1
|
Pratt EC, Mezzadra R, Kulick A, Kaminsky S, Samuels ZV, Loor A, de Stanchina E, Lowe SW, Lewis JS. uPAR Immuno-PET in Pancreatic Cancer, Aging, and Chemotherapy-Induced Senescence. J Nucl Med 2024; 65:1718-1723. [PMID: 39362768 PMCID: PMC11533913 DOI: 10.2967/jnumed.124.268278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Identifying cancer therapy resistance is a key time-saving tool for physicians. Part of chemotherapy resistance includes senescence, a persistent state without cell division or cell death. Chemically inducing senescence with the combination of trametinib and palbociclib (TP) yields several tumorigenic and prometastatic factors in pancreatic cancer models with many potential antibody-based targets. In particular, urokinase plasminogen activator receptor (uPAR) has been shown to be a membrane-bound marker of senescence in addition to an oncology target. Methods: Here, 2 antibodies against murine uPAR and human uPAR were developed as immuno-PET agents to noninvasively track uPAR antigen abundance. Results: TP treatment increased cell uptake both in murine KPC cells and in human MiaPaCa2 cells. In vivo, subcutaneously implanted murine KPC tumors had high tumor uptake with the antimurine uPAR antibody independently of TP in young mice, yet uPAR uptake was maintained in aged mice on TP. Mice xenografted with human MiaPaCa2 tumors showed a significant increase in tumor uptake on TP therapy when imaged with the antihuman uPAR antibody. Imaging with either uPAR antibody was found to be more tumor-selective than imaging with [18F]FDG or [18F]F-DPA-714. Conclusion: The use of radiolabeled uPAR-targeting antibodies provides a new antibody-based PET imaging candidate for pancreatic cancer imaging as well as chemotherapy-induced senescence.
Collapse
Affiliation(s)
- Edwin C Pratt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Riccardo Mezzadra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amanda Kulick
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Spencer Kaminsky
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary V Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angelique Loor
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- HHMI, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Pharmacology, Weill Cornell Graduate School, New York, New York
| |
Collapse
|
2
|
Yasuda T, Alan Wang Y. Immune therapeutic strategies for the senescent tumor microenvironment. Br J Cancer 2024:10.1038/s41416-024-02865-7. [PMID: 39468331 DOI: 10.1038/s41416-024-02865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Senescent cells can either to promote immunosuppressive tumor microenvironment or facilitate immune surveillance. Despite the revolutionary impact of cancer immunotherapy, durable responses in solid tumors, particularly in advanced stages, remain limited. Recent studies have shed light on the influence of senescent status within the tumor microenvironment (TME) on therapy resistance and major efforts are needed to overcome these challenges. This review summarizes recent advancements in targeting cellular senescence, with a particular focus on immunomodulatory approaches on the hallmarks of cellular senescence.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center Indianapolis, Indianapolis, USA
| |
Collapse
|
3
|
Li K, Guo C, Li R, Yao Y, Qiang M, Chen Y, Tu K, Xu Y. Pan-cancer characterization of cellular senescence reveals its inter-tumor heterogeneity associated with the tumor microenvironment and prognosis. Comput Biol Med 2024; 182:109196. [PMID: 39362000 DOI: 10.1016/j.compbiomed.2024.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Cellular senescence (CS) is characterized by the irreversible cell cycle arrest and plays a key role in aging and diseases, such as cancer. Recent years have witnessed the burgeoning exploration of the intricate relationship between CS and cancer, with CS recognized as either a suppressing or promoting factor and officially acknowledged as one of the 14 cancer hallmarks. However, a comprehensive characterization remains absent from elucidating the divergences of this relationship across different cancer types and its involvement in the multi-facets of tumor development. Here we systematically assessed the cellular senescence of over 10,000 tumor samples from 33 cancer types, starting by defining a set of cancer-associated CS signatures and deriving a quantitative metric representing the CS status, called CS score. We then investigated the CS heterogeneity and its intricate relationship with the prognosis, immune infiltration, and therapeutic responses across different cancers. As a result, cellular senescence demonstrated two distinct prognostic groups: the protective group with eleven cancers, such as LIHC, and the risky group with four cancers, including STAD. Subsequent in-depth investigations between these two groups unveiled the potential molecular and cellular mechanisms underlying the distinct effects of cellular senescence, involving the divergent activation of specific pathways and variances in immune cell infiltrations. These results were further supported by the disparate associations of CS status with the responses to immuno- and chemo-therapies observed between the two groups. Overall, our study offers a deeper understanding of inter-tumor heterogeneity of cellular senescence associated with the tumor microenvironment and cancer prognosis.
Collapse
Affiliation(s)
- Kang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yufei Yao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Min Qiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yungang Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
4
|
Charoensedtasin K, Kheansaard W, Roytrakul S, Tanyong D. Piperine, a black pepper compound, induces autophagy and cellular senescence mediated by NF-κB and IL-6 in acute leukemia. BMC Complement Med Ther 2024; 24:343. [PMID: 39342176 PMCID: PMC11438257 DOI: 10.1186/s12906-024-04641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Acute leukemia is characterized by abnormal white blood cell proliferation with rapid onset and severe complications. Natural compounds, which are alternative treatments, are widely used in cancer treatment. Piperine, an alkaloid compound from black pepper, exerts anticancer effects through the cell death signaling pathway. Autophagy and senescence signaling pathways are considered target signaling pathways for cancer treatment. In this study, we investigated the effects of piperine via autophagy and senescence signaling pathways in NB4 and MOLT-4 cells. The MTT assay results demonstrated that piperine significantly decreased the viability of NB4 and MOLT-4 cells. Piperine induced autophagy by increasing LC3, Beclin-1 and ULK1 and decreasing mTOR and NF-κB1 expression in NB4 and MOLT-4 cells. In addition, piperine increased senescence-associated beta-galactosidase fluorescence intensity by increasing p21 and IL-6 expression while decreasing CDK2 expression in NB4 and MOLT-4 cells. In conclusion, our study provides additional information about the induction of autophagy and senescence by piperine in acute leukemia.
Collapse
Affiliation(s)
- Kantorn Charoensedtasin
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon sai 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Wasinee Kheansaard
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon sai 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, 12120, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon sai 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
5
|
Morcos A, Jung Y, Galvan Bustillos J, Fuller RN, Caba Molina D, Bertucci A, Boyle KE, Vazquez ME, Wall NR. A Comprehensive Review of the Antitumor Properties and Mechanistic Insights of Duocarmycin Analogs. Cancers (Basel) 2024; 16:3293. [PMID: 39409913 PMCID: PMC11475672 DOI: 10.3390/cancers16193293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The duocarmycin family is a group of potent cytotoxic agents originally isolated from the bacterium Streptomyces. This discovery has spurred significant interest due to duocarmycins' unique chemical structures and powerful mechanism of action. This review comprehensively details the history of the duocarmycin family, the current understanding of their therapeutic potential, and the major clinical trials that have been conducted. Chemically, the duocarmycin family is characterized by a DNA-binding unit that confers specificity, a subunit-linking amide that positions the molecule within the DNA helix, and an alkylating unit that interacts with the DNA. This configuration allows them to bind selectively to the minor groove of DNA and alkylate adenine bases, a notable deviation from the more common guanine targeting performed by other alkylating agents. Duocarmycin's mechanism of action involves the formation of covalent adducts with DNA, leading to the disruption of the DNA architecture and subsequent inhibition of replication and transcription. Recent advancements in drug delivery systems, such as antibody-drug conjugates (ADCs), have further elevated the therapeutic prospects of duocarmycin analogs by providing a promising mechanism for enhancing intracellular concentrations and selective tumor delivery. Preclinical studies have highlighted the efficacy of duocarmycin derivatives in various in vitro models, providing a strong foundation for translational research. However, further biological research is required to fully understand the toxicology of duocarmycin family members before it can be clinically relevant. The major focus of this review is to cache the major biologically relevant findings of different duocarmycin analogs as well as their biological shortcomings to propose next steps in the field of cancer therapy with these potent therapeutics.
Collapse
Affiliation(s)
- Ann Morcos
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Yeonkyu Jung
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Joab Galvan Bustillos
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Division of Surgical Oncology, Department of Surgery, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Ryan N. Fuller
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - David Caba Molina
- Division of Surgical Oncology, Department of Surgery, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Antonella Bertucci
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Nuclear Response & Analysis, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | | | - Marcelo E. Vazquez
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Radiobiology & Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Nathan R. Wall
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
6
|
Tian L, Liu H, Zhou Y, Zhang C, Bi Z, Wu T. Periplaneta americana extract CII-3 triggers cell senescence through activating ROS-p38 MAPK-p53 signaling pathway in SKOV3 cells. Tissue Cell 2024; 91:102561. [PMID: 39303439 DOI: 10.1016/j.tice.2024.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/17/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
This study aimed to investigate effect of Periplaneta americana extract CII-3 (CII-3) in senescence of SKOV3 cells. Proliferation, colony forming and cell senescence of SKOV3 cells were determined. ROS production was evaluated by flow cytometry. Transcription of telomerase (TERT), p38 MAPK and p53 gene and protein expression of p-p38 MAPK and p-p53, were identified. CII-3 at different concentrations significantly inhibited SKOV3 proliferation, and 80 μg/ml demonstrated the highest inhibitory effect. CII-3 significantly blocked cell cycle in G0/G1 phase (P<0.01) and reduced colony forming efficiency (P<0.001) of SKOV3 cells compared to those in Control group. CII-3 significantly increased SA-β-Gal positive staining SKOV3 cells (P<0.001) and reduced mitochondrial membrane potential (P<0.01) compared to those in Control group. CII-3 markedly decreased TERT gene transcription of SKOV3 cells compared to that in Control group (P<0.001). CII-3 also triggered significantly higher ROS levels in SKOV3 cells compared to that in Control group (P<0.001). CII-3 significantly increased p-p38 MAPK (P<0.001), p-p53 (P<0.001) and p21 (P<0.001) expressions of SKOV3 cells compared to those in Control group. In conclusion, CII-3 triggered cell senescence of SKOV3 cells through activating ROS-p38 MAPK-p53 signaling pathway. This study would provide a promising strategy for inhibiting cancer cell proliferation by including cell senescence.
Collapse
Affiliation(s)
- Lu Tian
- Department of Histology and Embryology, Dali University, Dali, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, Yunnan, China
| | - Yue Zhou
- Department of Histology and Embryology, Dali University, Dali, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, Yunnan, China.
| | - Ziying Bi
- Department of Histology and Embryology, Dali University, Dali, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Ting Wu
- Department of Histology and Embryology, Dali University, Dali, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| |
Collapse
|
7
|
Berzaghi R, Gundersen K, Dille Pedersen B, Utne A, Yang N, Hellevik T, Martinez-Zubiaurre I. Immunological signatures from irradiated cancer-associated fibroblasts. Front Immunol 2024; 15:1433237. [PMID: 39308864 PMCID: PMC11412886 DOI: 10.3389/fimmu.2024.1433237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Cancer-associated fibroblasts (CAFs) are abundant and influential elements of the tumor microenvironment (TME), giving support to tumor development in multiple ways. Among other mechanisms, CAFs are important regulators of immunological processes occurring in tumors. However, CAF-mediated tumor immunomodulation in the context of radiotherapy remains poorly understood. In this study, we explore effects of radiation on CAF-derived immunoregulatory signals to the TME. Methods Primary CAF cultures were established from freshly collected human NSCLC lung tumors. CAFs were exposed to single-high or fractionated radiation regimens (1x18Gy or 3x6Gy), and the expression of different immunoregulatory cell-associated and secreted signaling molecules was analyzed 48h and 6 days after initiation of treatment. Analyses included quantitative measurements of released damage-associated molecular patterns (DAMPs), interferon (IFN) type I responses, expression of immune regulatory receptors, and secretion of soluble cytokines, chemokines, and growth factors. CAFs are able to survive ablative radiation regimens, however they enter into a stage of premature cell senescence. Results Our data show that CAFs avoid apoptosis and do not contribute by release of DAMPs or IFN-I secretion to radiation-mediated tumor immunoregulation. Furthermore, the secretion of relevant immunoregulatory cytokines and growth factors including TGF-β, IL-6, IL-10, TNFα, IL-1β, VEGF, CXCL12, and CXCL10 remain comparable between non-irradiated and radiation-induced senescent CAFs. Importantly, radiation exposure modifies the cell surface expression of some key immunoregulatory receptors, including upregulation of CD73 and CD276. Discussion Our data suggest that CAFs do not participate in the release of danger signals or IFN-I secretion following radiotherapy. The immune phenotype of CAFs and radiation-induced senescent CAFs is similar, however, the observed elevation of some cell surface immunological receptors on irradiated CAFs could contribute to the establishment of an enhanced immunosuppressive TME after radiotherapy.
Collapse
Affiliation(s)
- Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kristian Gundersen
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Brede Dille Pedersen
- Department of Radiation Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Amalie Utne
- Department of Radiation Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Nannan Yang
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Turid Hellevik
- Department of Radiation Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Chen Z, Ji W, Feng W, Cui J, Wang Y, Li F, Chen J, Guo Z, Xia L, Zhu X, Niu X, Zhang Y, Li Z, Wong AST, Lu S, Xia W. PTPRT loss enhances anti-PD-1 therapy efficacy by regulation of STING pathway in non-small cell lung cancer. Sci Transl Med 2024; 16:eadl3598. [PMID: 39231239 DOI: 10.1126/scitranslmed.adl3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
With the revolutionary progress of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer, identifying patients with cancer who would benefit from ICIs has become critical and urgent. Here, we report protein tyrosine phosphatase receptor type T (PTPRT) loss as a precise and convenient predictive marker independent of PD-L1 expression for anti-PD-1/PD-L1 axis therapy. Anti-PD-1/PD-L1 axis treatment markedly increased progression-free survival in patients with PTPRT-deficient tumors. PTPRT-deficient tumors displayed cumulative DNA damage, increased cytosolic DNA release, and higher tumor mutation burden. Moreover, the tyrosine residue 240 of STING was identified as a direct substrate of PTPRT. PTPRT loss elevated phosphorylation of STING at Y240 and thus inhibited its proteasome-mediated degradation. PTPRT-deficient tumors released more IFN-β, CCL5, and CXCL10 by activation of STING pathway and increased immune cell infiltration, especially of CD8 T cells and natural killer cells, ultimately enhancing the efficacy of anti-PD-1 therapy in multiple subcutaneous and orthotopic tumor mouse models. The response of PTPRT-deficient tumors to anti-PD-1 therapy depends on the tumor-intrinsic STING pathway. In summary, our findings reveal the mechanism of how PTPRT-deficient tumors become sensitive to anti-PD-1 therapy and highlight the biological function of PTPRT in innate immunity. Considering the prevalence of PTPRT mutations and negative expression, this study has great value for patient stratification and clinical decision-making.
Collapse
Affiliation(s)
- Zhuo Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenxin Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingchuan Cui
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuchen Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fan Li
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiachen Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziheng Guo
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaokuan Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaomin Niu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yanshuang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, 999077, Hong Kong
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Weiliang Xia
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
9
|
Lee MK, Woo SR, Noh JK, Min S, Kong M, Lee YC, Ko SG, Eun YG. Prognostic Significance of SASP-Related Gene Signature of Radiation Therapy in Head and Neck Squamous Cell Carcinoma. Mol Cancer Ther 2024; 23:1348-1359. [PMID: 38959066 DOI: 10.1158/1535-7163.mct-23-0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
In this study, we developed and validated the clinical significance of senescence-associated secretory phenotype (SASP)-related gene signature and explored its association with radiation therapy (RT) in patients with head and neck squamous cell carcinoma (HNSCC). First, we searched the three published review literature associated with SASP and selected all 81 genes to develop SASP-related gene signature. Then, 81 SASP-related genes were adapted to gene expression dataset from The Cancer Genome Atlas (TCGA). Patients with HNSCC of TCGA were classified into clusters 1 and 2 via unsupervised clustering according to SASP-related gene signature. Kaplan-Meier plot survival analysis showed that cluster 1 had a poorer prognosis than cluster 2 in 5-year overall survival and recurrence-free survival. Similarly, cluster 1 showed a worse prognosis than cluster 2 in three validation cohorts (E-MTAB-8588, FHCRC, and KHU). Cox proportional hazards regression observed that the SASP-related signature was an independent prognostic factor for patients with HNSCC. We also established a nomogram using a relevant clinical parameter and a risk score. Time-dependent receiver operating characteristic analysis was carried out to assess the accuracy of the prognostic risk model and nomogram. Senescence SASP-related gene signature was associated with the response to RT. Therefore, subsequent, in vitro experiments further validated the association between SASP-related gene signature and RT in HNSCC. In conclusion, we developed a SASP-related gene signature, which could predict survival of patients with HNSCC, and this gene signature provides new clinical evidence for the accurate diagnosis and targeted RT of HNSCC.
Collapse
Affiliation(s)
- Min Kyeong Lee
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seon Rang Woo
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Joo Kyung Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Soonki Min
- Department of Radiation Oncology, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Moonkyoo Kong
- Department of Radiation Oncology, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Young Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Young-Gyu Eun
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Korea
| |
Collapse
|
10
|
Ma L, Yu J, Fu Y, He X, Ge S, Jia R, Zhuang A, Yang Z, Fan X. The dual role of cellular senescence in human tumor progression and therapy. MedComm (Beijing) 2024; 5:e695. [PMID: 39161800 PMCID: PMC11331035 DOI: 10.1002/mco2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Cellular senescence, one of the hallmarks of cancer, is characterized by cell cycle arrest and the loss of most normal cellular functions while acquiring a hypersecretory, proinflammatory phenotype. The function of senescent cells in cancer cells varies depending on the cellular conditions. Before the occurrence of cancer, senescent cells act as a barrier to prevent its development. But once cancer has occurred, senescent cells play a procancer role. However, few of the current studies have adequately explained the diversity of cellular senescence across cancers. Herein, we concluded the latest intrinsic mechanisms of cellular senescence in detail and emphasized the senescence-associated secretory phenotype as a key contributor to heterogeneity of senescent cells in tumor. We also discussed five kinds of inducers of cellular senescence and the advancement of senolytics in cancer, which are drugs that tend to clear senescent cells. Finally, we summarized the various effects of senescent cells in different cancers and manifested that their functions may be diametrically opposed under different circumstances. In short, this paper contributes to the understanding of the diversity of cellular senescence in cancers and provides novel insight for tumor therapy.
Collapse
Affiliation(s)
- Liang Ma
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yidian Fu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaoyu He
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Zhi Yang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
11
|
Wang H, Cui W, Yue S, Zhu X, Li X, He L, Zhang M, Yang Y, Wei M, Wu H, Wang S. Malic enzymes in cancer: Regulatory mechanisms, functions, and therapeutic implications. Redox Biol 2024; 75:103273. [PMID: 39142180 PMCID: PMC11367648 DOI: 10.1016/j.redox.2024.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Malic enzymes (MEs) are metabolic enzymes that catalyze the oxidation of malate to pyruvate and NAD(P)H. While researchers have well established the physiological metabolic roles of MEs in organisms, recent research has revealed a link between MEs and carcinogenesis. This review collates evidence of the molecular mechanisms by which MEs promote cancer occurrence, including transcriptional regulation, post-transcriptional regulation, post-translational protein modifications, and protein-protein interactions. Additionally, we highlight the roles of MEs in reprogramming energy metabolism, suppressing senescence, and modulating the tumor immune microenvironment. We also discuss the involvement of these enzymes in mediating tumor resistance and how the development of novel small-molecule inhibitors targeting MEs might be a good therapeutic approach. Insights through this review are expected to provide a comprehensive understanding of the intricate relationship between MEs and cancer, while facilitating future research on the potential therapeutic applications of targeting MEs in cancer management.
Collapse
Affiliation(s)
- Huan Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| | - Wanlin Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Song Yue
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xianglong Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Lian He
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Mingrong Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, No.4, Chongshan Road, Huanggu District, Shenyang, Liaoning Province, PR China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang City, Liaoning Province, PR China.
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Shuo Wang
- Department of Gynecology Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| |
Collapse
|
12
|
Zhang F, Guo J, Yu S, Zheng Y, Duan M, Zhao L, Wang Y, Yang Z, Jiang X. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun (Lond) 2024; 44:929-966. [PMID: 38997794 PMCID: PMC11492308 DOI: 10.1002/cac2.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
- Department of Hepatobiliary and Pancreatic SurgeryPeking University First HospitalBeijingP. R. China
| | - Junchen Guo
- Department of RadiologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Shengmiao Yu
- Outpatient DepartmentThe Fourth Affiliated HospitalChina Medical UniversityShenyangLiaoningP. R. China
| | - Youwei Zheng
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Meiqi Duan
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Liang Zhao
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Yihan Wang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhi Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaofeng Jiang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
13
|
Ji P, Wang C, Liu Y, Guo X, Liang Y, Wei J, Liu Z, Gong L, Yang G, Ji G. Targeted Clearance of Senescent Cells Via Engineered Extracellular Vesicles Reprograms Tumor Immunosuppressive Microenvironment. Adv Healthc Mater 2024; 13:e2400945. [PMID: 38794820 DOI: 10.1002/adhm.202400945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Unravelling the mechanisms for the immunosuppressive tumor microenvironment and developing corresponding therapeutic strategies are of great importance to improve the cancer immunotherapy. This study has revealed that there are abundant senescent cells accumulated in the colon cancer tissue, which contributes greatly to the immunosuppressive microenvironment. Oral delivery of Dasatinib and Quercetin (D+Q) eliminates the senescent cells with compromised efficiency due to the poor tumor penetration and short half-life. To improve the efficacy of senescent cell clearance, this work has developed an extracellular vesicle (EV) based senolytic strategy. The engineered senolytic EVs have anti-GPNMB (a senescent cell surface marker) displayed on the surface and D+Q loaded on the membrane. In a syngeneic mouse model, senolytic EVs efficiently and selectively eradicate the senescent cells and in turn unleashes the antitumor immunity. With the antitumor immunity boosted, cancer growth is inhibited and the survival is prolonged. In summary, this work has illuminated that senescent cells contribute to the immunosuppressive microenvironment in colon cancer and proposes a novel strategy to conquer the problem by EV-based senolytics.
Collapse
Affiliation(s)
- Panpan Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yang Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xin Guo
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jiangpeng Wei
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaoyou Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Military Medical Innovation Center, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
14
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
17
|
He Y, Long K, Du B, Liao W, Zou R, Su J, Luo J, Shi Z, Wang L. The cellular senescence score (CSS) is a comprehensive biomarker to predict prognosis and assess senescence and immune characteristics in hepatocellular carcinoma (HCC). Biochem Biophys Res Commun 2024; 739:150576. [PMID: 39178796 DOI: 10.1016/j.bbrc.2024.150576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Affiliation(s)
- Yutao He
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Kui Long
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Bin Du
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Weiran Liao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Renchao Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Jifeng Su
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Jiong Luo
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Zhitian Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China.
| | - Lin Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China.
| |
Collapse
|
18
|
Gu Y, Xu T, Fang Y, Shao J, Hu T, Wu X, Shen H, Xu Y, Zhang J, Song Y, Xia Y, Shu Y, Ma P. CBX4 counteracts cellular senescence to desensitize gastric cancer cells to chemotherapy by inducing YAP1 SUMOylation. Drug Resist Updat 2024; 77:101136. [PMID: 39154499 DOI: 10.1016/j.drup.2024.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
AIMS As our comprehension of the intricate relationship between cellular senescence and tumor biology continues to evolve, the therapeutic potential of cellular senescence is gaining increasing recognition. Here, we identify chromobox 4 (CBX4), a Small Ubiquitin-related Modifier (SUMO) E3 ligase, as an antagonist of cellular senescence and elucidate a novel mechanism by which CBX4 promotes drug resistance and malignant progression of gastric cancer (GC). METHODS In vitro and in vivo models were conducted to investigate the manifestation and impact of CBX4 on cellular senescence and chemoresistance. High-throughput sequencing, chromatin immunoprecipitation, and co-immunoprecipitation techniques were utilized to identify the upstream regulators and downstream effectors associated with CBX4, revealing its intricate regulatory network. RESULTS CBX4 diminishes the sensitivity of GC cells to cellular senescence, facilitating chemoresistance and GC development by deactivating the senescence-related Hippo pathway. Mechanistically, low-dose cisplatin transcriptionally downregulates CBX4 through CEBPB. In addition, CBX4 preserves the stability and cytoplasm-nuclear transport of YAP1, the key player of Hippo pathway, by inducing SUMO1 modification at K97 and K280, which competitively inhibits YAP1-S127 phosphorylation. CONCLUSIONS Our study highlights the anti-senescence role of CBX4 and suggests that CBX4 inhibition in combination with low-dose cisplatin has the potential to overcome chemoresistance and effectively restrict GC progression.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingting Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuan Fang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Shao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tong Hu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xi Wu
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Haoyang Shen
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yangyue Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingxin Zhang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Clinic School of Nanjing Medical University, Zhenjiang 212002, China
| | - Yu Song
- Zhangjiagang Hospital affiliated to Soochow University, China.
| | - Yang Xia
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China.
| | - Pei Ma
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
19
|
Li Y, Cui Y, Wang Z, Wang L, Yu Y, Xiong Y. Development and validation of a hypoxia- and mitochondrial dysfunction- related prognostic model based on integrated single-cell and bulk RNA sequencing analyses in gastric cancer. Front Immunol 2024; 15:1419133. [PMID: 39165353 PMCID: PMC11333257 DOI: 10.3389/fimmu.2024.1419133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Gastric cancer (GC) remains a major global health threat ranking as the fifth most prevalent cancer. Hypoxia, a characteristic feature of solid tumors, significantly contributes to the malignant progression of GC. Mitochondria are the major target of hypoxic injury that promotes mitochondrial dysfunction during the development of cancers including GC. However, the gene signature and prognostic model based on hypoxia- and mitochondrial dysfunction-related genes (HMDRGs) in the prediction of GC prognosis have not yet been established. Methods The gene expression profile datasets of stomach cancer patients were retrieved from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Prognostic genes were selected using Least Absolute Shrinkage and Selection Operator Cox (LASSO-Cox) regression analysis to construct a prognostic model. Immune infiltration was evaluated through ESTIMATE, CIBERSORT, and ssGSEA analyses. Tumor immune dysfunction and exclusion (TIDE) and immunophenoscore (IPS) were utilized to explore implications for immunotherapy. Furthermore, in vitro experiments were conducted to validate the functional roles of HMDRGs in GC cell malignancy. Results In this study, five HMDRGs (ZFP36, SERPINE1, DUSP1, CAV1, and AKAP12) were identified for developing a prognostic model in GC. This model stratifies GC patients into high- and low-risk groups based on median risk scores. A nomogram predicting overall survival (OS) was constructed and showed consistent results with observed OS. Immune infiltration analysis indicated that individuals in the high-risk group tend to exhibit increased immune cell infiltration. Additionally, analysis of cancer immunotherapy responses revealed that high-risk group patients exhibit poorer responses to cancer immunotherapy compared to the low-risk group. Immunohistochemistry (IHC) staining indicated that the expression levels of HMDRGs were remarkably correlated with GC, of which, SERPINE1 displayed the most pronounced up-regulation, while ZFP36 exhibited the most notable down-regulation in GC patients. Furthermore, in vitro investigation validated that SERPINE1 and ZFP36 contribute to the malignant processes of GC cells correlated with mitochondrial dysfunction. Conclusions This study presents a novel and efficient approach to evaluate GC prognosis and immunotherapy efficacy, and also provides insights into understanding the pathogenesis of GC.
Collapse
Affiliation(s)
- Yirong Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yue Cui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Zhen Wang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Liwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yi Yu
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Yuyan Xiong
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
20
|
Inoue C, Miki Y, Saito-Koyama R, Okada Y, Sasano H, Suzuki T. Dipeptidyl peptidase 4-positive cancer-associated fibroblasts enhance lung adenocarcinoma growth. Pathol Res Pract 2024; 260:155418. [PMID: 38908333 DOI: 10.1016/j.prp.2024.155418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of fibroblasts with various features in the cancer stroma and have been reported to influence cancer progression through cell-cell interactions in various types of malignancies, including lung adenocarcinoma (LUAD). Dipeptidyl peptidase 4 (DPP4) is a transmembrane protein with serine protease activity and is involved in the progression of tumors, metabolic diseases, and autoimmune diseases. In the present study, we focused on the role of DPP4-positive CAFs in LUAD. Immunohistochemistry revealed that 38 of 89 LUAD patients showed DPP4 expression in the fibrous stroma, and patients harboring DPP4-positive CAFs were more often male, had a higher Brinkman index, and had a higher Ki-67 labeling index of tumor cells than those with DPP4-negative CAFs. DPP4-positivity was associated with the expression of other CAF markers, α-SMA, periostin, and podoplanin, as well as a cellular senescence marker, p16. In the in vitro study, conditioned media collected from pulmonary fibroblast (OUS-11, HPF, and HPF-C)-induced overexpression of DPP4 significantly promoted the proliferation of LUAD cells (A549 and PC-9) and increased the expression levels of MCP-1, IL-8, IL-6, and GCSF in the media compared to those in controls. In addition, OUS-11 overexpression in DPP4 overexpression increased periostin expression. In conclusion, DPP4-positive CAFs could promote lung adenocarcinoma cell growth by producing soluble factors, and DPP4 inhibition may inhibit cancer progression.
Collapse
Affiliation(s)
- Chihiro Inoue
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Japan.
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Ryoko Saito-Koyama
- Department of Pathology, National Hospital Organization, Sendai Medical Center, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
21
|
Qi W, Bai J, Wang R, Zeng X, Zhang L. SATB1, senescence and senescence-related diseases. J Cell Physiol 2024; 239:e31327. [PMID: 38801120 DOI: 10.1002/jcp.31327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Aging leads to an accumulation of cellular mutations and damage, increasing the risk of senescence, apoptosis, and malignant transformation. Cellular senescence, which is pivotal in aging, acts as both a guard against cellular transformation and as a check against cancer progression. It is marked by stable cell cycle arrest, widespread macromolecular changes, a pro-inflammatory profile, and altered gene expression. However, it remains to be determined whether these differing subsets of senescent cells result from unique intrinsic programs or are influenced by their environmental contexts. Multiple transcription regulators and chromatin modifiers contribute to these alterations. Special AT-rich sequence-binding protein 1 (SATB1) stands out as a crucial regulator in this process, orchestrating gene expression by structuring chromatin into loop domains and anchoring DNA elements. This review provides an overview of cellular senescence and delves into the role of SATB1 in senescence-related diseases. It highlights SATB1's potential in developing antiaging and anticancer strategies, potentially contributing to improved quality of life and addressing aging-related diseases.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Lihui Zhang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
22
|
Nishimura J, Morita Y, Tobe-Nishimoto A, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Takeshita A, Matsunaga K, Imai T, Uzawa N. CDDP-induced desmoplasia-like changes in oral cancer tissues are related to SASP-related factors induced by the senescence of cancer cells. Int Immunopharmacol 2024; 136:112377. [PMID: 38838554 DOI: 10.1016/j.intimp.2024.112377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The tumor microenvironment (TME) concept has been proposed and is currently being actively studied. The development of extracellular matrix (ECM) in the TME is known as desmoplasia and is observed in many solid tumors. It has also been strongly associated with poor prognosis and resistance to drug therapy. Recently, cellular senescence has gained attention as an effect of drug therapy on cancer cells. Cellular senescence is a phenomenon wherein proliferating cells become resistant to growth-promoting stimuli, secrete the SASP (senescence-associated phenotypic) factors, and stably arrest the cell cycle. These proteins are rich in pro-inflammatory factors, such as interleukin (IL)-6, IL-8, C-X-C motif chemokine ligand 1, C-C motif chemokine ligand (CCL)2, CCL5, and matrix metalloproteinase 3. This study aimed to investigate the desmoplasia-like changes in the TME before and after cancer drug therapy in oral squamous cell carcinomas, evaluate the effect of anticancer drugs on the TME, and the potential involvement of cancer cell senescence. Using a syngeneic oral cancer transplant mouse model, we confirmed that cis-diamminedichloroplatinum (II) (CDDP) administration caused desmoplasia-like changes in cancer tissues. Furthermore, CDDP treatment-induced senescence in tumor-bearing mouse tumor tissues and cultured cancer cells. These results suggest CDDP administration-induced desmoplasia-like structural changes in the TME are related to cellular senescence. Our findings suggest that the administration of anticancer drugs alters the TME of oral cancer cells. Additionally, oral cancer cells undergo senescence, which may influence the TME through the production of SASP factors.
Collapse
Affiliation(s)
- Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan.
| | - Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Akinori Takeshita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Wu L, Zheng H, Guo X, Li N, Qin L, Li X, Lou G. Integrative analyses of genes associated with oxidative stress and cellular senescence in triple-negative breast cancer. Heliyon 2024; 10:e34524. [PMID: 39130410 PMCID: PMC11315143 DOI: 10.1016/j.heliyon.2024.e34524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Background Oxidative stress and cellular senescence (OSCS) have great impacts on the occurrence and progression of triple-negative breast cancer (TNBC). This study was intended to construct a prognostic model based on oxidative stress and cellular senescence related difference expression genes (OSCSRDEGs) for TNBC. Methods The Cancer Genome Atlas (TCGA) databases and two Gene Expression Omnibus (GEO) databases were used to identify OSCSRDEGs. The relationship between OSCSRDEGs and immune infiltration was examined using single-sample gene-set enrichment analysis (ssGSEA), ESTIMATE, and the CIBERSORT algorithm. Least absolute shrinkage and selection operator (LASSO) regression analyses, Cox regression and Kaplan-Meier analysis were employed to construct a prognostic model. Receiver operating characteristic (ROC) curves, nomograms, and decision curve analysis (DCA) were used to evaluate the prognostic efficacy. Gene Set Enrichment Analysis (GSEA) Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to explore the potential functions and mechanism. Results A comprehensive analysis identified a total of 27 OSCSRDEGs, out of which 15 genes selected for development of a prognostic model. A high degree of statistical significance was observed for the riskscores derived from this model to accurately predict TNBC Overall survival. The decision curve analysis (DCA) and ROC curve analysis further confirmed the superior accuracy of the OSCSRDEGs prognostic model in predicting efficacy. Notably, the nomogram analysis highlighted that DMD exhibited the highest utility within the model. In comparison between high and low OSCScore groups, the infiltration abundance of immune cells was statistically different in the TCGA-TNBC dataset. Conclusion These studies have effectively identified four essential OSCSRDEGs (CFI, DMD, NDRG2, and NRP1) and meticulously developed an OSCS-associated prognostic model for individuals diagnosed with TNBC. These discoveries have the potential to significantly contribute to the comprehension of the involvement of OSCS in TNBC.
Collapse
Affiliation(s)
- Lihua Wu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Hongyan Zheng
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Nan Li
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Luyao Qin
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiaoqing Li
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
24
|
He S, Wang Z, Xia J, Jia H, Dai Q, Chen C, He F, Wang X, Zhou M. Dasabuvir alleviates 5-fluorouracil-induced intestinal injury through anti-senescence and anti-inflammatory. Sci Rep 2024; 14:15730. [PMID: 38977864 PMCID: PMC11231161 DOI: 10.1038/s41598-024-66771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
5-Fluorouracil (5-Fu) is a basic drug that is used to treat colorectal cancer. Patients who receive 5-Fu chemotherapy often experience side effects that affect the digestive system, such as intestinal injury and diarrhoea, which significantly affect patient compliance with anticancer treatment and quality of life. Therefore, identifying approaches to treat or prevent these side effects is urgent. Dasabuvir (DSV) is a hepatitis C virus inhibitor, but its impact on 5-Fu-induced intestinal injury remains unknown. Our study investigated the effects of DSV on 5-Fu-induced intestinal injury in HUVECs, HIECs and male BALB/c mice. We found that 5-Fu caused intestinal damage by inducing senescence, increasing inflammatory factor expression, and generating oxidative stress. Compared with 5-Fu treatment alone, DSV inhibited senescence by reducing senescence-β-galactosidase (SA-β-gal) activity, the senescence-associated secretory phenotype (SASP, including IL-1, IL-6, and TNF-α) and senescence marker expression levels (p16, p21, and p53). Moreover, the anti-senescence effect of DSV was achieved by inhibiting the mTOR signaling pathway. DSV increased antioxidant enzyme levels and alleviated intestinal tissue injury in mice. In addition, DSV suppressed the 5-Fu-induced increase the diarrhoea scores and ameliorated the weight loss, food intake and water intake of the mice. Overall, this study indicated that DSV could be used to treat chemotherapy-induced intestinal damage.
Collapse
Affiliation(s)
- Siyue He
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Zhiwei Wang
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Jing Xia
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Huijie Jia
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Qianlong Dai
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Cui Chen
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
- Qujing Medical College, Qujing, 655011, Yunnan, China
| | - Fei He
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China.
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China.
| |
Collapse
|
25
|
Zhang S, Zhu N, Shi YN, Zeng Q, Zhang CJ, Li HF, Qin L. Celastrol mediates CAV1 to attenuate pro-tumorigenic effects of senescent cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155614. [PMID: 38692078 DOI: 10.1016/j.phymed.2024.155614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Cellular senescence is an emerging hallmark of cancers, primarily fuels cancer progression by expressing senescence-associated secretory phenotype (SASP). Caveolin-1 (CAV1) is a key mediator of cell senescence. Previous studies from our group have evidenced that the expression of CAV1 is downregulated by Celastrol (CeT). PURPOSE To investigate the impact of CeT on cellular senescence and its subsequent influence on post-senescence-driven invasion, migration, and stemness of clear cell renal cell carcinoma (ccRCC). STUDY DESIGN AND METHODS The expression levels of CAV1, canonical senescence markers, and markers associated with epithelial-mesenchymal transition (EMT) and stemness in clinical samples were assessed through Pearson correlation analysis. Senescent cell models were induced using DOX, and their impact on migration, invasion, and stemness was evaluated. The effects of CeT treatment on senescent cells and their pro-tumorigenic effects were examined. Subsequently, the underlying mechanism of CeT were explored using lentivirus transfection and CRISPR/Cas9 technology to silence CAV1. RESULTS In human ccRCC clinical samples, the expression of the canonical senescence markers p53, p21, and p16 are associated with ccRCC progression. Senescent cells facilitated migration, invasion, and enhanced stemness in both ccRCC cells and ccRCC tumor-bearing mice. As expected, CeT treatment reduced senescence markers (p16, p53, p21, SA-β-gal) and SASP factors (IL6, IL8, CXCL12), alleviating cell cycle arrest. However, it did not restore the proliferation of senescent cells. Additionally, CeT suppressed senescence-driven migration, invasion, and stemness. Further investigations into the underlying mechanism demonstrated that CAV1 is a critical mediator of cell senescence and represents a potential target for CeT to attenuate cellular senescence. CONCLUSIONS This study presents a pioneering investigation into the intricate interplay between cellular senescence and ccRCC progression. We unveil a novel mechanism of CeT to mitigate cellular senescence by downregulating CAV1, thereby inhibiting the migration, invasion and stemness of ccRCC driven by senescent cells. These findings provide valuable insights into the underlying mechanisms of CeT and its potential as a targeted therapeutic approach for alleviating the aggressive phenotypes associated with senescent cells in ccRCC.
Collapse
Affiliation(s)
- Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan 410208, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, China
| | - Ya-Ning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan 410208, China; Science and Technology Innovation Center, Hunan University of Chinese Medicine, China
| | - Qing Zeng
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan 410208, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan 410208, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan 410208, China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, China.
| |
Collapse
|
26
|
Škarková A, Bizzarri M, Janoštiak R, Mašek J, Rosel D, Brábek J. Educate, not kill: treating cancer without triggering its defenses. Trends Mol Med 2024; 30:673-685. [PMID: 38658206 DOI: 10.1016/j.molmed.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Traditionally, anticancer therapies focus on restraining uncontrolled proliferation. However, these cytotoxic therapies expose cancer cells to direct killing, instigating the process of natural selection favoring survival of resistant cells that become the foundation for tumor progression and therapy failure. Recognizing this phenomenon has prompted the development of alternative therapeutic strategies. Here we propose strategies targeting cancer hallmarks beyond proliferation, aiming at re-educating cancer cells towards a less malignant phenotype. These strategies include controlling cell dormancy, transdifferentiation therapy, normalizing the cancer microenvironment, and using migrastatic therapy. Adaptive resistance to these educative strategies does not confer a direct proliferative advantage to resistant cells, as non-resistant cells are not subject to eradication, thereby delaying or preventing the development of therapy-resistant tumors.
Collapse
Affiliation(s)
- Aneta Škarková
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Mariano Bizzarri
- System Biology Group Laboratory, Sapienza University, Rome, Italy
| | - Radoslav Janoštiak
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Jan Mašek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
| |
Collapse
|
27
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
28
|
Zhang T, Wen R, Fan H, Yu Y, Jia H, Peng Z, Zhou L, Yu G, Zhang W. Impact and potential value of immunosenescence on solid gastrointestinal tumors. Front Immunol 2024; 15:1375730. [PMID: 39007138 PMCID: PMC11239362 DOI: 10.3389/fimmu.2024.1375730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Solid gastrointestinal tumors often respond poorly to immunotherapy for the complex tumor microenvironment (TME), which is exacerbated by immune system alterations. Immunosenescence is the process of increased diversification of immune genes due to aging and other factors, leading to a decrease in the recognition function of the immune system. This process involves immune organs, immune cells, and the senescence-associated secretory phenotype (SASP). The most fundamental change is DNA damage, resulting in TME remodeling. The main manifestations are worsening inflammation, increased immunosuppressive SASP production, decreased immune cell antitumor activity, and the accumulation of tumor-associated fibroblasts and myeloid-derived suppressor cells, making antitumor therapy less effective. Senotherapy strategies to remove senescent cells and block key senescence processes can have synergistic effects with other treatments. This review focuses on immunoenescence and its impact on the solid TME. We characterize the immunosenescent TME and discuss future directions for antitumor therapies targeting senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
29
|
Thanh HD, Lee S, Nguyen TT, Huu TN, Ahn EJ, Cho SH, Kim MS, Moon KS, Jung C. Temozolomide promotes matrix metalloproteinase 9 expression through p38 MAPK and JNK pathways in glioblastoma cells. Sci Rep 2024; 14:14341. [PMID: 38906916 PMCID: PMC11192740 DOI: 10.1038/s41598-024-65398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/19/2024] [Indexed: 06/23/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and deadly brain cancer. Temozolomide (TMZ) is the standard chemotherapeutic agent for GBM, but the majority of patients experience recurrence and invasion of tumor cells. We investigated whether TMZ treatment of GBM cells regulates matrix metalloproteinases (MMPs), which have the main function to promote tumor cell invasion. TMZ effectively killed GL261, U343, and U87MG cells at a concentration of 500 µM, and surviving cells upregulated MMP9 expression and its activity but not those of MMP2. TMZ also elevated levels of MMP9 mRNA and MMP9 promoter activity. Subcutaneous graft tumors survived from TMZ treatment also exhibited increased expression of MMP9 and enhanced gelatinolytic activity. TMZ-mediated MMP9 upregulation was specifically mediated through the phosphorylation of p38 and JNK. This then stimulates AP-1 activity through the upregulation of c-Fos and c-Jun. Inhibition of the p38, JNK, or both pathways counteracted the TMZ-induced upregulation of MMP9 and AP-1. This study proposes a potential adverse effect of TMZ treatment for GBM: upregulation of MMP9 expression potentially associated with increased invasion and poor prognosis. This study also provides valuable insights into the molecular mechanisms by which TMZ treatment leads to increased MMP9 expression in GBM cells.
Collapse
Affiliation(s)
- Hien Duong Thanh
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Sueun Lee
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-Si, 58245, Jeollanam-Do, Korea
| | - Thuy Thi Nguyen
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Thang Nguyen Huu
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Eun-Jung Ahn
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, 58128, Jeollanam-Do, Korea
| | - Sang-Hee Cho
- Department of Hemato-Oncology, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Min Soo Kim
- Department of Statistics, College of Natural Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, 58128, Jeollanam-Do, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea.
| |
Collapse
|
30
|
Li J, Cheng C, Zhang J. An analysis of AURKB's prognostic and immunological roles across various cancers. J Cell Mol Med 2024; 28:e18475. [PMID: 38898693 PMCID: PMC11187167 DOI: 10.1111/jcmm.18475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Aurora kinase B (AURKB), an essential regulator in the process of mitosis, has been revealed through various studies to have a significant role in cancer development and progression. However, the specific mechanisms remain poorly understood. This study, therefore, seeks to elucidate the multifaceted role of AURKB in diverse cancer types. This study utilized bioinformatics techniques to examine the transcript, protein, promoter methylation and mutation levels of AURKB. The study further analysed associations between AURKB and factors such as prognosis, pathological stage, biological function, immune infiltration, tumour mutational burden (TMB) and microsatellite instability (MSI). In addition, immunohistochemical staining data of 50 cases of renal clear cell carcinoma and its adjacent normal tissues were collected to verify the difference in protein expression of AURKB in the two tissues. The results show that AURKB is highly expressed in most cancers, and the protein level of AURKB and the methylation level of its promoter vary among cancer types. Survival analysis showed that AURKB was associated with overall survival in 12 cancer types and progression-free survival in 11 cancer types. Elevated levels of AURKB were detected in the advanced stages of 10 different cancers. AURKB has a potential impact on cancer progression through its effects on cell cycle regulation as well as inflammatory and immune-related pathways. We observed a strong association between AURKB and immune cell infiltration, immunomodulatory factors, TMB and MSI. Importantly, we confirmed that the AURKB protein is highly expressed in kidney renal clear cell carcinoma (KIRC). Our study reveals that AURKB may be a potential biomarker for pan-cancer and KIRC.
Collapse
Affiliation(s)
- Jun Li
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Cui Cheng
- Department of Gynaecological OncologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Jiajun Zhang
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| |
Collapse
|
31
|
Qiu Y, Zhang S, Man C, Gong D, Xu Y, Fan Y, Wang X, Zhang W. Advances on Senescence-associated secretory phenotype regulated by circular RNAs in tumors. Ageing Res Rev 2024; 97:102287. [PMID: 38570142 DOI: 10.1016/j.arr.2024.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The components that comprise the senescence-associated secretory phenotype (SASP) include growth factors, proteases, chemokines, cytokines, and bioactive lipids. It drives secondary aging and disrupts tissue homeostasis, ultimately leading to tissue repair and regeneration loss. It has a two-way regulatory effect on tumor cells, resisting cancer occurrence and promoting its progression. A category of single-stranded circular non-coding RNA molecules known as circular RNAs (circRNAs) carries out a series of cellular activities, including sequestering miRNAs and modulating gene editing and expression. Research has demonstrated that a large number of circRNAs exhibit aberrant expression in pathological settings, and play a part in the onset and progress of cancer via modulating SASP factors. However, the research related to SASP and circRNAs in tumors is still in its infancy at this stage. This review centers on the bidirectional modulation of SASP and the role of circRNAs in regulating SASP factors across different types of tumors. The aim is to present novel perspectives for the diagnosis and therapeutic management of malignancies.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Ying Xu
- Laboratory Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China.
| | - Xiaoyan Wang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China.
| | - Wenbo Zhang
- General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Reynolds LE, Maallin S, Haston S, Martinez-Barbera JP, Hodivala-Dilke KM, Pedrosa AR. Effects of senescence on the tumour microenvironment and response to therapy. FEBS J 2024; 291:2306-2319. [PMID: 37873605 DOI: 10.1111/febs.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Cellular senescence is a state of durable cell arrest that has been identified both in vitro and in vivo. It is associated with profound changes in gene expression and a specific secretory profile that includes pro-inflammatory cytokines, growth factors and matrix-remodelling enzymes, referred to as the senescence-associated secretory phenotype (SASP). In cancer, senescence can have anti- or pro-tumour effects. On one hand, it can inhibit tumour progression in a cell autonomous manner. On the other hand, senescence can also promote tumour initiation, progression, metastatic dissemination and resistance to therapy in a paracrine manner. Therefore, despite efforts to target senescence as a potential strategy to inhibit tumour growth, senescent cancer and microenvironmental cells can eventually lead to uncontrolled proliferation and aggressive tumour phenotypes. This can happen either through overcoming senescence growth arrest or through SASP-mediated effects in adjacent tumour cells. This review will discuss how senescence affects the tumour microenvironment, including extracellular matrix remodelling, the immune system and the vascular compartment, to promote tumourigenesis, metastasis and resistance to DNA-damaging therapies. It will also discuss current approaches used in the field to target senescence: senolytics, improving the immune clearance of senescent cells and targeting the SASP.
Collapse
Affiliation(s)
- Louise E Reynolds
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Seynab Maallin
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Ana-Rita Pedrosa
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| |
Collapse
|
33
|
Jha SK, De Rubis G, Devkota SR, Zhang Y, Adhikari R, Jha LA, Bhattacharya K, Mehndiratta S, Gupta G, Singh SK, Panth N, Dua K, Hansbro PM, Paudel KR. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions. Ageing Res Rev 2024; 97:102315. [PMID: 38679394 DOI: 10.1016/j.arr.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80-85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Shankar Raj Devkota
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia
| | - Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Akhileshwar Jha
- Naraina Vidya Peeth Group of Institutions, Faculty of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 0208020, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| |
Collapse
|
34
|
Herbein G. Cellular Transformation by Human Cytomegalovirus. Cancers (Basel) 2024; 16:1970. [PMID: 38893091 PMCID: PMC11171319 DOI: 10.3390/cancers16111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Epstein-Barr virus (EBV), Kaposi sarcoma human virus (KSHV), human papillomavirus (HPV), hepatitis B and C viruses (HBV, HCV), human T-lymphotropic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV) are the seven human oncoviruses reported so far. While traditionally viewed as a benign virus causing mild symptoms in healthy individuals, human cytomegalovirus (HCMV) has been recently implicated in the pathogenesis of various cancers, spanning a wide range of tissue types and malignancies. This perspective article defines the biological criteria that characterize the oncogenic role of HCMV and based on new findings underlines a critical role for HCMV in cellular transformation and modeling the tumor microenvironment as already reported for the other human oncoviruses.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté (UFC), 25000 Besançon, France;
- Department of Virology, CHU Besançon, 25000 Besançon, France
| |
Collapse
|
35
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Hajri L, Lewińska A, Rzeszutek I, Oklejewicz B, Wojnarowska-Nowak R, Krogul-Sobczak A, Szpyrka E, Aires A, Ghodbane S, Ammari M, Wnuk M. Anticancer Activity of Encapsulated Pearl Millet Polyphenol-Rich Extract against Proliferating and Non-Proliferating Breast Cancer Cells In Vitro. Cancers (Basel) 2024; 16:1750. [PMID: 38730703 PMCID: PMC11083001 DOI: 10.3390/cancers16091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Plant-derived polyphenols are bioactive compounds with potential health-promoting properties including antioxidant, anti-inflammatory, and anticancer activity. However, their beneficial effects and biomedical applications may be limited due to their low bioavailability. In the present study, we have considered a microencapsulation-based drug delivery system to investigate the anticancer effects of polyphenol-rich (apigenin, caffeic acid, and luteolin) fractions, extracted from a cereal crop pearl millet (Pennisetum glaucum), using three phenotypically different cellular models of breast cancer in vitro, namely triple negative HCC1806, ER-positive HCC1428, and HER2-positive AU565 cells. Encapsulated polyphenolic extract induced apoptotic cell death in breast cancer cells with different receptor status, whereas it was ineffective against non-tumorigenic MCF10F cells. Encapsulated polyphenolic extract was also found to be cytotoxic against drug-resistant doxorubicin-induced senescent breast cancer cells that were accompanied by increased levels of apoptotic and necrotic markers, cell cycle inhibitor p21 and proinflammatory cytokine IL8. Furthermore, diverse responses to the stimulation with encapsulated polyphenolic extract in senescent breast cancer cells were observed, as in the encapsulated polyphenolic extract-treated non-proliferating AU565 cells, the autophagic pathway, here cytotoxic autophagy, was also induced, as judged by elevated levels of beclin-1 and LC3b. We show for the first time the anti-breast cancer activity of encapsulated polyphenolic extract of pearl millet and postulate that microencapsulation may be a useful approach for potentiating the anticancer effects of phytochemicals with limited bioavailability.
Collapse
Affiliation(s)
- Latifa Hajri
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Bizerte 7021, Tunisia; (L.H.); (S.G.); (M.A.)
| | - Anna Lewińska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.L.); (I.R.); (B.O.); (E.S.)
| | - Iwona Rzeszutek
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.L.); (I.R.); (B.O.); (E.S.)
| | - Bernadetta Oklejewicz
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.L.); (I.R.); (B.O.); (E.S.)
| | - Renata Wojnarowska-Nowak
- Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland;
| | | | - Ewa Szpyrka
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.L.); (I.R.); (B.O.); (E.S.)
| | - Alfredo Aires
- CITAB—Centre for the Research and Technology of Agro Environment and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Soumaya Ghodbane
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Bizerte 7021, Tunisia; (L.H.); (S.G.); (M.A.)
| | - Mohamed Ammari
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Bizerte 7021, Tunisia; (L.H.); (S.G.); (M.A.)
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Maciej Wnuk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.L.); (I.R.); (B.O.); (E.S.)
| |
Collapse
|
37
|
Pichol-Thievend C, Anezo O, Pettiwala AM, Bourmeau G, Montagne R, Lyne AM, Guichet PO, Deshors P, Ballestín A, Blanchard B, Reveilles J, Ravi VM, Joseph K, Heiland DH, Julien B, Leboucher S, Besse L, Legoix P, Dingli F, Liva S, Loew D, Giani E, Ribecco V, Furumaya C, Marcos-Kovandzic L, Masliantsev K, Daubon T, Wang L, Diaz AA, Schnell O, Beck J, Servant N, Karayan-Tapon L, Cavalli FMG, Seano G. VC-resist glioblastoma cell state: vessel co-option as a key driver of chemoradiation resistance. Nat Commun 2024; 15:3602. [PMID: 38684700 PMCID: PMC11058782 DOI: 10.1038/s41467-024-47985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.
Collapse
Affiliation(s)
- Cathy Pichol-Thievend
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Oceane Anezo
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Aafrin M Pettiwala
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
- Institut Curie, PSL University, 75005, Paris, France
| | - Guillaume Bourmeau
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Remi Montagne
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Anne-Marie Lyne
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Pauline Deshors
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Alberto Ballestín
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Benjamin Blanchard
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Juliette Reveilles
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Boris Julien
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | | | - Laetitia Besse
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UMS2016, INSERM US43, Multimodal Imaging Center, 91400, Orsay, France
| | - Patricia Legoix
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France
| | - Florent Dingli
- Institut Curie, PSL University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Stephane Liva
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Damarys Loew
- Institut Curie, PSL University, CurieCoreTech Spectrométrie de Masse Protéomique, 75005, Paris, France
| | - Elisa Giani
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Valentino Ribecco
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Charita Furumaya
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Laura Marcos-Kovandzic
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Thomas Daubon
- Université Bordeaux, CNRS, IBGC, UMR5095, Bordeaux, France
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Hematologic Malignancies Research Institute and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nicolas Servant
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, F-86000, Poitiers, France
- CHU Poitiers, Laboratoire de Cancérologie Biologique, F-86000, Poitiers, France
| | - Florence M G Cavalli
- Institut Curie, PSL University, 75005, Paris, France
- INSERM U900, 75005, Paris, France
- MINES ParisTeach, CBIO-Centre for Computational Biology, PSL Research University, 75006, Paris, France
| | - Giorgio Seano
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment Lab, Paris-Saclay University, 91400, Orsay, France.
| |
Collapse
|
38
|
Lin S, Ma L, Mo J, Zhao R, Li J, Yu M, Jiang M, Peng L. Immune cell senescence and exhaustion promote the occurrence of liver metastasis in colorectal cancer by regulating epithelial-mesenchymal transition. Aging (Albany NY) 2024; 16:7704-7732. [PMID: 38683136 PMCID: PMC11132022 DOI: 10.18632/aging.205778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Liver metastasis (LM) stands as a primary cause of mortality in metastatic colorectal cancer (mCRC), posing a significant impediment to long-term survival benefits from targeted therapy and immunotherapy. However, there is currently a lack of comprehensive investigation into how senescent and exhausted immune cells contribute to LM. METHODS We gathered single-cell sequencing data from primary colorectal cancer (pCRC) and their corresponding matched LM tissues from 16 mCRC patients. In this study, we identified senescent and exhausted immune cells, performed enrichment analysis, cell communication, cell trajectory, and cell-based in vitro experiments to validate the results of single-cell multi-omics. This process allowed us to construct a regulatory network explaining the occurrence of LM. Finally, we utilized weighted gene co-expression network analysis (WGCNA) and 12 machine learning algorithms to create prognostic risk model. RESULTS We identified senescent-like myeloid cells (SMCs) and exhausted T cells (TEXs) as the primary senescent and exhausted immune cells. Our findings indicate that SMCs and TEXs can potentially activate transcription factors downstream via ANGPTL4-SDC1/SDC4, this activation plays a role in regulating the epithelial-mesenchymal transition (EMT) program and facilitates the development of LM, the results of cell-based in vitro experiments have provided confirmation of this conclusion. We also developed and validated a prognostic risk model composed of 12 machine learning algorithms. CONCLUSION This study elucidates the potential molecular mechanisms underlying the occurrence of LM from various angles through single-cell multi-omics analysis in CRC. It also constructs a network illustrating the role of senescent or exhausted immune cells in regulating EMT.
Collapse
Affiliation(s)
- Sen Lin
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanyue Ma
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Mo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Zhao
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinghao Li
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital, South China University of Technology, Foshan, China
| | - Mengjiao Yu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Jiang
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lisheng Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
39
|
Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00727-x. [PMID: 38654098 DOI: 10.1038/s41580-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands.
| |
Collapse
|
40
|
Chen S, Sun B, Dong Z. Unleashing a safe and potent pro-senescence anti-tumor strategy. Cancer Cell 2024; 42:504-507. [PMID: 38428411 DOI: 10.1016/j.ccell.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Inducing senescence in tumor cells can stimulate anti-tumor immune responses. In this issue of Cancer Cell, Colucci et al. demonstrate that the combination of the RAR agonist Adapalene with the chemotherapy drug Docetaxel enhances tumor-suppressing senescence and activates an anti-tumor immune response through natural killer cells.
Collapse
Affiliation(s)
- Shasha Chen
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei 230032, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Beicheng Sun
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei 230032, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei 230032, China
| | - Zhongjun Dong
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China; State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing 100084, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei 230032, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
41
|
Xu Y, Qi W, Zheng C, Li Y, Lu Z, Guan J, Lu C, Zhao B. Loss of the vitamin D receptor triggers senescence in chronic myeloid leukemia via DDIT4-mediated DNA damage. J Mol Cell Biol 2024; 15:mjad066. [PMID: 37880985 PMCID: PMC11190374 DOI: 10.1093/jmcb/mjad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic malignancy driven by the fusion gene BCR::ABL1. Drug resistance to tyrosine kinase inhibitors (TKIs), due to BCR::ABL1 mutations and residual leukemia stem cells (LSCs), remains a major challenge in CML treatment. Here, we revealed the requirement of the vitamin D receptor (VDR) in the progression of CML. VDR was upregulated by BCR::ABL1 and highly expressed in CML cells. Interestingly, VDR knockdown inhibited the proliferation of CML cells driven by both BCR::ABL1 and TKI-resistant BCR::ABL1 mutations. Mechanistically, VDR transcriptionally regulated DDIT4 expression; reduced DDIT4 levels upon VDR knockdown triggered DNA damage and senescence via p53 signaling activation in CML cells. Furthermore, VDR deficiency not only suppressed tumor burden and progression in primary CML mice but also reduced the self-renewal capacity of CML-LSCs. Together, our study demonstrated that targeting VDR is a promising strategy to overcome TKI resistance and eradicate LSCs in CML.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Cell Proliferation
- Cellular Senescence/genetics
- Cellular Senescence/drug effects
- DNA Damage
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Receptors, Calcitriol/metabolism
- Receptors, Calcitriol/genetics
- Signal Transduction
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Yan Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wentao Qi
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chengzu Zheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250012, China
| | - Jianmin Guan
- Department of Hematology, Heze Municipal Hospital, Heze 274031, China
| | - Chunhua Lu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
42
|
Zhang D, Zhang JW, Xu H, Chen X, Gao Y, Jiang HG, Wang Y, Wu H, Yang L, Wang WB, Dai J, Xia L, Peng J, Zhou FX. Therapy-induced senescent tumor cell-derived extracellular vesicles promote colorectal cancer progression through SERPINE1-mediated NF-κB p65 nuclear translocation. Mol Cancer 2024; 23:70. [PMID: 38576002 PMCID: PMC10993572 DOI: 10.1186/s12943-024-01985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Cellular senescence frequently occurs during anti-cancer treatment, and persistent senescent tumor cells (STCs) unfavorably promote tumor progression through paracrine secretion of the senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs) have recently emerged as a novel component of the SASP and primarily mediate the tumor-promoting effect of the SASP. Of note, the potential effect of EVs released from STCs on tumor progression remains largely unknown. METHODS We collected tumor tissues from two cohorts of colorectal cancer (CRC) patients to examine the expression of p16, p21, and SERPINE1 before and after anti-cancer treatment. Cohort 1 included 22 patients with locally advanced rectal cancer (LARC) who received neoadjuvant therapy before surgical resection. Cohort 2 included 30 patients with metastatic CRC (mCRC) who received first-line irinotecan-contained treatment. CCK-8, transwell, wound-healing assay, and tumor xenograft experiments were carried out to determine the impacts of EVs released from STCs on CRC progression in vitro and in vivo. Quantitative proteomic analysis was applied to identify protein cargo inside EVs secreted from STCs. Immunoprecipitation and mass spectrometer identification were utilized to explore the binding partners of SERPINE1. The interaction of SERPINE1 with p65 was verified by co-immunoprecipitation, and their co-localization was confirmed by immunofluorescence. RESULTS Chemotherapeutic agents and irradiation could potently induce senescence in CRC cells in vitro and in human CRC tissues. The more significant elevation of p16 and p21 expression in patients after anti-cancer treatment displayed shorter disease-free survival (DFS) for LARC or progression-free survival (PFS) for mCRC. We observed that compared to non-STCs, STCs released an increased number of EVs enriched in SERPINE1, which further promoted the progression of recipient cancer cells. Targeting SERPINE1 with a specific inhibitor, tiplaxtinin, markedly attenuated the tumor-promoting effect of STCs-derived EVs. Additionally, the patients with greater increment of SERPINE1 expression after anti-cancer treatment had shorter DFS for LARC or PFS for mCRC. Mechanistically, SERPINE1 bound to p65, promoting its nuclear translocation and subsequently activating the NF-κB signaling pathway. CONCLUSIONS We provide the in vivo evidence of the clinical prognostic implications of therapy-induced senescence. Our results revealed that STCs were responsible for CRC progression by producing large amounts of EVs enriched in SERPINE1. These findings further confirm the crucial role of therapy-induced senescence in tumor progression and offer a potential therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jian-Wei Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yu Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Huan-Gang Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - You Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Han Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lei Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wen-Bo Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jing Dai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ling Xia
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jin Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Fu-Xiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China.
| |
Collapse
|
43
|
Ostrowska K, Niewinski P, Piotrowski I, Ostapowicz J, Koczot S, Suchorska WM, Golusiński P, Masternak MM, Golusiński W. Senescence in head and neck squamous cell carcinoma: relationship between senescence-associated secretory phenotype (SASP) mRNA expression level and clinicopathological features. Clin Transl Oncol 2024; 26:1022-1032. [PMID: 38175424 PMCID: PMC10981631 DOI: 10.1007/s12094-023-03364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cellular senescence is a state characterized by cell-cycle arrest and apoptotic resistance. Senescence in cancer may be induced by oncogenes or therapy. While cellular senescence might play an important role in protection against cancer development, elevated and uncontrolled senescent cells accumulation may promote carcinogenesis by secreting a collection of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). MATERIAL AND METHODS We determined the gene expression at mRNA level of selected cellular senescence markers (p16 and LMNB1) and SASP factors (IL-6, IL-1b, CXCL-1 and TNF-α) in 72 cancerous tissues and 64 normal tissues obtained from patients with head and neck squamous cell carcinoma (HNSCC) and correlated this data with patients' clinical follow-up. RESULTS Our results indicate higher levels of selected SASP factors in cancerous compared to normal tissues. We presented the relationship between SASP factors expression at the transcript level and the progression of the disease. Moreover, we proposed CXCL1 as a candidate biomarker differentiating normal tissues from cancerous ones and IL1b expression as a molecular factor related to increased TNM stage. CONCLUSION Our primary study indicates that SASP expression may be associated with some clinicopathological features. However, a more detailed study is needed to present specific role of senescence-related mechanism and SASPs especially in tumor therapy response and in relation to the patient's immune system condition.
Collapse
Affiliation(s)
- Kamila Ostrowska
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-866, Poznan, Poland.
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866, Poznan, Poland.
| | - Patryk Niewinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-866, Poznan, Poland.
| | - Igor Piotrowski
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866, Poznan, Poland
| | - Julia Ostapowicz
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-866, Poznan, Poland
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866, Poznan, Poland
| | - Sabina Koczot
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-866, Poznan, Poland
| | - Wiktoria Maria Suchorska
- Radiobiology Laboratory, The Greater Poland Cancer Centre, 61-866, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866, Poznan, Poland
| | - Paweł Golusiński
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Góra, 65-417, Zielona Góra, Poland
| | - Michal Mateusz Masternak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-866, Poznan, Poland
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 61-866, Poznan, Poland
| |
Collapse
|
44
|
Ji J, Ding K, Cheng B, Zhang X, Luo T, Huang B, Yu H, Chen Y, Xu X, Lin H, Zhou J, Wang T, Jin M, Liu A, Yan D, Liu F, Wang C, Chen J, Yan F, Wang L, Zhang J, Yan S, Wang J, Li X, Chen G. Radiotherapy-Induced Astrocyte Senescence Promotes an Immunosuppressive Microenvironment in Glioblastoma to Facilitate Tumor Regrowth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304609. [PMID: 38342629 PMCID: PMC11022718 DOI: 10.1002/advs.202304609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Accumulating evidence suggests that changes in the tumor microenvironment caused by radiotherapy are closely related to the recurrence of glioma. However, the mechanisms by which such radiation-induced changes are involved in tumor regrowth have not yet been fully investigated. In the present study, how cranial irradiation-induced senescence in non-neoplastic brain cells contributes to glioma progression is explored. It is observed that senescent brain cells facilitated tumor regrowth by enhancing the peripheral recruitment of myeloid inflammatory cells in glioblastoma. Further, it is identified that astrocytes are one of the most susceptible senescent populations and that they promoted chemokine secretion in glioma cells via the senescence-associated secretory phenotype. By using senolytic agents after radiotherapy to eliminate these senescent cells substantially prolonged survival time in preclinical models. The findings suggest the tumor-promoting role of senescent astrocytes in the irradiated glioma microenvironment and emphasize the translational relevance of senolytic agents for enhancing the efficacy of radiotherapy in gliomas.
Collapse
Affiliation(s)
- Jianxiong Ji
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Department of Radiation OncologyMayo ClinicRochesterMN55905USA
| | - Kaikai Ding
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Department of Radiation Oncologythe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000P. R. China
| | - Bo Cheng
- Department of Radiation OncologyQilu Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Xin Zhang
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Tao Luo
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Bin Huang
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Hao Yu
- Department of Radiation Oncologythe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000P. R. China
| | - Yike Chen
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Xiaohui Xu
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Haopu Lin
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Jiayin Zhou
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Tingtin Wang
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Mengmeng Jin
- Department of Reproductive EndocrinologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiang310000P. R. China
| | - Aixia Liu
- Department of Reproductive EndocrinologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiang310000P. R. China
| | - Danfang Yan
- Department of Radiation Oncologythe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000P. R. China
| | - Fuyi Liu
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Chun Wang
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Jingsen Chen
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Feng Yan
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Lin Wang
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Jianmin Zhang
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Senxiang Yan
- Department of Radiation Oncologythe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000P. R. China
| | - Jian Wang
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Department of BiomedicineUniversity of BergenJonas Lies vei 91BergenNorway5009
| | - Xingang Li
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Gao Chen
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| |
Collapse
|
45
|
Ma W, Wei L, Jin L, Ma Q, Zhang T, Zhao Y, Hua J, Zhang Y, Wei W, Ding N, Wang J, He J. YAP/Aurora A-mediated ciliogenesis regulates ionizing radiation-induced senescence via Hedgehog pathway in tumor cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167062. [PMID: 38342416 DOI: 10.1016/j.bbadis.2024.167062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Primary cilia are antenna-like organelles that play critical roles in sensing and responding to various signals. Nevertheless, the function of primary cilia in cellular response to ionizing radiation (IR) in tumor cells remains unclear. Here, we show that primary cilia are frequently expressed in tumor cells and tissues. Notably, IR promotes cilia formation and elongation in time- and dose-dependent manners. Mechanistic study shows that the suppression of YAP/Aurora A pathway contributes to IR-induced ciliogenesis, which is diminished by Aurora A overexpression. The ciliated tumor cells undergo senescence but not apoptosis in response to IR and the abrogation of cilia formation is sufficient to elevate the lethal effect of IR. Furthermore, we show that IR-induced ciliogenesis leads to the activation of Hedgehog signaling pathway to drive senescence and resist apoptosis, and its blockage enhances cellular radiosensitivity by switching senescence to apoptosis. In summary, this work shows evidence of primary cilia in coordinating cellular response to IR in tumor cells, which may help to supply a novel sensitizing target to improve the outcome of radiotherapy.
Collapse
Affiliation(s)
- Wei Ma
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor & Gansu Provincial Clinical Research Center for Laboratory Medicine, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Liangliang Jin
- Department of Pathology, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730000, China
| | - Qinglong Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tongshan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfei Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Yanan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
46
|
Lewińska A, Radoń A, Gil K, Błoniarz D, Ciuraszkiewicz A, Kubacki J, Kądziołka-Gaweł M, Łukowiec D, Gębara P, Krogul-Sobczak A, Piotrowski P, Fijałkowska O, Wybraniec S, Szmatoła T, Kolano-Burian A, Wnuk M. Carbon-Coated Iron Oxide Nanoparticles Promote Reductive Stress-Mediated Cytotoxic Autophagy in Drug-Induced Senescent Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15457-15478. [PMID: 38483821 PMCID: PMC10982943 DOI: 10.1021/acsami.3c17418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
The surface modification of magnetite nanoparticles (Fe3O4 NPs) is a promising approach to obtaining biocompatible and multifunctional nanoplatforms with numerous applications in biomedicine, for example, to fight cancer. However, little is known about the effects of Fe3O4 NP-associated reductive stress against cancer cells, especially against chemotherapy-induced drug-resistant senescent cancer cells. In the present study, Fe3O4 NPs in situ coated by dextran (Fe3O4@Dex) and glucosamine-based amorphous carbon coating (Fe3O4@aC) with potent reductive activity were characterized and tested against drug-induced senescent breast cancer cells (Hs 578T, BT-20, MDA-MB-468, and MDA-MB-175-VII cells). Fe3O4@aC caused a decrease in reactive oxygen species (ROS) production and an increase in the levels of antioxidant proteins FOXO3a, SOD1, and GPX4 that was accompanied by elevated levels of cell cycle inhibitors (p21, p27, and p57), proinflammatory (NFκB, IL-6, and IL-8) and autophagic (BECN1, LC3B) markers, nucleolar stress, and subsequent apoptotic cell death in etoposide-stimulated senescent breast cancer cells. Fe3O4@aC also promoted reductive stress-mediated cytotoxicity in nonsenescent breast cancer cells. We postulate that Fe3O4 NPs, in addition to their well-established hyperthermia and oxidative stress-mediated anticancer effects, can also be considered, if modified using amorphous carbon coating with reductive activity, as stimulators of reductive stress and cytotoxic effects in both senescent and nonsenescent breast cancer cells with different gene mutation statuses.
Collapse
Affiliation(s)
- Anna Lewińska
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Adrian Radoń
- Łukasiewicz
Research Network—Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland
| | - Kacper Gil
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Dominika Błoniarz
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Agnieszka Ciuraszkiewicz
- Łukasiewicz
Research Network—Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland
| | - Jerzy Kubacki
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Mariola Kądziołka-Gaweł
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Dariusz Łukowiec
- Faculty
of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
| | - Piotr Gębara
- Department
of Physics, Częstochowa University
of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland
| | | | - Piotr Piotrowski
- Faculty
of
Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Oktawia Fijałkowska
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Sylwia Wybraniec
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Tomasz Szmatoła
- Center
of Experimental and Innovative Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Aleksandra Kolano-Burian
- Łukasiewicz
Research Network—Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland
| | - Maciej Wnuk
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
47
|
Zhang M, Wei J, Sun Y, He C, Ma S, Pan X, Zhu X. The efferocytosis process in aging: Supporting evidence, mechanisms, and therapeutic prospects for age-related diseases. J Adv Res 2024:S2090-1232(24)00109-7. [PMID: 38499245 DOI: 10.1016/j.jare.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Aging is characterized by an ongoing struggle between the buildup of damage caused by a combination of external and internal factors. Aging has different effects on phagocytes, including impaired efferocytosis. A deficiency in efferocytosis can cause chronic inflammation, aging, and several other clinical disorders. AIM OF REVIEW Our review underscores the possible feasibility and extensive scope of employing dual targets in various age-related diseases to reduce the occurrence and progression of age-related diseases, ultimately fostering healthy aging and increasing lifespan. Key scientific concepts of review Hence, the concurrent implementation of strategies aimed at augmenting efferocytic mechanisms and anti-aging treatments has the potential to serve as a potent intervention for extending the duration of a healthy lifespan. In this review, we comprehensively discuss the concept and physiological effects of efferocytosis. Subsequently, we investigated the association between efferocytosis and the hallmarks of aging. Finally, we discuss growing evidence regarding therapeutic interventions for age-related disorders, focusing on the physiological processes of aging and efferocytosis.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shiyin Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
48
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
49
|
Wang S, El Jurdi N, Thyagarajan B, Prizment A, Blaes AH. Accelerated Aging in Cancer Survivors: Cellular Senescence, Frailty, and Possible Opportunities for Interventions. Int J Mol Sci 2024; 25:3319. [PMID: 38542292 PMCID: PMC10970400 DOI: 10.3390/ijms25063319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 06/02/2024] Open
Abstract
The population of cancer survivors has markedly increased due to the rapid improvements in cancer treatment. However, cancer survivors experience accelerated aging, which leads to chronic diseases and other age-related conditions, such as frailty. Those conditions may persist years after cancer diagnosis and treatment. Cellular senescence, a hallmark of aging, is one of the mechanisms that contribute to accelerated aging in cancer survivors. Several aging measures, including measures based on clinical markers and biomarkers, have been proposed to estimate the aging process, and some of them have shown associations with mortality and frailty in cancer survivors. Several anti-aging interventions, including lifestyle changes and anti-aging drugs, have been proposed. Future research, particularly in large-scale studies, is needed to determine the efficiency of these aging measures and anti-aging interventions before considering their application in clinics. This review focuses on the mechanisms of cellular senescence and accelerated aging in cancer survivors, assessment of the aging process using clinical markers and biomarkers, and the high prevalence of frailty in that population, as well as possible opportunities for anti-aging interventions. A deeper understanding of aging measures and anti-aging interventions in cancer survivors will contribute to the development of effective strategies to mitigate accelerated aging in cancer survivors and improve their quality of life.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Najla El Jurdi
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Prizment
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anne H. Blaes
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
50
|
Zou Y, Wu S, Hu Q, Zhou H, Ge Y, Ju Z, Luo S. Sonic hedgehog restrains the ubiquitin-dependent degradation of SP1 to inhibit neuronal/glial senescence associated phenotypes in chemotherapy-induced peripheral neuropathy via the TRIM25-CXCL13 axis. J Adv Res 2024:S2090-1232(24)00106-1. [PMID: 38479571 DOI: 10.1016/j.jare.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication that affects an increasing number of cancer survivors. However, the current treatment options for CIPN are limited. Paclitaxel (PTX) is a widely used chemotherapeutic drug that induces senescence in cancer cells. While previous studies have demonstrated that Sonic hedgehog (Shh) can counteract cellular dysfunction during aging, its role in CIPN remains unknown. OBJECTIVES Herein, the aim of this study was to investigate whether Shh activation could inhibits neuronal/glial senescence and alleviates CIPN. METHODS We treated ND7/23 neuronal cells and RSC96 Schwann cells with two selective Shh activators (purmorphamine [PUR] and smoothened agonist [SAG]) in the presence of PTX. Additionally, we utilized a CIPN mouse model induced by PTX injection. To assess cellular senescence, we performed a senescence-associated β-galactosidase (SA-β-gal) assay, measured reactive oxygen species (ROS) levels, and examined the expression of P16, P21, and γH2AX. To understand the underlying mechanisms, we conducted ubiquitin assays, LC-MS/MS, H&E staining, and assessed protein expression through Western blotting and immunofluorescence staining. RESULTS In vitro, we observed that Shh activation significantly alleviated the senescence-related decline in multiple functions included SA-β-gal activity, expression of P16 and P21, cell viability, and ROS accumulation in DRG sensory neurons and Schwann cells after PTX exposure. Furthermore, our in vivo experiments demonstrated that Shh activation significantly reduced axonal degeneration, demyelination, and improved nerve conduction. Mechanistically, we discovered that PTX reduced the protein level of SP1, which was ubiquitinated by the E3 ligase TRIM25 at the lysine 694 (K694), leading to increased CXCL13 expression, and we found that Shh activation inhibited PTX-induced neuronal/glial senescence and CIPN through the TRIM25-SP1-CXCL13 axis. CONCLUSION These findings provide evidence for the role of PTX-induced senescence in DRG sensory neurons and Schwann cells, suggesting that Shh could be a potential therapeutic target for CIPN.
Collapse
Affiliation(s)
- Ying Zou
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shu Wu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qian Hu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haoxian Zhou
- Department of Cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanlong Ge
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Zhenyu Ju
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|