + -pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.]. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:698-712. [PMID: 27864852 PMCID: PMC5425394 DOI: 10.1111/pbi.12667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/23/2016] [Accepted: 11/16/2016] [Indexed: 05/08/2023]
Abstract
Iron (Fe) deficiency is one of the most common micronutrient deficiencies limiting crop production globally, especially in arid regions because of decreased availability of iron in alkaline soils. Sweet potato [Ipomoea batatas (L.) Lam.] grows well in arid regions and is tolerant to Fe deficiency. Here, we report that the transcription of type I H+ -pyrophosphatase (H+ -PPase) gene IbVP1 in sweet potato plants was strongly induced by Fe deficiency and auxin in hydroponics, improving Fe acquisition via increased rhizosphere acidification and auxin regulation. When overexpressed, transgenic plants show higher pyrophosphate hydrolysis and plasma membrane H+ -ATPase activity compared with the wild type, leading to increased rhizosphere acidification. The IbVP1-overexpressing plants showed better growth, including enlarged root systems, under Fe-sufficient or Fe-deficient conditions. Increased ferric precipitation and ferric chelate reductase activity in the roots of transgenic lines indicate improved iron uptake, which is also confirmed by increased Fe content and up-regulation of Fe uptake genes, e.g. FRO2, IRT1 and FIT. Carbohydrate metabolism is significantly affected in the transgenic lines, showing increased sugar and starch content associated with the increased expression of AGPase and SUT1 genes and the decrease in β-amylase gene expression. Improved antioxidant capacities were also detected in the transgenic plants, which showed reduced H2 O2 accumulation associated with up-regulated ROS-scavenging activity. Therefore, H+ -PPase plays a key role in the response to Fe deficiency by sweet potato and effectively improves the Fe acquisition by overexpressing IbVP1 in crops cultivated in micronutrient-deficient soils.
Collapse
Affiliation(s)
- Weijuan Fan
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Hongxia Wang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yinliang Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Nan Yang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghai Chenshan Botanical GardenShanghaiChina
| | - Peng Zhang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
41
|
Liu H, Zhang C, Wang J, Zhou C, Feng H, Mahajan MD, Han X. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars. CHEMOSPHERE 2017; 171:240-247. [PMID: 28024209 DOI: 10.1016/j.chemosphere.2016.12.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/12/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
In this study, a soil pot experiment was conducted to investigate the changes in photosynthesis and antioxidative enzymes in two rice varieties (Shendao 6 and Shennong 265) supplied with iron (Fe), cadmium (Cd), and Fe and Cd together. The concentrations of Fe and Cd in the soil were 0, 1.0 g Fe·kg-1 and 0, 2.0 mg Cd·kg-1, respectively. Photosynthetic indices and antioxidative enzyme activities were recorded at different rice growth stages. At the early stage, Cd showed a transient stimulatory effect on the photosynthetic rate of Shennong 265. For Shendao 6, however, Cd showed a transient stimulatory effect on photosynthetic rate, intercellular CO2 concentration, stomatal conductance and transpiration efficiency. In addition, the results show that Cd can also enhance the superoxide dismutase (SOD) and peroxidase (POD) activities, but reduce the malondialdehyde (MDA) and soluble protein contents in the two rice cultivars. Subsequently, Cd starts to inhibit photosynthesis and SOD activity until the ripening stage, causing the lowest photosynthetic rate and SOD activity at this stage. In contrast, Fe alleviates the Cd-induced changes at earlier or later growth stage. Notably at the later growth stage, the results show that the interaction between Fe and Cd increases the SOD and catalase (CAT) activities, while decreasing the lipid peroxidation and promoting photosynthesis. As a result, it ultimately increases the biomass. The results from this study suggest that Fe (as Fe fertilizer) is a promising alternative for agricultural use to enhance the plant development and, simultaneously, to reduce Cd toxicity in extensively polluted soils.
Collapse
Affiliation(s)
- Houjun Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Chengxin Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Junmei Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Chongjun Zhou
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| | - Manoj D Mahajan
- Department of Technology and Society, Stony Brook University, Stony Brook, NY 11794, USA
| | - Xiaori Han
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
42
|
Vigani G, Di Silvestre D, Agresta AM, Donnini S, Mauri P, Gehl C, Bittner F, Murgia I. Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus) plants. THE NEW PHYTOLOGIST 2017; 213:1222-1241. [PMID: 27735062 DOI: 10.1111/nph.14214] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/22/2016] [Indexed: 05/22/2023]
Abstract
Molybdenum (Mo) and iron (Fe) are essential micronutrients required for crucial enzyme activities in plant metabolism. Here we investigated the existence of a mutual control of Mo and Fe homeostasis in cucumber (Cucumis sativus). Plants were grown under single or combined Mo and Fe starvation. Physiological parameters were measured, the ionomes of tissues and the ionomes and proteomes of root mitochondria were profiled, and the activities of molybdo-enzymes and the synthesis of molybdenum cofactor (Moco) were evaluated. Fe and Mo were found to affect each other's total uptake and distribution within tissues and at the mitochondrial level, with Fe nutritional status dominating over Mo homeostasis and affecting Mo availability for molybdo-enzymes in the form of Moco. Fe starvation triggered Moco biosynthesis and affected the molybdo-enzymes, with its main impact on nitrate reductase and xanthine dehydrogenase, both being involved in nitrogen assimilation and mobilization, and on the mitochondrial amidoxime reducing component. These results, together with the identification of > 100 proteins differentially expressed in root mitochondria, highlight the central role of mitochondria in the coordination of Fe and Mo homeostasis and allow us to propose the first model of the molecular interactions connecting Mo and Fe homeostasis.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Anna Maria Agresta
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Silvia Donnini
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Christian Gehl
- Institute of Horticulture Production Systems, Leibniz University of Hannover, Herrenhaeuser Str. 2, 30419, Hannover, Germany
| | - Florian Bittner
- Department of Plant Biology, Braunschweig University of Technology, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - Irene Murgia
- Department of Biosciences, University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
43
|
Leaden L, Pagani MA, Balparda M, Busi MV, Gomez-Casati DF. Altered levels of AtHSCB disrupts iron translocation from roots to shoots. PLANT MOLECULAR BIOLOGY 2016; 92:613-628. [PMID: 27655366 DOI: 10.1007/s11103-016-0537-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/29/2016] [Indexed: 05/26/2023]
Abstract
Plants overexpressing AtHSCB and hscb knockdown mutants showed altered iron homeostasis. The overexpression of AtHSCB led to activation of the iron uptake system and iron accumulation in roots without concomitant transport to shoots, resulting in reduced iron content in the aerial parts of plants. By contrast, hscb knockdown mutants presented the opposite phenotype, with iron accumulation in shoots despite the reduced levels of iron uptake in roots. AtHSCB play a key role in iron metabolism, probably taking part in the control of iron translocation from roots to shoots. Many aspects of plant iron metabolism remain obscure. The most known and studied homeostatic mechanism is the control of iron uptake in the roots by shoots. Nevertheless, this mechanism likely involves various unknown sensors and unidentified signals sent from one tissue to another which need to be identified. Here, we characterized Arabidopsis thaliana plants overexpressing AtHSCB, encoding a mitochondrial cochaperone involved in [Fe-S] cluster biosynthesis, and hscb knockdown mutants, which exhibit altered shoot/root Fe partitioning. Overexpression of AtHSCB induced an increase in root iron uptake and content along with iron deficiency in shoots. Conversely, hscb knockdown mutants exhibited increased iron accumulation in shoots and reduced iron uptake in roots. Different experiments, including foliar iron application, citrate supplementation and iron deficiency treatment, indicate that the shoot-directed control of iron uptake in roots functions properly in these lines, implying that [Fe-S] clusters are not involved in this regulatory mechanism. The most likely explanation is that both lines have altered Fe transport from roots to shoots. This could be consistent with a defect in a homeostatic mechanism operating at the root-to-shoot translocation level, which would be independent of the shoot control over root iron deficiency responses. In summary, the phenotypes of these plants indicate that AtHSCB plays a role in iron metabolism.
Collapse
Affiliation(s)
- Laura Leaden
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
44
|
Solti Á, Sárvári É, Tóth B, Mészáros I, Fodor F. Incorporation of iron into chloroplasts triggers the restoration of cadmium induced inhibition of photosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2016; 202:97-106. [PMID: 27478934 DOI: 10.1016/j.jplph.2016.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
Photosynthetic symptoms of acute Cd stress can be remedied by elevated Fe supply. To shed more light on the most important aspects of this recovery, the detailed Fe trafficking and accumulation processes as well as the changes in the status of the photosynthetic apparatus were investigated in recovering poplar plants. The Cd-free, Fe-enriched nutrient solution induced an immediate intensive Fe uptake. The increased Fe/Cd ratio in the roots initiated the translocation of Fe to the leaf with a short delay that ultimately led to the accumulation of Fe in the chloroplasts. The chloroplast Fe uptake was directly proportional to the Fe translocation to leaves. The accumulation of PSI reaction centers and the recovery of PSII function studied by Blue-Native PAGE and chlorophyll a fluorescence induction measurements, respectively, began in parallel to the increase in the Fe content of chloroplasts. The initial reorganization of PSII was accompanied by a peak in the antennae-based non-photochemical quenching. In conclusion, Fe accumulation of the chloroplasts is a process of prime importance in the recovery of photosynthesis from acute Cd stress.
Collapse
Affiliation(s)
- Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Brigitta Tóth
- Department of Agricultural Botany, Crop Physiology and Biotechnology, Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, Debrecen, 4032, Hungary
| | - Ilona Mészáros
- Department of Botany, Institute of Biology and Ecology, Faculty of Sciences and Technology, University of Debrecen, P.O. Box: 14 Debrecen, 4010 Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Faculty of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| |
Collapse
|
45
|
Bashir K, Rasheed S, Kobayashi T, Seki M, Nishizawa NK. Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1192. [PMID: 27547212 PMCID: PMC4974246 DOI: 10.3389/fpls.2016.01192] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/25/2016] [Indexed: 05/21/2023]
Abstract
Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrient mineral elements for living organisms, as they regulate essential cellular processes, such as chlorophyll synthesis and photosynthesis (Fe, Cu, and Mn), respiration (Fe and Cu), and transcription (Zn). The storage and distribution of these minerals in various cellular organelles is strictly regulated to ensure optimal metabolic rates. Alteration of the balance in uptake, distribution, and/or storage of these minerals severely impairs cellular metabolism and significantly affects plant growth and development. Thus, any change in the metal profile of a cellular compartment significantly affects metabolism. Different subcellular compartments are suggested to be linked through complex retrograde signaling networks to regulate cellular metal homeostasis. Various genes regulating cellular and subcellular metal distribution have been identified and characterized. Understanding the role of these transporters is extremely important to elaborate the signaling between various subcellular compartments. Moreover, modulation of the proteins involved in cellular metal homeostasis may help in the regulation of metabolism, adaptability to a diverse range of environmental conditions, and biofortification. Here, we review progress in the understanding of different subcellular metal transport components in plants and discuss the prospects of regulating cellular metabolism and strategies to develop biofortified crop plants.
Collapse
Affiliation(s)
- Khurram Bashir
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, YokohamaJapan
| | - Sultana Rasheed
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, YokohamaJapan
- Kihara Institute for Biological Research, Yokohama City University, YokohamaJapan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, NonoichiJapan
| | - Motoaki Seki
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, YokohamaJapan
- Kihara Institute for Biological Research, Yokohama City University, YokohamaJapan
- Core Research for Evolutional Science and Technology – Japan Science and Technology Agency, KawaguchiJapan
| | - Naoko K. Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, NonoichiJapan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, TokyoJapan
| |
Collapse
|
46
|
Li J, Wei X, Yu P, Deng X, Xu W, Ma M, Zhang H. Expression of cadR Enhances its Specific Activity for Cd Detoxification and Accumulation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1720-1731. [PMID: 27382127 DOI: 10.1093/pcp/pcw093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/02/2016] [Indexed: 06/06/2023]
Abstract
Cadmium (Cd) is a transition metal that is highly toxic in biological systems. Anthropogenic emissions of Cd have increased biogeochemical cycling and the amount of Cd in the biosphere. Here we studied the utility of a bacterial Cd-binding protein, CadR, for the remediation of Cd contamination. CadR was successfully targeted to chloroplasts using a constitutive Cauliflower mosaic virus (CaMV) 35S promoter or a shoot-specific Chl a/b-binding protein 2 gene (CAB2) promoter and an RbcS (small subunit of the Rubisco complex) transit peptide. Under short-term (2 d) exposure to Cd, the cadR transgenic plants showed up to a 2.9-fold Cd accumulation in roots compared with untransformed plants. Under medium term (7 d) exposure to Cd, the concentrations of Cd in leaves began to increase but there were no differences between the wild type and the cadR transgenic plants. Under long-term (16 d) exposure to Cd, the cadR transgenic plants accumulated greater amounts of Cd in leaves than the untransformed plants. Total Cd accumulation (µg per plant) in shoots and roots of the plants expressing cadR were significantly higher (up to 3.5-fold in shoots and 5.2-fold in roots) than those of the untransformed plants. We also found that targeting CadR to chloroplasts facilitated chloroplastic metal homeostasis and Chl b accumulation. Our results demonstrate that manipulating chelating capacity in chloroplasts or in the cytoplasm may be effective in modifying both the accumulation of and resistance to Cd.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China College of Life Science, Shanxi Normal University, Shanxi Linfen 041004, China These authors contributed equally to this work
| | - Xuezhi Wei
- College of Life Science, Shanxi Normal University, Shanxi Linfen 041004, China These authors contributed equally to this work
| | - Pengli Yu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Deng
- Department of Chemistry and Institute for Biophysical Dynamics, the University of Chicago, Chicago, IL 60637, USA
| | - Wenxiu Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mi Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Haiyan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
47
|
Meisrimler CN, Wienkoop S, Lyon D, Geilfus CM, Lüthje S. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars. J Proteomics 2016; 140:13-23. [PMID: 27012544 DOI: 10.1016/j.jprot.2016.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Iron deficiency (-Fe) is one of the major problems in crop production. Dicots, like pea (Pisum sativum L.), are Strategy I plants, which induce a group of specific enzymes such as Fe(III)-chelate reductase (FRO), Fe responsive transporter (IRT) and H(+)-ATPase (HA) at the root plasma membrane under -Fe. Different species and cultivars have been shown to react diversely to -Fe. Furthermore, different kinds of experimental set-ups for -Fe have to be distinguished: i) short-term vs. long-term, ii) constant vs. acute alteration and iii) buffered vs. unbuffered systems. The presented work compares the effects of constant long-term -Fe in an unbuffered system on roots of four different pea cultivars in a timely manner (12, 19 and 25days). To differentiate the effects of -Fe and plant development, control plants (+Fe) were analyzed in comparison to -Fe plants. Besides physiological measurements, an integrative study was conducted using a comprehensive proteome analysis. Proteins, related to stress adaptation (e.g. HSP), reactive oxygen species related proteins and proteins of the mitochondrial electron transport were identified to be changed in their abundance. Regulations and possible functions of identified proteins are discussed. SIGNIFICANCE Pea (Pisum sativum L.) belongs to the legume family (Fabaceae) and is an important crop plant due to high Fe, starch and protein contents. According to FAOSTAT data (September 2015), world production of the garden pea quadrupled from 1970 to 2012. Since the initial studies by Gregor Mendel, the garden pea became the most-characterized legume and has been used in numerous investigations in plant biochemistry and physiology, but is not well represented in the "omics"-related fields. A major limitation in pea production is the Fe availability from soils. Adaption mechanisms to Fe deficiency vary between species, and even cultivars have been shown to react diversely. A label-free proteomic approach, in combination with physiological measurements, was chosen to observe four different pea cultivars for 5 to 25days. Physiological and proteome data showed that cultivar Blauwschokker and Vroege were more susceptible to -Fe than cultivar Kelvedon (highly efficient) and GftR (semi-efficient). Proteomic data hint that the adaptation process to long-term -Fe takes place between days 19 and 25. Results show that adaptation processes of efficient cultivars are able to postpone secondary negative effects of long-term -Fe, possibly by stabilizing the protein metabolic processing and the mitochondrial electron transport components. This maintains the cellular energy proliferation, keeps ROS production low and postpones the mitochondrial cell death signal.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Oxidative Stress and Plant Proteomics Group, Ohnhorststraße 18, D-22609 Hamburg, Germany; CEA, IBEB, Laboratoire de biologie du développement des plantes, Saint-Paul-lez-Durance F-13108, France; CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance F-13108, France; Aix Marseille Université, BVME UMR7265, Marseille F-13284, France.
| | - Stefanie Wienkoop
- University of Vienna, Dept. of Ecogenomics and Systems Biology, Althanstrasse 14, A-1090 Vienna, Austria.
| | - David Lyon
- University of Vienna, Dept. of Ecogenomics and Systems Biology, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Christoph-Martin Geilfus
- University of Kiel, Institute for Plant Nutrition and Soil Science, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany.
| | - Sabine Lüthje
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Oxidative Stress and Plant Proteomics Group, Ohnhorststraße 18, D-22609 Hamburg, Germany.
| |
Collapse
|
48
|
Vigani G, Bashir K, Ishimaru Y, Lehmann M, Casiraghi FM, Nakanishi H, Seki M, Geigenberger P, Zocchi G, Nishizawa NK. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1357-68. [PMID: 26685186 PMCID: PMC4762380 DOI: 10.1093/jxb/erv531] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2-20133 Milano, Italy
| | - Khurram Bashir
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, , Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Science, Tohoku University, 6-3, Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Martin Lehmann
- Plant Molecular Biology (Botany) and Plant Metabolism, Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, D-82152 Planegg-Martinsried, Germany
| | - Fabio Marco Casiraghi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2-20133 Milano, Italy
| | - Hiromi Nakanishi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, , Yokohama, Kanagawa 230-0045, Japan CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Peter Geigenberger
- Plant Molecular Biology (Botany) and Plant Metabolism, Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, D-82152 Planegg-Martinsried, Germany
| | - Graziano Zocchi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2-20133 Milano, Italy
| | - Naoko K Nishizawa
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan
| |
Collapse
|
49
|
Vigani G, Briat JF. Impairment of Respiratory Chain under Nutrient Deficiency in Plants: Does it Play a Role in the Regulation of Iron and Sulfur Responsive Genes? FRONTIERS IN PLANT SCIENCE 2016; 6:1185. [PMID: 26779219 PMCID: PMC4700279 DOI: 10.3389/fpls.2015.01185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/10/2015] [Indexed: 05/23/2023]
Abstract
Plant production and plant product quality strongly depend on the availability of mineral nutrients. Among them, sulfur (S) and iron (Fe) play a central role, as they are needed for many proteins of the respiratory chain. Plant mitochondria play essential bioenergetic and biosynthetic functions as well as they have an important role in signaling processes into the cell. Here, by comparing several transcriptomic data sets from plants impaired in their respiratory function with the genes regulated under Fe or S deficiencies obtained from other data sets, nutrient-responsive genes potentially regulated by hypothetical mitochondrial retrograde signaling pathway are evidenced. It leads us to hypothesize that plant mitochondria could be, therefore, required for regulating the expression of key genes involved both in Fe and S metabolisms.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio Agroenergia, Università degli Studi di MilanoMilan, Italy
| | - Jean-François Briat
- Biochimie and Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/SupAgro/UM2Montpellier, France
| |
Collapse
|
50
|
López-Millán AF, Duy D, Philippar K. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology. FRONTIERS IN PLANT SCIENCE 2016; 7:178. [PMID: 27014281 DOI: 10.3389/fpls201600178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/02/2016] [Indexed: 05/22/2023]
Abstract
Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.
Collapse
Affiliation(s)
- Ana F López-Millán
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service, Houston TX, USA
| | - Daniela Duy
- Plastid Fatty Acid and Iron Transport - Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Katrin Philippar
- Plastid Fatty Acid and Iron Transport - Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|