1
|
Dahiya M, Yadav M, Goyal C, Kumar A. Insulin resistance in Alzheimer's disease: signalling mechanisms and therapeutics strategies. Inflammopharmacology 2025; 33:1817-1831. [PMID: 40064805 DOI: 10.1007/s10787-025-01704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/14/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Alzheimer's disease (AD), one of the most common neurodegenerative disorders, is characterised by hallmark abnormalities such as amyloid-β plaques and neurofibrillary tangles (NFTs). Emerging evidence suggests that faulty insulin signalling contributes to these pathological features, impairing critical cellular and metabolic processes. OBJECTIVE This review aims to elucidate the role of insulin signalling in the central nervous system (CNS) under normal and pathological conditions and to explore therapeutic approaches targeting insulin pathways in AD and other neurodegenerative diseases. METHODS We reviewed studies highlighting the involvement of insulin-signalling pathways in neuronal health, with a particular focus on the key components-IRS, PI3K, Akt, and GSK-3β-predominantly expressed in cortical and hippocampal regions. RESULTS Insulin, an essential growth factor, regulates numerous cellular functions, including glucose metabolism, mitochondrial activity, oxidative stress response, autophagy, synaptic plasticity, and cognitive processes. Altered phosphorylation of signalling molecules in insulin pathways contributes to oxidative stress, inflammation, and the formation of AD hallmarks. Indirect modulators such as NF-κB and caspases further exacerbate neuronal damage, linking impaired insulin signalling to neurodegeneration. CONCLUSION Insulin signalling plays a crucial role in maintaining neuronal health and mitigating neurodegenerative processes. Targeting insulin pathways and associated molecules offers promising therapeutic avenues for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Mini Dahiya
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Monu Yadav
- Amity Institute of Pharmacy, Amity University, Haryana, Amity Education Valley Gurugram, Manesar, Panchgaon, Haryana, India
| | - Chetan Goyal
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Ghannam IAY, Hassan RM, Abdel-Maksoud MS. Peroxisome proliferator-activated receptors (PPARs) agonists as promising neurotherapeutics. Bioorg Chem 2025; 156:108226. [PMID: 39908735 DOI: 10.1016/j.bioorg.2025.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Neurodegenerative disorders are characterized by a continuous neurons loss resulting in a wide range of pathogenesis affecting the motor impairment. Several strategies are outlined for therapeutics of synthetic and natural PPARs agonists in some neurological disorders; Parkinson's disease (PD), Alzheimer's disease (AD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The aim of this review is to provide a recent update of the previously reported studies, and reviews dealing with the medicinal chemistry of PPARs and their agonists, and to highlight the outstanding advances in the development of both synthetic compounds including; PPARα agonists (fibrates), PPARγ agonists (thiazolidindiones), and PPARβ/δ agonists either as sole or dual acting PPAR full or pan agonists, in addition to the natural phytochemicals; acids, cannabinoids, and flavonoids for their different neuroprotection effects in the previously mentioned neurodegenerative disorders (PD, AD, MS, ALS, and HD). Moreover, this review reports the diverse pre-clinical and clinical studies of PPARs agonists in the neurodegenerative diseases via cellular, and animal models and human.
Collapse
Affiliation(s)
- Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
3
|
Catto F, Dadgar-Kiani E, Kirschenbaum D, Economides A, Reuss AM, Trevisan C, Caredio D, Mirzet D, Frick L, Weber-Stadlbauer U, Litvinov S, Koumoutsakos P, Hyung Lee J, Aguzzi A. Quantitative 3D histochemistry reveals region-specific amyloid-β reduction by the antidiabetic drug netoglitazone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608042. [PMID: 39185170 PMCID: PMC11343181 DOI: 10.1101/2024.08.15.608042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A hallmark of Alzheimer's disease (AD) is the extracellular aggregation of toxic amyloid-beta (Aβ) peptides in form of plaques. Here, we identify netoglitazone, an antidiabetic compound previously tested in humans, as an Aβ aggregation antagonist. Netoglitazone improved cognition and reduced microglia activity in a mouse model of AD. Using quantitative whole-brain three-dimensional histology (Q3D), we precisely identified brain regions where netoglitazone reduced the number and size of Aβ plaques. We demonstrate the utility of Q3D in preclinical drug evaluation for AD by providing a high-resolution brain-wide view of drug efficacy. Applying Q3D has the potential to improve pre-clinical drug evaluation by providing information that can help identify mechanisms leading to brain region-specific drug efficacy.
Collapse
Affiliation(s)
- Francesca Catto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
- IMAI MedTech, Wagistrasse 18, 8952 Schlieren, Zurich, Switzerland
| | - Ehsan Dadgar-Kiani
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 260, 8057 Zürich
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Athena Economides
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Anna Maria Reuss
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Davide Caredio
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Delic Mirzet
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Lukas Frick
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 260, 8057 Zürich
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Sergey Litvinov
- Computational Science and Engineering Laboratory, ETH Zürich, Clausiusstrasse 33, 8092, Zurich, Switzerland
- Computational Science and Engineering Laboratory, Harvard University, Cambridge, MA 02138, United States
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, Harvard University, Cambridge, MA 02138, United States
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| |
Collapse
|
4
|
Hai Y, Ren K, Hou WQ, Cao HS, Zhang YR, Li ZM, Wang SQ, Yang W, Liu DL. Hypoglycemic TCM formulas (Huangqi-Gegen drug pair) have the potential as an Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155723. [PMID: 38815405 DOI: 10.1016/j.phymed.2024.155723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/28/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurological disorder. There is a considerable unmet medical need among those suffering from it. HYPOTHESIS AND PURPOSE Given the link between type-2 diabetes mellitus (T2DM) and AD, hypoglycemic traditional Chinese medicine formulas (TCMFs) may be a treatment for AD. We investigated the possibility of identifying anti-AD medicines in hypoglycemic TCMFs and presented another option for the screening of AD medications. STUDY DESIGN AND METHODS Paralysis of the transgenic Caenorhabditis elegans (C. elegans) strain CL4176 (caused by amyloid beta (Aβ)1-42 aggregates) was used to evaluate the anti-AD effect. The toxicity and neurodegeneration induced by neuronal expression of Aβ in the transgenic C. elegans strain CL2355 were determined using a 5-hydroxytryptamine (5-HT) assay. The transgenic Aβ-expressing strain CL 2006 and transgenic tau-expressing strain BR5270 were used to explore the effect of TCMFs on protein expression in C. elegans using ELISAs. Then, network pharmacology was used to determine the mechanism of action. The Traditional Chinese Medicine Inheritance Support System platform was used to investigate prescription patterns, core drugs, and optimum combinations of hypoglycemic TCMFs for AD. RESULTS Sixteen hypoglycemic TCMFs prolonged the PT50 (half paralysis time) of the CL4176 strain of C. elegans, reduced the percentage of worms paralyzed. The results of network pharmacology showed that prostaglandin-endoperoxide synthase 2 (PTGS2) and acetylcholine esterase (AChE) are main targets of hypoglycemic TCMFs. Enriched pathway analysis showed that the cholinergic receptor-related pathway was the core pathway of hypoglycemic TCMFs. According to the "four qi and five flavors" system of TCM theory, the main pharmacological qualities were "cold" and "sweet." Through the analysis by TCMISS, we found that Huangqi-Gegen drug pair as the significant Chinese herbs of hypoglycemic TCMFs. The Huangqi-Gegen pairing had the most robust therapeutic effect when delivered at a 2:1 (v/v) ratio. It reduced the paralysis caused by 5-HT, decreased protein expression of AChE and PTGS2, and reduced Aβ deposition in the brain of the CL2006 strain of C. elegans. CONCLUSIONS Huangqi-Gegen is a promising treatment of AD, and its mechanism may be induced by suppressing the protein production of AChE and PTGS2, reducing 5-HT intake, and then decreasing Aβ deposition.
Collapse
Affiliation(s)
- Yang Hai
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China; Key Laboratory of Dunhuang Medicine, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China.
| | - Ke Ren
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Wen-Qian Hou
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Hao-Shi Cao
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Ya-Rong Zhang
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Zi-Mu Li
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Si-Qi Wang
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Wen Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China
| | - Dong-Ling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Gansu Province, Lanzhou 730000, PR China; Gansu Pharmaceutical Industry Innovation Research Institute, Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
5
|
Hai Y, Ren K, Zhang Y, Yang L, Cao H, Yuan X, Su L, Li H, Feng X, Liu D. HIF-1α serves as a co-linker between AD and T2DM. Biomed Pharmacother 2024; 171:116158. [PMID: 38242039 DOI: 10.1016/j.biopha.2024.116158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD)-related brain deterioration is linked to the type 2 diabetes mellitus (T2DM) features hyperglycemia, hyperinsulinemia, and insulin resistance. Hypoxia as a common risk factor for both AD and T2DM. Hypoxia-inducible factor-1 alpha (HIF-1α) acts as the main regulator of the hypoxia response and may be a key target in the comorbidity of AD and T2DM. HIF-1α expression is closely related to hyperglycemia, insulin resistance, and inflammation. Tissue oxygen consumption disrupts HIF-1α homeostasis, leading to increased reactive oxygen species levels and the inhibition of insulin receptor pathway activity, causing neuroinflammation, insulin resistance, abnormal Aβ deposition, and tau hyperphosphorylation. HIF-1α activation also leads to the deposition of Aβ by promoting the abnormal shearing of amyloid precursor protein and inhibiting the degradation of Aβ, and it promotes tau hyperphosphorylation by activating oxidative stress and the activation of astrocytes, which further exasperates AD. Therefore, we believe that HIF-α has great potential as a target for the treatment of AD. Importantly, the intracellular homeostasis of HIF-1α is a more crucial factor than its expression level.
Collapse
Affiliation(s)
- Yang Hai
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Key Laboratory of Dunhuang Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China.
| | - Ke Ren
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Yarong Zhang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Lili Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Haoshi Cao
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Xianxia Yuan
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Linling Su
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Hailong Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Xiaoli Feng
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Key Laboratory of Dunhuang Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Northwest Collaborative Innovation Center for Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, PR China; Gansu Pharmaceutical Industry Innovation Research Institute, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
6
|
Kunze LH, Ruch F, Biechele G, Eckenweber F, Wind-Mark K, Dinkel L, Feyen P, Bartenstein P, Ziegler S, Paeger L, Tahirovic S, Herms J, Brendel M. Long-Term Pioglitazone Treatment Has No Significant Impact on Microglial Activation and Tau Pathology in P301S Mice. Int J Mol Sci 2023; 24:10106. [PMID: 37373253 DOI: 10.3390/ijms241210106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroinflammation is one disease hallmark on the road to neurodegeneration in primary tauopathies. Thus, immunomodulation might be a suitable treatment strategy to delay or even prevent the occurrence of symptoms and thus relieve the burden for patients and caregivers. In recent years, the peroxisome proliferator-activated receptor γ (PPARγ) has received increasing attention as it is immediately involved in the regulation of the immune system and can be targeted by the anti-diabetic drug pioglitazone. Previous studies have shown significant immunomodulation in amyloid-β (Aβ) mouse models by pioglitazone. In this study, we performed long-term treatment over six months in P301S mice as a tauopathy model with either pioglitazone or placebo. We performed serial 18 kDa translocator protein positron-emission-tomography (TSPO-PET) imaging and terminal immunohistochemistry to assess microglial activation during treatment. Tau pathology was quantified via immunohistochemistry at the end of the study. Long-term pioglitazone treatment had no significant effect on TSPO-PET, immunohistochemistry read-outs of microglial activation, or tau pathology levels in P301S mice. Thus, we conclude that pioglitazone modifies the time course of Aβ-dependent microglial activation, but does not significantly modulate microglial activation in response to tau pathology.
Collapse
Affiliation(s)
- Lea Helena Kunze
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - François Ruch
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Gloria Biechele
- Department of Radiology, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Lina Dinkel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Paul Feyen
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Neuropathology and Prion Research, LMU Munich, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University of Munich, 81377 Munich, Germany
| |
Collapse
|
7
|
Díaz-García D, Ferrer-Donato Á, Méndez-Arriaga JM, Cabrera-Pinto M, Díaz-Sánchez M, Prashar S, Fernandez-Martos CM, Gómez-Ruiz S. Design of Mesoporous Silica Nanoparticles for the Treatment of Amyotrophic Lateral Sclerosis (ALS) with a Therapeutic Cocktail Based on Leptin and Pioglitazone. ACS Biomater Sci Eng 2022; 8:4838-4849. [PMID: 36240025 PMCID: PMC9667463 DOI: 10.1021/acsbiomaterials.2c00865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Amyotrophic lateral sclerosis (ALS) is a devasting neurodegenerative
disease with no cure to date. Therapeutic agents used to treat ALS
are very limited, although combined therapies may offer a more effective
treatment strategy. Herein, we have studied the potential of nanomedicine
to prepare a single platform based on mesoporous silica nanoparticles
(MSNs) for the treatment of an ALS animal model with a cocktail of
agents such as leptin (neuroprotective) and pioglitazone (anti-inflammatory),
which have already demonstrated promising therapeutic ability in other
neurodegenerative diseases. Our goal is to study the potential of
functionalized mesoporous materials as therapeutic agents against
ALS using MSNs as nanocarriers for the proposed drug cocktail leptin/pioglitazone
(MSN-LEP-PIO). The nanostructured materials have been
characterized by different techniques, which confirmed the incorporation
of both agents in the nanosystem. Subsequently, the effect, in vivo, of the proposed drug cocktail, MSN-LEP-PIO, was used in the murine model of TDP-43 proteinopathy (TDP-43A315T mice). Body weight loss was studied, and using the rotarod
test, motor performance was assessed, observing a continuous reduction
in body weight and motor coordination in TDP-43A315T mice
and wild-type (WT) mice. Nevertheless, the disease progression was
slower and showed significant improvements in motor performance, indicating
that TDP-43A315T mice treated with MSN-LEP-PIO seem to have less energy demand in the late stage of the symptoms
of ALS. Collectively, these results seem to indicate the efficiency
of the systems in vivo and the usefulness of their
use in neurodegenerative models, including ALS.
Collapse
Affiliation(s)
- Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Águeda Ferrer-Donato
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - José M Méndez-Arriaga
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marta Cabrera-Pinto
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Miguel Díaz-Sánchez
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Carmen M Fernandez-Martos
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain.,Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
8
|
Alhowail A, Alsikhan R, Alsaud M, Aldubayan M, Rabbani SI. Protective Effects of Pioglitazone on Cognitive Impairment and the Underlying Mechanisms: A Review of Literature. Drug Des Devel Ther 2022; 16:2919-2931. [PMID: 36068789 PMCID: PMC9441149 DOI: 10.2147/dddt.s367229] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Correspondence: Ahmad Alhowail, Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia, Tel +9665672025858, Email
| | - Rawan Alsikhan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Al Qassim, 51911, Kingdom of Saudi Arabia
| | - May Alsaud
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Michailidis M, Tata DA, Moraitou D, Kavvadas D, Karachrysafi S, Papamitsou T, Vareltzis P, Papaliagkas V. Antidiabetic Drugs in the Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:4641. [PMID: 35563031 PMCID: PMC9102472 DOI: 10.3390/ijms23094641] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The public health burden of type 2 diabetes mellitus and Alzheimer's disease is steadily increasing worldwide, especially in the population of older adults. Epidemiological and clinical studies suggest a possible shared pathophysiology between the two diseases and an increased risk of AD in patients with type 2 diabetes mellitus. Therefore, in recent years, there has been a substantial interest in identifying the mechanisms of action of antidiabetic drugs and their potential use in Alzheimer's disease. Human studies in patients with mild cognitive impairment and Alzheimer's disease have shown that administration of some antidiabetic medications, such as intranasal insulin, metformin, incretins, and thiazolidinediones, can improve cognition and memory. This review aims to examine the latest evidence on antidiabetic medications as a potential candidate for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Michalis Michailidis
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Despina A. Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.A.T.); (D.M.)
| | - Despina Moraitou
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.A.T.); (D.M.)
| | - Dimitrios Kavvadas
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (S.K.); (T.P.)
| | - Sofia Karachrysafi
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (S.K.); (T.P.)
| | - Theodora Papamitsou
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (S.K.); (T.P.)
| | - Patroklos Vareltzis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
10
|
Ferrer-Donato A, Contreras A, Fernandez P, Fernandez-Martos CM. The potential benefit of leptin therapy against amyotrophic lateral sclerosis (ALS). Brain Behav 2022; 12:e2465. [PMID: 34935299 PMCID: PMC8785645 DOI: 10.1002/brb3.2465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Targeting leptin could represent a rational strategy to treat amyotrophic lateral sclerosis (ALS), as previously clinical studies have shown its levels to be associated with a lower risk of ALS disease. However, very little is known about the potential influence of leptin in altering disease progression in ALS, as it has thus far been correlated with the protection exerted by increased fat mass stores. METHODS We studied the impact of leptin treatment beginning at 42-days of age (asymptomatic stage of disease) in the TDP-43 (TDP43A315T ) transgenic (Tg) ALS mouse model. RESULTS Our study shows that leptin treatment was associated with altered expression of adipokines and metabolic proteins in TDP43A315T mice. We also observed that weight loss decline was less prominent after leptin treatment in TDP43A315T mice relative to vehicle-treated animals. In TDP43A315T mice treated with leptin the disease duration lasted longer along with an improvement in motor performance relative to vehicle-treated animals. CONCLUSIONS Collectively, our results support leptin as a potential novel treatment approach for ALS.
Collapse
Affiliation(s)
- Agueda Ferrer-Donato
- Neurometabolism Research Lab., Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Ana Contreras
- Centro de Investigación en Salud (CEINSA), Universidad de Almería, Almería, Spain
| | - Paloma Fernandez
- Institute of Applied Molecular Medicine (IMMA), Faculty of Medicine, Universidad San Pablo CEU, Madrid, Spain
| | - Carmen M Fernandez-Martos
- Neurometabolism Research Lab., Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain.,Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
11
|
Abyadeh M, Gupta V, Gupta V, Chitranshi N, Wu Y, Amirkhani A, Meyfour A, Sheriff S, Shen T, Dhiman K, Ghasem HS, Paul AH, Stuart LG, Mirzaei M. Comparative Analysis of Aducanumab, Zagotenemab and Pioglitazone as Targeted Treatment Strategies for Alzheimer's Disease. Aging Dis 2021; 12:1964-1976. [PMID: 34881080 PMCID: PMC8612603 DOI: 10.14336/ad.2021.0719] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia that has remained a major medical, sociocultural and economical challenge globally. Previously developed treatments like anticholinesterase inhibitors (AChEIs) and N-methyl-D-aspartate receptor (NMDAR) antagonists only provide short-term symptomatic improvement and do not prevent progression. Repeated setbacks and failures over the past 25 years in AD clinical trials have hindered efforts to develop effective AD treatments. Fortunately, Aducanumab, a specific anti-amyloid β antibody, has shown promising clinical results and was recently approved by the Food and Drug Administration (FDA) through an accelerated approval pathway. This has raised hopes for AD patients; however post-approval trials are necessary to estimate the true scope of its clinical benefits. We have reviewed several AD clinical studies and summarized the experience to date with Aducanumab and two other potential AD drugs including Zagotenemab (an anti-tau antibody) and Pioglitazone (nuclear Peroxisome-Proliferator Activated Receptor γ (PPARγ) agonist). These have shown mixed results so far and the next few years will be critical to elucidate and interpret their broad long-term protective effects. A concerted effort is required to understand and strengthen the translation of pre-clinical findings from these drugs to routine clinical practice.
Collapse
Affiliation(s)
- Morteza Abyadeh
- 1Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vivek Gupta
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Veer Gupta
- 3School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Yunqi Wu
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Ardeshir Amirkhani
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Anna Meyfour
- 5Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samran Sheriff
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Ting Shen
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Kunal Dhiman
- 3School of Medicine, Deakin University, VIC, Australia
| | - H Salekdeh Ghasem
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - A Haynes Paul
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - L Graham Stuart
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Mehdi Mirzaei
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
12
|
El Sayed NS, Kandil EA, Ghoneum MH. Enhancement of Insulin/PI3K/Akt Signaling Pathway and Modulation of Gut Microbiome by Probiotics Fermentation Technology, a Kefir Grain Product, in Sporadic Alzheimer's Disease Model in Mice. Front Pharmacol 2021; 12:666502. [PMID: 34366841 PMCID: PMC8346028 DOI: 10.3389/fphar.2021.666502] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/02/2021] [Indexed: 02/04/2023] Open
Abstract
Sporadic Alzheimer's disease (AD) is the most common neurodegenerative disorder with cognitive dysfunction. Remarkably, alteration in the gut microbiome and resultant insulin resistance has been shown to be connected to metabolic syndrome, the crucial risk factor for AD, and also to be implicated in AD pathogenesis. Thus, this study, we assessed the efficiency of probiotics fermentation technology (PFT), a kefir product, in enhancing insulin signaling via modulation of gut microbiota to halt the development of AD. We also compared its effectiveness to that of pioglitazone, an insulin sensitizer that has been confirmed to substantially treat AD. AD was induced in mice by a single injection of intracerebroventricular streptozotocin (STZ; 3 mg/kg). PFT (100, 200, 400 mg/kg) and pioglitazone (30 mg/kg) were administered orally for 3 weeks. Behavioral tests were conducted to assess cognitive function, and hippocampal levels of acetylcholine (Ach) and β-amyloid (Aβ1-42) protein were assessed along with histological examination. Moreover, the expression of the insulin receptor, insulin degrading enzyme (IDE), and the phosphorylated forms of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), and tau were detected. Furthermore, oxidative stress and inflammatory biomarkers were estimated. Treatment with PFT reversed STZ-induced neurodegeneration and cognitive impairment, enhanced hippocampal Ach levels, and reduced Aβ1-42 levels after restoration of IDE activity. PFT also improved insulin signaling, as evidenced by upregulation of insulin receptor expression and activation of PI3K/Akt signaling with subsequent suppression of GSK-3β and mTOR signaling, which result in the downregulation of hyperphosphorylated tau. Moreover, PFT significantly diminished oxidative stress and inflammation induced by STZ. These potential effects were parallel to those produced by pioglitazone. Therefore, PFT targets multiple mechanisms incorporated in the pathogenesis of AD and hence might be a beneficial therapy for AD.
Collapse
Affiliation(s)
| | - Esraa A. Kandil
- Department of Pharmacology and Toxicology, Cairo University, Cairo, Egypt
| | - Mamdooh H. Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
13
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
14
|
Rampa A, Gobbi S, Belluti F, Bisi A. Tackling Alzheimer's Disease with Existing Drugs: A Promising Strategy for Bypassing Obstacles. Curr Med Chem 2021; 28:2305-2327. [PMID: 32867634 DOI: 10.2174/0929867327666200831140745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
The unmet need for the development of effective drugs to treat Alzheimer 's disease has been steadily growing, representing a major challenge in drug discovery. In this context, drug repurposing, namely the identification of novel therapeutic indications for approved or investigational compounds, can be seen as an attractive attempt to obtain new medications reducing both the time and the economic burden usually required for research and development programs. In the last years, several classes of drugs have evidenced promising beneficial effects in neurodegenerative diseases, and for some of them, preliminary clinical trials have been started. This review aims to illustrate some of the most recent examples of drugs reprofiled for Alzheimer's disease, considering not only the finding of new uses for existing drugs but also the new hypotheses on disease pathogenesis that could promote previously unconsidered therapeutic regimens. Moreover, some examples of structural modifications performed on existing drugs in order to obtain multifunctional compounds will also be described.
Collapse
Affiliation(s)
- Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
15
|
Stanciu GD, Rusu RN, Bild V, Filipiuc LE, Tamba BI, Ababei DC. Systemic Actions of SGLT2 Inhibition on Chronic mTOR Activation as a Shared Pathogenic Mechanism between Alzheimer's Disease and Diabetes. Biomedicines 2021; 9:biomedicines9050576. [PMID: 34069618 PMCID: PMC8160780 DOI: 10.3390/biomedicines9050576] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) affects tens of millions of people worldwide. Despite the advances in understanding the disease, there is an increased urgency for pharmacological approaches able of impacting its onset and progression. With a multifactorial nature, high incidence and prevalence in later years of life, there is growing evidence highlighting a relationship between metabolic dysfunction related to diabetes and subject's susceptibility to develop AD. The link seems so solid that sometimes AD and type 3 diabetes are used interchangeably. A candidate for a shared pathogenic mechanism linking these conditions is chronically-activated mechanistic target of rapamycin (mTOR). Chronic activation of unrestrained mTOR could be responsible for sustaining metabolic dysfunction that causes the breakdown of the blood-brain barrier, tau hyperphosphorylation and senile plaques formation in AD. It has been suggested that inhibition of sodium glucose cotransporter 2 (SGLT2) mediated by constant glucose loss, may restore mTOR cycle via nutrient-driven, preventing or even decreasing the AD progression. Currently, there is an unmet need for further research insight into molecular mechanisms that drive the onset and AD advancement as well as an increase in efforts to expand the testing of potential therapeutic strategies aimed to counteract disease progression in order to structure effective therapies.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
| | - Razvan Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (D.C.A.)
| | - Veronica Bild
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (D.C.A.)
| | - Leontina Elena Filipiuc
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan-Ionel Tamba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence:
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (D.C.A.)
| |
Collapse
|
16
|
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19:609-633. [PMID: 32709961 PMCID: PMC7948516 DOI: 10.1038/s41573-020-0072-x] [Citation(s) in RCA: 548] [Impact Index Per Article: 109.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Research Center on Aging, Sherbrooke, QC, Canada.
| | | | - Cecilie Morland
- Department of Pharmaceutical Biosciences, Institute of Pharmacy, University of Oslo, Oslo, Norway
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University of Dusseldorf, Dusseldorf, Germany
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M Flint Beal
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Linda H Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | - Jenni Harvey
- Ninewells Hospital, University of Dundee, Dundee, UK
- Medical School, University of Dundee, Dundee, UK
| | - Ross Jeggo
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - Jack H Jhamandas
- Department of Medicine, University of Albeta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Albeta, Edmonton, AB, Canada
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Clothide Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - William F Martin
- Institute of Molecular Evolution, University of Dusseldorf, Dusseldorf, Germany
| | | | - Paula I Moreira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Klaus-Armin Nave
- Department of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tal Nuriel
- Columbia University Medical Center, New York, NY, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Frédéric Saudou
- University of Grenoble Alpes, Grenoble, France
- INSERM U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France.
| |
Collapse
|
17
|
Papazafiropoulou AK, Koros C, Melidonis A, Antonopoulos S. Diabetes and dementia - the two faces of Janus. Arch Med Sci Atheroscler Dis 2020; 5:e186-e197. [PMID: 32832719 PMCID: PMC7433787 DOI: 10.5114/amsad.2020.97433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/18/2020] [Indexed: 01/03/2023] Open
Abstract
Patients with type 2 diabetes are at high risk for cognitive decline and dementia. Despite the limited data on the possible pathogenetic mechanisms, evidence suggests that cognitive decline, and thus dementia and Alzheimer's disease, might arise from a complex interplay between type 2 diabetes and the aging brain, including decreased insulin signalling and glucose metabolism, mitochondrial dysfunction, neuroinflammation, and vascular disease. Furthermore, there is increasing interest on the effects of antidiabetic agents on cognitive decline. There are many studies showing that antidiabetic agents might have beneficial effects on the brain, mainly through inhibition of oxidative stress, inflammation, and apoptosis. In addition, experimental studies on patients with diabetes and Alzheimer's disease have shown beneficial effects on synaptic plasticity, metabolism of amyloid-β, and microtubule-associated protein tau. Therefore, in the present review, we discuss the effects of antidiabetic agents in relation to cognitive decline, and in particular dementia and Alzheimer's disease, in patients with type 2 diabetes.
Collapse
Affiliation(s)
| | - Chris Koros
- 1 Department of Neurology, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Andreas Melidonis
- Diabetes and Cardiometabolic Centre, Metropolitan Hospital, Piraeus, Greece
| | - Stavros Antonopoulos
- 1 Department of Internal Medicine and Diabetes Centre, Tzaneio General Hospital, Piraeus, Greece
| |
Collapse
|
18
|
Stanciu GD, Bild V, Ababei DC, Rusu RN, Cobzaru A, Paduraru L, Bulea D. Link Between Diabetes and Alzheimer's Disease due to the Shared Amyloid Aggregation and Deposition Involving both Neurodegenerative Changes and Neurovascular Damages. J Clin Med 2020; 9:jcm9061713. [PMID: 32503113 PMCID: PMC7357086 DOI: 10.3390/jcm9061713] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes and Alzheimer’s disease are two highly prevalent diseases among the aging population and have become major public health concerns in the 21st century, with a significant risk to each other. Both of these diseases are increasingly recognized to be multifactorial conditions. The terms “diabetes type 3” or “brain diabetes” have been proposed in recent years to provide a complete view of the potential common pathogenic mechanisms between these diseases. While insulin resistance or deficiency remains the salient hallmarks of diabetes, cognitive decline and non-cognitive abnormalities such as impairments in visuospatial function, attention, cognitive flexibility, and psychomotor speed are also present. Furthermore, amyloid aggregation and deposition may also be drivers for diabetes pathology. Here, we offer a brief appraisal of social impact and economic burden of these chronic diseases and provide insight into amyloidogenesis through considering recent advances of amyloid-β aggregates on diabetes pathology and islet amyloid polypeptide on Alzheimer’s disease. Exploring the detailed knowledge of molecular interaction between these two amyloidogenic proteins opens new opportunities for therapies and biomarker development.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Veronica Bild
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
- Correspondence: (V.B.); (L.P.)
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| | - Razvan Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| | - Alina Cobzaru
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| | - Luminita Paduraru
- Department Mother & Child Care, Division Neonatology, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (V.B.); (L.P.)
| | - Delia Bulea
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (R.N.R.); (A.C.); (D.B.)
| |
Collapse
|
19
|
Meng L, Li XY, Shen L, Ji HF. Type 2 Diabetes Mellitus Drugs for Alzheimer's Disease: Current Evidence and Therapeutic Opportunities. Trends Mol Med 2020; 26:597-614. [PMID: 32470386 DOI: 10.1016/j.molmed.2020.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) represent two major health burdens with steadily increasing prevalence and accumulating evidence indicates a close relationship between the two disorders. In view of their similar pathogenesis, the potential of T2DM drugs for the treatment of AD has attracted considerable attention in recent years, with inspiring outcomes. Here, we provide a comprehensive overview of the effects of a total of 14 individual drugs (among which are seven T2DM drug types) against AD. Further, we discuss the potential action mechanisms of these T2DM drugs against AD. We argue that these findings may open novel avenues for AD drug discovery, drug target identification, and cotreatment of the two disorders.
Collapse
Affiliation(s)
- Lei Meng
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Xin-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Zhang J, Yang C, Wei D, Li H, Leung ELH, Deng Q, Liu Z, Fan XX, Zhang Z. Long-term efficacy of Chinese medicine Bushen Capsule on cognition and brain activity in patients with amnestic mild cognitive impairment. Pharmacol Res 2019; 146:104319. [DOI: 10.1016/j.phrs.2019.104319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/22/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
|
21
|
Jojo GM, Kuppusamy G, Selvaraj K, Baruah UK. Prospective of managing impaired brain insulin signalling in late onset Alzheimers disease with excisting diabetic drugs. J Diabetes Metab Disord 2019; 18:229-242. [PMID: 31275894 DOI: 10.1007/s40200-019-00405-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Late onset Alzheimer's disease (AD) is the most common cause of dementia among elderly. The exact cause of the disease is until now unknown and there is no complete cure for the disease. Growing evidence suggest that AD is a metabolic disorder associated with impairment in brain insulin signalling. These findings enriched the scope for the repurposing of diabetic drugs in AD management. Even though many of these drugs are moving in a positive direction in the ongoing clinical studies, the extent of the success has seen to influence by several properties of these drugs since they were originally designed to manage the peripheral insulin resistance. In depth understandings of these properties is hence highly significant to optimise the use of diabetic drugs in the clinical management of AD; which is the primary aim of the present review article.
Collapse
Affiliation(s)
- Gifty M Jojo
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Kousalya Selvaraj
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| |
Collapse
|
22
|
Ettcheto M, Cano A, Busquets O, Manzine PR, Sánchez-López E, Castro-Torres RD, Beas-Zarate C, Verdaguer E, García ML, Olloquequi J, Auladell C, Folch J, Camins A. A metabolic perspective of late onset Alzheimer's disease. Pharmacol Res 2019; 145:104255. [PMID: 31075308 DOI: 10.1016/j.phrs.2019.104255] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
After decades of research, the molecular neuropathology of Alzheimer's disease (AD) is still one of the hot topics in biomedical sciences. Some studies suggest that soluble amyloid β (Aβ) oligomers act as causative agents in the development of AD and could be initiators of its complex neurodegenerative cascade. On the other hand, there is also evidence pointing to Aβ oligomers as mere aggravators, with an arguable role in the origin of the disease. In this line of research, the relative contribution of soluble Aβ oligomers to neuronal damage associated with metabolic disorders such as Type 2 Diabetes Mellitus (T2DM) and obesity is being actively investigated. Some authors have proposed the endoplasmic reticulum (ER) stress and the induction of the unfolded protein response (UPR) as important mechanisms leading to an increase in Aβ production and the activation of neuroinflammatory processes. Following this line of thought, these mechanisms could also cause cognitive impairment. The present review summarizes the current understanding on the neuropathological role of Aβ associated with metabolic alterations induced by an obesogenic high fat diet (HFD) intake. It is believed that the combination of these two elements has a synergic effect, leading to the impairement of ER and mitochondrial functions, glial reactivity status alteration and inhibition of insulin receptor (IR) signalling. All these metabolic alterations would favour neuronal malfunction and, eventually, neuronal death by apoptosis, hence causing cognitive impairment and laying the foundations for late-onset AD (LOAD). Moreover, since drugs enhancing the activation of cerebral insulin pathway can constitute a suitable strategy for the prevention of AD, we also discuss the scope of therapeutic approaches such as intranasal administration of insulin in clinical trials with AD patients.
Collapse
Affiliation(s)
- Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Oriol Busquets
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Patricia Regina Manzine
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Rubén D Castro-Torres
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Mexico
| | - Carlos Beas-Zarate
- Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Mexico
| | - Ester Verdaguer
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - María Luisa García
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Carme Auladell
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Folch
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antoni Camins
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
23
|
Gandbhir O, Sundaram P. Pre-Clinical Safety and Efficacy Evaluation of Amytrap, a Novel Therapeutic to Treat Alzheimer's Disease. J Alzheimers Dis Rep 2019; 3:77-94. [PMID: 31259305 PMCID: PMC6597960 DOI: 10.3233/adr-190107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia. Amyloid-β (Aβ42) is implicated in AD pathogenesis. We have designed a non-immune based proprietary therapeutic, called Amytrap, a conjugate containing a retro-inverso peptide, polyethylene glycol, and human serum albumin. Amytrap not only binds Aβ42 but also prevents and dissociates aggregated Aβ42. Amytrap binds to the region in Aβ42 known to trigger its self-aggregation, thus disrupting aggregation. We have obtained proof of concept on AmyTrap in a clinically relevant mouse model, namely, AD-APPSWE/Tg2576. We synthesized and characterized Amytrap and confirmed its authenticity. Efficacy evaluations were performed on young (5 months) and old (9 months) model mice. Amytrap was injected biweekly for a period of five months. Pharmacokinetics and safety toxicology were assessed in normal mice and rats, respectively. Post treatment, younger mice showed significant improvements in cognition and Aβ42 levels in plasma, brain, and cerebrospinal fluid, while older mice showed less significant benefits. Immunohistochemistry of brain sections showed similar differences between young and old mice. They all had diminished size and number of plaques in the brain of Amytrap-treated mice. Further, treated mice did not develop antibodies to Amytrap, suggesting Amytrap is non-immunogenic. Safety toxicological studies in rats showed that Amytrap was well tolerated and therefore safe (even at 50 X the efficacy dose). Stability tests showed Amytrap is stable at 4°C for up to one year. Efficacy and safety features make Amytrap a promising candidate for treating or modulating AD.
Collapse
|
24
|
Jojo GM, Kuppusamy G, De A, Karri VVSNR. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer's disease using Box-Behnken design. Drug Dev Ind Pharm 2019; 45:1061-1072. [PMID: 30922126 DOI: 10.1080/03639045.2019.1593439] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence suggest that Alzheimer's disease (AD), the most common cause of dementia among the elderly is a metabolic disorder associated with impaired brain insulin signaling. Hence, the diabetic drug can be a therapeutic option for the management AD. The researches in this area are ongoing and Pioglitazone (PIO) is one of the most investigated diabetic drug in AD. Eventhough PIO treatment was found to improve AD significantly in the preclinical models, the poor blood-brain barrier (BBB) permeability and serious peripheral side effects limited its success in the clinical trials. The objective of the present study was to formulate and optimize intranasal (IN) nano lipid carriers (NLC) of PIO for its targeted delivery to the brain. A Box-Behnken design was employed to optimize the effect of three independent variables on two dependent variables. The optimized formulation had a particle size (PS) of 211.4 ± 3.54 nm and zeta potential of (ZP) of 14.9 ± 1.09 mv. The polydispersibility index (PDI) and entrapment efficiency (EE) was found to be 0.257 ± 0.108 and 70.18 ± 4.5% respectively. Storage stability studies performed has confirmed the stability of NLCs at 4 °C and 25 °C. The in-vitro drug release study has exhibited a sustained release of drug from the NLC. The formulation was observed to improve the nasal permeability of PIO ex-vivo significantly. Toxicity studies were performed to confirm the safety of formulation for the in-vivo administration. In-vivo biodistribution study in rats has shown a direct transport of drug from the nose to brain from the IN-NLC.
Collapse
Affiliation(s)
- Gifty M Jojo
- a Department of Pharmaceutics, JSS College of Pharmacy , Ootacamund, JSS Academy of Higher Education and Research , Mysuru , India
| | - Gowthamarajan Kuppusamy
- a Department of Pharmaceutics, JSS College of Pharmacy , Ootacamund, JSS Academy of Higher Education and Research , Mysuru , India
| | - Anindita De
- a Department of Pharmaceutics, JSS College of Pharmacy , Ootacamund, JSS Academy of Higher Education and Research , Mysuru , India
| | - V V S Narayan Reddy Karri
- a Department of Pharmaceutics, JSS College of Pharmacy , Ootacamund, JSS Academy of Higher Education and Research , Mysuru , India
| |
Collapse
|
25
|
Abstract
Given current lack of therapies for dementia, there is substantial interest in identifying potentially modifiable risk factors. Clarifying the potential of these factors to mitigate risk as well as determining the mechanisms that link these factors to dementia is expected to lead to new approaches for both preventing and treating neurodegenerative diseases such as Alzheimer disease. Modifiable factors include cardiovascular risks as well as related lifestyle-centric factors such as diet and physical activity (reviewed in this issue). Given reports that type 2 diabetes and associated features increase the risk for developing dementia, there has been tremendous interest in exploring whether use of antidiabetic medications may impact the risk of dementia, as well as whether antidiabetic medications could be used to prevent or treat dementia, particularly Alzheimer disease. This review will briefly cover the known links between diabetes and risk for dementia, the state of evidence linking antidiabetic treatments with either protection against dementia or possibly increased risk for cognitive dysfunction, and provide a brief overview of what has been learned from clinical trials testing antidiabetic treatments in Alzheimer disease.
Collapse
|
26
|
Jojo GM, Kuppusamy G. Scope of new formulation approaches in the repurposing of pioglitazone for the management of Alzheimer’s disease. J Clin Pharm Ther 2019; 44:337-348. [DOI: 10.1111/jcpt.12808] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Gifty M. Jojo
- Department of Pharmaceutics JSS College of Pharmacy Ootacamund India
- JSS Academy of Higher Education and Research Mysuru India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics JSS College of Pharmacy Ootacamund India
- JSS Academy of Higher Education and Research Mysuru India
| |
Collapse
|
27
|
Tumminia A, Vinciguerra F, Parisi M, Frittitta L. Type 2 Diabetes Mellitus and Alzheimer's Disease: Role of Insulin Signalling and Therapeutic Implications. Int J Mol Sci 2018; 19:ijms19113306. [PMID: 30355995 PMCID: PMC6275025 DOI: 10.3390/ijms19113306] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, numerous in vitro studies demonstrated that insulin receptors and theirs downstream pathways are widely distributed throughout the brain. This evidence has proven that; at variance with previous believes; insulin/insulin-like-growth-factor (IGF) signalling plays a crucial role in the regulation of different central nervous system (CNS) tasks. The most important of these functions include: synaptic formation; neuronal plasticity; learning; memory; neuronal stem cell activation; neurite growth and repair. Therefore; dysfunction at different levels of insulin signalling and metabolism can contribute to the development of a number of brain disorders. Growing evidences demonstrate a close relationship between Type 2 Diabetes Mellitus (T2DM) and neurodegenerative disorders such as Alzheimer’s disease. They, in fact, share many pathophysiological characteristics comprising impaired insulin sensitivity, amyloid β accumulation, tau hyper-phosphorylation, brain vasculopathy, inflammation and oxidative stress. In this article, we will review the clinical and experimental evidences linking insulin resistance, T2DM and neurodegeneration, with the objective to specifically focus on insulin signalling-related mechanisms. We will also evaluate the pharmacological strategies targeting T2DM as potential therapeutic tools in patients with cognitive impairment.
Collapse
Affiliation(s)
- Andrea Tumminia
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| | - Federica Vinciguerra
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| | - Miriam Parisi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| | - Lucia Frittitta
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| |
Collapse
|
28
|
Silva-Abreu M, Calpena AC, Andrés-Benito P, Aso E, Romero IA, Roig-Carles D, Gromnicova R, Espina M, Ferrer I, García ML, Male D. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer's disease: in vitro and in vivo studies. Int J Nanomedicine 2018; 13:5577-5590. [PMID: 30271148 PMCID: PMC6154713 DOI: 10.2147/ijn.s171490] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The first aim of this study was to develop a nanocarrier that could transport the peroxisome proliferator-activated receptor agonist, pioglitazone (PGZ) across brain endothelium and examine the mechanism of nanoparticle transcytosis. The second aim was to determine whether these nanocarriers could successfully treat a mouse model of Alzheimer's disease (AD). METHODS PGZ-loaded nanoparticles (PGZ-NPs) were synthesized by the solvent displacement technique, following a factorial design using poly (lactic-co-glycolic acid) polyethylene glycol (PLGA-PEG). The transport of the carriers was assessed in vitro, using a human brain endothelial cell line, cytotoxicity assays, fluorescence-tagged nanocarriers, fluorescence-activated cell sorting, confocal and transmission electron microscopy. The effectiveness of the treatment was assessed in APP/PS1 mice in a behavioral assay and by measuring the cortical deposition of β-amyloid. RESULTS Incorporation of PGZ into the carriers promoted a 50x greater uptake into brain endothelium compared with the free drug and the carriers showed a delayed release profile of PGZ in vitro. In the doses used, the nanocarriers were not toxic for the endothelial cells, nor did they alter the permeability of the blood-brain barrier model. Electron microscopy indicated that the nanocarriers were transported from the apical to the basal surface of the endothelium by vesicular transcytosis. An efficacy test carried out in APP/PS1 transgenic mice showed a reduction of memory deficit in mice chronically treated with PGZ-NPs. Deposition of β-amyloid in the cerebral cortex, measured by immunohistochemistry and image analysis, was correspondingly reduced. CONCLUSION PLGA-PEG nanocarriers cross brain endothelium by transcytosis and can be loaded with a pharmaceutical agent to effectively treat a mouse model of AD.
Collapse
Affiliation(s)
- Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Pol Andrés-Benito
- Servei d'Anatomia Patològica, Institut d'Investigació Biomèdica de Bellvitge-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Aso
- Servei d'Anatomia Patològica, Institut d'Investigació Biomèdica de Bellvitge-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio A Romero
- School of Life, Health and Chemical Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, UK,
| | - David Roig-Carles
- School of Life, Health and Chemical Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, UK,
| | - Radka Gromnicova
- School of Life, Health and Chemical Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, UK,
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Servei d'Anatomia Patològica, Institut d'Investigació Biomèdica de Bellvitge-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - David Male
- School of Life, Health and Chemical Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, UK,
| |
Collapse
|
29
|
King A, Brain A, Hanson K, Dittmann J, Vickers J, Fernandez-Martos C. Disruption of leptin signalling in a mouse model of Alzheimer's disease. Metab Brain Dis 2018; 33:1097-1110. [PMID: 29546689 DOI: 10.1007/s11011-018-0203-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Disruption of leptin signalling has been implicated as playing a role in the development of Alzheimer's disease (AD). Leptin has previously been shown to be affected by amyloid-beta (Aβ)-related signalling; however, pathways that link leptin to the disease pathogenesis have not been determined. To characterize the association between increasing age-dependent Aβ levels with leptin signalling and the vulnerable brain regions in AD, we assessed the mRNA and protein expression profile of leptin and leptin receptor (Ob-Rb) at 9 and 18-month-age in APP/PS1 mice. Immunohistochemical labelling demonstrated that leptin and Ob-Rb proteins were localised to neocortical and hippocampal neurons in APP/PS1 and wildtype (WT) mice. Neuronal leptin and Ob-Rb immunolabelling was more prominent in the neocortex of both groups at 9 month of age, while, at 18 months, labelling was reduced in the hippocampus of APP/PS1 mice relative to WT. Immunoblotting analysis demonstrated decreased hippocampal leptin levels, concomitantly with an increased Ob-Rb levels, in APP/PS1 mice compared with WT controls at 18 month of age. While no leptin mRNA was found in either of the groups analysed, Ob-Rb mRNA was significantly decreased in the hippocampus of APP/PS1 mice at both ages analysed. In addition, a significant decreased protein kinase B (Akt) activity concomitantly with an upregulation of suppressor of cytokine signaling-3 (SOCS3) and protein-tyrosine phosphatase 1B (PTP1B) transcripts was present. Thus, these results collectively indicate alterations of leptin signalling in the hippocampus of APP/PS1 mice, providing novel insights about the pathways that could link aberrant leptin signaling to the pathological changes of AD.
Collapse
Affiliation(s)
- Anna King
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Private Bag 143, Hobart, TAS, 7000, Australia
| | - Anna Brain
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Private Bag 143, Hobart, TAS, 7000, Australia
| | - Kelsey Hanson
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Private Bag 143, Hobart, TAS, 7000, Australia
| | - Justin Dittmann
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Private Bag 143, Hobart, TAS, 7000, Australia
| | - James Vickers
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Private Bag 143, Hobart, TAS, 7000, Australia
| | - Carmen Fernandez-Martos
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Private Bag 143, Hobart, TAS, 7000, Australia.
| |
Collapse
|
30
|
Mohamed HE, Asker ME, Younis NN, Shaheen MA, Eissa RG. Modulation of brain insulin signaling in Alzheimer’s disease: New insight on the protective role of green coffee bean extract. Nutr Neurosci 2018; 23:27-36. [DOI: 10.1080/1028415x.2018.1468535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hoda E. Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mervat E. Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nahla N. Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A. Shaheen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rana G. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
31
|
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S. Precision pharmacology for Alzheimer’s disease. Pharmacol Res 2018; 130:331-365. [DOI: 10.1016/j.phrs.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|
32
|
Abstract
Chronic kidney diseases (CKD), a common outcome of various kidney diseases, cause a series of refractory complications, which lead to great economic burdens on patients. The clinical outcomes of CKD depend on various factors, including metabolic disorders. Leptin, a peptide hormone, produced in adipose tissues, plays an important role in regulating food consumption and energy expenditure. Leptin also influences the immune system and hematopoiesis. Increased leptin status is observed in CKD, leptin deficiency attenuates the immune response in nephritis. Conversely, leptin inhibits the development of obesity, which is closely associated glomerular disorder. Now, the precise role of leptin in CKD remains elusive. This review will give an integrated understanding of the potential role of leptin and its interactions with other signal molecules in CKD.
Collapse
Affiliation(s)
- Song Mao
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Li Fang
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Fen Liu
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Siqiong Jiang
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Liangxia Wu
- a Department of Pediatrics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Jianhua Zhang
- b Department of Pediatrics, Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
33
|
Folch J, Ettcheto M, Busquets O, Sánchez-López E, Castro-Torres RD, Verdaguer E, Manzine PR, Poor SR, García ML, Olloquequi J, Beas-Zarate C, Auladell C, Camins A. The Implication of the Brain Insulin Receptor in Late Onset Alzheimer's Disease Dementia. Pharmaceuticals (Basel) 2018; 11:E11. [PMID: 29382127 PMCID: PMC5874707 DOI: 10.3390/ph11010011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is progressive neurodegenerative disorder characterized by brain accumulation of the amyloid β peptide (Aβ), which form senile plaques, neurofibrillary tangles (NFT) and, eventually, neurodegeneration and cognitive impairment. Interestingly, epidemiological studies have described a relationship between type 2 diabetes mellitus (T2DM) and this pathology, being one of the risk factors for the development of AD pathogenesis. Information as it is, it would point out that, impairment in insulin signalling and glucose metabolism, in central as well as peripheral systems, would be one of the reasons for the cognitive decline. Brain insulin resistance, also known as Type 3 diabetes, leads to the increase of Aβ production and TAU phosphorylation, mitochondrial dysfunction, oxidative stress, protein misfolding, and cognitive impairment, which are all hallmarks of AD. Moreover, given the complexity of interlocking mechanisms found in late onset AD (LOAD) pathogenesis, more data is being obtained. Recent evidence showed that Aβ42 generated in the brain would impact negatively on the hypothalamus, accelerating the "peripheral" symptomatology of AD. In this situation, Aβ42 production would induce hypothalamic dysfunction that would favour peripheral hyperglycaemia due to down regulation of the liver insulin receptor. The objective of this review is to discuss the existing evidence supporting the concept that brain insulin resistance and altered glucose metabolism play an important role in pathogenesis of LOAD. Furthermore, we discuss AD treatment approaches targeting insulin signalling using anti-diabetic drugs and mTOR inhibitors.
Collapse
Affiliation(s)
- Jaume Folch
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
| | - Miren Ettcheto
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Oriol Busquets
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona E-08028, Spain.
| | - Rubén D Castro-Torres
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 44600, Mexico.
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Patricia R Manzine
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil.
| | - Saghar Rabiei Poor
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
| | - María Luisa García
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona E-08028, Spain.
| | - Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile.
| | - Carlos Beas-Zarate
- Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 44600, Mexico.
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, E-08028 Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, E-08028 Barcelona, Spain.
| |
Collapse
|