1
|
Lalik A, Szreder J, Grymel M, Żabczyński S, Bajkacz S, Pielok M, Cieślik M, Kicińska A, Wawrzkiewicz-Jałowiecka A. Estrogens and Progestogens in Environmental Waters: Analytical Chemistry and Biosensing Perspectives on Methods, Challenges, and Trends. Anal Chem 2025; 97:8654-8683. [PMID: 40254992 PMCID: PMC12044597 DOI: 10.1021/acs.analchem.4c06796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Affiliation(s)
- Anna Lalik
- Department
of Systems Biology and Engineering, Silesian
University of Technology, Akademicka 16, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Julia Szreder
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mirosława Grymel
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Sebastian Żabczyński
- Department
of Environmental Biotechnology, Silesian
University of Technology, Akademicka 2, 44-100 Gliwice, Poland
| | - Sylwia Bajkacz
- Department
of Inorganic, Analytical Chemistry, and Electrochemistry, Silesian University of Technology, Krzywoustego 6B, 44-100 Gliwice, Poland
| | - Mateusz Pielok
- Faculty
of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Mirosław Cieślik
- Faculty
of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Agnieszka Kicińska
- Faculty
of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Agata Wawrzkiewicz-Jałowiecka
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100, Gliwice, Poland
| |
Collapse
|
2
|
Yang Q, Liao W, Wei Z, Qiu R, Zheng Q, Wu Q, Chen Y. Degradation and humification of steroidal estrogens in the soil environment: A review. CHEMOSPHERE 2024; 357:142043. [PMID: 38626810 DOI: 10.1016/j.chemosphere.2024.142043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Emerging pollutants are toxic and harmful chemical substances characterized by environmental persistence, bioaccumulation and biotoxicity, which can harm the ecological environment and even threaten human health. There are four categories of emerging pollutants that are causing widespread concern, namely, persistent organic pollutants, endocrine disruptors, antibiotics, and microplastics. The distribution of emerging pollutants has spatial and temporal heterogeneity, which is influenced by factors such as geographical location, climatic conditions, population density, emission amount, etc. Steroidal estrogens (SEs) discussed in this paper belong to the category of endocrine disruptors. There are generally three types of fate for SEs in the soil environment: sorption, degradation and humification. Humification is a promising pathway for the removal of SEs, especially for those that are difficult to degrade. Through humification, these difficult-to-degrade SEs can be effectively transferred or fixed, thus reducing their impact on the environment and organisms. Contrary to the well-studied process of sorption and degradation, the role and promise of the humification process for the removal of SEs has been underestimated. Based on the existing research, this paper reviews the sources, classification, properties, hazards and environmental behaviors of SEs in soil, and focuses on the degradation and humification processes of SEs and the environmental factors affecting their processes, such as temperature, pH, etc. It aims to provide references for the follow-up research of SEs, and advocates further research on the humification of organic pollutants in future studies.
Collapse
Affiliation(s)
- Qianhui Yang
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Weishan Liao
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Zebin Wei
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Qian Zheng
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Qitang Wu
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Yangmei Chen
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
3
|
Steinhaeuser L, Westphalen T, Kaminski K, Piechotta C. Evaluation, comparison and combination of molecularly imprinted polymer solid phase extraction and classical solid phase extraction for the preconcentration of endocrine disrupting chemicals from representative whole water samples. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
4
|
Finckh S, Buchinger S, Escher BI, Hollert H, König M, Krauss M, Leekitratanapisan W, Schiwy S, Schlichting R, Shuliakevich A, Brack W. Endocrine disrupting chemicals entering European rivers: Occurrence and adverse mixture effects in treated wastewater. ENVIRONMENT INTERNATIONAL 2022; 170:107608. [PMID: 36343551 PMCID: PMC9720157 DOI: 10.1016/j.envint.2022.107608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In the present study on endocrine disrupting chemicals (EDCs) in treated wastewater, we used chemical and effect-based tools to analyse 56 wastewater treatment plant (WWTP) effluents from 15 European countries. The main objectives were (i) to compare three different receptor-based estrogenicity assays (ERα-GeneBLAzer, p-YES, ERα-CALUX®), and (ii) to investigate a combined approach of chemical target analysis and receptor-based testing for estrogenicity, glucocorticogenic activity, androgenicity and progestagenic activity (ERα-, GR-, AR- and PR-GeneBLAzer assays, respectively) in treated wastewater. A total of 56 steroids and phenols were detected at concentrations ranging from 25 pg/L (estriol, E3) up to 2.4 μg/L (cortisone). WWTP effluents, which passed an advanced treatment via ozonation or via activated carbon, were found to be less contaminated, in terms of lower or no detection of steroids and phenols, as well as hormone receptor-mediated effects. This result was confirmed by the effect screening, including the three ERα-bioassays. In the GeneBLAzer assays, ERα-activity was detected in 82 %, and GR-activity in 73 % of the samples, while AR- and PR-activity were only measured in 14 % and 21 % of the samples, respectively. 17β-estradiol was confirmed as the estrogen dominating the observed estrogenic mixture effect and triamcinolone acetonide was the dominant driver of glucocorticogenic activity. The comparison of bioanalytical equivalent concentrations (BEQ) predicted from the detected concentrations and the relative effect potency (BEQchem) with measured BEQ (BEQbio) demonstrated good correlations of chemical target analysis and receptor-based testing results with deviations mostly within a factor of 10. Bioassay-specific effect-based trigger values (EBTs) from the literature, but also newly calculated EBTs based on previously proposed derivation options, were applied and allowed a preliminary assessment of the water quality of the tested WWTP effluent samples. Overall, this study demonstrates the high potential of linking chemical with effect-based analysis in water quality assessment with regard to EDC contamination.
Collapse
Affiliation(s)
- Saskia Finckh
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany.
| | - Sebastian Buchinger
- Department of Biochemistry and Ecotoxicology, Federal Institute for Hydrology - BfG, Koblenz, Germany
| | - Beate I Escher
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University, Tübingen, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Maria König
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Warich Leekitratanapisan
- Environmental Toxicology Unit - GhEnToxLab, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sabrina Schiwy
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Aliaksandra Shuliakevich
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Werner Brack
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Černá T, Ezechiáš M, Semerád J, Grasserová A, Cajthaml T. Evaluation of estrogenic and antiestrogenic activity in sludge and explanation of individual compound contributions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127108. [PMID: 34523467 DOI: 10.1016/j.jhazmat.2021.127108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Mixture toxicity, including agonistic and antagonistic effects, is an unrevealed environmental problem. Estrogenic endocrine disruptors are known to cause adverse effects for aquatic biota, but causative chemicals and their contributions to the total activity in sewage sludge remain unknown. Therefore, advanced analytical methods, a yeast bioassay and mixture toxicity models were concurrently applied for the characterization of 8 selected sludges with delectable estrogenic activity (and 3 sludges with no activity as blanks) out of 25 samples from wastewater treatment plants (WWTPs). The first applied full logistic model adequately explained total activity by considering the concentrations of the monitored compounds. The results showed that the activity was primarily caused by natural estrogens in municipal WWTP sludge. Nevertheless, activity in a sample originating from a car-wash facility was dominantly caused by partial agonists - nonylphenols - and only a model enabling prediction of all dose-response curve parameters of the final mixture curve explained these results. Antiestrogenic effects were negligible, and effect-directed analysis identified the causative chemicals.
Collapse
Affiliation(s)
- Tereza Černá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Martin Ezechiáš
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Alena Grasserová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic.
| |
Collapse
|
6
|
Li Q, Li G, Fan L, Yu Y, Liu J. Click reaction triggered turn-on fluorescence strategy for highly sensitive and selective determination of steroid hormones in food samples. Food Chem 2021; 374:131565. [PMID: 34875430 DOI: 10.1016/j.foodchem.2021.131565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 11/04/2022]
Abstract
The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction has becoming noticeable in the field of analytical chemistry. Mild reaction conditions, simple operation, high efficiency, and good regioselectivity make this classical click reaction a perfect strategy for chemical derivatization. Herein, we proposed a promising click fluorescent labeling method with high selectivity for the determination of five steroid hormones in food samples. The labeling strategy depends on the reaction between 3-Azido-7-hydroxycoumarin and the alkynyl group of steroid hormones, which shows a turn-on fluorescence response in the presence of copper (I). The formed fluorescent products were detected by HPLC-FLD. Under the optimized conditions, the proposed method presented excellent performance with good linearity (R2 ≥ 0.9998) and low detection limit (1.8-7.3 μg L-1). Further, satisfactory recoveries were obtained to be 82-107% in spiked meats with relative standard deviations (RSDs) ≤ 5.7%. Finally, the established method was successfully applied for the determination of steroid hormones in meat, indicating the potential prospect of the click reaction in chemical derivatization.
Collapse
Affiliation(s)
- Qianyu Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Lihua Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanxin Yu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Harraka GT, Magnuson JT, Du B, Wong CS, Maruya K, Schlenk D. Evaluating the estrogenicity of an effluent-dominated river in California, USA: Comparisons of in vitro and in vivo bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143965. [PMID: 33321365 DOI: 10.1016/j.scitotenv.2020.143965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Estrogenically active compounds (EACs) in surface waters can disrupt the endocrine system of biota, raising concern for aquatic species. Concentrations of EACs are generally higher in effluent-dominated aquatic systems, such as California's Santa Ana River (SAR). Addressing estrogenicity of effluent-dominated waters is increasingly important due to both increasing urbanization and climate change. To this end, water samples were collected from multiple sites downstream of wastewater treatment plants (WWTPs) and intermittent points along the SAR during 2018-2019 and cell-based bioassays were used to determine estrogen receptor activity. During baseflow conditions, the highest estradiol equivalencies (EEQs) from all SAR water between summer (August and September) and fall (November) sampling events in 2018 were from Yorba Linda (EEQ = 1.36 ± 0.38 ng/L) and Prado (1.14 ± 0.13 ng/L), respectively. Water extracts in January 2019 following a major rainfall generally had higher EEQs with the highest EEQ of 10.0 ± 0.69 ng/L observed at Yorba Linda. During low flow conditions in November 2018, male Japanese medaka (Oryzias latipes) fish were exposed to SAR water to compare to cell bioassay responses and targeted analytical chemistry for 5 steroidal estrogens. Chemical-based EEQ correlations with in vitro EEQs were statistically significant. However, vitellogenin (vtg) mRNA expression in the livers of medaka exposed to SAR water was not significantly different compared to controls. These results indicate that seasonal variation and surface water runoff events influence estrogenic activity in the SAR and may induce estrogenic effects to native fish populations in wastewater-dominated streams in general.
Collapse
Affiliation(s)
- Gary T Harraka
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA.
| | - Bowen Du
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Charles S Wong
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Keith Maruya
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Peiris C, Nawalage S, Wewalwela JJ, Gunatilake SR, Vithanage M. Biochar based sorptive remediation of steroidal estrogen contaminated aqueous systems: A critical review. ENVIRONMENTAL RESEARCH 2020; 191:110183. [PMID: 32919969 DOI: 10.1016/j.envres.2020.110183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/31/2020] [Accepted: 09/02/2020] [Indexed: 05/27/2023]
Abstract
Remediation of steroidal estrogens from aqueous ecosystems is of prevailing concern due to their potential impact on organisms even at trace concentrations. Biochar (BC) is capable of estrogen removal due to its rich porosity and surface functionality. The presented review emphasizes on the adsorption mechanisms, isotherms, kinetics, ionic strength and the effect of matrix components associated with the removal of steroidal estrogens. The dominant sorption mechanisms reported for estrogen were π-π electron donor-acceptor interactions and hydrogen bonding. Natural organic matter and ionic species were seen to influence the hydrophobicity of the estrogen in multiple ways. Zinc activation and magnetization of the BC increased the surface area and surface functionalities leading to high adsorption capacities. The contribution by persistent free radicals and the arene network of BC have promoted the catalytic degradation of adsorbates via electron transfer mechanisms. The presence of surface functional groups and the redox activity of BC facilitates the bacterial degradation of estrogens. The sorptive removal of estrogens from aqueous systems has been minimally reviewed as a part of a collective evaluation of micropollutants. However, to the best of our knowledge, a critique focusing specifically and comprehensively on BC-based removal of steroidal estrogens does not exist. The presented review is a critical assessment of the existing literature on BC based steroidal estrogen adsorption and attempts to converge the scattered knowledge regarding its mechanistic interpretations. Sorption studies using natural water matrices containing residue level concentrations, and dynamic sorption experiments can be identified as future research directions.
Collapse
Affiliation(s)
- Chathuri Peiris
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO 10107, Sri Lanka
| | - Samadhi Nawalage
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO 10107, Sri Lanka
| | - Jayani J Wewalwela
- Department of Agricultural Technology, Faculty of Technology, University of Colombo, CO 00300, Sri Lanka
| | - Sameera R Gunatilake
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya, CO 10107, Sri Lanka.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka.
| |
Collapse
|
9
|
Glineur A, Nott K, Carbonnelle P, Ronkart S, Purcaro G. Development And Validation Of A Method For Determining Estrogenic Compounds In Surface Water At The Ultra-Trace Level Required By The EU Water Framework Directive Watch List. J Chromatogr A 2020; 1624:461242. [DOI: 10.1016/j.chroma.2020.461242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
|
10
|
Ito-Harashima S, Matano M, Onishi K, Nomura T, Nakajima S, Ebata S, Shiizaki K, Kawanishi M, Yagi T. Construction of reporter gene assays using CWP and PDR mutant yeasts for enhanced detection of various sex steroids. Genes Environ 2020; 42:20. [PMID: 32514322 PMCID: PMC7251871 DOI: 10.1186/s41021-020-00159-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Sex steroid hormone receptors are classified into three classes of receptors: estrogen receptors (ER) α and β, androgen receptor (AR), and progesterone receptor (PR). They belong to the nuclear receptor superfamily and activate their downstream genes in a ligand-dependent manner. Since sex steroid hormones are involved in a wide variety of physiological processes and cancer development, synthetic chemical substances that exhibit sex steroid hormone activities have been applied as pharmaceuticals and consumed in large amounts worldwide. They are potentially hazardous contaminants as endocrine disruptors in the environment because they may induce inappropriate gene expression mediated by sex steroid hormone receptors in vivo. Results To develop simple reporter gene assays with enhanced sensitivity for the detection of sex steroid hormones, we newly established mutant yeast strains lacking the CWP and PDR genes encoding cell wall mannoproteins and plasma membrane drug efflux pumps, respectively, and expressing human ERα, ERβ, AR, and PR. Reporter gene assays with mutant yeast strains responded to endogenous and synthetic ligands more strongly than those with wild-type strains. Sex steroid hormone activities in some pharmaceutical oral tablets and human urine were also detectable in these yeast assays. Conclusions Yeast reporter gene assay systems for all six steroid hormone receptors, including previously established glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) assay yeasts, are now available. Environmental endocrine disrupters with steroid hormone activity will be qualitatively detectable by simple and easy procedures. The yeast-based reporter gene assay will be valuable as a primary screening tool to detect and evaluate steroid hormone activities in various test samples. Our assay system will strongly support the detection of agonists, antagonists, and inverse agonists of steroid hormone receptors in the field of novel drug discovery and assessments of environmental pollutants.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Mami Matano
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Kana Onishi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Tomofumi Nomura
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Saki Nakajima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Shingo Ebata
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Kazuhiro Shiizaki
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan.,Present address: Department of Applied Biosciences, Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193 Japan
| | - Masanobu Kawanishi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| | - Takashi Yagi
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570 Japan
| |
Collapse
|
11
|
Qiu W, Liu X, Yang F, Li R, Xiong Y, Fu C, Li G, Liu S, Zheng C. Single and joint toxic effects of four antibiotics on some metabolic pathways of zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137062. [PMID: 32036144 DOI: 10.1016/j.scitotenv.2020.137062] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/12/2020] [Accepted: 01/31/2020] [Indexed: 05/24/2023]
Abstract
In China, antibiotics are commonly used for human and veterinary medicine, and they are present in various environmental media. Thus, the toxic effects of antibiotics on organisms have attracted the attention of society and scientists alike. In this study, zebrafish embryos were used to test the single and joint toxicity of four antibiotics, sulfamonomethoxine (SMM), cefotaxime sodium (CFT), tetracycline (TC), enrofloxacin (ENR), and their combinations, combining the results of experimental and omics techniques. Following exposure to antibiotics for 120 h, the body lengths of zebrafish larvae in all 100 μg/L antibiotic groups were significantly shortened, and the reactive oxygen species (ROS) content in the 100 μg/L Mix group was significantly increased. Transcriptome sequencing (RNA-seq) showed that the mRNA level of numerous genes was significantly changed in the five antibiotic treatment groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes revealed a significant enrichment of the steroid biosynthesis and other metabolism pathways. Hub gene analysis highlighted dhcr24, acat1, aldh1a2, aldh8a1, suclg2, hadh, and hsdl2 as the key genes, and hub gene expression changes because of the antibiotic treatment suggested that the metabolic system of the zebrafish larvae was severely disrupted by the interaction with other genes. In conclusion, single or joint exposure to different antibiotics at environmental concentrations affected the early development and metabolic system of zebrafish larvae, and our results provide fundamental evidence for future studies of antibiotic toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xinjie Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Feng Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rongzhen Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ying Xiong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Caixia Fu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Guanrong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
12
|
Li Y, Xu R, Wei D, Feng R, Fan D, Zhang N, Wei Q. A photoelectrochemical aptasensor for the detection of 17β-estradiol based on In 2S 3 and CdS co-sensitized cerium doped TiO 2. NEW J CHEM 2020. [DOI: 10.1039/c9nj05435a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In2S3 and CdS co-sensitized Ce doped TiO2 optimized the transmission path of electrons.
Collapse
Affiliation(s)
- Yuewen Li
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Rui Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Dong Wei
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Rui Feng
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
13
|
Kumirska J, Łukaszewicz P, Caban M, Migowska N, Plenis A, Białk-Bielińska A, Czerwicka M, Qi F, Piotr S. Determination of twenty pharmaceutical contaminants in soil using ultrasound-assisted extraction with gas chromatography-mass spectrometric detection. CHEMOSPHERE 2019; 232:232-242. [PMID: 31154184 DOI: 10.1016/j.chemosphere.2019.05.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
In this paper, an analytical method for the simultaneous determination of twenty pharmaceuticals (eight non-steroidal anti-inflammatory drugs, five oestrogenic hormones, two antiepileptic drugs, two β-blockers, and three antidepressants) in soils was developed. The optimal method included ultrasound-assisted extraction, a clean-up step on a silica gel column, derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and 1% trimethylchlorosilane (TMCS) in pyridine and ethyl acetate (2:1:1, v/v/v) for 30 min at 60 °C, and determination by gas chromatography-mass spectrometry working in the selected ion monitoring mode. This affords good resolution, high sensitivity and reproducibility, and freedom from interferences even from complex matrices such as soils. The method detection limits ranged from 0.3 to 1.7 ng g-1, the intra-day precision represented as RSDs ranged from 1.1 to 10.0%, and the intra-day accuracy from 81.3 to 119.7%. The absolute recoveries of the target compounds were above 80%, except for valproic acid and diethylstilbestrol. The developed method was successfully applied in the analysis of the target compounds in soils collected in Poland. Among the 20 pharmaceuticals, 12 compounds were detected at least once in the soils. The determination of antiepileptic drugs, β-blockers, and antidepressants was also performed for the first time.
Collapse
Affiliation(s)
- Jolanta Kumirska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Paulina Łukaszewicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Magda Caban
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Natalia Migowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Alina Plenis
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Anna Białk-Bielińska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata Czerwicka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Fei Qi
- Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Stepnowski Piotr
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
14
|
Dummy Molecularly Imprinted Matrix Solid-Phase Dispersion for Selective Extraction of Seven Estrogens in Aquatic Products. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01575-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Santos FR, Martins DA, Morais PCV, Oliveira AHB, Gama AF, Nascimento RF, Choi-Lima KF, Moreira LB, Abessa DMS, Nelson RK, Reddy CM, Swarthout RF, Cavalcante RM. Influence of anthropogenic activities and risk assessment on protected mangrove forest using traditional and emerging molecular markers (Ceará coast, northeastern Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:877-888. [PMID: 30625674 DOI: 10.1016/j.scitotenv.2018.11.380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/17/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Anthropogenic molecular markers were used to assess chemicals inputs and ecological risks associated from multiple sources to sediments in one of the largest tropical mangrove forests of South America, with a particular focus on lesser studied compounds resulting from rural activities. Total concentrations ranged from 23.4 to 228.2 ng g-1 for polycyclic aromatic hydrocarbons (∑PAHs), 750.4 to 5912.5 ng g-1 for aliphatic hydrocarbons (∑AHs), 32.4 to 696.6 ng g-1 for pesticides (∑pesticides), 23.1 to 2109.7 ng g-1 for coprostanol and sterols (∑sterols), 139.3 to 580.2 ng g-1 for naturals hormones (∑natural hormones) and 334.1 to 823.4 ng g-1 for synthetics hormones (∑synthetic hormones). The PAHs and AHs used as traditional anthropogenic markers showed a mixture between natural and anthropogenic sources, related mainly to inputs from higher plants, phytoplankton and both, biomass and petroleum combustion. Rural activities linked to agricultural pest control are the predominant source of pesticides, although minor inputs from pesticides used in urban public health campaigns and household activities were also detected. Synthetic hormones levels are two to three orders of magnitude greater than natural hormones levels and no correlations were observed between the main sewage markers and synthetic hormone concentrations, rural activities such as animal husbandry, which use drugs in management, may be the predominant anthropogenic sources of these compounds in the region. Traditional markers failed to detect ecological risks in rural areas, where synthetic substances (e.g. pesticides and hormones) are widely used and introduced in the environment.
Collapse
Affiliation(s)
- Felipe R Santos
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil.
| | - Davi A Martins
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - Pollyana C V Morais
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - André H B Oliveira
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Allyne F Gama
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - Ronaldo F Nascimento
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Katherine F Choi-Lima
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Lucas Buruaem Moreira
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Denis M S Abessa
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Robert F Swarthout
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Rivelino M Cavalcante
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil.
| |
Collapse
|
16
|
Lima MFB, Fernandes GM, Oliveira AHB, Morais PCV, Marques EV, Santos FR, Nascimento RF, Swarthout RF, Nelson RK, Reddy CM, Cavalcante RM. Emerging and traditional organic markers: Baseline study showing the influence of untraditional anthropogenic activities on coastal zones with multiple activities (Ceará coast, Northeast Brazil). MARINE POLLUTION BULLETIN 2019; 139:256-262. [PMID: 30686426 DOI: 10.1016/j.marpolbul.2018.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Molecular markers are useful tools to characterize natural and anthropogenic impacts on coastal zones. Distribution of n-alkanes showed that the Pacoti River was predominantly influenced by terrigenous input. Distribution of polycyclic aromatic hydrocarbon (PAH) indices showed a mix of natural sources, especially pyrogenic influences. Sterol and hormone levels showed sewage discharge. Integrated geographic assessment showed that pyrogenic process and sewage discharge are predominant along the river because of natural and different anthropogenic activities. The upstream region is influenced by rural activities such as livestock and discharge from the sewage treatment plant, whereas the estuarine region is influenced by urban and industrial activities, predominantly the discharge of treated or untreated sewage, vehicle traffic, and manufacture of red ceramics. On the other hand, on the river mouth, there is the predominance of aquaculture activities. Traditional anthropogenic markers are not sufficient for producing a comprehensive assessment of anthropogenic impacts in areas with multiple activities.
Collapse
Affiliation(s)
- Marcielly F B Lima
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Gabrielle M Fernandes
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Andre H B Oliveira
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil; Department of Chemistry, Federal University of Ceará, Av. Humberto Monte, SN-PICI, 60000-000 Fortaleza, CE, Brazil
| | - Pollyana C V Morais
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Elissandra V Marques
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil
| | - Felipe R Santos
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil; Oceanographic Institute, University of São Paulo (IOUSP), Praça do Oceanográfico, 191, 05508-900 São Paulo, SP, Brazil
| | - Ronaldo F Nascimento
- Department of Chemistry, Federal University of Ceará, Av. Humberto Monte, SN-PICI, 60000-000 Fortaleza, CE, Brazil
| | - Robert F Swarthout
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, United States of America
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, United States of America
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, United States of America
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, 60165-081 Fortaleza, CE, Brazil.
| |
Collapse
|
17
|
de Morais PCV, Gama AF, Fernandes GM, Oliveira AHB, Lima MFB, Dos Santos FR, Martins DA, Nascimento RF, Cavalcante RM. Emerging and Traditional Organic Markers in Areas with Multiple Anthropogenic Activities: Development of an Analytical Protocol and Its Application in Environmental Assessment Studies. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:66-76. [PMID: 30374587 DOI: 10.1007/s00128-018-2475-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
This work describes the development of an analytical protocol combining cleanup by liquid-solid extraction and GC-MS for the determination of emerging and traditional multi-molecular markers. The procedure was used for the environmental assessment of a coastal region with multiple human activities. Global recovery rates ranged from 45.49% to 119.4% for the 46 substances analyzed: pesticides (73.7%-97.7%), PAHs (52.5%-93.7%), sterols (66.7%-119.4%) and natural and synthetic hormones (45.5%-119.1%) and the rates were compared to those reported in studies on both individual classes and multi-classes of contaminants. The analytical protocol demonstrated satisfactory efficiency and could be used successfully in environmental assessments and source assignment studies. The environmental assessment study revealed that the Acaraú River in northeastern Brazil is influenced by the combination of urban and rural activities. The sources of PAHs are vehicular traffic and the burning of biomass; pesticides stem from pest control in agribusiness and public health campaigns; sterols and hormones stem from a combination of natural inputs, human sewage (treated and raw) and animal husbandry activities.
Collapse
Affiliation(s)
- Pollyana C V de Morais
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil.
| | - Allyne F Gama
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Gabrielle M Fernandes
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Andre H B Oliveira
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Marcielly F B Lima
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Felipe R Dos Santos
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Davi A Martins
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil
| | - Ronaldo F Nascimento
- Laboratory of Traces Analysis (LAT) - Department of Chemistry, Federal University of Ceará, Fortaleza, CE, CEP: 60000-000, Brazil
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207 Meireles, Fortaleza, CE, CEP: 60165-081, Brazil.
| |
Collapse
|
18
|
Könemann S, Kase R, Simon E, Swart K, Buchinger S, Schlüsener M, Hollert H, Escher BI, Werner I, Aït-Aïssa S, Vermeirssen E, Dulio V, Valsecchi S, Polesello S, Behnisch P, Javurkova B, Perceval O, Di Paolo C, Olbrich D, Sychrova E, Schlichting R, Leborgne L, Clara M, Scheffknecht C, Marneffe Y, Chalon C, Tušil P, Soldàn P, von Danwitz B, Schwaiger J, San Martín Becares MI, Bersani F, Hilscherová K, Reifferscheid G, Ternes T, Carere M. Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Tahar A, Tiedeken EJ, Rowan NJ. Occurrence and geodatabase mapping of three contaminants of emerging concern in receiving water and at effluent from waste water treatment plants - A first overview of the situation in the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:187-197. [PMID: 29112842 DOI: 10.1016/j.scitotenv.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
This constitutes the first study to address occurrence and geodatabase mapping of the anti-inflammatory drug diclofenac (DCL) and the natural (17-beta-estradiol or E2) and synthetic (17-alpha-ethynylestradiol or EE2) estrogenic hormones in Republic of Ireland receiving waters over the period 1999 to 2015. Among these data, 317 samples came from concentration studies, while 205 were from effect-based studies. Monitoring data came from 16 waste water treatment plants (WWTPs), 23 water bodies (including rivers, lakes, marine and transitional waters) and 7 from domestic locations. Out of approximately 1000 WWPTs in the Republic of Ireland, only 16 have been monitored for at least one of these compounds of emerging concern (CECs). Diclofenac is found in treated effluents from 5 WWTPs at levels at least as high as other European WWPTs, and sometime higher. Measurements of E2 and EE2 in WWPT effluents were rare and effluents were more often evaluated for total estrogens; these CECs were generally not detected using conventional analytical methods because of limits of detection being too high compared to environmental concentrations and WFD environmental quality standards. There was good agreement between occurrence of these CEC and regional drug dispensing data in Ireland. Mapping the aforementioned data onto appropriate river basin catchment management tools will inform predictive and simulated risk determinations to inform investment in infrastructure that is necessary to protect rivers and beaches and economic activities that rely on clean water. There is a pressing commensurate need to refine/develop new analytical methods with low levels of detection for future CEC intervention.
Collapse
Affiliation(s)
- Alexandre Tahar
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - Erin Jo Tiedeken
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; School of Science, National College of New Jersey, Pennington Road Ewing, NJ 08628-0718, USA
| | - Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland.
| |
Collapse
|
20
|
Liu S, Chen H, Xu XR, Hao QW, Zhao JL, Ying GG. Three classes of steroids in typical freshwater aquaculture farms: Comparison to marine aquaculture farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:942-950. [PMID: 28783906 DOI: 10.1016/j.scitotenv.2017.07.207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
This study provides a comprehensive analysis of the occurrence of androgens, glucocorticoids and progestogens in typical freshwater aquaculture farms in comparison with marine aquaculture farms. The results showed that more steroids were detected in the marine aquaculture farms. For all aquatic products, the total concentrations of steroids in fish muscle were 22-2000ng/g, which were much higher than those detected in crabs, shrimps or mollusks (0.5-8.1ng/g). Based on the hazard index of the selected steroids, most water samples were in the low or medium risks. Some banned steroids were identified in the freshwater shrimps and all marine products, indicating that there may be certain health risks by the consumption of these aquatic products in the studied aquaculture farms. Furthermore, the total contributions of steroids in China were estimated to be 2300kg/y and 1200kg/y from freshwater fish culture and shrimp-crab culture, respectively.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hui Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Qin-Wei Hao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jian-Liang Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
21
|
Tahar A, Tiedeken EJ, Clifford E, Cummins E, Rowan N. Development of a semi-quantitative risk assessment model for evaluating environmental threat posed by the three first EU watch-list pharmaceuticals to urban wastewater treatment plants: An Irish case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 603-604:627-638. [PMID: 28654878 DOI: 10.1016/j.scitotenv.2017.05.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Contamination of receiving waters with pharmaceutical compounds is of pressing concern. This constitutes the first study to report on the development of a semi-quantitative risk assessment (RA) model for evaluating the environmental threat posed by three EU watch list pharmaceutical compounds namely, diclofenac, 17-beta-estradiol and 17-alpha-ethinylestradiol, to aquatic ecosystems using Irish data as a case study. This RA model adopts the Irish Environmental Protection Agency Source-Pathway-Receptor concept to define relevant parameters for calculating low, medium or high risk score for each agglomeration of wastewater treatment plant (WWTP), which include catchment, treatments, operational and management factors. This RA model may potentially be used on a national scale to (i) identify WWTPs that pose a particular risk as regards releasing disproportionally high levels of these pharmaceutical compounds, and (ii) help identify priority locations for introducing or upgrading control measures (e.g. tertiary treatment, source reduction). To assess risks for these substances of emerging concern, the model was applied to 16 urban WWTPs located in different regions in Ireland that were scored for the three different compounds and ranked as low, medium or high risk. As a validation proxy, this case study used limited monitoring data recorded at some these plants receiving waters. It is envisaged that this semi-quantitative RA approach may aid other EU countries investigate and screen for potential risks where limited measured or predicted environmental pollutant concentrations and/or hydrological data are available. This model is semi-quantitative, as other factors such as influence of climate change and drug usage or prescription data will need to be considered in a future point for estimating and predicting risks.
Collapse
Affiliation(s)
- Alexandre Tahar
- Bioscience Research Institute, Athlone Institute of Technology, Ireland.
| | - Erin Jo Tiedeken
- Bioscience Research Institute, Athlone Institute of Technology, Ireland; National Biodiversity Data Centre, Waterford, Ireland
| | - Eoghan Clifford
- College of Engineering and informatics, Department of Civil Engineering, National University of Ireland Galway, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, University College Dublin, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Ireland
| |
Collapse
|
22
|
Tiedeken EJ, Tahar A, McHugh B, Rowan NJ. Monitoring, sources, receptors, and control measures for three European Union watch list substances of emerging concern in receiving waters - A 20year systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1140-1163. [PMID: 27741430 DOI: 10.1016/j.scitotenv.2016.09.084] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/25/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Pollution of European receiving waters with contaminants of emerging concern (CECs), such as with 17-beta-estradiol (a natural estrogenic hormone, E2), along with pharmaceutically-active compounds diclofenac (an anti-inflammatory drug, DCL) and 17-alpha-ethynylestradiol (a synthetic estrogenic hormone, EE2)) is a ubiquitous phenomenon. These three CECs were added to the EU watch list of emerging substances to be monitoring in 2013, which was updated in 2015 to comprise 10 substances/groups of substances in the field of water policy. A systematic literature review was conducted of 3952 potentially relevant articles over period 1995 to 2015 that produced a new EU-wide database consisting of 1268 publications on DCL, E2 and EE2. European surface water concentrations of DCL are typically reported below the proposed annual average environmental quality standard (AA EQS) of 100ng/l, but that exceedances frequently occur. E2 and EE2 surface water concentrations are typically below 50ng/l and 10ng/l respectively, but these values greatly exceed the proposed AA EQS values for these compounds (0.04 and 0.035ng/l respectively). However, levels of these CECs are frequently reported to be disproportionately high in EU receiving waters, particularly in effluents at control points that require urgent attention. Overall it was found that DCL and EE2 enter European aquatic environment mainly following human consumption and excretion of therapeutic drugs, and by incomplete removal from influent at urban wastewater treatment plants (WWTPs). E2 is a natural hormone excreted by humans which also experiences incomplete removal during WWTPs treatment. Current conventional analytical chemistry methods are sufficiently sensitive for the detection and quantification of DCL but not for E2 and EE2, thus alternative, ultra-trace, time-integrated monitoring techniques such as passive sampling are needed to inform water quality for these estrogens. DCL appears resistant to conventional wastewater treatment while E2 and EE2 have high removal efficiencies that occur through biodegradation or sorption to organic matter. There is a pressing need to determine fate and behaviour of these CECs in European receiving waters such as using GIS-modelling of river basins as this will identify pressure points for informing priority decision making and alleviation strategies for upgrade of WWTPs and for hospital effluents with advanced treatment technologies. More monitoring data for these CECs in receiving waters is urgently needed for EU legislation and effective risk management.
Collapse
Affiliation(s)
- Erin Jo Tiedeken
- Bioscience Research Institute, Athlone Institute of Technology, Co. Westmeath, Ireland
| | - Alexandre Tahar
- Bioscience Research Institute, Athlone Institute of Technology, Co. Westmeath, Ireland
| | - Brendan McHugh
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Co. Westmeath, Ireland.
| |
Collapse
|
23
|
Blavier J, Songulashvili G, Simon C, Penninckx M, Flahaut S, Scippo ML, Debaste F. Assessment of methods of detection of water estrogenicity for their use as monitoring tools in a process of estrogenicity removal. ENVIRONMENTAL TECHNOLOGY 2016; 37:3104-19. [PMID: 27144327 DOI: 10.1080/09593330.2016.1177119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Methods of monitoring of estrogenicity in water were gathered, compared, and tested within the context of their practical use as measurement and design tools, in the development of a process of degradation of estrogenic endocrine disruptors. In this work, the focus was put on in vitro assays, with the use of analytical techniques as additional analysis when possible. Practically, from a literature review, four methods that seemed most suitable to practical use required in a process development were tested: the Yeast Estrogen Screen assay, the Lyticase-assisted Yeast Estrogen Screen assay (LYES), the MMV-LUC assay and the HPLC-UV analytical method. Dose-response curves in response to estrogenic standard 17β-estradiol were compared. Bisphenol A estrogenicity was measured by the methods as well. The model for the calculation of estradiol equivalents as measurements units was adapted. The methods were assessed in terms of ranges of detection, time of experiment, cost, ease of the experiment, reproducibility, etc. Based on that assessment, the LYES assay was selected and successfully applied to the monitoring of estrogenicity removal from 17β-estradiol and bisphenol A. More precisely, the bioassay allowed the acquisition of kinetic curves for a laboratory-scaled process of estrogenicity removal by immobilized enzymes in a continuous packed-bed reactor. The LYES assay was found to have a real methodological potential for scale-up and design of a treatment process. The HPLC-UV method showed good complementarity with the LYES assay for the monitoring of bisphenol A concentrations in parallel with estrogenicity, reporting no significant estrogenicity from degradation byproducts, among others.
Collapse
Affiliation(s)
- J Blavier
- a Department Transfers, Interfaces & Processes , Université Libre de Bruxelles , Bruxelles , Belgium
| | - G Songulashvili
- b Department of Applied Microbiology , Université Libre de Bruxelles c/o Institut de Recherches Microbiologiques Jean-Marie Wiame , Bruxelles , Belgium
| | - C Simon
- c Department of Food Sciences, Laboratory of Food Analysis , FARAH - Veterinary Public Health, Université de Liège , Liege , Belgium
| | - M Penninckx
- a Department Transfers, Interfaces & Processes , Université Libre de Bruxelles , Bruxelles , Belgium
| | - S Flahaut
- b Department of Applied Microbiology , Université Libre de Bruxelles c/o Institut de Recherches Microbiologiques Jean-Marie Wiame , Bruxelles , Belgium
| | - M L Scippo
- c Department of Food Sciences, Laboratory of Food Analysis , FARAH - Veterinary Public Health, Université de Liège , Liege , Belgium
| | - F Debaste
- a Department Transfers, Interfaces & Processes , Université Libre de Bruxelles , Bruxelles , Belgium
| |
Collapse
|
24
|
Es’haghi Z, Nezhadali A, Khatibi AD. Magnetically responsive polycaprolactone nanoparticles for progesterone screening in biological and environmental samples using gas chromatography. Anal Bioanal Chem 2016; 408:5537-49. [DOI: 10.1007/s00216-016-9650-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/25/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
25
|
de Lima Stebbins D, Docs J, Lowe P, Cohen J, Lei H. Evaluation of analytical methodology for the detection of hormones and their attenuation during aquifer recharge and recovery cycles. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:613-623. [PMID: 27146029 DOI: 10.1039/c6em00031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hormones listed in the screening survey list 2 of the Unregulated Contaminant Monitoring Rule 3 (estrone, 17-β-estradiol, 17-α-ethynylestradiol, 16-α-hydroxyestradiol (estriol), equilin, testosterone and 4-androstene-3,17-dione) were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Two analytical methods were compared: EPA method 539 and the isotope dilution method. EPA method 539 was successfully utilized in river and drinking water matrices with fortified recoveries of 98.9 to 108.5%. Samples from the Hillsborough River reflected levels below the method detection limit (MDL) for the majority of the analytes, except estrone (E1), which was detected at very low concentrations (<0.5 to 1 ng L(-1)) in the majority of samples. No hormones were detected in drinking water samples. The isotope dilution method was used to analyze reclaimed and aquifer storage and recovery (ASR) water samples as a result of strong matrix/solid phase extraction (SPE) losses observed in these more complex matrices. Most of the compounds were not detected or found at relatively low concentrations in the ASR samples. Attenuation of 50 to 99.1% was observed as a result of the ASR recharge/recovery cycles for most of the hormones, except for estriol (E3). Relatively stable concentrations of E3 were found, with only 10% attenuation at one of the sites and no measureable attenuation at another location. These results have substantiated that while EPA method 539 works well for most environmental samples, the isotope dilution method is more robust when dealing with complex matrices such as reclaimed and ASR samples.
Collapse
Affiliation(s)
- Daniela de Lima Stebbins
- Chemical & Biomedical Engineering Department, University of South Florida, 4202 E Fowler Ave ENB118, Tampa, FL 33620, USA
| | | | | | | | | |
Collapse
|
26
|
Bradley PM, Battaglin WA, Iwanowicz LR, Clark JM, Journey CA. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1087-1096. [PMID: 26588039 DOI: 10.1002/etc.3266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/24/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.
Collapse
Affiliation(s)
- Paul M Bradley
- South Atlantic Water Science Center, US Geological Survey, Columbia, South Carolina, USA
| | | | - Luke R Iwanowicz
- Leetown Science Center, US Geological Survey, Kearneysville, West Virginia, USA
| | - Jimmy M Clark
- South Atlantic Water Science Center, US Geological Survey, Columbia, South Carolina, USA
| | - Celeste A Journey
- South Atlantic Water Science Center, US Geological Survey, Columbia, South Carolina, USA
| |
Collapse
|
27
|
|
28
|
Pérez RL, Escandar GM. Multivariate calibration-assisted high-performance liquid chromatography with dual UV and fluorimetric detection for the analysis of natural and synthetic sex hormones in environmental waters and sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:114-122. [PMID: 26650083 DOI: 10.1016/j.envpol.2015.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
A green method is reported based on non-sophisticated instrumental for the quantification of seven natural and synthetic estrogens, three progestagens and one androgen in the presence of real interferences. The method takes advantage of: (1) chromatography, allowing total or partial resolution of a large number of compounds, (2) dual detection, permitting selection of the most appropriate signal for each analyte and, (3) second-order calibration, enabling mathematical resolution of incompletely resolved chromatographic bands and analyte determination in the presence of interferents. Consumption of organic solvents for cleaning, extraction and separation are markedly decreased because of the coupling with MCR-ALS (multivariate curve resolution/alternating least-squares) which allows the successful resolution in the presence of other co-eluting matrix constituents. Rigorous IUPAC detection limits were obtained: 6-24 ng L(-1) in water, and 0.1-0.9 ng g(-1) in sediments. Relative prediction errors were 2-10% (water) and 1-8% (sediments).
Collapse
Affiliation(s)
- Rocío L Pérez
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Graciela M Escandar
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
29
|
Saini G, Pant S, Alam T, Kazmi AA. Occurrence and fate of endocrine disrupting chemicals in ASP based sewage treatment plant in Hardwar. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1039-1050. [PMID: 27642823 DOI: 10.2166/wst.2016.238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The occurrence of emerging contaminants such as endocrine disrupting chemicals (EDCs) in our water resources is of prime concern. With this context, fate and seasonal variation of six EDCs (testosterone, T; progesterone, P; diethyl phthalate, DEP; dibutyl phthalate, DBP; propyl-paraben, PP and butyl-paraben, BP) were assessed throughout the year, i.e. in rainy, winter, spring and summer seasons in the raw, treated wastewater and activated sludge in an activated sludge process (ASP) based sewage treatment plant (STP) located in Haridwar, India. Qualitative and quantitative measurements were performed by gas chromatography-mass spectrometry (GC-MS) analysis. Results indicate that in summer, the examined STP could effectively remove 82.9% of T, 86.4% of P, 95.5% of DEP, 92.4% of DBP, 91.5% of PP, and 89.9% of BP from the wastewater. Among the EDCs considered, higher removal efficiencies were achieved for phthalates in the summer season. GC-MS analysis showed that a small fraction of EDCs was sorbed on the solid fraction of activated sludge. Scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transformation infrared spectroscopy analysis were also performed to investigate the occurrence of EDCs in biomass samples. Results of this study also demonstrated that removal efficiency, assessed in terms of physicochemical and microbiological parameters, was maximum in summer and reached minimum in rainy season.
Collapse
Affiliation(s)
- Gita Saini
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India E-mail:
| | - Shalini Pant
- S. S. D. P. C. Girls P. G. College, Roorkee, Uttarakhand 246174, India
| | - Tanveer Alam
- K. L. D. A. V. P. G. College, Roorkee, Uttarakhand 246174, India
| | - A A Kazmi
- Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India E-mail:
| |
Collapse
|
30
|
Backe WJ. An Ultrasensitive (Parts-Per-Quadrillion) and SPE-Free Method for the Quantitative Analysis of Estrogens in Surface Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14311-8. [PMID: 26580084 DOI: 10.1021/acs.est.5b04949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An analytical method is presented here that is sensitive to the parts-per-quadrillion (pg/L) for estrogens in surface water. The estrogens included for study were estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, and equilin. The method consisted of the small-scale liquid-liquid extraction of surface water followed by derivation with dansyl chloride. Analyte separation and detection were performed by high-pressure liquid-chromatography and tandem mass-spectrometry. A large volume (100 μL) of the sample was injected on-column to increase the analyte mass sent to the detector. The detection limits of the method were 0.045 ng/L for estrone, 0.086 ng/L for 17β-estradiol, 0.030 ng/L for estriol, 0.049 ng/L for 17α-ethinylestradiol, and 0.13 ng/L for equilin. The whole-method accuracy ranged from 93 ± 5.8% to 105 ± 4.5% for all the analytes at two different spike levels. Similarly, the precision of the method was less than 8.0% relative standard deviation. The final method was used to analyze a series of samples from the Mississippi River spanning 51 river miles. Estrone was detected in all of the samples and 17β-estradiol was detected in one. Concentrations of estrone ranged from between the detection and quantification limits up to 0.63 ng/L. Increases in the concentration of estrone could be observed downstream from potential sources including a drinking water treatment plant. 17β-estradiol was detected below its quantitation limit in a sample taken downstream from a wastewater treatment plant.
Collapse
Affiliation(s)
- Will J Backe
- Public Health Laboratory, Minnesota Department of Health , 601 Robert St. N., P.O. Box 64899, , Saint Paul, Minnesota 55164-0899, United States
| |
Collapse
|
31
|
Corrotea Y, Aguilera N, Honda L, Richter P. Determination of Hormones in Wastewater Using Rotating Disk Sorptive Extraction and Gas Chromatography–Mass Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1098653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Dias ACV, Gomes FW, Bila DM, Sant'Anna GL, Dezotti M. Analysis of estrogenic activity in environmental waters in Rio de Janeiro state (Brazil) using the yeast estrogen screen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:41-47. [PMID: 26024813 DOI: 10.1016/j.ecoenv.2015.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
The estrogenicity of waters collected from an important hydrological system in Brazil (Paraiba do Sul and Guandu Rivers) was assessed using the yeast estrogen screen (YES) assay. Sampling was performed in rivers and at the outlets of conventional water treatment plants (WTP). The removal of estrogenic activity by ozonation and chlorination after conventional water treatment (clarification and sand filtration) was investigated employing samples of the Guandu River spiked with estrogens and bisphenol A (BPA). The results revealed a preoccupying incidence of estrogenic activity at levels higher than 1ngL(-1) along some points of the rivers. Another matter of concern was the number of samples from WTPs presenting estrogenicity surpassing 1ngL(-1). The oxidation techniques (ozonation and chlorination) were effective for the removal of estrogenic activity and the combination of both techniques led to good results using less amounts of oxidants.
Collapse
Affiliation(s)
- Amanda Cristina Vieira Dias
- Chemical Engineering Program - COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ, Brazil.
| | - Frederico Wegenast Gomes
- Chemical Engineering Program - COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ, Brazil.
| | - Daniele Maia Bila
- Department of Environmental and Sanitary Engineering, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Geraldo Lippel Sant'Anna
- Chemical Engineering Program - COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ, Brazil.
| | - Marcia Dezotti
- Chemical Engineering Program - COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
33
|
Allinson G, Zhang P, Bui A, Allinson M, Rose G, Marshall S, Pettigrove V. Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface waters and sediments of urban wetlands and retention ponds in Melbourne, Australia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10214-10226. [PMID: 25697552 DOI: 10.1007/s11356-015-4206-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Samples of water and sediments were collected from 24 urban wetlands in Melbourne, Australia, in April 2010, and tested for more than 90 pesticides using a range of gas chromatographic (GC) and liquid chromatographic (LC) techniques, sample 'hormonal' activity using yeast-based recombinant receptor-reporter gene bioassays, and trace metals using spectroscopic techniques. At the time of sampling, there was almost no estrogenic activity in the water column. Twenty-three different pesticide residues were observed in one or more water samples from the 24 wetlands; chemicals observed at more than 40% of sites were simazine (100%), atrazine (79%), and metalaxyl and terbutryn (46%). Using the toxicity unit (TU) concept, less than 15% of the detected pesticides were considered to pose an individual, short-term risk to fish or zooplankton in the ponds and wetlands. However, one pesticide (fenvalerate) may have posed a possible short-term risk to fish (log10TUf > -3), and three pesticides (azoxystrobin, fenamiphos and fenvalerate) may have posed a risk to zooplankton (logTUzp between -2 and -3); all the photosystem II (PSII) inhibiting herbicides may have posed a risk to primary producers in the ponds and wetlands (log10TUap and/or log10TUalg > -3). The wetland sediments were contaminated with 16 different pesticides; no chemicals were observed at more than one third of sites, but based on frequency of detection and concentrations, bifenthrin (33%, maximum 59 μg/kg) is the priority insecticide of concern for the sediments studied. Five sites returned a TU greater than the possible effect threshold (i.e. log10TU > 1) as a result of bifenthrin contamination of their sediments. Most sediments did not exceed Australian sediment quality guideline levels for trace metals. However, more than half of the sites had threshold effect concentration quotients (TECQ) values >1 for Cu (58%), Pb (50%), Ni (67%) and Zn (63%), and 75% of sites had mean probable effect concentration quotients (PECQ) >0.2, suggesting that the collected sediments may have been having some impact on sediment-dwelling organisms.
Collapse
Affiliation(s)
- Graeme Allinson
- School of Applied Sciences, RMIT University, Melbourne, VIC, 3001, Australia,
| | | | | | | | | | | | | |
Collapse
|
34
|
Estrogenic evaluation and organochlorine identification in blubber of North Sea harbour porpoise (Phocoena phocoena) stranded on the North Sea coast. BIOMED RESEARCH INTERNATIONAL 2015; 2015:438295. [PMID: 26075240 PMCID: PMC4449880 DOI: 10.1155/2015/438295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
Abstract
Thirteen individual organochlorine compounds at 3 concentrations (80, 400, and 2000 ng/mL culture medium), as well as mixtures, were assayed for the estrogen receptor (ER) activation or inhibition, using a luciferase reporter gene assay (RGA). None of the PCB 138, 153, or 180 or their mixture induced a response in the RGA. o,p′-DDT was the most potent xenoestrogen from the DDT group, inducing a response already at 80 ng/mL. From the HCH and HCB group, only β-HCH (at 400 and 2000 ng/mL) and δ-HCH (at 2000 ng/mL) displayed estrogenic activities. These 13 organochlorines were determined by GC-MS in 12 samples of North Sea harbor porpoise blubber. The PCBs were the main contaminants. Within each group, PCB 153 (6.0 × 102~4.2 × 104
μg/kg), p,p′-DDE (5.1 × 102~8.6 × 103
μg/kg), and HCB (7.6 × 101~1.5 × 103
μg/kg) were the compounds found in highest concentrations. The hormonal activity of the porpoise blubber samples was also assayed in RGA, where two samples showed estrogenic activity, seven samples showed antiestrogenic activity, and one sample showed both estrogenic and antiestrogenic activity. Our results suggest that the 13 POPs measured by GC-MS in the samples cannot explain alone the estrogenicity of the extracts.
Collapse
|
35
|
Kumirska J, Migowska N, Caban M, Łukaszewicz P, Stepnowski P. Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:498-505. [PMID: 25522321 DOI: 10.1016/j.scitotenv.2014.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 05/21/2023]
Abstract
Pharmaceuticals are continually being released into the environment. Because of their physical and chemical properties, many of them or their bioactive metabolites can accumulate in sediments, sludge and soils, and induce adverse effects in terrestrial organisms. However, due to the very limited methods permitting the detection of these low-level concentration compounds in such complex matrices, their concentrations in natural solids remain largely unknown. In this paper, an analytical method for the simultaneous determination of thirteen pharmaceuticals (eight non-steroidal anti-inflammatory drugs and five oestrogenic hormones) in solid matrices was developed. The proposed MAE-SPE-GC-MS(SIM) method has been successfully validated providing a linear response over a concentration range of 1(17)-1000(1200)ng/g, depending on the pharmaceuticals, with correlation coefficients above 0.991. The method detection limits were in the range of 0.3-5.7 ng/g, absolute recoveries above 50%, except estrone. The developed method was applied in the analysis of the target compounds in sediment, sludge and soils collected in Poland giving primary data on their concentrations in such matrices in Poland. The obtained results confirmed that the proposed method can be successfully used in the analysis of real environmental solid samples.
Collapse
Affiliation(s)
- Jolanta Kumirska
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Natalia Migowska
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Paulina Łukaszewicz
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
36
|
Heub S, Tscharner N, Monnier V, Kehl F, Dittrich PS, Follonier S, Barbe L. Automated and portable solid phase extraction platform for immuno-detection of 17β-estradiol in water. J Chromatogr A 2015; 1381:22-8. [DOI: 10.1016/j.chroma.2014.12.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/09/2014] [Accepted: 12/28/2014] [Indexed: 11/26/2022]
|
37
|
Vulliet E, Berlioz-Barbier A, Lafay F, Baudot R, Wiest L, Vauchez A, Lestremau F, Botta F, Cren-Olivé C. A national reconnaissance for selected organic micropollutants in sediments on French territory. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11370-11379. [PMID: 24888621 DOI: 10.1007/s11356-014-3089-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/23/2014] [Indexed: 06/03/2023]
Abstract
To collect a large data set regarding the occurrence of organic substances in sediment, this study presents the examination of 20 micropollutants, as a national survey. The list of target compounds contains two alkylphenols, three polycyclic aromatic hydrocarbons (PAHs) not commonly included in monitoring programmes, six pesticides or metabolites, five pharmaceutical compounds, two hormones, one UV filter and bisphenol A. The selective and sensitive analytical methods, based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) or gas chromatography-time-of-flight mass spectrometry (GC-ToF-MS), allow the quantification at limits comprised between 0.5 and 23 ng/g, depending on the compound. The paper summarizes the analytical results from 154 sampling points. Of the 20 target compounds, 9 were determined at least once, and the sediments contained a maximum of 7 substances. The most frequently detected were PAHs (frequency, 77 %; max., 1,400 ng/g). The pharmaceutical compounds, hormones and pesticides were rarely detected in the samples; the most frequently detected was carbamazepine (frequency, 6 %; max., 31 ng/g). In some cases, the levels of PAHs and bisphenol A exceed the predicted no-effect concentration (PNEC) values.
Collapse
Affiliation(s)
- Emmanuelle Vulliet
- Université de Lyon, Institut des Sciences Analytiques UMR 5280 CNRS (Equipe TRACES), Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100, Villeurbanne, France,
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Johnson CM, Pleshko N, Achary M, Suri RPS. Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4581-4587. [PMID: 24650306 DOI: 10.1021/es5000676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It is important to develop rapid and sensitive screening assays to assess the biological effects of emerging contaminants. In this contribution, the ability to determine the molecular level effects of 17β-estradiol on single MCF-7 cells using Fourier transform infrared imaging spectroscopy (FT-IRIS) was investigated. The use of FT-IRIS enabled subcellular imaging of the cells and determination of a dose dependent response in mucin concentration at 24 and 48 h of incubation. The 48 h increase in mucin was comparable to increases in cellular proliferation (Pearson R = 0.978). The EC50 values for the E-screen and FT-IRIS assays were 2.29 and 2.56 ppt, respectively, indicating that the molecular changes, which are observed at the single cell level using FT-IRIS, are reflective of physiological changes that are observed as the cell population responds to 17ß-estradiol. The FT-IRIS method, when combined with principal component analysis, enabled differentiation and grouping of cells exposed to varying concentrations of 17ß-estradiol. The FT-IRIS method shows potential to be used as a rapid and sensitive screening technique for the detection of biological responses to different emerging contaminants in relevant cells or tissues.
Collapse
Affiliation(s)
- Candice M Johnson
- NSF Water & Environmental Technology (WET) Center, Department of Civil and Environmental Engineering, Temple University , Philadelphia, Pennsylvania 19122, United States
| | | | | | | |
Collapse
|
39
|
Macikova P, Kalabova T, Klanova J, Kukucka P, Giesy JP, Hilscherova K. Longer-term and short-term variability in pollution of fluvial sediments by dioxin-like and endocrine disruptive compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5007-5022. [PMID: 24363052 DOI: 10.1007/s11356-013-2429-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Changes in pollutant loads in relatively dynamic river sediments, which contain very complex mixtures of compounds, can play a crucial role in the fate and effects of pollutants in fluvial ecosystems. The contamination of sediments by bioactive substances can be sensitively assessed by in vitro bioassays. This is the first study that characterizes detailed short- and long-term changes in concentrations of contaminants with several modes of action in river sediments. One-year long monthly study described seasonal and spatial variability of contamination of sediments in a representative industrialized area by dioxin-like and endocrine disruptive chemicals. There were significant seasonal changes in both antiandrogenic and androgenic as well as dioxin-like potential of river sediments, while there were no general seasonal trends in estrogenicity. Aryl hydrocarbon receptor-dependent potency (dioxin-like potency) expressed as biological TCDD-equivalents (BIOTEQ) was in the range of 0.5-17.7 ng/g, dry mass (dm). The greatest BIOTEQ levels in sediments were observed during winter, particularly at locations downstream of the industrial area. Estrogenicity expressed as estradiol equivalents (EEQ) was in the range of 0.02-3.8 ng/g, dm. Antiandrogenicity was detected in all samples, while androgenic potency in the range of 0.7-16.8 ng/g, dm dihydrotestosterone equivalents (DHT-EQ) was found in only 30 % of samples, most often during autumn, when antiandrogenicity was the least. PAHs were predominant contaminants among analyzed pollutants, responsible, on average, for 13-21 % of BIOTEQ. Longer-term changes in concentrations of BIOTEQ corresponded to seasonal fluctuations, whereas for EEQ, the inter-annual changes at some locations were greater than seasonal variability during 1 year. The inter- as well as intra-annual variability in concentrations of both BIOTEQ and EEQ at individual sites was greater in spring than in autumn which was related to hydrological conditions in the river. This study stresses the importance of river hydrology and its seasonal variations in the design of effective sampling campaigns, as well as in the interpretation of any monitoring results.
Collapse
Affiliation(s)
- P Macikova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
40
|
DEVELOPMENT OF A NOVEL IN-TUBE SOLID PHASE MICROEXTRACTION BASED ON MICELLAR DESORPTION FOLLOWED BY LC-DAD-FD FOR THE DETERMINATION OF SOME ENDOCRINE DISRUPTOR COMPOUNDS IN ENVIRONMENTAL LIQUID SAMPLES. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2013.807461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Ortiz de García S, Pinto GP, García-Encina PA, Irusta Mata RI. Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 129:384-97. [PMID: 23995140 DOI: 10.1016/j.jenvman.2013.06.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/08/2013] [Accepted: 06/17/2013] [Indexed: 05/13/2023]
Abstract
A wide range of Pharmaceuticals and Personal Care Products (PPCPs) are present in the environment, and many of their adverse effects are unknown. The emergence of new compounds or changes in regulations have led to dynamical studies of occurrence, impact and treatment, which consider geographical areas and trends in consumption and innovation in the pharmaceutical industry. A Quantitative study of Structure-Activity Relationship ((Q)SAR) was performed to assess the possible adverse effects of ninety six PPCPs and metabolites with negligible experimental data and establish a ranking of concern, which was supported by the EPA EPI Suite™ interface. The environmental and toxicological indexes, the persistence (P), the bioaccumulation (B), the toxicity (T) (extensive) and the occurrence in Spanish aquatic environments (O) (intensive) were evaluated. The most hazardous characteristics in the largest number of compounds were generated by the P index, followed by the T and B indexes. A high number of metabolites has a concern score equal to or greater than their parent compounds. Three PBT and OPBT rankings of concern were proposed using the total and partial ranking method (supported by a Hasse diagram) by the Decision Analysis by Ranking Techniques (DART) tool, which was recently recommended by the European Commission. An analysis of the sensibility of the relative weights of these indexes has been conducted. Hormones, antidepressants (and their metabolites), blood lipid regulators and all of the personal care products considered in this study were at the highest levels of risk according to the PBT and OPBT total rankings. Furthermore, when the OPBT partial ranking was performed, X-ray contrast media, H2 blockers and some antibiotics were included at the highest level of concern. It is important to improve and incorporate useful indexes for the predicted environmental impact of PPCPs and metabolites and thus focus experimental analysis on the compounds that require urgent attention.
Collapse
Affiliation(s)
- Sheyla Ortiz de García
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina s/n, 47011 Valladolid, Spain(1); Department of Chemistry, Faculty of Sciences and Technology, University of Carabobo, Av. Salvador Allende, Campus Bárbula, Carabobo, Bolivarian Republic of Venezuela(3).
| | | | | | | |
Collapse
|
42
|
Fayad PB, Prévost M, Sauvé S. On-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry optimized for the analysis of steroid hormones in urban wastewaters. Talanta 2013; 115:349-60. [DOI: 10.1016/j.talanta.2013.05.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/17/2022]
|
43
|
Androgen glucuronides analysis by liquid chromatography tandem-mass spectrometry: could it raise new perspectives in the diagnostic field of hormone-dependent malignancies? J Chromatogr B Analyt Technol Biomed Life Sci 2013; 940:24-34. [PMID: 24140653 DOI: 10.1016/j.jchromb.2013.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 08/09/2013] [Accepted: 09/18/2013] [Indexed: 01/14/2023]
Abstract
Breast and prostate constitute organs of intense steroidogenic activity. Clinical and epidemiologic data provide strong evidence on the influence of androgens and estrogens on the risk of typical hormone-dependent malignancies, like breast and prostate cancer. Recent studies have focused on the role of androgen metabolites in regulating androgen concentrations in hormone-sensitive tissues. Steroid glucuronidation has been suggested to have a prominent role in controlling the levels and the biological activity of unconjugated androgens. It is well-established that serum levels of androgen glucuronides reflect androgen metabolism in androgen-sensitive tissues. Quantitative analysis of androgen metabolites in blood specimens is the only minimally invasive approach permitting an accurate estimate of the total pool of androgens. During the past years, androgen glucuronides analysis most often involved radioimmunoassays (RIA) or direct immunoassays, both methods bearing serious limitations. However, recent impressive technical advances in mass spectrometry, and particularly in high performance liquid chromatography coupled with mass spectrometry (LC-MS/MS), have overcome these drawbacks enabling the simultaneous, quantitative analysis of multiple steroids even at low concentrations. Blood androgen profiling by LC-MS/MS, a robust and reliable technique of high selectivity, sensitivity, specificity, precision and accuracy emerges as a promising new approach in the study of human pathology. The present review offers a contemporary insight in androgen glucuronides profiling through the application of LC-MS/MS, highlighting new perspectives in the study of steroids and their implication in hormone-dependent malignancies.
Collapse
|
44
|
Avberšek M, Žegura B, Filipič M, Uranjek-Ževart N, Heath E. Determination of estrogenic potential in waste water without sample extraction. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:527-533. [PMID: 23811375 DOI: 10.1016/j.jhazmat.2013.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was <LOD (<0.68 ng(EEQ)/L). The overall reduction in estrogenic potential was 92-98%. Daytime estrogenic potential values varied significantly.
Collapse
Affiliation(s)
- Miha Avberšek
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
45
|
Caban M, Czerwicka M, Łukaszewicz P, Migowska N, Stepnowski P, Kwiatkowski M, Kumirska J. A new silylation reagent dimethyl(3,3,3-trifluoropropyl)silyldiethylamine for the analysis of estrogenic compounds by gas chromatography–mass spectrometry. J Chromatogr A 2013; 1301:215-24. [DOI: 10.1016/j.chroma.2013.05.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 11/30/2022]
|
46
|
Abstract
AbstractChromatographic properties of five steroid drugs: cortisone, hydrocortisone, methylprednisolone, prednisolone and norgestrel have been studied by normal-, reversed-phase and hydrophilic neutral cyano-bonded silica stationary phase with five binary mobile phases (acetonitrile-water, acetonitrile-DMSO, acetonitrile-methanol, acetone-petroleum ether, acetone-water) in which the concentration of organic modifier was varied from 0 to 100% (v/v). This study reports the optimization of steroid hormones separation. Chromatographic retention data and possible retention mechanisms are discussed. Separation abilities of mobile and stationary phases were studied using the principal component analysis method. The best separation of methylprednisolone and prednisolone is with a chromatographic system included silica gel as stationary phase and mixture of acetonitrile and DMSO (10:90 v/v). These two anti-inflammatory drugs can be fast separated from norgestrel when CN is used as stationary phase and acetone and water (40:60 v/v) as mobile phase. The highest values of the parameter Δ(ΔG°) and alfa for cortisone and hydrocortisone was observed in case of using CN as stationary phase and water-acetonitryle (40:60 v/v) as mobile phase.
Collapse
|
47
|
López-Jiménez F, Rosales-Marcano M, Rubio S. Restricted access property supramolecular solvents for combined microextraction of endocrine disruptors in sediment and sample cleanup prior to their quantification by liquid chromatography–tandem mass spectrometry. J Chromatogr A 2013; 1303:1-8. [DOI: 10.1016/j.chroma.2013.06.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 11/28/2022]
|
48
|
Capriotti AL, Cavaliere C, Colapicchioni V, Piovesana S, Samperi R, Laganà A. Analytical strategies based on chromatography-mass spectrometry for the determination of estrogen-mimicking compounds in food. J Chromatogr A 2013; 1313:62-77. [PMID: 23866124 DOI: 10.1016/j.chroma.2013.06.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/17/2023]
Abstract
Food safety can be compromised by the presence of a wide variety of substances, deriving from both natural and anthropogenic sources. Among these substances, compounds exhibiting various degrees of estrogenic activity have been widely studied in environmental samples, whereas less attention has been devoted to food matrices. The aim of the present review is to give a general overview on the recent analytical methods based on gas or liquid chromatography coupled to mass spectrometry for the determination of estrogen-like compounds in foods, including new developments, improvements and upcoming trends in the field. Attention will be focused on four representative groups of compounds, i.e. natural and synthetic estrogens, mycoestrogens, phytoestrogens, and alkylphenols.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Sadowski R, Gadzała-Kopciuch R. Isolation and determination of estrogens in water samples by solid-phase extraction using molecularly imprinted polymers and HPLC. J Sep Sci 2013; 36:2299-305. [DOI: 10.1002/jssc.201300366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Radosław Sadowski
- Department of Environmental Chemistry and Bioanalytics; Faculty of Chemistry, Nicolaus Copernicus University; Toruń Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics; Faculty of Chemistry, Nicolaus Copernicus University; Toruń Poland
| |
Collapse
|
50
|
Uraipong C, Wong V, Lee NA. A testosterone specific competitive enzyme immunoassay for monitoring water quality. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 90:585-590. [PMID: 23400864 DOI: 10.1007/s00128-013-0965-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/30/2013] [Indexed: 06/01/2023]
Abstract
Testosterone, an androgen and a primary male sex hormone, migrates through the environment in ways which could pose a threat to water quality and, subsequently, environmental and human health. This paper describes the development of a direct competitive enzyme-linked immunosorbent assay (ELISA) that is capable of measuring testosterone with high specificity. The testosterone ELISA displayed the IC20 (as the limit of detection) and IC50 values of 0.05 ± 0.01 μg L(-1) and 0.33 ± 0.18 μg L(-1), respectively. In addition, the assay showed <0.1 % cross-reactivity against structurally related steroidal compounds. However, this assay was found to be sensitive to environmental matrices such as certain metal ions, pH, and high humic acids, and sample clean-up to remove such interference was necessary before analysis. The analyses of 50 surface water samples collected in rural and urban areas in New South Wales, Australia showed that ELISA results correlated well with the androgenic activity measured by the recombinant yeast-based androgen screen assay.
Collapse
Affiliation(s)
- Chatchaporn Uraipong
- School of Chemical Engineering, Food Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|