1
|
Muhammad A, Khan MHU, Kong X, Zheng S, Bai N, Li L, Zhang N, Muhammad S, Li Z, Zhang X, Miao C, Zhang Z. Rhizospheric crosstalk: A mechanistic overview of how plant secondary metabolites alleviate abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112431. [PMID: 39993645 DOI: 10.1016/j.plantsci.2025.112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Plants often encounter incompatible growing conditions, such as drought, extreme temperatures, salinity, and heavy metals, which negatively impact their growth and development, resulting in reduced yield and, in severe cases, plant death. These stresses trigger the synthesis of plant secondary metabolites (PSMs), which help plants develop strategies to deter enemies, combat pathogens, outcompete competitors, and overcome environmental restraints. PSMs are released into the rhizosphere and play crucial roles in plant defense and communication. The multifunctionality of PSMs offers new insights into the plant intricate adaptive responses, which can refine our understanding of plant tolerance mechanisms in challenging environments. Thus, elucidating the chemical composition and functions of plant-derived specialized metabolites in the rhizosphere is the key to understanding interactions in this belowground environment. In this review, we aim to elucidate how PSMs exudation shapes the activities and abundance of the rhizosphere microbiome. We also highlight key environmental factors that regulate the structure and diversity of microbial communities. Finally, we discuss various preventive roles of PSMs, exploring how plants recruit microbes preemptively to mitigate diverse abiotic stresses. Additionally, we emphasize the significant contribution of phenolic compounds to the antioxidant defense response in plants, regulated through the shikimate pathway and is considered as a distinctive plant stress resilience component as compared to other PSMs under abiotic stress. Collectively, this study reveals the significance of understanding the multifaceted crosstalk between PSMs and the microbiome, which will facilitate the potential for developing methods to manipulate PSMs-microbiome interaction with predictive outcomes for sustainable crop production.
Collapse
Affiliation(s)
- Ali Muhammad
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Muhammad Hafeez Ullah Khan
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiangjun Kong
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shuaichao Zheng
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Na Bai
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lijie Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Nina Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zengqiang Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
2
|
Eldridge BM, Larson ER, Mahony L, Clark J, Akhtar J, Noleto-Dias C, Ward JL, Grierson CS. A highly conserved ABCG transporter mediates root-soil cohesion in Arabidopsis. PLANT PHYSIOLOGY 2025; 198:kiaf193. [PMID: 40350928 PMCID: PMC12084803 DOI: 10.1093/plphys/kiaf193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 05/14/2025]
Abstract
Identifying plant molecular mechanisms that mediate root-substrate interactions might offer potential solutions to soil erosion, especially in crop fields, where agricultural practices lead to soil loss. Mutants of the Arabidopsis (Arabidopsis thaliana) ATP-Binding Cassette G 43 (ABCG43) transporter gene show enhanced root-substrate cohesion, even though their root micro- and macro-structures are similar to those of wild-type Arabidopsis. We used genetic, biochemical, and functional methods to characterize the substrate-binding effects of changes in ABCG43 expression, including differences in exudate composition, and phylogenetic analyses to explore the evolutionary history of ABCG43 in land plants. Exudates from roots of the abcg43 mutant bound more soil and growing medium, and there were significant differences in abcg43 root exudate composition compared with the wild type. These results suggest that ABCG43 normally functions to mediate root exudates that affect root-substrate cohesion. Phylogenetic analysis showed that ABCG43 is highly conserved in plants, including in agriculturally important crop species. These results provide evidence that ABCG43 is a promising molecular target for developing crop plants with enhanced root-soil cohesion.
Collapse
Affiliation(s)
- Bethany M Eldridge
- School of Biological Sciences, University of Bristol 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Emily R Larson
- School of Biological Sciences, University of Bristol 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | | | - James Clark
- School of Biological Sciences, University of Bristol 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Jumana Akhtar
- School of Biological Sciences, University of Bristol 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Clarice Noleto-Dias
- Plant Sciences and the Bioeconomy, Rothamsted Research, West Common, Harpenden. Herts AL5 2JQ, UK
| | - Jane L Ward
- Plant Sciences and the Bioeconomy, Rothamsted Research, West Common, Harpenden. Herts AL5 2JQ, UK
| | - Claire S Grierson
- School of Biological Sciences, University of Bristol 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Liu PF, Zhao YK, Ma JN, Cao Y, Zhang MX, Yu J, Guan HB, Xing YS, Wang XQ, Jia X. Impact of various intercropping modes on soil quality, microbial communities, yield and quality of Platycodon grandiflorum (Jacq.) A. DC. BMC PLANT BIOLOGY 2025; 25:503. [PMID: 40259214 PMCID: PMC12010524 DOI: 10.1186/s12870-025-06544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
INTRODUCTION Intercropping has the function of promoting plant growth, improving yield and quality. Platycodon grandiflorus (P. grandiflorus) is a traditional Chinese medicinal herb; continuous cropping obstacles significantly inhibit its yield and quality. However, few study have established about P. grandiflorus interaction of various crops. This study provides a theoretical foundation to explore the most effective intercropping method, enhance soil utilization efficiency, and increase the yield and quality of P. grandiflorus. We conducted field experiment, P. grandiflorus monoculture (JG-JG), P. grandiflorus and Achyranthes bidentata intercropping (JG-NX), P. grandiflorus and Saposhnikovia divaricata intercropping (JG-FF), P. grandiflorus and Glehnia littoralis (JG-SS) intercropping. Additionally, we included three main intercropping crops with P. grandiflorus, Zea mays (JG-YM), Setaria italica (JG-GZ), and Glycine max (JG-DD). The soil physicochemical properties, enzyme activity, soil microorganisms, the yield and secondary metabolite content in the roots of P. grandiflorus were determined. The results showed that intercropping significantly increased the yield and quality of P. grandiflorus, and significantly reduced the incidence rate of root rot. The intercropping system enhances the physical and chemical properties of soil, soil enzyme activity, and soil microbial diversity. JG-SS intercropping significantly increased the abundance of bacteria and fungi, stimulated soil microbial communities, promoted plant growth, significantly increased yield and content of platycodin D, enhanced the complexity of microbial co-occurrence networks. This study could provide a sustainable planting system for the cultivation of P. grandiflorus, particularly the system JG-SS. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- P F Liu
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Y K Zhao
- Chifeng Institute of Agriculture and Animal Husbandry Science, Inner Mongolia, Chifeng, 024031, China
| | - J N Ma
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Y Cao
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - M X Zhang
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - J Yu
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - H B Guan
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Y S Xing
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - X Q Wang
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China.
| | - X Jia
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
4
|
Liu Y, Shi A, Chen Y, Xu Z, Liu Y, Yao Y, Wang Y, Jia B. Beneficial microorganisms: Regulating growth and defense for plant welfare. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:986-998. [PMID: 39704146 PMCID: PMC11869181 DOI: 10.1111/pbi.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Beneficial microorganisms (BMs) promote plant growth and enhance stress resistance. This review summarizes how BMs induce growth promotion by improving nutrient uptake, producing growth-promoting hormones and stimulating root development. How BMs enhance disease resistance and help protect plants from abiotic stresses has also been explored. Growth-defense trade-offs are known to affect the ability of plants to survive under unfavourable conditions. This review discusses studies demonstrating that BMs regulate growth-defense trade-offs through microbe-associated molecular patterns and multiple pathways, including the leucine-rich repeat receptor-like kinase pathway, abscisic acid signalling pathway and specific transcriptional factor regulation. This multifaceted relationship underscores the significance of BMs in sustainable agriculture. Finally, the need for integration of artificial intelligence to revolutionize biofertilizer research has been highlighted. This review also elucidates the cutting-edge advancements and potential of plant-microbe synergistic microbial agents.
Collapse
Affiliation(s)
- Yan Liu
- Xianghu LaboratoryHangzhouChina
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | | | - Yue Chen
- Xianghu LaboratoryHangzhouChina
- Horticulture Research InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | - Yongxin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yanlai Yao
- Xianghu LaboratoryHangzhouChina
- Institute of Environment, Resource, Soil and FertiliserZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yiming Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | | |
Collapse
|
5
|
Zhu L, Zhou W, Wang J, Guo J, Zhou C. Root exudate-mediated assemblage of rhizo-microbiome enhances Fusarium wilt suppression in chrysanthemum. Microbiol Res 2025; 292:128031. [PMID: 39705829 DOI: 10.1016/j.micres.2024.128031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Intercropping is emerging as a sustainable strategy to manage soil-borne diseases, yet the underlying mechanisms remain largely elusive. Here, we investigated how intercropping chrysanthemum (Chrysanthemum morifolium) with ginger (Zingiber officinale) suppressed Fusarium wilt and influenced the associated rhizo-microbiome. Chrysanthemum plants in intercropping systems exhibited a marked reduction in wilt severity and greater biomass compared to those grown in monoculture. In contrast, soil sterilization intensified wilt severity and abrogated the benefits of intercropping, highlighting the critical role of soil microbiota. 16S rRNA gene amplicon analysis revealed that intercropping significantly changed the composition and structure of rhizo-bacterial communities, particularly enriching Burkholderia species, which were closely associated with plant growth and disease resistance. Further investigation demonstrated that ginger root exudates, including sinapyl alcohol and 6-gingerol, greatly promoted the proliferation and colonization of Burkholderia sp. in chrysanthemum rhizosphere, conferring the enhanced disease suppression. Metabolomic profiling revealed that ginger root exudates stimulated the release of specific metabolites by chrysanthemum roots, which promoted the growth and biofilm formation of Burkholderia sp. Our findings uncovered the mechanism by which intercropping chrysanthemum with ginger plants modulated the rhizo-microbiome and thereby resulted in the enhanced disease suppression, offering insights into optimizing plant-microbe interactions for improving crop health and productivity.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, College of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, College of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jianfei Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, College of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou 310058, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, College of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China; Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Subrahmaniam HJ, Picó FX, Bataillon T, Salomonsen CL, Glasius M, Ehlers BK. Natural variation in root exudate composition in the genetically structured Arabidopsis thaliana in the Iberian Peninsula. THE NEW PHYTOLOGIST 2025; 245:1437-1449. [PMID: 39658885 PMCID: PMC11754937 DOI: 10.1111/nph.20314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Plant root exudates are involved in nutrient acquisition, microbial partnerships, and inter-organism signaling. Yet, little is known about the genetic and environmental drivers of root exudate variation at large geographical scales, which may help understand the evolutionary trajectories of plants in heterogeneous environments. We quantified natural variation in the chemical composition of Arabidopsis thaliana root exudates in 105 Iberian accessions. We identified up to 373 putative compounds using ultra-high-performance liquid chromatography coupled with mass spectrometry. We estimated the broad-sense heritability of compounds and conducted a genome-wide association (GWA) study. We associated variation in root exudates to variation in geographic, environmental, life history, and genetic attributes of Iberian accessions. Only 25 of 373 compounds exhibited broad-sense heritability values significantly different from zero. GWA analysis identified polymorphisms associated with 12 root exudate compounds and 26 known genes involved in metabolism, defense, signaling, and nutrient transport. The genetic structure influenced root exudate composition involving terpenoids. We detected five terpenoids related to plant defense significantly varying in mean abundances in two genetic clusters. Our study provides first insights into the extent of root exudate natural variation at a regional scale depicting a diversified evolutionary trajectory among A. thaliana genetic clusters chiefly mediated by terpenoid composition.
Collapse
Affiliation(s)
- Harihar Jaishree Subrahmaniam
- Department of EcoscienceAarhus UniversityAarhus C8000Denmark
- Institut für Pflanzenwissenschaften und MikrobiologieUniversität HamburgHamburg22609Germany
| | - F. Xavier Picó
- Departamento de Ecología y Evolución, Estación Biológica de DoñanaConsejo Superior de Investigaciones CientíficasSevilla41092Spain
| | - Thomas Bataillon
- Department of Molecular Biology and Genetics, Bioinformatics Research CentreAarhus UniversityAarhus C8000Denmark
| | | | | | - Bodil K. Ehlers
- Department of EcoscienceAarhus UniversityAarhus C8000Denmark
| |
Collapse
|
7
|
Laishram B, Devi OR, Dutta R, Senthilkumar T, Goyal G, Paliwal DK, Panotra N, Rasool A. Plant-microbe interactions: PGPM as microbial inoculants/biofertilizers for sustaining crop productivity and soil fertility. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100333. [PMID: 39835267 PMCID: PMC11743900 DOI: 10.1016/j.crmicr.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Plant-microbe interactions play pivotal roles in sustaining crop productivity and soil fertility, offering promising avenues for sustainable agricultural practices. This review paper explores the multifaceted interactions between plants and various microorganisms, highlighting their significance in enhancing crop productivity, combating pathogens, and promoting soil health. Understanding these interactions is crucial for harnessing their potential in agricultural systems to address challenges such as food security and environmental sustainability. Therefore, the introduction of beneficial microbes into agricultural ecosystems by bio-augmentation reduces the negative effects of intensive, non-sustainable agriculture on the environment, society, and economy, into the mechanisms underlying the application of plant growth promoting microbes as microbial inoculants/biofertilizers; their interactions, the factors influencing their dynamics, and the implications for agricultural practices, emerging technologies and strategies that leverage plant-microbe interactions for improving crop yields, soil fertility, and overall agricultural sustainability.
Collapse
Affiliation(s)
- Bibek Laishram
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Okram Ricky Devi
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Rinjumoni Dutta
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | | | - Girish Goyal
- Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, India
| | | | - Narinder Panotra
- Institute of Biotechnology, SKUAST Jammu, Jammu and Kashmir 180009, India
| | - Akhtar Rasool
- Research Center for Chemistry - National Research and Innovation Agency (BRIN), KST BJ Habibie, Building 452, Setu, Tangerang Selatan 15314, Indonesia
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| |
Collapse
|
8
|
Turek-Szytow J, Michalska J, Dudło A, Krzemiński P, Ribeiro AL, Nowak B, Kobyłecki R, Zarzycki R, Golba S, Surmacz-Górska J. Soil application potential of post-sorbents produced by co-sorption of humic substances and nutrients from sludge anaerobic digestion reject water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122465. [PMID: 39332303 DOI: 10.1016/j.jenvman.2024.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/29/2024]
Abstract
This study introduces a novel soil conditioning approach using humic substances (HSs) and nutrients co-recovered from reject water from sewage sludge anaerobic digestion. For the first time, HSs and nutrients were simultaneously recovered through sorption on low-cost, environmentally inert materials: natural rock opoka (OP) and waste autoclaved aerated concrete (WAAC). This innovative application of OP and WAAC as carriers and delivery agents for soil-relevant substances offers potential for resource recovery and soil conditioning. Results indicate that the post-sorption opoka (PS-OP) and post-sorption waste autoclaved aerated concrete (PS-WAAC) effectively release retained HSs at 350-480 μg g⁻1 d⁻1, respectively. These materials also show potential as NPK fertilizers, releasing 280-430 μg g⁻1 d⁻1 N-NH₄⁺, 80-150 μg g⁻1 d⁻1 P-PO₄³⁻, and 270-350 μg g⁻1 d⁻1 K⁺. Additionally, PS-OP demonstrated promising fungicide properties, reducing P. diachenii growth by 31% at a concentration of 1 g L⁻1. A two-way ANOVA indicated that the effects of PS-OP and PS-WAAC on soil physicochemical and biological parameters varied with plant species. Both post-sorbents improved the quality of soil collected from sand mining area, increasing cation exchange capacity by 7%-85% and organic matter content by 10%-58%. They also enhanced the functional potential of soil microbial communities, increasing their metabolic activities by 23%-36% in soils sown with clover and by 33%-39% in soils sown with rapeseed. An opposite effect was observed in soils sown with sorghum, suggesting these amendments may not universally act as plant biostimulants. The effectiveness of these post-sorbents in enhancing plant growth varied depending on plant species and the mineral base of the post-sorbent. PS-OP increased the total length of clover and sorghum by 41% and 36%, and their fresh biomass by 82% and 80%, respectively. In turn, PS-WAAC increased the total length of clover and sorghum by 76% and 17%, and their fresh biomass by 29% and 15%, respectively. It was notably more effective than PS-OP for rapeseed. This study proposes a strategy to decrease reliance on non-renewable resources and costly sorbents while minimizing environmental impact. It shows that PS-OP and PS-WAAC can enhance soil quality, microbial activity, and plant growth. Given their origins, these amendments are recommended for soil remediation, particularly in degraded areas. Future research should focus on optimizing their application across various plant species to maximize effectiveness.
Collapse
Affiliation(s)
- Jolanta Turek-Szytow
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland; Centre for Biotechnology at Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Justyna Michalska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland.
| | - Agnieszka Dudło
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Paweł Krzemiński
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - Anne Luise Ribeiro
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - Bożena Nowak
- Institute of Biology, Biotechnology and Environmental protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Rafał Kobyłecki
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, Dąbrowskiego 73, 42-201, Czestochowa, Poland
| | - Robert Zarzycki
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, Dąbrowskiego 73, 42-201, Czestochowa, Poland
| | - Sylwia Golba
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500, Chorzow, Poland
| | - Joanna Surmacz-Górska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
9
|
Zhu XQ, Li M, Li RP, Tang WQ, Wang YY, Fei X, He P, Han GY. Rice Varieties Intercropping Induced Soil Metabolic and Microbial Recruiting to Enhance the Rice Blast ( Magnaporthe Oryzae) Resistance. Metabolites 2024; 14:507. [PMID: 39330514 PMCID: PMC11434330 DOI: 10.3390/metabo14090507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
[Background] Intercropping is considered an effective approach to defending rice disease. [Objectives/Methods] This study aimed to explore the resistance mechanism of rice intraspecific intercropping by investigating soil metabolites and their regulation on the rhizosphere soil microbial community using metabolomic and microbiome analyses. [Results] The results showed that the panicle blast disease occurrence of the resistant variety Shanyou63 (SY63) and the susceptible variety Huangkenuo (HKN) were both decreased in the intercropping compared to monoculture. Notably, HKN in the intercropping system exhibited significantly decreased disease incidence and increased disease resistance-related enzyme protease activity. KEGG annotation from soil metabolomics analysis revealed that phenylalanine metabolic pathway, phenylalanine, tyrosine, and tryptophan biosynthesis pathway, and fructose and mannose metabolic pathway were the key pathways related to rice disease resistance. Soil microbiome analysis indicated that the bacterial genera Nocardioides, Marmoricola, Luedemannella, and Desulfomonile were significantly enriched in HKN after intercropping, while SY63 experienced a substantial accumulation of Ruminiclostridium and Cellulomonas. Omics-based correlation analysis highlighted that the community assembly of Cellulomonas and Desulfomonile significantly affected the content of the metabolites D-sorbitol, D-mannitol, quinic acid, which further proved that quinic acid had a significantly inhibitory effect on the mycelium growth of Magnaporthe oryzae, and these three metabolites had a significant blast control effect. The optimal rice blast-control efficiency on HKN was 51.72%, and Lijiangxintuanheigu (LTH) was 64.57%. [Conclusions] These findings provide a theoretical basis for rice varieties intercropping and sustainable rice production, emphasizing the novelty of the study in elucidating the underlying mechanisms of intercropping-mediated disease resistance.
Collapse
Affiliation(s)
- Xiao-Qiao Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
| | - Mei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
| | - Rong-Ping Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
| | - Wen-Qiang Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
| | - Yun-Yue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
| | - Xiao Fei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
| | - Ping He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
| | - Guang-Yu Han
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650500, China
| |
Collapse
|
10
|
Wu D, He X, Jiang L, Li W, Wang H, Lv G. Root exudates facilitate the regulation of soil microbial community function in the genus Haloxylon. FRONTIERS IN PLANT SCIENCE 2024; 15:1461893. [PMID: 39363923 PMCID: PMC11446799 DOI: 10.3389/fpls.2024.1461893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Introduction Root exudates act as the "language" of plant-soil communication, facilitating crucial interactions, information exchange, and energy transfer between plants and soil. The interactions facilitated by root exudates between plants and microorganisms in the rhizosphere are crucial for nutrient uptake and stress resilience in plants. However, the mechanism underlying the interaction between root exudates and rhizosphere microorganisms in desert plants under drought conditions remains unclear, especially among closely related species. Methods To reveal the ecological strategies employed by the genus Haloxylon in different habitats. Using DNA extraction and sequencing and UPLC-Q-Tof/MS methods, we studied root exudates and soil microorganisms from two closely related species, Haloxylon ammodendron (HA) and Haloxylon persicum (HP), to assess differences in their root exudates, soil microbial composition, and interactions. Results Significant differences were found in soil properties and root traits between the two species, among which soil water content (SWC) and soil organic carbon (SOC) in rhizosphere and bulk soils (P < 0.05). While the metabolite classification of root exudates was similar, their components varied, with terpenoids being the main differential metabolites. Soil microbial structure and diversity also exhibited significant differences, with distinct key species in the network and differential functional processes mainly related to nitrogen and carbon cycles. Strong correlations were observed between root exudate-mediated root traits, soil microorganisms, and soil properties, although the complex interactions differed between the two closely relative species. The primary metabolites found in the network of HA include sugars and fatty acids, while HP relies on secondary metabolites, steroids and terpenoids. Discussion These findings suggest that root exudates are key in shaping rhizosphere microbial communities, increasing microbial functionality, fostering symbiotic relationships with hosts, and bolstering the resilience of plants to environmental stress.
Collapse
Affiliation(s)
- Deyan Wu
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Xuemin He
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Lamei Jiang
- College of Life Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
- Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wenjing Li
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Hengfang Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
11
|
Fang K, Kou YP, Tang N, Liu J, Zhang XY, He HL, Xia RX, Zhao WQ, Li DD, Liu Q. Differential responses of soil bacteria, fungi and protists to root exudates and temperature. Microbiol Res 2024; 286:127829. [PMID: 39018940 DOI: 10.1016/j.micres.2024.127829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/19/2024]
Abstract
The impact of climate warming on soil microbes has been well documented, with studies revealing its effects on diversity, community structure and network dynamics. However, the consistency of soil microbial community assembly, particularly in response to diverse plant root exudates under varying temperature conditions, remains an unresolved issue. To address this issue, we employed a growth chamber to integrate temperature and root exudates in a controlled experiment to examine the response of soil bacteria, fungi, and protists. Our findings revealed that temperature independently regulated microbial diversity, with distinct patterns observed among bacteria, fungi, and protists. Both root exudates and temperature significantly influenced microbial community composition, yet interpretations of these factors varied among prokaryotes and eukaryotes. In addition to phototrophic bacteria and protists, as well as protistan consumers, root exudates determined to varying degrees the enrichment of other microbial functional guilds at specific temperatures. The effects of temperature and root exudates on microbial co-occurrence patterns were interdependent; root exudates primarily simplified the network at low and high temperatures, while responses to temperature varied between single and mixed exudate treatments. Moreover, temperature altered the composition of keystone species within the microbial network, while root exudates led to a decrease in their number. These results emphasize the substantial impact of plant root exudates on soil microbial community responses to temperature, underscoring the necessity for future climate change research to incorporate additional environmental variables.
Collapse
Affiliation(s)
- Kai Fang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; College of Agriculture and Biological Sciences, Dali University, Dali 671003, China
| | - Yong-Ping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| | - Na Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Jia Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Xiao-Ying Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - He-Liang He
- College of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644007, China
| | - Rui-Xue Xia
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Wen-Qiang Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Dan-Dan Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
12
|
Kumari R, Kapoor P, Mir BA, Singh M, Parrey ZA, Rakhra G, Parihar P, Khan MN, Rakhra G. Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide 2024; 150:1-17. [PMID: 38972538 DOI: 10.1016/j.niox.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Bilal Ahmad Mir
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Maninder Singh
- Department of Biotechnology and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zubair Ahmad Parrey
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Gurseen Rakhra
- Department of Nutrition & Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, 121004, India
| | - Parul Parihar
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
13
|
Wang Q, Xu J, Li D, Zhang J, Zhao B. Salinity-induced variations in wheat biomass are regulated by the Na +:K + ratio, root exudates, and keystone species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174778. [PMID: 39009148 DOI: 10.1016/j.scitotenv.2024.174778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Salt stress can limit crop productivity, and there are differences in salt tolerance among plant varieties; however, we lack a comprehensive understanding of how keystone species obtained from different plant varieties under salt stress change plant biomass by driving root exudate secretion and regulating the Na+:K+ ratio. We conducted a pot experiment for three wheat varieties (JiMai32 (JM32), XiaoYan60 (XY60), and ShanRong3 (SR3)) under saline/nonsaline soil conditions. Salt stress tended to significantly reduce wheat biomass, and the biomass reduction rates of the different varieties decreased in the order JM32 < XY60 < SR3. The compositions of the bacterial and fungal communities in the root endosphere, rhizosphere and bulk soil were measured, and salt-induced microbial taxa were isolated to identify keystone species from the co-occurrence networks and to study their effects on physiological responses to salinity in wheat varieties. We observed that root exudates participated in the regulation of the Na+:K+ ratio, thereby affecting wheat biomass, and this process was regulated by keystone species. JM32 was enriched in microorganisms that promote plant growth and resistance to salt stress, such as Burkholderiales, Sordariomycetes, Alteromonadaceae, Acremonium, and Dokdonella, and inhibited microorganisms that are sensitive to the environment (salt, nutrients) and plant pathogens, such as Nocardioidaceae, Nitrospira, Cytophagaceae, Syntrophobacteriaceae, and Striaticonidium. XY60 inhibited microorganisms with biological control and disease inhibition potential, such as Agromyces and Kaistobacter. SR3-enriched pathogens, such as Aurantimonadaceae and Pseudogymnoascus, as well as microorganisms with antagonistic pathogen potential and the ability to treat bacterial infections, such as RB41 and Saccharothrix, were inhibited. Our results confirmed the crucial function of salt-induced keystone species in enhancing plant adaptation to salt stress by driving root exudate secretion and regulating the Na+:K+ ratio, with implications for exploring reasonable measures to improve plant salt tolerance.
Collapse
Affiliation(s)
- Qingxia Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jisheng Xu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dandan Li
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiabao Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bingzi Zhao
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, Nanjing 211135, China.
| |
Collapse
|
14
|
Gottlieb R, Gruntman M. Belowground plant competition: uncoupling root response strategies of peas. Proc Biol Sci 2024; 291:20240673. [PMID: 39079667 PMCID: PMC11288680 DOI: 10.1098/rspb.2024.0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/21/2024] [Indexed: 08/03/2024] Open
Abstract
Belowground plant competition has been shown to induce varying responses, from increases to decreases in root biomass allocation or in directional root placement. Such inconsistencies could result from the fact that root allocation and directional growth were seldom studied together, even though they might represent different strategies. Moreover, variations in belowground responses might be due to different size hierarchies between plants, but this hypothesis has not been studied previously. In a greenhouse rhizobox experiment, we examined the way both root allocation and directional root placement of Pisum sativum are affected by the size and density of Festuca glauca neighbours, and by nutrient distribution. We found that root allocation of P. sativum increased with the density and size of F. glauca. By contrast, directional root placement was unaffected by neighbour size and increased either towards or away from neighbours when nutrients were patchily or uniformly distributed, respectively. These results demonstrate that directional root placement under competition is contingent on the distribution of soil resources. Interestingly, our results suggest that root allocation and directional placement might be uncoupled strategies that simultaneously provide stress tolerance and spatial responsiveness to neighbours, thus highlighting the importance of measuring both when studying belowground plant competition.
Collapse
Affiliation(s)
- Ruth Gottlieb
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Michal Gruntman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Agunbiade VF, Fadiji AE, Agbodjato NA, Babalola OO. Isolation and Characterization of Plant-Growth-Promoting, Drought-Tolerant Rhizobacteria for Improved Maize Productivity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1298. [PMID: 38794369 PMCID: PMC11125291 DOI: 10.3390/plants13101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/26/2024]
Abstract
Drought is one of the main abiotic factors affecting global agricultural productivity. However, the application of bioinocula containing plant-growth-promoting rhizobacteria (PGPR) has been seen as a potential environmentally friendly technology for increasing plants' resistance to water stress. In this study, rhizobacteria strains were isolated from maize (Zea mays L.) and subjected to drought tolerance tests at varying concentrations using polyethylene glycol (PEG)-8000 and screened for plant-growth-promoting activities. From this study, 11 bacterial isolates were characterized and identified molecularly, which include Bacillus licheniformis A5-1, Aeromonas caviae A1-2, A. veronii C7_8, B. cereus B8-3, P. endophytica A10-11, B. halotolerans A9-10, B. licheniformis B9-5, B. simplex B15-6, Priestia flexa B12-4, Priestia flexa C6-7, and Priestia aryabhattai C1-9. All isolates were positive for indole-3-acetic acid (IAA), siderophore, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, ammonia production, nitrogen fixation, and phosphate solubilization, but negative for hydrogen cyanide production. Aeromonas strains A1-2 and C7_8, showing the highest drought tolerance of 0.71 and 0.77, respectively, were selected for bioinoculation, singularly and combined. An increase in the above- and below-ground biomass of the maize plants at 100, 50, and 25% water-holding capacity (WHC) was recorded. Bacterial inoculants, which showed an increase in the aerial biomass of plants subjected to moderate water deficiency by up to 89%, suggested that they can be suitable candidates to enhance drought tolerance and nutrient acquisition and mitigate the impacts of water stress on plants.
Collapse
Affiliation(s)
| | | | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
16
|
Eroğlu ÇG, Bennett AA, Steininger-Mairinger T, Hann S, Puschenreiter M, Wirth J, Gfeller A. Neighbour-induced changes in root exudation patterns of buckwheat results in altered root architecture of redroot pigweed. Sci Rep 2024; 14:8679. [PMID: 38622223 PMCID: PMC11018816 DOI: 10.1038/s41598-024-58687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Roots are crucial in plant adaptation through the exudation of various compounds which are influenced and modified by environmental factors. Buckwheat root exudate and root system response to neighbouring plants (buckwheat or redroot pigweed) and how these exudates affect redroot pigweed was investigated. Characterising root exudates in plant-plant interactions presents challenges, therefore a split-root system which enabled the application of differential treatments to parts of a single root system and non-destructive sampling was developed. Non-targeted metabolome profiling revealed that neighbour presence and identity induces systemic changes. Buckwheat and redroot pigweed neighbour presence upregulated 64 and 46 metabolites, respectively, with an overlap of only 7 metabolites. Root morphology analysis showed that, while the presence of redroot pigweed decreased the number of root tips in buckwheat, buckwheat decreased total root length and volume, surface area, number of root tips, and forks of redroot pigweed. Treatment with exudates (from the roots of buckwheat and redroot pigweed closely interacting) on redroot pigweed decreased the total root length and number of forks of redroot pigweed seedlings when compared to controls. These findings provide understanding of how plants modify their root exudate composition in the presence of neighbours and how this impacts each other's root systems.
Collapse
Affiliation(s)
- Çağla Görkem Eroğlu
- Herbology in Field Crops, Plant Production Systems, Agroscope, Nyon, Switzerland
| | - Alexandra A Bennett
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Teresa Steininger-Mairinger
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, Institute of Soil Research, Rhizosphere Ecology & Biogeochemistry Group, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Judith Wirth
- Herbology in Field Crops, Plant Production Systems, Agroscope, Nyon, Switzerland
| | - Aurélie Gfeller
- Herbology in Field Crops, Plant Production Systems, Agroscope, Nyon, Switzerland.
| |
Collapse
|
17
|
Maitra P, Hrynkiewicz K, Szuba A, Jagodziński AM, Al-Rashid J, Mandal D, Mucha J. Metabolic niches in the rhizosphere microbiome: dependence on soil horizons, root traits and climate variables in forest ecosystems. FRONTIERS IN PLANT SCIENCE 2024; 15:1344205. [PMID: 38645395 PMCID: PMC11026606 DOI: 10.3389/fpls.2024.1344205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Understanding belowground plant-microbial interactions is important for biodiversity maintenance, community assembly and ecosystem functioning of forest ecosystems. Consequently, a large number of studies were conducted on root and microbial interactions, especially in the context of precipitation and temperature gradients under global climate change scenarios. Forests ecosystems have high biodiversity of plants and associated microbes, and contribute to major primary productivity of terrestrial ecosystems. However, the impact of root metabolites/exudates and root traits on soil microbial functional groups along these climate gradients is poorly described in these forest ecosystems. The plant root system exhibits differentiated exudation profiles and considerable trait plasticity in terms of root morphological/phenotypic traits, which can cause shifts in microbial abundance and diversity. The root metabolites composed of primary and secondary metabolites and volatile organic compounds that have diverse roles in appealing to and preventing distinct microbial strains, thus benefit plant fitness and growth, and tolerance to abiotic stresses such as drought. Climatic factors significantly alter the quantity and quality of metabolites that forest trees secrete into the soil. Thus, the heterogeneities in the rhizosphere due to different climate drivers generate ecological niches for various microbial assemblages to foster beneficial rhizospheric interactions in the forest ecosystems. However, the root exudations and microbial diversity in forest trees vary across different soil layers due to alterations in root system architecture, soil moisture, temperature, and nutrient stoichiometry. Changes in root system architecture or traits, e.g. root tissue density (RTD), specific root length (SRL), and specific root area (SRA), impact the root exudation profile and amount released into the soil and thus influence the abundance and diversity of different functional guilds of microbes. Here, we review the current knowledge about root morphological and functional (root exudation) trait changes that affect microbial interactions along drought and temperature gradients. This review aims to clarify how forest trees adapt to challenging environments by leveraging their root traits to interact beneficially with microbes. Understanding these strategies is vital for comprehending plant adaptation under global climate change, with significant implications for future research in plant biodiversity conservation, particularly within forest ecosystems.
Collapse
Affiliation(s)
- Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Andrzej M. Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Game Management and Forest Protection, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Jubair Al-Rashid
- Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Tianjin, China
| | - Dipa Mandal
- Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Forest Entomology and Pathology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
18
|
Delory BM, Callaway RM, Semchenko M. A trait-based framework linking the soil metabolome to plant-soil feedbacks. THE NEW PHYTOLOGIST 2024; 241:1910-1921. [PMID: 38124274 DOI: 10.1111/nph.19490] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant-soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant-soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.
Collapse
Affiliation(s)
- Benjamin M Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, 21335, Germany
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, 3584 CB, the Netherlands
| | - Ragan M Callaway
- Division of Biological Sciences and Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
19
|
Behr JH, Kuhl-Nagel T, Sommermann L, Moradtalab N, Chowdhury SP, Schloter M, Windisch S, Schellenberg I, Maccario L, Sørensen SJ, Rothballer M, Geistlinger J, Smalla K, Ludewig U, Neumann G, Grosch R, Babin D. Long-term conservation tillage with reduced nitrogen fertilization intensity can improve winter wheat health via positive plant-microorganism feedback in the rhizosphere. FEMS Microbiol Ecol 2024; 100:fiae003. [PMID: 38224956 PMCID: PMC10847717 DOI: 10.1093/femsec/fiae003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024] Open
Abstract
Microbiome-based solutions are regarded key for sustainable agroecosystems. However, it is unclear how agricultural practices affect the rhizosphere microbiome, plant-microorganism interactions and crop performance under field conditions. Therefore, we installed root observation windows in a winter wheat field cultivated either under long-term mouldboard plough (MP) or cultivator tillage (CT). Each tillage practice was also compared at two nitrogen (N) fertilization intensities, intensive (recommended N-supply with pesticides/growth regulators) or extensive (reduced N-supply, no fungicides/growth regulators). Shoot biomass, root exudates and rhizosphere metabolites, physiological stress indicators, and gene expression were analyzed together with the rhizosphere microbiome (bacterial/archaeal 16S rRNA gene, fungal ITS amplicon, and shotgun metagenome sequencing) shortly before flowering. Compared to MP, the rhizosphere of CT winter wheat contained more primary and secondary metabolites, especially benzoxazinoid derivatives. Potential copiotrophic and plant-beneficial taxa (e.g. Bacillus, Devosia, and Trichoderma) as well as functional genes (e.g. siderophore production, trehalose synthase, and ACC deaminase) were enriched in the CT rhizosphere, suggesting that tillage affected belowground plant-microorganism interactions. In addition, physiological stress markers were suppressed in CT winter wheat compared to MP. In summary, tillage practice was a major driver of crop performance, root deposits, and rhizosphere microbiome interactions, while the N-fertilization intensity was also relevant, but less important.
Collapse
Affiliation(s)
- Jan Helge Behr
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Theresa Kuhl-Nagel
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Loreen Sommermann
- Anhalt University of Applied Sciences, Department of Agriculture
, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Narges Moradtalab
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology
, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis
(COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Saskia Windisch
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Ingo Schellenberg
- Anhalt University of Applied Sciences, Department of Agriculture
, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Lorrie Maccario
- University of Copenhagen, Department of Biology, Section of Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Søren J Sørensen
- University of Copenhagen, Department of Biology, Section of Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Michael Rothballer
- Institute of Network Biology
, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Joerg Geistlinger
- Anhalt University of Applied Sciences, Department of Agriculture
, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Uwe Ludewig
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Günter Neumann
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Doreen Babin
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
20
|
de Barros Dantas LL, Eldridge BM, Dorling J, Dekeya R, Lynch DA, Dodd AN. Circadian regulation of metabolism across photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:650-668. [PMID: 37531328 PMCID: PMC10953457 DOI: 10.1111/tpj.16405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.
Collapse
Affiliation(s)
| | - Bethany M. Eldridge
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Jack Dorling
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Richard Dekeya
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Deirdre A. Lynch
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
21
|
Ni M, Luo H, Xu H, Chu C, Fang S. High temperature can improve the performance of invasive plants by facilitating root growth. AMERICAN JOURNAL OF BOTANY 2023; 110:e16227. [PMID: 37561668 DOI: 10.1002/ajb2.16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
PREMISE The ever-increasing temperatures of the Anthropocene may facilitate plant invasions. To date, studies of temperature effects on alien plants have mainly focused on aboveground plant traits but ignored belowground traits, which may confound predictions of plant invasion risks. METHODS The temperature effects on the root growth dynamics of two alien shrubs, invasive Mimosa sepiaria and naturalized Corchorus capsulari, were studied using a 3D, transparent growth system under five temperature treatments (day/night: 18°C/13°C to 34°C/29°C) that cover the present and future warming temperature scenarios in China. We measured root depth and width growth in response to temperature treatments over 84 days. We also investigated intra- and interspecific competition of paired plants of the two species grown together at the five temperatures. RESULTS Shoot growth of M. sepiaria and C. capsularis was optimal at the mid-range temperature. Root growth, however, was faster at the highest temperature (34°C/29°C) for M. sepiaria, but decreased for C. capsularis as temperatures increased. Root depth growth was more sensitive than root width for both species during neighbor competition. Compared to C. capsularis, M. sepiaria had relatively greater advantage during intra- and interspecific competition with increasing temperature, possibly because of its better root growth at high temperatures. CONCLUSIONS These results suggest that temperature increases can improve the performance of some alien plants by facilitating width and depth growth of their roots. This enhancement requires serious attention when managing and predicting invasion risk.
Collapse
Affiliation(s)
- Ming Ni
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongxia Luo
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suqin Fang
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Rathore N, Hanzelková V, Dostálek T, Semerád J, Schnablová R, Cajthaml T, Münzbergová Z. Species phylogeny, ecology, and root traits as predictors of root exudate composition. THE NEW PHYTOLOGIST 2023. [PMID: 37421208 DOI: 10.1111/nph.19060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/04/2023] [Indexed: 07/10/2023]
Abstract
Root traits including root exudates are key factors affecting plant interactions with soil and thus play an important role in determining ecosystem processes. The drivers of their variation, however, remain poorly understood. We determined the relative importance of phylogeny and species ecology in determining root traits and analyzed the extent to which root exudate composition can be predicted by other root traits. We measured different root morphological and biochemical traits (including exudate profiles) of 65 plant species grown in a controlled system. We tested phylogenetic conservatism in traits and disentangled the individual and overlapping effects of phylogeny and species ecology on traits. We also predicted root exudate composition using other root traits. Phylogenetic signal differed greatly among root traits, with the strongest signal in phenol content in plant tissues. Interspecific variation in root traits was partly explained by species ecology, but phylogeny was more important in most cases. Species exudate composition could be partly predicted by specific root length, root dry matter content, root biomass, and root diameter, but a large part of variation remained unexplained. In conclusion, root exudation cannot be easily predicted based on other root traits and more comparative data on root exudation are needed to understand their diversity.
Collapse
Affiliation(s)
- Nikita Rathore
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Věra Hanzelková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Tomáš Dostálek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Renáta Schnablová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| |
Collapse
|
23
|
Lan G, Wei Y, Li Y, Wu Z. Diversity and assembly of root-associated microbiomes of rubber trees. FRONTIERS IN PLANT SCIENCE 2023; 14:1136418. [PMID: 37063173 PMCID: PMC10102524 DOI: 10.3389/fpls.2023.1136418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Understanding the diversity and assembly of the microbiomes of plant roots is crucial to manipulate them for sustainable ecosystem functioning. However, there are few reports about microbial communities at a continuous fine-scale of roots for rubber trees. METHODS We investigate the structure, diversity, and assembly of bacterial and fungal communities for the soil (non-rhizosphere), rhizosphere, and rhizoplane as well as root endosphere of rubber trees using the amplicon sequencing of 16S ribosomal ribonucleic acid (rRNA) and Internally Transcribed Spacer (ITS) genes. RESULTS We show that 18.69% of bacterial and 20.20% of fungal operational taxonomic units (OTUs) in the rhizoplane derived from the endosphere and 20.64% of bacterial and 20.60% of fungal OTUs from the soil. This suggests that the rhizoplane microbial community was a mixed community of soil and endosphere microbial communities and that microorganisms can disperse bidirectionally across different compartments of the plant root. On the other hand, in the absence of an enrichment or depletion of core bacterial and fungal OTUs in the rhizosphere, little differences in microbial composition as well as a more shared microbial network structure between the soil and the rhizosphere support the theory that the rhizosphere microbial community is a subset of the soil community. A large number of functional genes (such as nitrogen fixation and nitrite reduction) and more enriched core OTUs as well as a less stable but more complex network structure were observed in the rhizoplane of rubber tree roots. This demonstrated that the rhizoplane is the most active root compartment and a hotspot for plant-soil-environment interactions. In addition, bacterial and fungal communities in the rhizoplane were more stochastic compared to the rhizosphere and soil. DISCUSSION Our study expands our understanding of root-associated microbial community structure and function, which may provide the scientific basis for sustainable agriculture through biological process management.
Collapse
Affiliation(s)
- Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Tropical Forestry Ecology Group, Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, China
| | - Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Yuwu Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhixiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Tropical Forestry Ecology Group, Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, Hainan, China
| |
Collapse
|
24
|
Yin Y, Wang X, Hu Y, Li F, Cheng H. Soil bacterial community structure in the habitats with different levels of heavy metal pollution at an abandoned polymetallic mine. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130063. [PMID: 36182879 DOI: 10.1016/j.jhazmat.2022.130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution caused by mining activities can be harmful to soil microbiota, which are highly sensitive to heavy metal stress. This study aimed to investigate the response of soil bacterial communities to varying levels of heavy metal pollution in four types of habitats (i.e., tailing, remediation, natural recovery, and undisturbed areas) at an abandoned polymetallic mine by high-throughput 16 S rRNA gene sequencing, and to determine the dominant ecological processes and major factors driving the variations in bacterial community composition. The diversity and composition of bacterial communities varied significantly between soil habitats (p < 0.05). Heterogeneous selection played a crucial role in shaping the difference of bacterial community composition between distinct soil habitats. Redundancy analysis and Pearson correlation analysis revealed that the total contents of Cu and Zn were key factors causing the difference in bacterial community composition in the tailing and remediation areas, whereas bioavailable Mn and Cd, total nitrogen, available nitrogen, soil organic carbon, vegetation coverage, and plant diversity were key factors shaping the soil bacterial structure in the undisturbed and natural recovery areas. These findings provide insights into the distribution patterns of bacterial communities in soil habitats with different levels of heavy metal pollution, and the dominant ecological processes and the corresponding environmental drivers, and expand knowledge in bacterial assembly mechanisms in mining regions.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fadong Li
- State Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
26
|
Gottlieb R, Gruntman M. Can plants integrate information on above-ground competition in their directional responses below ground? ANNALS OF BOTANY 2022; 130:763-771. [PMID: 36001107 PMCID: PMC9670743 DOI: 10.1093/aob/mcac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Light competition can induce varying above-ground responses in plants. However, very little is known regarding the effect of above-ground light competition cues on plant responses below ground. Here we asked whether light competition cues that indicate the occurrence and direction of neighbours above ground might affect directional root placemat. METHODS In a common-garden experiment, we examined the integrated responses of the annual procumbent plant Portulaca oleracea to light competition cues and soil nutrient distribution. Soil nutrients were distributed either uniformly or in patches, and light competition was simulated using a transparent green filter, which was spatially located either in the same or opposite direction of the soil nutrient patch. KEY RESULTS As predicted, root proliferation of P. oleracea increased in the direction of the enriched soil patches but was homogenously distributed under the uniform nutrient distribution. Interestingly, root distribution was also affected by the light competition cue and increased in its direction regardless of the location of the soil patches. CONCLUSIONS Our results provide initial support to the idea that below-ground plant responses to competition might also be regulated by above-ground neighbour cues, highlighting the need to further investigate the combined effects of both above- and below-ground competition cues on root behaviour.
Collapse
Affiliation(s)
- Ruth Gottlieb
- School of Plant Sciences and Food Security, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
| | - Michal Gruntman
- School of Plant Sciences and Food Security, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
27
|
Schneider HM. Functional implications of multiseriate cortical sclerenchyma for soil resource capture and crop improvement. AOB PLANTS 2022; 14:plac050. [PMID: 36545297 PMCID: PMC9762723 DOI: 10.1093/aobpla/plac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/17/2022] [Indexed: 06/09/2023]
Abstract
Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture.
Collapse
|
28
|
Mhlongo MI, Piater LA, Dubery IA. Profiling of Volatile Organic Compounds from Four Plant Growth-Promoting Rhizobacteria by SPME-GC-MS: A Metabolomics Study. Metabolites 2022; 12:763. [PMID: 36005635 PMCID: PMC9414699 DOI: 10.3390/metabo12080763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/09/2023] Open
Abstract
The rhizosphere microbiome is a major determinant of plant health. Plant-beneficial or plant growth-promoting rhizobacteria (PGPR) influence plant growth, plant development and adaptive responses, such as induced resistance/priming. These new eco-friendly choices have highlighted volatile organic compounds (biogenic VOCs) as a potentially inexpensive, effective and efficient substitute for the use of agrochemicals. Secreted bacterial VOCs are low molecular weight lipophilic compounds with a low boiling point and high vapor pressures. As such, they can act as short- or long-distance signals in the rhizosphere, affecting competing microorganisms and impacting plant health. In this study, secreted VOCs from four PGPR strains (Pseudomonas koreensis (N19), Ps. fluorescens (N04), Lysinibacillus sphaericus (T19) and Paenibacillus alvei (T22)) were profiled by solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC-MS) combined with a multivariate data analysis. Metabolomic profiling with chemometric analyses revealed novel data on the composition of the secreted VOC blends of the four PGPR strains. Of the 121 annotated metabolites, most are known as bioactives which are able to affect metabolism in plant hosts. These VOCs belong to the following classes: alcohols, aldehydes, ketones, alkanes, alkenes, acids, amines, salicylic acid derivatives, pyrazines, furans, sulfides and terpenoids. The results further demonstrated the presence of species-specific and strain-specific VOCs, characterized by either the absence or presence of specific VOCs in the different strains. These molecules could be further investigated as biomarkers for the classification of an organism as a PGPR and selection for agricultural use.
Collapse
Affiliation(s)
| | | | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
29
|
Dong Q, Zhao X, Zhou D, Liu Z, Shi X, Yuan Y, Jia P, Liu Y, Song P, Wang X, Jiang C, Liu X, Zhang H, Zhong C, Guo F, Wan S, Yu H, Zhang Z. Maize and peanut intercropping improves the nitrogen accumulation and yield per plant of maize by promoting the secretion of flavonoids and abundance of Bradyrhizobium in rhizosphere. FRONTIERS IN PLANT SCIENCE 2022; 13:957336. [PMID: 35991432 PMCID: PMC9386453 DOI: 10.3389/fpls.2022.957336] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Belowground interactions mediated by root exudates are critical for the productivity and efficiency of intercropping systems. Herein, we investigated the process of microbial community assembly in maize, peanuts, and shared rhizosphere soil as well as their regulatory mechanisms on root exudates under different planting patterns by combining metabolomic and metagenomic analyses. The results showed that the yield of intercropped maize increased significantly by 21.05% (2020) and 52.81% (2021), while the yield of intercropped peanut significantly decreased by 39.51% (2020) and 32.58% (2021). The nitrogen accumulation was significantly higher in the roots of the intercropped maize than in those of sole maize at 120 days after sowing, it increased by 129.16% (2020) and 151.93% (2021), respectively. The stems and leaves of intercropped peanut significantly decreased by 5.13 and 22.23% (2020) and 14.45 and 24.54% (2021), respectively. The root interaction had a significant effect on the content of ammonium nitrogen (NH4 +-N) as well as the activities of urease (UE), nitrate reductase (NR), protease (Pro), and dehydrogenase (DHO) in the rhizosphere soil. A combined network analysis showed that the content of NH4 +-N as well as the enzyme activities of UE, NR and Pro increased in the rhizosphere soil, resulting in cyanidin 3-sambubioside 5-glucoside and cyanidin 3-O-(6-Op-coumaroyl) glucoside-5-O-glucoside; shisonin were significantly up-regulated in the shared soil of intercropped maize and peanut, reshaped the bacterial community composition, and increased the relative abundance of Bradyrhizobium. These results indicate that interspecific root interactions improved the soil microenvironment, regulated the absorption and utilization of nitrogen nutrients, and provided a theoretical basis for high yield and sustainable development in the intercropping of maize and peanut.
Collapse
Affiliation(s)
- Qiqi Dong
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Dongying Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhenhua Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yang Yuan
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Peiyan Jia
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yingyan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Penghao Song
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaoguang Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xibo Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Feng Guo
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zheng Zhang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
30
|
Oppenheimer-Shaanan Y, Jakoby G, Starr ML, Karliner R, Eilon G, Itkin M, Malitsky S, Klein T. A dynamic rhizosphere interplay between tree roots and soil bacteria under drought stress. eLife 2022; 11:79679. [PMID: 35858113 PMCID: PMC9385208 DOI: 10.7554/elife.79679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Root exudates are thought to play an important role in plant-microbial interactions. In return for nutrition, soil bacteria can increase the bioavailability of soil nutrients. However, root exudates typically decrease in situations such as drought, calling into question the efficacy of solvation and bacteria-dependent mineral uptake in such stress. Here, we tested the hypothesis of exudate-driven microbial priming on Cupressus saplings grown in forest soil in custom-made rhizotron boxes. A 1-month imposed drought and concomitant inoculations with a mix of Bacillus subtilis and Pseudomonas stutzeri, bacteria species isolated from the forest soil, were applied using factorial design. Direct bacteria counts and visualization by confocal microscopy showed that both bacteria associated with Cupressus roots. Interestingly, root exudation rates increased 2.3-fold with bacteria under drought, as well as irrigation. Forty-four metabolites in exudates were significantly different in concentration between irrigated and drought trees, including phenolic acid compounds and quinate. When adding these metabolites as carbon and nitrogen sources to bacterial cultures of both bacterial species, eight of nine metabolites stimulated bacterial growth. Importantly, soil phosphorous bioavailability was maintained only in inoculated trees, mitigating drought-induced decrease in leaf phosphorus and iron. Our observations of increased root exudation rate when drought and inoculation regimes were combined support the idea of root recruitment of beneficial bacteria, especially under water stress. The soil surrounding the roots of trees, termed the rhizosphere, is full of bacteria and other communities of microorganisms. Trees secrete organic compounds in to the soil which are thought to influence the behavior of bacteria in the rhizosphere. Specifically, these root secretions, or ‘exudates’, attract and feed soil bacteria, which, in return, release nutrients that benefit the tree. In 2020, a group of researchers found that some trees in the Mediterranean forest produce more exudates during the long dry season. This suggests that the compounds secreted by roots may help trees to tolerate stress conditions, such as drought. To test this hypothesis, Oppenheimer-Shaanan et al. – including some of the researchers involved in the 2020 study – grew young Cupressus sempervirens conifer trees in drought conditions that starved them of the nutrients phosphorous and iron. Each tree was planted in a custom-built box which allowed easy access to roots growing in the soil. Two species of bacteria from the forest soil C. sempervirens trees naturally live in were then added to the soil in each box. Microscopy revealed that both species of bacteria, which had been tagged with fluorescent markers, were attracted to the roots of the trees, boosting the bacterial community in the rhizosphere. Oppenheimer-Shaanan et al. found that the recruitment of the two bacterial species caused the rate at which exudates were secreted from the roots to increase. Compounds in the exudate stimulated the bacteria to grow. Ultimately, levels of phosphorous and iron in the leaves of the starved trees increased when in the presence of these soil bacteria. This suggests that bacteria in the rhizosphere helps trees to survive when they are under stress and have low levels of water. These findings provide further evidence that plants and bacteria can live together in symbiosis and benefit one another. This could have important implications for forest ecology and potentially how trees are grown in orchards and gardens. For example, specific bacteria and organic compounds in the rhizosphere may be able to improve tree health. However, further work is needed to investigate whether the exudate compounds identified in this study are found more widely in nature.
Collapse
Affiliation(s)
| | - Gilad Jakoby
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Maya L Starr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Romiel Karliner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Eilon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
31
|
Kotowska MM, Samhita S, Hertel D, Triadiati T, Beyer F, Allen K, Link RM, Leuschner C. Consequences of tropical rainforest conversion to tree plantations on fine root dynamics and functional traits. OIKOS 2022. [DOI: 10.1111/oik.08898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Martyna M. Kotowska
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| | - Sasya Samhita
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| | - Dietrich Hertel
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| | - Triadiati Triadiati
- Dept of Biology, Faculty of Mathematics and Natural Sciences, IPB Univ. Bogor Indonesia
| | - Friderike Beyer
- Chair of Silviculture, Faculty of Environment and Natural Resources, Univ. of Freiburg Freiburg Germany
| | - Kara Allen
- Manaaki Whenua‐Landcare Research Lincoln New Zealand
| | - Roman M. Link
- Chair of Ecophysiology and Vegetation Ecology, Julius von Sachs Inst. of Biological Sciences, Univ. of Würzburg Würzburg Germany
| | - Christoph Leuschner
- Dept of Plant Ecology and Ecosystems Research, Albrecht‐von‐Haller Inst. for Plant Sciences, Univ. of Goettingen Göttingen Germany
| |
Collapse
|
32
|
Vora SM, Ankati S, Patole C, Podile AR, Archana G. Alterations of Primary Metabolites in Root Exudates of Intercropped Cajanus cajan-Zea mays Modulate the Adaptation and Proteome of Ensifer (Sinorhizobium) fredii NGR234. MICROBIAL ECOLOGY 2022; 83:1008-1025. [PMID: 34351469 DOI: 10.1007/s00248-021-01818-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/07/2021] [Indexed: 05/22/2023]
Abstract
Legume-cereal intercropping systems, in the context of diversity, ecological function, and better yield have been widely studied. Such systems enhance nutrient phytoavailability by balancing root-rhizosphere interactions. Root exudates (RE) play an important role in the rhizospheric interactions of plant-plant and/or plant-microbiome interaction. However, the influence of the primary metabolites of RE on plant-rhizobia interactions in a legume-cereal intercrop system is not known. To understand the plant communication with rhizobia, Cajanus cajan-Zea mays intercropped plants and the broad host range legume nodulating Ensifer fredii NGR234 as the model plants and rhizobium used respectively. A metabolomics-based approach revealed a clear separation between intercropped and monocropped RE of the two plants. Intercropped C. cajan showed an increase in the myo-inositol, and proline, while intercropped Z. mays showed enhanced galactose, D-glucopyranoside, and arginine in the RE. Physiological assays of NGR234 with the RE of intercropped C. cajan exhibited a significant enhancement in biofilm formation, while intercropped Z. mays RE accelerated the bacterial growth in the late log phase. Further, using label-free proteomics, we identified a total of 2570 proteins of NGR234 covering 50% annotated protein sequences upon exposure to Z. mays RE. Furthermore, intercropped Z. mays RE upregulated bacterioferritin comigratory protein (BCP), putative nitroreductase, IlvD, LeuC, D (branched-chain amino acid proteins), and chaperonin proteins GroEL2. Identification offered new insights into the metabolome of the legume-cereal intercrop and proteome of NGR234-Z. mays interactions that underline the new molecular candidates likely to be involved in the fitness of rhizobium in the intercropping system.
Collapse
Affiliation(s)
- Siddhi M Vora
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sravani Ankati
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Chhaya Patole
- Institute for Stem Cell Science and Regenerative Medicine, NCBS-TIFR Campus, Bellary Road, Bangalore, Karnataka, India
| | - Appa Rao Podile
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - G Archana
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
33
|
Jamil F, Mukhtar H, Fouillaud M, Dufossé L. Rhizosphere Signaling: Insights into Plant-Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms 2022; 10:microorganisms10050899. [PMID: 35630345 PMCID: PMC9147336 DOI: 10.3390/microorganisms10050899] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rhizospheric plant-microbe interactions have dynamic importance in sustainable agriculture systems that have a reduced reliance on agrochemicals. Rhizosphere signaling focuses on the interactions between plants and the surrounding symbiotic microorganisms that facilitate the development of rhizobiome diversity, which is beneficial for plant productivity. Plant-microbe communication comprises intricate systems that modulate local and systemic defense mechanisms to mitigate environmental stresses. This review deciphers insights into how the exudation of plant secondary metabolites can shape the functions and diversity of the root microbiome. It also elaborates on how rhizosphere interactions influence plant growth, regulate plant immunity against phytopathogens, and prime the plant for protection against biotic and abiotic stresses, along with some recent well-reported examples. A holistic understanding of these interactions can help in the development of tailored microbial inoculants for enhanced plant growth and targeted disease suppression.
Collapse
Affiliation(s)
- Fatima Jamil
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Mireille Fouillaud
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département Agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France;
| |
Collapse
|
34
|
Zhang H, Phillip FO, Wu L, Zhao F, Yu S, Yu K. Effects of Temperature and Nitrogen Application on Carbon and Nitrogen Accumulation and Bacterial Community Composition in Apple Rhizosphere Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:859395. [PMID: 35444679 PMCID: PMC9014127 DOI: 10.3389/fpls.2022.859395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 05/03/2023]
Abstract
Malus sieversii grows on the slopes of the Tianshan Mountains in Xinjiang where the difference in daily temperature is significant. In recent years, the rhizosphere soil health of Malus sieversii has been severely impacted by anthropogenic disturbance and pathogenic infestation. The soil nutrient content and soil microorganism diversity are the main components of soil health. Low temperature has negative effects on soil bacterial community structure by inhibiting the accumulation of carbon and nitrogen. However, the effects of temperature and nitrogen application on soil carbon and nitrogen accumulation and the bacterial community composition in the rhizosphere soil of Malus sieversii are unclear. We set two temperature levels, i.e., low temperature (L) and room temperature (R), combined with no nitrogen (N0) and nitrogen application (N1) to explore the response of plant carbon and nitrogen uptake, rhizosphere soil carbon and nitrogen accumulation and bacterial community composition to temperature and nitrogen fertilization. At the same temperature level, plant 13C abundance (P-Atom13C), plant 15N absolute abundance (P-Con15N), soil 15N abundance (S-Atom15N) and soil urease, protease and glutaminase activities were significantly higher under nitrogen application compared with the no-nitrogen application treatment. The bacterial community diversity and richness indices of the apple rhizosphere soil in the N1 treatment were higher than those in the N0 treatment. The relative abundances of Actinobacteria, Rhodopseudomonas, and Bradyrhizobium were higher in the LN1 treatment than in the LN0 treatment. Redundancy analysis (RDA) showed that plant 13C absolute abundance (P-Con13C) and plant 15N absolute abundance (P-Con15N) were the main factors affecting the soil bacterial community composition. In summary, Nitrogen application can alleviate the effects of low temperature stress on the soil bacterial community and is of benefit for the uptakes of carbon and nitrogen in Malus sieversii plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Yu
- The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germplasm Resources of the Xinjiang Production and Construction Corps, Shihezi University, Xinjiang, China
| |
Collapse
|
35
|
Liu Y, Hu W, Huang Q, Qin J, Zheng Y, Wang J, Li X, Wang Q, Guo G, Hu S. Plastic mulch debris in rhizosphere: Interactions with soil-microbe-plant systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151435. [PMID: 34752868 DOI: 10.1016/j.scitotenv.2021.151435] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of plastic mulch debris (PMD) accumulated in the soil can endanger agroecosystems. However, little is known about the interactions between PMD and soil-microbe-plant systems. In this study, a pot experiment (four replicates) in tropical greenhouse was conducted to investigate the effects of PMD (polyethylene) at different concentrations (0, 0.4, 0.8, 4.0, 6.0 g kg-1) on soil nutrients, rhizosphere bacterial communities and rice growth. This study further explored the interactive mechanisms between PMD and environmental factors based on correlation analysis and previous studies. The results showed that PMD continuously reduced the soil capabilities to store nutrients (C, N, P, humic-like substances) and increased the proportion of P and biodegradable dissolved organic matter (DOM). At the full ripening stage of rice growth, total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in all PMD treatments significantly decreased by 60.86, 52.51 and 34.83% respectively as compared to CK (p < 0.05). Furthermore, PMD increased the total abundance of bacteria but reduced the diversity and evenness of bacterial communities, which further affected microbial metabolic functions. Total OTUs and Shannon decreased 0.02-17.05% and 0.69-7.55% in treatments. At harvest-time, PMD reduced the biomass and yield of rice with 11.34 and 19.24% (all treatments on average) lower than CK. Under the influence of PMD, the order of correlation size between PMD and one environmental factor was PMD-soil > PMD-microbe > PMD-plant, and the order of correlation between two environmental factors was soil-microbe > microbe-plant > soil-plant. Over all, PMD had the most significant negative effects on soil nutrients storage, followed by the change of microbial community structure and microbial metabolic functions. The negative effects of PMD on crops were relatively weak.
Collapse
Affiliation(s)
- Yin Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan 570228, China
| | - Wen Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan 570228, China
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan 570228, China.
| | - Jiemin Qin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan 570228, China
| | - Yingrui Zheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan 570228, China
| | - Junfeng Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan 570228, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou, Hainan 570100, China
| | - Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan 570228, China
| | - Genmao Guo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan 570228, China
| | - Shan Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China; Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
36
|
Zhao X, Dong Q, Han Y, Zhang K, Shi X, Yang X, Yuan Y, Zhou D, Wang K, Wang X, Jiang C, Liu X, Zhang H, Zhang Z, Yu H. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity. BMC Microbiol 2022; 22:14. [PMID: 34996375 PMCID: PMC8740425 DOI: 10.1186/s12866-021-02425-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut. RESULTS The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41, Candidatus-udaeobacter, Stropharia, Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi. CONCLUSION Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.
Collapse
Affiliation(s)
- Xinhua Zhao
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qiqi Dong
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Han
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Kezhao Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaolong Shi
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xu Yang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yuan
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dongying Zhou
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Kai Wang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoguang Wang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chunji Jiang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xibo Liu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - He Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhimeng Zhang
- Shandong Peanut Research Institute, Qingdao, 266100, Shandong, China
| | - Haiqiu Yu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
37
|
Mesa V. Rhizosphere and Endosphere Bacterial Communities Survey by Metagenomics Approach. Methods Mol Biol 2022; 2512:181-197. [PMID: 35818006 DOI: 10.1007/978-1-0716-2429-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The diversity of microbes associated with plant roots is in the order of tens of thousands of species. It is estimated that only 0.1-1.0% of the living bacteria present in soils can be cultured under standard conditions. The microbial marker-gene sequence data and the next-generation sequencing technologies have enabled systemic studies of root-associated microbiomes. Molecular techniques can be used to generate comprehensive taxonomic profiles of the microorganisms present in roots. The aim of this chapter is to provide a standard method for the obtention of rhizosphere and endosphere fractions, and a generic workflow of the Quantitative Insights Into Microbial Ecology version 2 (QIIME2) software to analysis of 16S rRNA marker-gene.
Collapse
Affiliation(s)
- Victoria Mesa
- 3PHM, INSERM, Faculté de Santé, Université Paris Cité, Paris, France.
| |
Collapse
|
38
|
Ghatak A, Schindler F, Bachmann G, Engelmeier D, Bajaj P, Brenner M, Fragner L, Varshney RK, Subbarao GV, Chaturvedi P, Weckwerth W. Root exudation of contrasting drought-stressed pearl millet genotypes conveys varying biological nitrification inhibition (BNI) activity. BIOLOGY AND FERTILITY OF SOILS 2022; 58:291-306. [PMID: 35399158 PMCID: PMC8938368 DOI: 10.1007/s00374-021-01578-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 05/09/2023]
Abstract
UNLABELLED Roots secrete a vast array of low molecular weight compounds into the soil broadly referred to as root exudates. It is a key mechanism by which plants and soil microbes interact in the rhizosphere. The effect of drought stress on the exudation process and composition is rarely studied, especially in cereal crops. This study focuses on comparative metabolic profiling of the exudates from sensitive and tolerant genotypes of pearl millet after a period of drought stress. We employed a combined platform of gas and liquid chromatography coupled to mass spectrometry to cover both primary and secondary metabolites. The results obtained demonstrate that both genotype and drought stress have a significant impact on the concentration and composition of root exudates. The complexity and function of these differential root exudates are discussed. To reveal the potential effect of root exudates on the soil microbial community after a period of drought stress, we also tested for biological nitrification inhibition (BNI) activity. The analysis revealed a genotype-dependent enhancement of BNI activity after a defined period of drought stress. In parallel, we observed a genotype-specific relation of elongated root growth and root exudation under drought stress. These data suggest that the drought stress-dependent change in root exudation can manipulate the microbial soil communities to adapt and survive under harsh conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00374-021-01578-w.
Collapse
Affiliation(s)
- Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Florian Schindler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Gert Bachmann
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Doris Engelmeier
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
| | - Martin Brenner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Lena Fragner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
- State Agricultural Biotechnology Centre Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150 Australia
| | - Guntur Venkata Subbarao
- Crop, Livestock, and Environment Division, International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686 Japan
| | - Palak Chaturvedi
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
39
|
Jezierska-Tys S, Joniec J, Mocek-Płóciniak A, Gałązka A, Bednarz J, Furtak K. Microbial activity and community level physiological profiles (CLPP) of soil under the cultivation of spring rape with the Roundup 360 SL herbicide. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:2013-2026. [PMID: 34917389 PMCID: PMC8638805 DOI: 10.1007/s40201-021-00753-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/23/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE The use of glyphosate in agriculture raises a lot of controversy because research concerning its impact on the soil provides contradictory information. However, despite these negative opinions, glyphosate is still used in agricultural practice. Therefore, for a more complete assessment, the authors carried out research using traditional microbiological methods and a modern method of metabolic profile analysis in glyphosate-treated soil. METHODS The study was carried out on the soil witch was sown with six cultivars of rapeseed. Seven days before harvest, the plants were sprayed with the herbicide. The analyses consisted in determining the number of selected groups of microorganisms, biochemical and enzymatic activity, and differentiation of the catabolic potential of soil microbial communities. RESULTS The results showed significant changes in the analyzed parameters. Respiratory activity and ammonification processes were stimulated in the treatments with rapeseed cultivation treated with the herbicide. Changes in the enzymatic activity were generally positive. The EcoPlate assessment of microbial community catabolism showed that the highest activity was recorded in the soil sown with the cultivars Belinda, Tamarin, and Sw svinto. Concurrently, these soils were characterized by the highest correlations between rapeseed cultivar and metabolic activity. CONCLUSION Cultivation of specific plant varieties that reduce the negative effect of herbicides used in agriculture may be one of the methods to prevent soil degradation. In our research, Belinda turned out to be a cultivar, under the cultivation of which an increase in the activity of microorganisms was recorded most frequently compared to soil not sown with rapeseed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00753-3.
Collapse
Affiliation(s)
- Stefania Jezierska-Tys
- Department of Environmental Microbiology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Jolanta Joniec
- Department of Environmental Microbiology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Mocek-Płóciniak
- Department of General and Environmental Microbiology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Joanna Bednarz
- Department of Environmental Microbiology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Karolina Furtak
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| |
Collapse
|
40
|
Aguirre-Noyola JL, Rosenblueth M, Santiago-Martínez MG, Martínez-Romero E. Transcriptomic Responses of Rhizobium phaseoli to Root Exudates Reflect Its Capacity to Colonize Maize and Common Bean in an Intercropping System. Front Microbiol 2021; 12:740818. [PMID: 34777287 PMCID: PMC8581550 DOI: 10.3389/fmicb.2021.740818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Corn and common bean have been cultivated together in Mesoamerica for thousands of years in an intercropping system called "milpa," where the roots are intermingled, favoring the exchange of their microbiota, including symbionts such as rhizobia. In this work, we studied the genomic expression of Rhizobium phaseoli Ch24-10 (by RNA-seq) after a 2-h treatment in the presence of root exudates of maize and bean grown in monoculture and milpa system under hydroponic conditions. In bean exudates, rhizobial genes for nodulation and degradation of aromatic compounds were induced; while in maize, a response of genes for degradation of mucilage and ferulic acid was observed, as well as those for the transport of sugars, dicarboxylic acids and iron. Ch24-10 transcriptomes in milpa resembled those of beans because they both showed high expression of nodulation genes; some genes that were expressed in corn exudates were also induced by the intercropping system, especially those for the degradation of ferulic acid and pectin. Beans grown in milpa system formed nitrogen-fixing nodules similar to monocultured beans; therefore, the presence of maize did not interfere with Rhizobium-bean symbiosis. Genes for the metabolism of sugars and amino acids, flavonoid and phytoalexin tolerance, and a T3SS were expressed in both monocultures and milpa system, which reveals the adaptive capacity of rhizobia to colonize both legumes and cereals. Transcriptional fusions of the putA gene, which participates in proline metabolism, and of a gene encoding a polygalacturonase were used to validate their participation in plant-microbe interactions. We determined the enzymatic activity of carbonic anhydrase whose gene was also overexpressed in response to root exudates.
Collapse
Affiliation(s)
- José Luis Aguirre-Noyola
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mónica Rosenblueth
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
41
|
Song C, Jin K, Raaijmakers JM. Designing a home for beneficial plant microbiomes. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102025. [PMID: 33684884 DOI: 10.1016/j.pbi.2021.102025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The plant microbiome comprises a highly diverse community of saprotrophic, mutualistic, and pathogenic microbes that can affect plant growth and plant health. There is substantial interest to exploit beneficial members of plant microbiomes for new sustainable management strategies in crop production. However, poor survival and colonization of plant tissues by introduced microbial isolates as well as lack of expression of the plant growth-promoting or disease-suppressive traits at the right time and place are still major limitations for successful implementation of microbiomes in future agricultural practices and plant breeding programs. Similar to building a home for humans, we discuss different strategies of building a home for beneficial plant microbiomes, here referred to as the 'MicrobiHome'.
Collapse
Affiliation(s)
- Chunxu Song
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| | - Kemo Jin
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands; Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
42
|
Khanna K, Kohli SK, Ohri P, Bhardwaj R. Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Microbiol Res 2021; 248:126755. [PMID: 33845302 DOI: 10.1016/j.micres.2021.126755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022]
Abstract
Plants interact with enormous biotic and abiotic components within ecosystem. For instance, microbes, insects, herbivores, animals, nematodes etc. In general, these interactions are studied independently with plants, that condenses only specific information about the interaction. However, the limitation to study the cross-interactions masks the collaborative role of organisms within ecosystem. Beneficial microbes are most prominent organisms that are needed to be studied due to their bidirectional nature towards plants. Fascinatingly, Plant-Parasitic Nematodes (PPNs) have been profoundly observed to cause mass destruction of agricultural crops worldwide. The huge demand for agriculture for present-day population requires optimization of production potential by curbing the damage caused by PPNs. Chemical nematicides combats their proliferation, but their extended usage has abruptly affected flora, fauna and human populations. Because of consistent pressing issues in regard to environment, the use of biocontrol agents are most favourable alternatives for managing agriculture. However, this association is somehow, tug of war, and understanding of plant-nematode-microbial relation would enable the agriculturists to monitor the overall development of plants along with limiting the use of agrochemicals. Soil microbes are contemporary bio-nematicides emerging in the market, that stimulates the plant growth and impedes PPNs populations. They form natural enemies and trap nematodes, henceforth, it is crucial to understand these interactions for ecological and biotechnological perspectives for commercial use. Moreover, acquiring the diversity of their relationship and molecular-based mechanisms, outlines their cascade of signaling events to serve as biotechnological ecosystem engineers. The omics based mechanisms encompassing hormone gene regulatory pathways and elicitors released by microbes are able to modulate pathogenesis-related (PR) genes within plants. This is achieved via Induced Systemic Resistance (ISR) or acquired systemic channels. Taking into account all these validations, the present review mainly advocates the relationship among microbes and nematodes in plants. It is believed that this review will boost zest and zeal within researchers to effectively understand the plant-nematodes-microbes relations and their ecological perspectives.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
43
|
Pierick K, Leuschner C, Homeier J. Topography as a factor driving small-scale variation in tree fine root traits and root functional diversity in a species-rich tropical montane forest. THE NEW PHYTOLOGIST 2021; 230:129-138. [PMID: 33278844 DOI: 10.1111/nph.17136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
We investigated the variation in tree fine root traits and their functional diversity along a local topographic gradient in a Neotropical montane forest to test if fine root trait variation along the gradient is consistent with the predictions of the root economics spectrum on a shift from acquisitive to conservative traits with decreasing resource supply. We measured five fine root functional traits in 179 randomly selected tree individuals of 100 species and analysed the variation of single traits (using Bayesian phylogenetic multilevel models) and of functional trait diversity with small-scale topography. Fine roots exhibited more conservative traits (thicker diameters, lower specific root length and nitrogen concentration) at upper slope compared with lower slope positions, but the largest proportion of variation (40-80%) was explained by species identity and phylogeny. Fine root functional diversity decreased towards the upper slopes. Our results suggest that local topography and the related soil fertility and moisture gradients cause considerable small-scale variation in fine root traits and functional diversity along tropical mountain slopes, with conservative root traits and greater trait convergence being associated with less favourable soil conditions due to environmental filtering. We provide evidence of a high degree of phylogenetic conservation in fine root traits.
Collapse
Affiliation(s)
- Kerstin Pierick
- Plant Ecology and Ecosystems Research, University of Goettingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, University of Goettingen, Untere Karspüle 2, Göttingen, 37073, Germany
- Centre for Biodiversity and Sustainable Land Use, University of Goettingen, Büsgenweg 1, Göttingen, 37077, Germany
| | - Jürgen Homeier
- Plant Ecology and Ecosystems Research, University of Goettingen, Untere Karspüle 2, Göttingen, 37073, Germany
- Centre for Biodiversity and Sustainable Land Use, University of Goettingen, Büsgenweg 1, Göttingen, 37077, Germany
| |
Collapse
|
44
|
de Britto Costa P, Staudinger C, Veneklaas EJ, Oliveira RS, Lambers H. Root positioning and trait shifts in Hibbertia racemosa as dependent on its neighbour's nutrient-acquisition strategy. PLANT, CELL & ENVIRONMENT 2021; 44:1257-1267. [PMID: 33386607 DOI: 10.1111/pce.13991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Nutrient-poor ecosystems globally exhibit high plant diversity. One mechanism enabling the co-existence of species in such ecosystems is facilitation among plants with contrasting nutrient-acquisition strategies. The ecophysiological processes underlying these interactions remain poorly understood. We hypothesized that root positioning plays a role between sympatric species in nutrient-poor vegetation. We investigated how the growth traits of the focal mycorrhizal non-cluster-rooted Hibbertia racemosa change when grown in proximity of non-mycorrhizal Banksia attenuata, which produces cluster roots that increase nutrient availability, compared with growth with conspecifics. Focal plants were placed in the centre of rhizoboxes, and biomass allocation, root system architecture, specific root length (SRL), and leaf nutrient concentration were assessed. When grown with B. attenuata, focal plants decreased root investment, increased root growth towards B. attenuata, and positioned their roots near B. attenuata cluster roots. SRL was greater, and the degree of localized root investment correlated positively with B. attenuata cluster-root biomass. Total nutrient contents in the focal individuals were greater when grown with B. attenuata. Focal plants directed their root growth towards the putatively facilitating neighbour's cluster roots, modifying root traits and investment. Preferential root positioning and root morphological traits play important roles in positive plant-plant interactions.
Collapse
Affiliation(s)
- Patrícia de Britto Costa
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Programa de Pós Graduação em Biologia Vegetal Institute of Biology, University of Campinas, Campinas, Brazil
| | - Christiana Staudinger
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Rhizosphere Ecology and Biogeochemistry Group, Institute of Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Erik J Veneklaas
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Rafael S Oliveira
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Departamento de Biologia Vegetal, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
45
|
Delory BM, Schempp H, Spachmann SM, Störzer L, van Dam NM, Temperton VM, Weinhold A. Soil chemical legacies trigger species-specific and context-dependent root responses in later arriving plants. PLANT, CELL & ENVIRONMENT 2021; 44:1215-1230. [PMID: 33455010 DOI: 10.1111/pce.13999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Soil legacies play an important role for the creation of priority effects. However, we still poorly understand to what extent the metabolome found in the soil solution of a plant community is conditioned by its species composition and whether soil chemical legacies affect subsequent species during assembly. To test these hypotheses, we collected soil solutions from forb or grass communities and evaluated how the metabolome of these soil solutions affected the growth, biomass allocation and functional traits of a forb (Dianthus deltoides) and a grass species (Festuca rubra). Results showed that the metabolomes found in the soil solutions of forb and grass communities differed in composition and chemical diversity. While soil chemical legacies did not have any effect on F. rubra, root foraging by D. deltoides decreased when plants received the soil solution from a grass or a forb community. Structural equation modelling showed that reduced soil exploration by D. deltoides arose via either a root growth-dependent pathway (forb metabolome) or a root trait-dependent pathway (grass metabolome). Reduced root foraging was not connected to a decrease in total N uptake. Our findings reveal that soil chemical legacies can create belowground priority effects by affecting root foraging in later arriving plants.
Collapse
Affiliation(s)
- Benjamin M Delory
- Ecosystem Functioning and Services, Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Hannes Schempp
- Ecosystem Functioning and Services, Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Sina Maria Spachmann
- Ecosystem Functioning and Services, Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Laura Störzer
- Ecosystem Functioning and Services, Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Vicky M Temperton
- Ecosystem Functioning and Services, Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Alexander Weinhold
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
46
|
Anten NPR, Chen BJW. Detect thy family: Mechanisms, ecology and agricultural aspects of kin recognition in plants. PLANT, CELL & ENVIRONMENT 2021; 44:1059-1071. [PMID: 33522615 PMCID: PMC8048686 DOI: 10.1111/pce.14011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 05/21/2023]
Abstract
The phenomenon that organisms can distinguish genetically related individuals from strangers (i.e., kin recognition) and exhibit more cooperative behaviours towards their relatives (i.e., positive kin discrimination) has been documented in a wide variety of organisms. However, its occurrence in plants has been considered only recently. Despite the concerns about some methodologies used to document kin recognition, there is sufficient evidence to state that it exists in plants. Effects of kin recognition go well beyond reducing resource competition between related plants and involve interactions with symbionts (e.g., mycorrhizal networks). Kin recognition thus likely has important implications for evolution of plant traits, diversity of plant populations, ecological networks and community structures. Moreover, as kin selection may result in less competitive traits and thus greater population performance, it holds potential promise for crop breeding. Exploration of these evo-ecological and agricultural implications requires adequate control and measurements of relatedness, sufficient replication at genotypic level and comprehensive measurements of performance/fitness effects of kin discrimination. The primary questions that need to be answered are: when, where and by how much positive kin discrimination improves population performance.
Collapse
Affiliation(s)
- Niels P. R. Anten
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| | - Bin J. W. Chen
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
47
|
Pande A, Mun BG, Lee DS, Khan M, Lee GM, Hussain A, Yun BW. NO Network for Plant-Microbe Communication Underground: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:658679. [PMID: 33815456 PMCID: PMC8010196 DOI: 10.3389/fpls.2021.658679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 05/30/2023]
Abstract
Mechanisms governing plant-microbe interaction in the rhizosphere attracted a lot of investigative attention in the last decade. The rhizosphere is not simply a source of nutrients and support for the plants; it is rather an ecosystem teeming with diverse flora and fauna including different groups of microbes that are useful as well as harmful for the plants. Plant-microbe interaction occurs via a highly complex communication network that involves sophisticated machinery for the recognition of friend and foe at both sides. On the other hand, nitric oxide (NO) is a key, signaling molecule involved in plant development and defense. Studies on legume-rhizobia symbiosis suggest the involvement of NO during recognition, root hair curling, development of infection threads, nodule development, and nodule senescence. A similar role of NO is also suggested in the case of plant interaction with the mycorrhizal fungi. Another, insight into the plant-microbe interaction in the rhizosphere comes from the recognition of pathogen-associated molecular patterns (PAMPs)/microbe-associated molecular patterns (MAMPs) by the host plant and thereby NO-mediated activation of the defense signaling cascade. Thus, NO plays a major role in mediating the communication between plants and microbes in the rhizosphere. Interestingly, reports suggesting the role of silicon in increasing the number of nodules, enhancing nitrogen fixation, and also the combined effect of silicon and NO may indicate a possibility of their interaction in mediating microbial communication underground. However, the exact role of NO in mediating plant-microbe interaction remains elusive. Therefore, understanding the role of NO in underground plant physiology is very important, especially in relation to the plant's interaction with the rhizospheric microbiome. This will help devise new strategies for protection against phytopathogens and enhancing plant productivity by promoting symbiotic interaction. This review focuses on the role of NO in plant-microbe communication underground.
Collapse
Affiliation(s)
- Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Bong-Gyu Mun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Da-Sol Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Murtaza Khan
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Geun-Mo Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
48
|
Baluška F, Mancuso S. Individuality, self and sociality of vascular plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190760. [PMID: 33550947 DOI: 10.1098/rstb.2019.0760] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular plants are integrated into coherent bodies via plant-specific synaptic adhesion domains, action potentials (APs) and other means of long-distance signalling running throughout the plant bodies. Plant-specific synapses and APs are proposed to allow plants to generate their self identities having unique ways of sensing and acting as agents with their own goals guiding their future activities. Plants move their organs with a purpose and with obvious awareness of their surroundings and require APs to perform and control these movements. Self-identities allow vascular plants to act as individuals enjoying sociality via their self/non-self-recognition and kin recognition. Flowering plants emerge as cognitive and intelligent organisms when the major strategy is to attract and control their animal pollinators as well as seed dispersers by providing them with food enriched with nutritive and manipulative/addictive compounds. Their goal in interactions with animals is manipulation for reproduction, dispersal and defence. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| |
Collapse
|
49
|
de Souza Campos PM, Borie F, Cornejo P, Meier S, López-Ráez JA, López-Garcia Á, Seguel A. Wheat root trait plasticity, nutrient acquisition and growth responses are dependent on specific arbuscular mycorrhizal fungus and plant genotype interactions. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153297. [PMID: 33197827 DOI: 10.1016/j.jplph.2020.153297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to examine how interactions at both plant genotype and arbuscular mycorrhizal fungus species levels affected the expression of root traits and the subsequent effect on plant nutrition and growth. We used two wheat cultivars with contrasting phosphorus (P) acquisition efficiencies (Tukan and Crac) and two arbuscular mycorrhizal (AM) fungi (Rhizophagus intraradices and Claroideoglomus claroideum). Plant growth, as well as morphological and architectural root traits, were highly dependent on the myco-symbiotic partner in the case of the less P-acquisition efficient cultivar Tukan, with mycorrhizal responses ranging from -45 to 54 % with respect to non-mycorrhizal plants. Meanwhile, these responses were between only -7 and 5 % in the P-acquisition efficient cultivar Crac. The AM fungal species produced contrasting mechanisms in the improvement of plant nutrition and root trait responses. Colonization by R. intraradices increased Ca accumulation, regardless of the cultivar, but reduced root growth on Tukan plants. On the other hand, C. claroideum increased P content in both cultivars, with a concomitant increase in root growth and diffusion-based nutrient acquisition by Tukan. Moreover, plants in symbiosis with R. intraradices showed greater organic acid concentration in their rhizosphere compared to C. claroideum-colonized plants, especially Tukan (24 and 35 % more citrate and oxalate, respectively). Our results suggest that the responses in plant-AM fungal interactions related to nutrient dynamics are highly influenced at the fungus level and also by intra-specific variations in root traits at the genotype level, while growth responses related to improved nutrition depend on plant intrinsic acquisition efficiency.
Collapse
Affiliation(s)
- Pedro M de Souza Campos
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA-UFRO), Universidad de La Frontera, Temuco, Chile; Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Fernando Borie
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA-UFRO), Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile; Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA-UFRO), Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
| | - Sebastian Meier
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Juan Antonio López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Álvaro López-Garcia
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; Department of Animal Biology, Plant Biology and Ecology, Universidad de Jaén, Jaén, Spain
| | - Alex Seguel
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA-UFRO), Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
50
|
Vishwakarma K, Kumar N, Shandilya C, Mohapatra S, Bhayana S, Varma A. Revisiting Plant-Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. Front Microbiol 2020; 11:560406. [PMID: 33408698 PMCID: PMC7779480 DOI: 10.3389/fmicb.2020.560406] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The present scenario of agricultural sector is dependent hugely on the use of chemical-based fertilizers and pesticides that impact the nutritional quality, health status, and productivity of the crops. Moreover, continuous release of these chemical inputs causes toxic compounds such as metals to accumulate in the soil and move to the plants with prolonged exposure, which ultimately impact the human health. Hence, it becomes necessary to bring out the alternatives to chemical pesticides/fertilizers for improvement of agricultural outputs. The rhizosphere of plant is an important niche with abundant microorganisms residing in it. They possess the properties of plant growth promotion, disease suppression, removal of toxic compounds, and assimilating nutrients to plants. Utilizing such beneficial microbes for crop productivity presents an efficient way to modulate the crop yield and productivity by maintaining healthy status and quality of the plants through bioformulations. To understand these microbial formulation compositions, it becomes essential to understand the processes going on in the rhizosphere as well as their concrete identification for better utilization of the microbial diversity such as plant growth–promoting bacteria and arbuscular mycorrhizal fungi. Hence, with this background, the present review article highlights the plant microbiome aboveground and belowground, importance of microbial inoculants in various plant species, and their subsequent interactive mechanisms for sustainable agriculture.
Collapse
Affiliation(s)
| | - Nitin Kumar
- Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Thanjavur, India
| | | | - Swati Mohapatra
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Sahil Bhayana
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|