1
|
Cueva L, Fuchs EJ, Barrantes G, Madrigal‐Brenes R, Sandoval L. Effect of Spatial and Temporal Urban Isolation on the Genetic Diversity, Acoustic Variation, and Morphological Characteristics of an Urban Survivor Bird Species. Ecol Evol 2025; 15:e70972. [PMID: 40297320 PMCID: PMC12037210 DOI: 10.1002/ece3.70972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 04/30/2025] Open
Abstract
Urbanization modifies ecosystems by fragmenting natural habitats and increasing isolation between populations. Therefore, a reduction in gene flow among isolated populations is expected with greater distance and time since fragmentation. Changes in the structure, density, or community composition of the remaining habitats often result in species' differences in acoustic and morphological traits. However, the relationship between genetics, vocalizations, and morphological divergence in urban areas over time remains poorly understood. We analyzed ten years of genetic, acoustic, and morphological data from isolated populations of the white-eared ground-sparrow. We recorded and measured five acoustic traits, six morphological traits, and used seven microsatellites (SSRs) to compare the effect of urban expansion on the acoustics, morphology, and gene flow patterns across populations over a 10-year period. We found an increase in inbreeding, song duration, number of elements, and frequency of maximum amplitude, but a decrease in female body size and changes in male beak, decreasing size in one population and increasing in another. In general, we found changes in all characteristics studied but only found a significant correlation between genetic diversity and the acoustic characteristics of songs. Our results corroborate that urbanization acts as an important barrier for white-eared ground sparrows, which leads to significant divergence in genetic and behavioral traits.
Collapse
Affiliation(s)
- Luis Cueva
- Escuela de BiologíaUniversidad de Costa RicaSan JoséCosta Rica
- Programa de Posgrado en Biología, Sistema de Estudios de PosgradoUniversidad de Costa RicaSan JoséCosta Rica
- Universidad Estatal AmazónicaPuyoEcuador
| | - Eric J. Fuchs
- Escuela de BiologíaUniversidad de Costa RicaSan JoséCosta Rica
- Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET)Universidad de Costa RicaSan JoséCosta Rica
| | | | | | - Luis Sandoval
- Escuela de BiologíaUniversidad de Costa RicaSan JoséCosta Rica
- Museo de Zoología, Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET)Universidad de Costa RicaSan JoséCosta Rica
| |
Collapse
|
2
|
Fadel RM, Silva LADA, Rodrigues LRR, Brandão RA, Santana DJ, Mangia S. A taxonomic integrative approach of the anuran species from a Cerrado-Amazonian transitional area in western Tocantins state, Brazil. Zootaxa 2025; 5618:1-28. [PMID: 40173478 DOI: 10.11646/zootaxa.5618.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Indexed: 04/04/2025]
Abstract
Due to their complexity environments, ecotonal areas harbor high levels of biodiversity. The Cerrado is geographically situated among other Brazilian biomes and exhibits extensive transitional areas with neighboring biomes. The state of Tocantins, in northern Brazil, has a vast transitional area between the Cerrado and Amazonia in the North and West. Despite the remarkable richness revealed in recent studies, the anuran fauna of Tocantins is likely underestimated, as several municipalities have knowledge gaps, particularly those located in these Cerrado-Amazonia transitional areas. Here, we improve the knowledge of amphibians' diversity in a Cerrado-Amazonia transitional area in western Tocantins state using integrative taxonomy. We conducted four field expeditions in the Caseara municipality, totaling 50 days of fieldwork. We performed diurnal and nocturnal active surveys and installed pitfall traps along an environmental gradient, ranging from typical Cerrado habitats to typical Amazon habitats. We combined morphology, bioacoustic, and mtDNA to improve the identification of the collected specimens. In total, we collected 738 vouchers assigned to 42 species belonging to seven families. We also present morphometric data for 38 of the recorded species (n = 609), acoustic data for 19 species, and 21 new 16S mtDNA sequences for seven species. These new data were essential to identify 38 of the 42 recorded species at the species level, including interesting new records for species like Allobates crombiei and Scinax similis. Four recorded species remained with an undefined status: Boana sp. (gr. semilineata), Adenomera sp. (aff. hylaedactyla), Physalaemus sp. (gr. cuvieri), and Proceratophrys sp. (cf. ararype). We encourage the use of similar approaches in species inventories to ensure taxonomic accuracy and to provide reliable data for conservation policies.
Collapse
Affiliation(s)
- Renata Moleiro Fadel
- Programa de Pós-Graduação em Biologia Animal; Universidade Federal de Mato Grosso do Sul (UFMS); 79070-900; Campo Grande; MS; Brazil..
| | - Leandro Alves DA Silva
- Laboratório de Anfíbios e Répteis; Departamento de Botânica e Zoologia; Universidade Federal de Rio Grande do Norte (UFRN); 59078900; Natal; RN; Brazil..
| | - Luis Reginaldo Ribeiro Rodrigues
- Laboratório de Genética e Biodiversidade; Instituto de Ciências da Educação; Universidade Federal do Oeste do Pará; 68040-470; Santarém; Pará; Brazil..
| | - Reuber Albuquerque Brandão
- Universidade de Brasília; Departamento de Engenharia Florestal; Laboratório de Fauna e Unidades de Conservação; Brasília; DF; Brazil..
| | - Diego José Santana
- Programa de Pós-Graduação em Biologia Animal; Universidade Federal de Mato Grosso do Sul (UFMS); 79070-900; Campo Grande; MS; Brazil..
| | - Sarah Mangia
- Programa de Pós-Graduação em Biologia Animal; Universidade Federal de Mato Grosso do Sul (UFMS); 79070-900; Campo Grande; MS; Brazil..
| |
Collapse
|
3
|
Ajji M. J, Lang JW. Gharial acoustic signaling: Novel underwater pops are temporally based, context-dependent, seasonally stable, male-specific, and individually distinctive. J Anat 2025; 246:415-443. [PMID: 39887971 PMCID: PMC11828749 DOI: 10.1111/joa.14171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 02/01/2025] Open
Abstract
Gharials (Gavialis gangeticus) produce a sudden, high amplitude, pulsatile, underwater sound called a POP. In this study, gharial POPs ranged from 9 to 55 ms, and were clearly audible on land and water, at ≥500 m. POPs were only performed underwater by adult males possessing a sex-specific, cartilaginous narial excrescence, termed the ghara. We recorded 130 POP events of seven wild adult males in 115 km stretch of the Chambal River during 2017-2019, using hydrophones and aerial mics. A POP event occurs when a male produces a single or double or triple POP, each with a specific duration and timing. A POP event was incorporated into a complex, multi-modal breathing display, typically performed by each male during the breeding season. Key features of this novel gharial POP signal are documented here for the first time. These include its incorporation into a complex breathing display, its reliance on temporal rather than spectral elements, its dependence on a specific social context, its stability within an individual, and its individually distinctive patterning specific to a particular male. The breathing display consisted of sub-audible vibrations (SAV) preceding each POP, then a stereotyped exhalation-inhalation-exhalation sequence, concluding with bubbling and submergence. In our study, 96% of the variation in POP signal parameters was explained by POP signal timings (92%) and number of POPs (4%), and only 2% was related to spectral features. Each POP event was performed in a specific social setting. Two behavioral contexts were examined: ALERT and PATROL. In each context, male identities were examined using Discriminant Function Analysis (DFA). Within each context, each of the seven males exhibited distinctive POP patterns that were context-specific and denoted a male's identity and his location. POP signal features were stable for individual males, from 1 year to the next. Overall, the seven males showed POP patterns that were individually specific, with minimal overlap amongst males, yet these were remarkably diverse. The stereotypy of POP patterns, based on temporal versus frequency difference was best characterized statistically using DFA metrics, rather than Beecher's Information Statistic, MANOVA, or Discriminant Score computations. Our field observations indicated that audiences of gharial, located nearby, and/or in the distance, responded immediately to POPs by orienting in the signal direction. Extensive auditory studies of crocodylians indicate that their capacity for auditory temporal discrimination and neural processing in relation to locating a sound target is on par with that of birds. How the POP sound is produced and broadcast loudly in both water and air has received little study to date. We briefly summarize existing reports on ghara anatomy, ontogeny, and paleontology. Finally, preliminary observations made in a clear underwater zoo enclosure indicate that jaw claps performed entirely underwater produce POP sounds. Simultaneous bubble clouds emanating from the base of the ghara are suggestive of cavitation phenomena associated with loud high volume sounds such as shrimp snaps and seal/walrus claps. We discuss the likelihood that the adult male's ghara plays an essential role in the production of the non-vocal underwater POP, a sexually dimorphic acoustic signal unique to gharial.
Collapse
Affiliation(s)
- Jailabdeen Ajji M.
- Gharial Ecology ProjectMadras Crocodile Bank TrustMamallapuram, Tamil NaduIndia
| | - Jeffrey W. Lang
- Gharial Ecology ProjectMadras Crocodile Bank TrustMamallapuram, Tamil NaduIndia
| |
Collapse
|
4
|
Qian Q, Li J, Fu M, Zou M, Tian T, Yan Y, Newman C, Zou D, Zhou Y. Ultrasonic Differentiation Between Two Species of Chinese Pygmy Dormice (Genus Typhlomys) With Support for the Size-Signal Allometry Hypothesis. Integr Zool 2024. [PMID: 39702767 DOI: 10.1111/1749-4877.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
The genus Typhlomys comprises six species that all exhibit exceptional climbing agility in arboreal habitats, of which five have been established to use ultrasonic echolocation in the 80-120-kHz frequency range to navigate among tree branches. Here, we investigated the ultrasonic vocalizations of the remaining and recently recognized species, T. fengjiensis, and compared its ultrasonic and morphological traits with its sibling species T. daloushanensis. Both species produced frequency-modulated (FM) ultrasonic calls that lacked harmonic structure, consistent with echolocating calls established for other members of this genus Typhlomys. This FM echolocation call structure is well-adapted to navigating along branches in dense foliage conditions in the forest understory. Importantly, however, the specific call structures of T. fengjiensis and T. daloushanensis exhibited significantly different ultrasonic characteristics, with different numbers of pulse groups, in support of phonic speciation. T. fengjiensis was on average larger than T. daloushanensis and vocalized at a lower frequency and for a longer duration, in support of the signal-size allometry hypothesis. Furthermore, T. fengjiensis has the lowest ultrasonic call frequency among Typhlomys spp., corresponding with it being the largest member of this genus. Bergmann's law does not provide a compelling explanation of the body mass differences between T. fengjiensis and T. daloushanensis, due to the likely overlap in their elevational distribution. Further research is needed to establish if differences in habitat selection and diet, or differences in social and reproductive behavior, might best explain this local species divergence based on phonic traits.
Collapse
Affiliation(s)
- Qian Qian
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, Hubei Province, China
| | - Juncheng Li
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, Hubei Province, China
| | - Mengqing Fu
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, Hubei Province, China
| | - Mingjiang Zou
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, Hubei Province, China
| | - Tian Tian
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, Hubei Province, China
| | - Yimei Yan
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, Hubei Province, China
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, The Recanati-Kaplan Centre, Tubney, UK
| | - Dahu Zou
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, Hubei Province, China
| | - Youbing Zhou
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, Hubei Province, China
| |
Collapse
|
5
|
Schield DR, Carter JK, Scordato ESC, Levin II, Wilkins MR, Mueller SA, Gompert Z, Nosil P, Wolf JBW, Safran RJ. Sexual selection promotes reproductive isolation in barn swallows. Science 2024; 386:eadj8766. [PMID: 39666856 DOI: 10.1126/science.adj8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 12/14/2024]
Abstract
Despite the well-known effects of sexual selection on phenotypes, links between this evolutionary process and reproductive isolation, genomic divergence, and speciation have been difficult to establish. We unravel the genetic basis of sexually selected plumage traits to investigate their effects on reproductive isolation in barn swallows. The genetic architecture of sexual traits is characterized by 12 loci on two autosomes and the Z chromosome. Sexual trait loci exhibit signatures of divergent selection in geographic isolation and barriers to gene flow in secondary contact. Linkage disequilibrium between these genes has been maintained by selection in hybrid zones beyond what would be expected under admixture alone. Our findings reveal that selection on coupled sexual trait loci promotes reproductive isolation, providing key empirical evidence for the role of sexual selection in speciation.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Javan K Carter
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Elizabeth S C Scordato
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Iris I Levin
- Department of Biology, Kenyon College, Gambier, OH, USA
| | - Matthew R Wilkins
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Galactic Polymath Education Studio, Minneapolis, MN, USA
| | - Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Patrik Nosil
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
6
|
Escalona M, Simões PI, Gonzalez-Voyer A, Mendoza-Henao AM, Mello Bezerra AD, Pinheiro PDP, Morales B, Guayasamin JM, Carvalho T, Chaparro JC, De la Riva I, Rojas-Runjaic FJM, Rivera-Correa M, Kok PJR, Peloso P, Nakamura DYM, Maneyro R, Castroviejo-Fisher S. Allometric Constraint Predominates Over the Acoustic Adaptation Hypothesis in a Radiation of Neotropical Treefrogs. Integr Zool 2024. [PMID: 39658839 DOI: 10.1111/1749-4877.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024]
Abstract
Male frogs emit stereotypical advertisement calls to attract mates and deter conspecific rivals. The evolution of these calls is thought to be linked to anatomical constraints and the acoustic characteristics of their surroundings. The acoustic adaptation hypothesis (AAH) posits that species evolve calls that maximize propagation distance and reduce signal degradation in the environment where they are emitted. We applied phylogenetic comparative analyses to study the association of body size, vegetation density, type of aquatic ecosystem, and calling site on the evolution of acoustic traits in Cophomantini, a large radiation of Neotropical treefrogs (Hylidae). We obtained and analyzed body size, acoustic, and habitat data from a total of 112 species (58% of Cophomantini), using the most inclusive available phylogeny. We found a significant negative correlation between peak frequency, body size, and calling site, but contrary to the predictions of the AAH, we did not find support for associations among call traits and environmental characteristics. Although spectral allometry is explained by an anatomical constraint, it could also be maintained by female choice. We recommend that future studies strive to incorporate factors such as female mate preferences, eavesdropping by predators or parasites, and genetic drift.
Collapse
Affiliation(s)
- Moisés Escalona
- Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Laboratorio de Herpetología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratório de Herpetologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Pedro Ivo Simões
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alejandro Gonzalez-Voyer
- Laboratorio de Conducta Animal, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angela M Mendoza-Henao
- Colección de Sonidos Ambientales, Centro de Colecciones y Gestión de Especies, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Villa de Leyva, Colombia
| | - Andressa De Mello Bezerra
- Centro de Herpetologia e Pesquisa, Instituto Vital Brazil, Duque de Caxias, Rio de Janeiro, Brazil
- Laboratório de Herpetología, Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo D P Pinheiro
- Division of Amphibians & Reptiles, Vertebrate Zoology Department, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Belén Morales
- Laboratorio de Biología Evolutiva, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto Biósfera USFQ, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Juan M Guayasamin
- Laboratorio de Biología Evolutiva, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto Biósfera USFQ, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Thiago Carvalho
- Departamento de Zoología, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juan C Chaparro
- Museo de Biodiversidad del Perú, Cusco, Peru
- Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | | - Fernando J M Rojas-Runjaic
- Laboratório de Herpetologia, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
- Museo de Historia Natural La Salle, Fundación La Salle de Ciencias Naturales, Caracas, Venezuela
| | - Mauricio Rivera-Correa
- Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Philippe J R Kok
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Pedro Peloso
- Vertebrate Museum, Department of Biological Sciences, California State Polytechnic University, Arcata, California, USA
- Department of Herpetology, American Museum of Natural History, New York, NY, USA
| | - Daniel Yudi Miyahara Nakamura
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Raúl Maneyro
- Laboratorio de Herpetología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Castroviejo-Fisher
- Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Department of Herpetology, American Museum of Natural History, New York, NY, USA
- Departamento de Zoología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
7
|
Kamikouchi A, Li X. Nature and nurture in fruit fly hearing. Front Neural Circuits 2024; 18:1503438. [PMID: 39568979 PMCID: PMC11576207 DOI: 10.3389/fncir.2024.1503438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
As for human language learning and birdsong acquisition, fruit flies adjust their auditory perception based on past sound experiences. This phenomenon is known as song preference learning in flies. Recent advancements in omics databases, such as the single-cell transcriptome and brain connectomes, have been integrated into traditional molecular genetics, making the fruit fly an outstanding model for studying the neural basis of "Nature and Nurture" in auditory perception and behaviors. This minireview aims to provide an overview of song preference in flies, including the nature of the phenomenon and its underlying neural mechanisms. Specifically, we focus on the neural circuitry involved in song preference learning, with which auditory experiences shape the song preference of flies. This shaping process depends on an integration hub that processes external sensory stimuli and internal states to enable flexible control of behavior. We also briefly review recent findings on the signals that feed into this integration hub, modulating song preference of flies in an experience-dependent manner.
Collapse
Affiliation(s)
- Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Xiaodong Li
- Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
8
|
Sagar HSSC, Anand A, Persche ME, Pidgeon AM, Zuckerberg B, Şekercioğlu ÇH, Buřivalová Z. Global analysis of acoustic frequency characteristics in birds. Proc Biol Sci 2024; 291:20241908. [PMID: 39501883 PMCID: PMC11538988 DOI: 10.1098/rspb.2024.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
Animal communication plays a crucial role in biology, yet the wide variability in vocalizations is not fully understood. Previous studies in birds have been limited in taxonomic and analytical breadth. Here, we analyse an extensive dataset of >140 000 recordings of vocalizations from 8450 bird species, representing nearly every avian order and family, under a structural causal model framework, to explore the influence of eco-evolutionary traits on acoustic frequency characteristics. We find that body mass, beak size, habitat associations and geography influence acoustic frequency characteristics, with varying degrees of interaction with song acquisition type. We find no evidence for the influence of vegetation density, sexual dimorphism, range size and competition on our measures of acoustic frequency characteristics. Our results, built on decades of researchers' empirical observations collected across the globe, provide a new breadth of evidence about how eco-evolutionary processes shape bird communication.
Collapse
Affiliation(s)
- H. S. Sathya Chandra Sagar
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
- Nelson Institute for Environmental Studies, University of Wisconsin, MadisonWI 53726, USA
| | - Akash Anand
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Maia E. Persche
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Anna M. Pidgeon
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Benjamin Zuckerberg
- School of Biological Sciences, The University of Utah, Salt LakeUT 84112, USA
| | | | - Zuzana Buřivalová
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
- Nelson Institute for Environmental Studies, University of Wisconsin, MadisonWI 53726, USA
| |
Collapse
|
9
|
Podos J, Schroeder KM. Ecological speciation in Darwin's finches: Ghosts of finches future. Science 2024; 386:211-217. [PMID: 39388551 DOI: 10.1126/science.adj4478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/30/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
The theory of ecological speciation posits that adaptive divergence among incipient species raises incidental barriers to reproduction, thus catalyzing the emergence of new species. In this study, we conducted an experimental test of this theory in Galápagos finches, a clade in which beaks and mating songs are mechanistically linked. We forecasted the acoustic structure of songs for a set of possible evolutionary futures (successive droughts spurring increasingly large beaks) and, in a field assay, presented resulting song simulations to territorial males. We found that responses to songs dropped off after six simulated drought events, to degrees roughly comparable to drops in response to songs that diverged through cultural drift and acoustic adaptation. Our results support, in Darwin's finches, the feasibility and mechanistic bases of an ecological speciation hypothesis.
Collapse
Affiliation(s)
- Jeffrey Podos
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Graduate Program in Organismic & Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Katie M Schroeder
- Graduate Program in Organismic & Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Knight E, Rhinehart T, de Zwaan DR, Weldy MJ, Cartwright M, Hawley SH, Larkin JL, Lesmeister D, Bayne E, Kitzes J. Individual identification in acoustic recordings. Trends Ecol Evol 2024; 39:947-960. [PMID: 38862357 DOI: 10.1016/j.tree.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
Recent advances in bioacoustics combined with acoustic individual identification (AIID) could open frontiers for ecological and evolutionary research because traditional methods of identifying individuals are invasive, expensive, labor-intensive, and potentially biased. Despite overwhelming evidence that most taxa have individual acoustic signatures, the application of AIID remains challenging and uncommon. Furthermore, the methods most commonly used for AIID are not compatible with many potential AIID applications. Deep learning in adjacent disciplines suggests opportunities to advance AIID, but such progress is limited by training data. We suggest that broadscale implementation of AIID is achievable, but researchers should prioritize methods that maximize the potential applications of AIID, and develop case studies with easy taxa at smaller spatiotemporal scales before progressing to more difficult scenarios.
Collapse
Affiliation(s)
- Elly Knight
- Department of Biological Sciences, Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, Alberta, T6G 2E6, Canada.
| | - Tessa Rhinehart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Devin R de Zwaan
- Department of Biology, Mount Allison University, Sackville, NB, E4L 1E4, Canada; Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Matthew J Weldy
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5704, USA
| | - Mark Cartwright
- Department of Informatics, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Scott H Hawley
- Chemistry and Physics Department, Belmont University, Nashville, TN, 37212, USA
| | - Jeffery L Larkin
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, 15705-1081, USA; American Bird Conservancy, The Plains, VA, 20198, USA
| | - Damon Lesmeister
- USDA Forest Service, Pacific Northwest Research Station, Corvallis Forestry Science Laboratory, Oregon State University, Corvallis, OR, 97330, USA
| | - Erin Bayne
- Department of Biological Sciences, Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, Alberta, T6G 2E6, Canada
| | - Justin Kitzes
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
11
|
Liu Y, Dietrich CH, Wei C. The impact of geographic isolation and host shifts on population divergence of the rare cicada Subpsaltria yangi. Mol Phylogenet Evol 2024; 199:108146. [PMID: 38986756 DOI: 10.1016/j.ympev.2024.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The contributions of divergent selection and spatial isolation to population divergence are among the main focuses of evolutionary biology. Here we employed integrated methods to explore genomic divergence, demographic history and calling-song differentiation in the cicada Subpsaltria yangi, and compared the genotype and calling-song phenotype of different populations occurring in distinct habitats. Our results indicate that this species comprises four main lineages with unique sets of haplotypes and calling-song structure, which are distinctly associated with geographic isolation and habitats. The populations occurring on the Loess Plateau underwent substantial expansion at ∼0.130-0.115 Ma during the Last Interglacial. Geographic distance and host shift between pairs of populations predict genomic divergence, with geographic distance and acoustical signal together explaining > 60% of the divergence among populations. Differences in calling songs could reflect adaptation of populations to novel environments with different host plants, habitats and predators, which may have resulted from neutral divergence at the molecular level followed by natural selection. Geomorphic barriers and climate oscillations associated with Pleistocene glaciation may have been primary factors in shaping the population genetic structure of this species. Ultimately this may couple with a host shift in leading toward allopatric speciation in S. yangi, i.e., isolation by distance. Our findings improve understanding of divergence in allopatry of herbivorous insects, and may inform future studies on the molecular mechanisms underlying the association between genetic/phenotypic changes and adaptation of insects to novel niches and host plants.
Collapse
Affiliation(s)
- Yunxiang Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
Bousquet CAH, Sueur C, King AJ, O'Bryan LR. Individual and ecological heterogeneity promote complex communication in social vertebrate group decisions. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230204. [PMID: 38768211 PMCID: PMC11391315 DOI: 10.1098/rstb.2023.0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 05/22/2024] Open
Abstract
To receive the benefits of social living, individuals must make effective group decisions that enable them to achieve behavioural coordination and maintain cohesion. However, heterogeneity in the physical and social environments surrounding group decision-making contexts can increase the level of difficulty social organisms face in making decisions. Groups that live in variable physical environments (high ecological heterogeneity) can experience barriers to information transfer and increased levels of ecological uncertainty. In addition, in groups with large phenotypic variation (high individual heterogeneity), individuals can have substantial conflicts of interest regarding the timing and nature of activities, making it difficult for them to coordinate their behaviours or reach a consensus. In such cases, active communication can increase individuals' abilities to achieve coordination, such as by facilitating the transfer and aggregation of information about the environment or individual behavioural preferences. Here, we review the role of communication in vertebrate group decision-making and its relationship to heterogeneity in the ecological and social environment surrounding group decision-making contexts. We propose that complex communication has evolved to facilitate decision-making in specific socio-ecological contexts, and we provide a framework for studying this topic and testing related hypotheses as part of future research in this area. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Christophe A. H. Bousquet
- Department of Psychology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
| | - Cédric Sueur
- Institut pluridisciplinaire Hubert Curien, Strasbourg67000, France
- Institut Universitaire de France, Paris75005, France
| | - Andrew J. King
- Biosciences, Faculty of Science and Engineering, SwanseaSA2 8PP, UK
| | - Lisa R. O'Bryan
- Department of Psychological Sciences, Rice University, Houston, TX77005, USA
| |
Collapse
|
13
|
Lin FC, Lin SM, Godfrey SS. Hidden social complexity behind vocal and acoustic communication in non-avian reptiles. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230200. [PMID: 38768204 PMCID: PMC11391309 DOI: 10.1098/rstb.2023.0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 05/22/2024] Open
Abstract
Social interactions are inevitable in the lives of most animals, since most essential behaviours require interaction with conspecifics, such as mating and competing for resources. Non-avian reptiles are typically viewed as solitary animals that predominantly use their vision and olfaction to communicate with conspecifics. Nevertheless, in recent years, evidence is mounting that some reptiles can produce sounds and have the potential for acoustic communication. Reptiles that can produce sound have an additional communicative channel (in addition to visual/olfactory channels), which could suggest they have a higher communicative complexity, the evolution of which is assumed to be driven by the need of social interactions. Thus, acoustic reptiles may provide an opportunity to unveil the true social complexity of reptiles that are usually thought of as solitary. This review aims to reveal the hidden social interactions behind the use of sounds in non-avian reptiles. Our review suggests that the potential of vocal and acoustic communication and the complexity of social interactions may be underestimated in non-avian reptiles, and that acoustic reptiles may provide a great opportunity to uncover the coevolution between sociality and communication in non-avian reptiles. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Feng-Chun Lin
- Department of Zoology, University of Otago , Dunedin, New Zealand
| | - Si-Min Lin
- School of Life Science, National Taiwan Normal University , Taipei, Taiwan
| | | |
Collapse
|
14
|
Gordon ML, Colville JF, Engelbrecht A, Couldridge VCK. Ancient Grasshoppers: A revision of the genus Bullacris (Orthoptera: Pneumoridae). Zootaxa 2024; 5474:301-354. [PMID: 39646485 DOI: 10.11646/zootaxa.5474.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 12/10/2024]
Abstract
The genus Bullacris in the family Pneumoridae was most recently revised by Dirsh in 1965 based on morphological comparisons between species. However, since that time, new information about the genus and the family has come to light, necessitating a revision of the genus. In addition, the species B. boschimana was originally described based on a single female specimen. Here we present and describe the male of the species for the first time. The aim of this study was to update the current species descriptions by including additional specimens and incorporating additional methods for a more comprehensive comparison. Analyses consisted of morphometric measurements from high-quality images of type specimens, existing South African museum specimens, as well as personally collected specimens. Acoustic signals are also presented and compared between species. In addition, phylogenetic analyses were conducted on the barcoding mitochondrial gene COI and two nuclear genes, namely ITS and 18S. Results show that according to morphological, acoustic and genetic data, B. discolor and B. serrata as well as B. intermedia and B. membracioides share notable similarities. Bullacris discolor and B. serrata share similar phenotypic traits, in which B. discolor can either appear uniform in colour or have a speckled variation that is very similar in appearance to B. serrata. Bullacris intermedia and B. membracioides have a 5% mitochondrial DNA pairwise distance, suggesting that they may have not be fully diverged; however, morphological analysis shows that these species are morphologically distinguishable. It is suggested that these species may have undergone spatial separation at one point; however, further investigation is required. Additional sampling across a wider geographic range is essential to clarify the relationships between B. discolor and B. serrata, as well as between B. intermedia and B. membracioides.
Collapse
Affiliation(s)
- Mikhaila L Gordon
- Department of Biodiversity and Conservation Biology; University of the Western Cape; Bellville; 7535; South Africa; Kirstenbosch Research Centre; South African National Biodiversity Institute; Newlands; 7725; South Africa; Research and Exhibitions Department; South African Museum; Iziko Museums of South Africa; P.O. Box 61; Cape Town; 8000; South Africa.
| | - Jonathan F Colville
- Statistics in Ecology; Environment and Conservation; Department of Statistical Science; University of Cape Town; Rondebosch; 7700; South Africa.
| | - Adriaan Engelbrecht
- Department of Biodiversity and Conservation Biology; University of the Western Cape; Bellville; 7535; South Africa.
| | - Vanessa C K Couldridge
- Department of Biodiversity and Conservation Biology; University of the Western Cape; Bellville; 7535; South Africa.
| |
Collapse
|
15
|
Rodríguez Ballesteros A, Desjonquères C, Hevia V, García Llorente M, Ulloa JS, Llusia D. Towards acoustic monitoring of bees: wingbeat sounds are related to species and individual traits. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230111. [PMID: 38705186 PMCID: PMC11070252 DOI: 10.1098/rstb.2023.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/28/2024] [Indexed: 05/07/2024] Open
Abstract
Global pollinator decline urgently requires effective methods to assess their trends, distribution and behaviour. Passive acoustics is a non-invasive and cost-efficient monitoring tool increasingly employed for monitoring animal communities. However, insect sounds remain highly unexplored, hindering the application of this technique for pollinators. To overcome this shortfall and support future developments, we recorded and characterized wingbeat sounds of a variety of Iberian domestic and wild bees and tested their relationship with taxonomic, morphological, behavioural and environmental traits at inter- and intra-specific levels. Using directional microphones and machine learning, we shed light on the acoustic signature of bee wingbeat sounds and their potential to be used for species identification and monitoring. Our results revealed that frequency of wingbeat sounds is negatively related with body size and environmental temperature (between-species analysis), while it is positively related with experimentally induced stress conditions (within-individual analysis). We also found a characteristic acoustic signature in the European honeybee that supported automated classification of this bee from a pool of wild bees, paving the way for passive acoustic monitoring of pollinators. Overall, these findings confirm that insect sounds during flight activity can provide insights on individual and species traits, and hence suggest novel and promising applications for this endangered animal group. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Alberto Rodríguez Ballesteros
- Terrestrial Ecology Group, Departament of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Social-ecological Systems Laboratory, Department of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Camille Desjonquères
- Terrestrial Ecology Group, Departament of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Violeta Hevia
- Social-ecological Systems Laboratory, Department of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Marina García Llorente
- Social-ecological Systems Laboratory, Department of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Juan S. Ulloa
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá, 111711, Colombia
| | - Diego Llusia
- Terrestrial Ecology Group, Departament of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Laboratório de Herpetologia e Comportamento Animal, Department of Ecology, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiás, Brazil 74690-900
| |
Collapse
|
16
|
Adams SA, Gurajapu A, Qiang A, Gerbaulet M, Schulz S, Tsutsui ND, Ramirez SR, Gillespie RG. Chemical species recognition in an adaptive radiation of Hawaiian Tetragnatha spiders (Araneae: Tetragnathidae). Proc Biol Sci 2024; 291:20232340. [PMID: 38593845 PMCID: PMC11003775 DOI: 10.1098/rspb.2023.2340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Studies of adaptive radiations have played a central role in our understanding of reproductive isolation. Yet the focus has been on human-biased visual and auditory signals, leaving gaps in our knowledge of other modalities. To date, studies on chemical signals in adaptive radiations have focused on systems with multimodal signalling, making it difficult to isolate the role chemicals play in reproductive isolation. In this study we examine the use of chemical signals in the species recognition and adaptive radiation of Hawaiian Tetragnatha spiders by focusing on entire communities of co-occurring species, and conducting behavioural assays in conjunction with chemical analysis of their silks using gas chromatography-mass spectrometry. Male spiders significantly preferred the silk extracts of conspecific mates over those of sympatric heterospecifics. The compounds found in the silk extracts, long chain alkyl methyl ethers, were remarkably species-specific in the combination and quantity. The differences in the profile were greatest between co-occurring species and between closely related sibling species. Lastly, there were significant differences in the chemical profile between two populations of a particular species. These findings provide key insights into the role chemical signals play in the attainment and maintenance of reproductive barriers between closely related co-occurring species.
Collapse
Affiliation(s)
- Seira A. Adams
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
- Center for Population Biology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
| | - Anjali Gurajapu
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| | - Albert Qiang
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| | - Moritz Gerbaulet
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Neil D. Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| | - Santiago R. Ramirez
- Center for Population Biology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, 2320 Storer Hall, Davis, CA 95616, USA
| | - Rosemary G. Gillespie
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall, #3114, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Srigyan M, Samad A, Singh A, Karan J, Chandra A, Sinha PG, Kumar V, Das S, Thomas A, Suyesh R. Vocal repertoire of Microhyla nilphamariensis from Delhi and comparison with closely related M. ornata populations from the western coast of India and Sri Lanka. PeerJ 2024; 12:e16903. [PMID: 38562993 PMCID: PMC10984171 DOI: 10.7717/peerj.16903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2024] [Indexed: 04/04/2024] Open
Abstract
Advertisement calls in frogs have evolved to be species-specific signals of recognition and are therefore considered an essential component of integrative taxonomic approaches to identify species and delineate their distribution range. The species rich genus Microhyla is a particularly challenging group for species identification, discovery and conservation management due to the small size, conserved morphology and wide distribution of its members, necessitating the need for a thorough description of their vocalization. In this study, we provide quantitative description of the vocal behaviour of Microhyla nilphamariensis, a widely distributed south Asian species, from Delhi, India, based on call recordings of 18 individuals and assessment of 21 call properties. Based on the properties measured acrossed 360 calls, we find that a typical advertisement call of M. nilphamariensis lasts for 393.5 ± 57.5 ms, has 17 pulses on average and produce pulses at rate of 39 pulses/s. The overall call dominant frequency was found to be 2.8 KHz and the call spectrum consisted of two dominant frequency peaks centered at 1.6 KHz and 3.6 KHz, ranging between 1.5-4.1 KHz. Apart from its typical advertisement call, our study also reveals the presence of three 'rare' call types, previously unreported in this species. We describe variability in call properties and discuss their relation to body size and temperature. We found that overall dominant frequency 1 (spectral property) was found to be correlated with body size, while first pulse period (temporal property) was found to be correlated with temperature. Further, we compare the vocal repertoire of M. nilphamariensis with that of the congener Microhyla ornata from the western coast of India and Sri Lanka and also compare the call properties of these two populations of M. ornata to investigate intra-specific call variation. We find statistically significant differentiation in their acoustic repertoire in both cases. Based on 18 call properties (out of 20), individuals of each locality clearly segregate on PCA factor plane forming separate groups. Discriminant function analysis (DFA) using PCA factors shows 100% classification success with individuals of each locality getting classified to a discrete group. This confirms significant acoustic differentiation between these species as well as between geographically distant conspecifics. The data generated in this study will be useful for comparative bioacoustic analysis of Microhyla species and can be utilized to monitor populations and devise conservation management plan for threatened species in this group.
Collapse
Affiliation(s)
- Megha Srigyan
- Department of Environmental Sciences, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Abdus Samad
- Department of Environmental Sciences, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
- Biological Sciences, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
| | - Abhishek Singh
- Department of Environmental Sciences, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
- Biological Sciences, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
| | - Jyotsna Karan
- Department of Environmental Sciences, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
- Biological Sciences, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
| | - Abhishek Chandra
- Department of Environmental Sciences, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
| | - Pooja Gokhale Sinha
- Department of Botany, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
| | - Vineeth Kumar
- Department of Biology, Center for Advanced Learning, Mangalore, Karnataka, India
| | - Sandeep Das
- Forest Ecology and Biodiversity Conservation Division, Kerala Forest Research Institute, Peechi, Kerala, India
- Department of Zoology, St Joseph’s College (Autonomous), Irinjalakuda, Thrissur, Kerala, India
| | - Ashish Thomas
- Department of Environmental Studies, SGND Khalsa College, University of Delhi, Delhi, India
| | - Robin Suyesh
- Department of Environmental Sciences, Sri Venkateswara College, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
18
|
Romagosa M, Nieukirk S, Cascão I, Marques TA, Dziak R, Royer JY, O'Brien J, Mellinger DK, Pereira A, Ugalde A, Papale E, Aniceto S, Buscaino G, Rasmussen M, Matias L, Prieto R, Silva MA. Fin whale song evolution in the North Atlantic. eLife 2024; 13:e83750. [PMID: 38192202 PMCID: PMC10776088 DOI: 10.7554/elife.83750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Animal songs can change within and between populations as the result of different evolutionary processes. When these processes include cultural transmission, the social learning of information or behaviours from conspecifics, songs can undergo rapid evolutions because cultural novelties can emerge more frequently than genetic mutations. Understanding these song variations over large temporal and spatial scales can provide insights into the patterns, drivers and limits of song evolution that can ultimately inform on the species' capacity to adapt to rapidly changing acoustic environments. Here, we analysed changes in fin whale (Balaenoptera physalus) songs recorded over two decades across the central and eastern North Atlantic Ocean. We document a rapid replacement of song INIs (inter-note intervals) over just four singing seasons, that co-occurred with hybrid songs (with both INIs), and a clear geographic gradient in the occurrence of different song INIs during the transition period. We also found gradual changes in INIs and note frequencies over more than a decade with fin whales adopting song changes. These results provide evidence of vocal learning in fin whales and reveal patterns of song evolution that raise questions on the limits of song variation in this species.
Collapse
Affiliation(s)
- Miriam Romagosa
- Institute of Marine Sciences - OKEANOS & Institute of Marine Research - IMAR, University of the AzoresHortaPortugal
| | - Sharon Nieukirk
- Cooperative Institute for Marine Ecosystem and Resources Studies, Oregon State UniversityCorvallisUnited States
| | - Irma Cascão
- Institute of Marine Sciences - OKEANOS & Institute of Marine Research - IMAR, University of the AzoresHortaPortugal
| | - Tiago A Marques
- Centre for Research into Ecological and Environmental Modelling, University of St AndrewsSt AndrewsUnited Kingdom
- Centro de Estatística e Aplicações, Departamento de Biologia, Faculdade de Ciências, Universidade de LisboaLisboaPortugal
| | - Robert Dziak
- NOAA Pacific Marine Environmental Laboratory, Hatfield Marine Science CenterCorvallisUnited States
| | - Jean-Yves Royer
- CNRS - UBO - UBS - Ifremer, IUEM - Lab. Geo-OceanPlouzaneFrance
| | - Joanne O'Brien
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological UniversityGalwayIreland
| | - David K Mellinger
- Cooperative Institute for Marine Ecosystem and Resources Studies, Oregon State UniversityCorvallisUnited States
| | - Andreia Pereira
- Instituto Dom Luiz (IDL), Universidade de LisboaLisboaPortugal
| | | | - Elena Papale
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment of the National Research Council of Italy (CNR-IAS)Torretta GranitolaItaly
| | | | - Giuseppa Buscaino
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment of the National Research Council of Italy (CNR-IAS)Torretta GranitolaItaly
| | | | - Luis Matias
- Instituto Dom Luiz (IDL), Universidade de LisboaLisboaPortugal
| | - Rui Prieto
- Institute of Marine Sciences - OKEANOS & Institute of Marine Research - IMAR, University of the AzoresHortaPortugal
| | - Mónica A Silva
- Institute of Marine Sciences - OKEANOS & Institute of Marine Research - IMAR, University of the AzoresHortaPortugal
| |
Collapse
|
19
|
Dalbosco Dell'Aglio D, Rivas-Sánchez DF, Wright DS, Merrill RM, Montgomery SH. The Sensory Ecology of Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041428. [PMID: 38052495 PMCID: PMC10759811 DOI: 10.1101/cshperspect.a041428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this work, we explore the potential influence of sensory ecology on speciation, including but not limited to the concept of sensory drive, which concerns the coevolution of signals and sensory systems with the local environment. The sensory environment can influence individual fitness in a variety of ways, thereby affecting the evolution of both pre- and postmating reproductive isolation. Previous work focused on sensory drive has undoubtedly advanced the field, but we argue that it may have also narrowed our understanding of the broader influence of the sensory ecology on speciation. Moreover, the clearest examples of sensory drive are largely limited to aquatic organisms, which may skew the influence of contributing factors. We review the evidence for sensory drive across environmental conditions, and in this context discuss the importance of more generalized effects of sensory ecology on adaptive behavioral divergence. Finally, we consider the potential of rapid environmental change to influence reproductive barriers related to sensory ecologies. Our synthesis shows the importance of sensory conditions for local adaptation and divergence in a range of behavioral contexts and extends our understanding of the interplay between sensory ecology and speciation.
Collapse
Affiliation(s)
- Denise Dalbosco Dell'Aglio
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - David F Rivas-Sánchez
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Daniel Shane Wright
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Richard M Merrill
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Stephen H Montgomery
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| |
Collapse
|
20
|
Gallagher JH, Zonana DM, Broder ED, Syammach AM, Tinghitella RM. A novel cricket morph has diverged in song and wing morphology across island populations. J Evol Biol 2023; 36:1609-1617. [PMID: 37885146 DOI: 10.1111/jeb.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023]
Abstract
Divergence of sexual signals between populations can lead to speciation, yet opportunities to study the immediate aftermath of novel signal evolution are rare. The recent emergence and spread of a new mating song, purring, in Hawaiian populations of the Pacific field cricket (Teleogryllus oceanicus) allows us to investigate population divergence soon after the origin of a new signal. Male crickets produce songs with specialized wing structures to attract mates from afar (calling) and entice them to mate when found (courtship). However, in Hawaii, these songs also attract an eavesdropping parasitoid fly (Ormia ochracea) that kills singing males. The novel purring song, produced with heavily modified wing morphology, attracts female crickets but not the parasitoid fly, acting as a solution to this conflict between natural and sexual selection. We've recently observed increasing numbers of purring males across Hawaii. In this integrative field study, we investigated the distribution of purring and the proportion of purring males relative to other morphs in six populations on four islands and compared a suite of phenotypic traits (wing morphology, calling song and courtship song) that make up this novel signal across populations of purring males. We show that purring is found in varying proportions across five, and is locally dominant in four, Hawaiian populations. We also show that calling songs, courtship songs and wing morphology of purring males differ geographically. Our findings demonstrate the rapid pace of evolution in island populations and provide insights into the emergence and divergence of new sexual signals over time.
Collapse
Affiliation(s)
- James H Gallagher
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - David M Zonana
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - E Dale Broder
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Aziz M Syammach
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Robin M Tinghitella
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| |
Collapse
|
21
|
Amorim MCP. The role of acoustic signals in fish reproductiona). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2959-2973. [PMID: 37947394 DOI: 10.1121/10.0022353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
This paper outlines my research path over three decades while providing a review on the role of fish sounds in mate choice and reproduction. It also intends to provide advice to young scientists and point toward future avenues in this field of research. An overview of studies on different fish model species shows that male mating acoustic signals can inform females and male competitors about their size (dominant frequency, amplitude, and sound pulse rate modulation), body condition (calling activity and sound pulse rate), and readiness to mate (calling rate, number of pulses in a sound). At least in species with parental care, such as toadfishes, gobies, and pomacentrids, calling activity seems to be the main driver of reproductive success. Playback experiments ran on a restricted number of species consistently revealed that females prefer vocal to silent males and select for higher calling rates. This personal synthesis concludes with the suggestion to increase knowledge on fish mating signals, especially considering the emerging use of fish sounds to monitor aquatic environments due to increasing threats, like noise pollution.
Collapse
Affiliation(s)
- M Clara P Amorim
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal and MARE-Marine and Environmental Sciences Centre, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Retracted: Tarsier islands: Exploring patterns of variation in tarsier duets from offshore islands of North Sulawesi. Am J Primatol 2023; 85:e23410. [PMID: 35757846 DOI: 10.1002/ajp.23410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/23/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022]
Abstract
Retraction: Clink, D. J., Comella, I. A., Tasirin, J. S., & Klinck, H. (2022). Tarsier islands: Exploring patterns of variation in tarsier duets from offshore islands of North Sulawesi. American Journal of Primatology, (https://doi.org/10.1002/ajp.23410). The above article, published online on 27 June 2022 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors, the journal Editor in Chief, Karen Bales, and Wiley Periodicals LLC. The retraction has been agreed due to the fact that the article included data for which there was no data sharing agreement in place.
Collapse
|
23
|
Madabhushi AJ, Wewhare N, Binwal P, Agarwal V, Krishnan A. Higher-order dialectic variation and syntactic convergence in the complex warble song of budgerigars. J Exp Biol 2023; 226:jeb245678. [PMID: 37732394 DOI: 10.1242/jeb.245678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Dialectic signatures in animal acoustic signals are key in the identification of and association with group members. Complex vocal sequences may also convey information about behavioral state, and may thus vary according to social environment. Some bird species, such as psittaciforms, learn and modify their complex acoustic signals throughout their lives. However, the structure and function of vocal sequences in open-ended vocal learners remains understudied. Here, we examined vocal sequence variation in the warble song of budgerigars, and how these change upon contact between social groups. Budgerigars are open-ended vocal learners which exhibit fission-fusion flock dynamics in the wild. We found that two captive colonies of budgerigars exhibited colony-specific differences in the syntactic structure of their vocal sequences. Individuals from the two colonies differed in the propensity to repeat certain note types, forming repetitive motifs which served as higher-order signatures of colony identity. When the two groups were brought into contact, their vocal sequences converged, and these colony-specific repetitive patterns disappeared, with males from both erstwhile colonies now producing similar sequences with similar syntactic structure. We present data suggesting that the higher-order temporal arrangement of notes/vocal units is modified throughout life by social learning as groups of birds continually associate and dissociate. Our study sheds light on the importance of examining signal structure at multiple levels of organization, and the potential for psittaciform birds as model systems to examine the influence of learning and social environment on acoustic signals.
Collapse
Affiliation(s)
- Abhinava Jagan Madabhushi
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan Road, Pune 411008, Maharashtra, India
| | - Nakul Wewhare
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan Road, Pune 411008, Maharashtra, India
| | - Priya Binwal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Vaishnavi Agarwal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri 462066, Madhya Pradesh, India
| | - Anand Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri 462066, Madhya Pradesh, India
| |
Collapse
|
24
|
Favaro L, Zanoli A, Ludynia K, Snyman A, Carugati F, Friard O, Scaglione FE, Manassero L, Valazza A, Mathevon N, Gamba M, Reby D. Vocal tract shape variation contributes to individual vocal identity in African penguins. Proc Biol Sci 2023; 290:20231029. [PMID: 37817600 PMCID: PMC10565386 DOI: 10.1098/rspb.2023.1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Variation in formant frequencies has been shown to affect social interactions and sexual competition in a range of avian species. Yet, the anatomical bases of this variation are poorly understood. Here, we investigated the morphological correlates of formants production in the vocal apparatus of African penguins. We modelled the geometry of the supra-syringeal vocal tract of 20 specimens to generate a population of virtual vocal tracts with varying dimensions. We then estimated the acoustic response of these virtual vocal tracts and extracted the centre frequency of the first four predicted formants. We demonstrate that: (i) variation in length and cross-sectional area of vocal tracts strongly affects the formant pattern, (ii) the tracheal region determines most of this variation, and (iii) the skeletal size of penguins does not correlate with the trachea length and consequently has relatively little effect on formants. We conclude that in African penguins, while the variation in vocal tract geometry generates variation in resonant frequencies supporting the discrimination of conspecifics, such variation does not provide information on the emitter's body size. Overall, our findings advance our understanding of the role of formant frequencies in bird vocal communication.
Collapse
Affiliation(s)
- Livio Favaro
- ENES Bioacoustics Research Laboratory, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Anna Zanoli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Katrin Ludynia
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town, South Africa
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Albert Snyman
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town, South Africa
| | - Filippo Carugati
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Olivier Friard
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Luca Manassero
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Alberto Valazza
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Nicolas Mathevon
- ENES Bioacoustics Research Laboratory, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France
- Institut Universitaire de France, Ministry of Higher Education, Research and Innovation, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - David Reby
- ENES Bioacoustics Research Laboratory, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France
- Institut Universitaire de France, Ministry of Higher Education, Research and Innovation, 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
25
|
Chapuis L, Yopak KE, Radford CA. From the morphospace to the soundscape: Exploring the diversity and functional morphology of the fish inner ear, with a focus on elasmobranchsa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1526-1538. [PMID: 37695297 DOI: 10.1121/10.0020850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Fishes, including elasmobranchs (sharks, rays, and skates), present an astonishing diversity in inner ear morphologies; however, the functional significance of these variations and how they confer auditory capacity is yet to be resolved. The relationship between inner ear structure and hearing performance is unclear, partly because most of the morphological and biomechanical mechanisms that underlie the hearing functions are complex and poorly known. Here, we present advanced opportunities to document discontinuities in the macroevolutionary trends of a complex biological form, like the inner ear, and test hypotheses regarding what factors may be driving morphological diversity. Three-dimensional (3D) bioimaging, geometric morphometrics, and finite element analysis are methods that can be combined to interrogate the structure-to-function links in elasmobranch fish inner ears. In addition, open-source 3D morphology datasets, advances in phylogenetic comparative methods, and methods for the analysis of highly multidimensional shape data have leveraged these opportunities. Questions that can be explored with this toolkit are identified, the different methods are justified, and remaining challenges are highlighted as avenues for future work.
Collapse
Affiliation(s)
- L Chapuis
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - K E Yopak
- Department of Biology and Marine Biology, Centre for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28403, USA
| | - C A Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh 0985, New Zealand
| |
Collapse
|
26
|
Maldonado-Coelho M, Dos Santos SS, Isler ML, Svensson-Coelho M, Sotelo-Muñoz M, Miyaki CY, Ricklefs RE, Blake JG. Evolutionary and Ecological Processes Underlying Geographic Variation in Innate Bird Songs. Am Nat 2023; 202:E31-E52. [PMID: 37531273 DOI: 10.1086/725016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractEcological and evolutionary processes underlying spatial variation in signals involved in mate recognition and reproductive isolation are crucial to understanding the causes of population divergence and speciation. Here, to test hypotheses concerning the causes of song divergence, we examine how songs of two sister species of Atlantic Forest suboscine birds with innate songs, the Pyriglena fire-eye antbirds, vary across their ranges. Specifically, we evaluated the influence of isolation by distance and introgressive hybridization, as well as morphological and environmental variation, on geographic variation in male songs. Analyses based on 496 male vocalizations from 63 locations across a 2,200-km latitudinal transect revealed clinal changes in the structure of songs and showed that introgressive hybridization increases both the variability and the homogenization of songs in the contact zone between the two species. We also found that isolation by distance, morphological constraints, the environment, and genetic introgression independently predicted song variation across geographic space. Our study shows the importance of an integrative approach that investigates the roles of distinct ecological and evolutionary processes that influence acoustic signal evolution.
Collapse
|
27
|
Murali G, Meiri S, Roll U. Chemical signaling glands are unlinked to species diversification in lizards. Evolution 2023; 77:1829-1841. [PMID: 37279331 DOI: 10.1093/evolut/qpad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Sexual selection has long been thought to increase species diversification. Sexually selected traits, such as sexual signals that contribute to reproductive isolation, were thought to promote diversification. However, studies exploring links between sexually selected traits and species diversification have thus far primarily focused on visual or acoustic signals. Many animals often employ chemical signals (i.e., pheromones) for sexual communications, but large-scale analyses on the role of chemical communications in driving species diversification have been missing. Here, for the first time, we investigate whether traits associated with chemical communications-the presence of follicular epidermal glands-promote diversification across 6,672 lizard species. In most analyses, we found no strong association between the presence of follicular epidermal glands and species diversification rates, either across all lizard species or at lower phylogenetic scales. Previous studies suggest that follicular gland secretions act as species recognition signals that prevent hybridization during speciation in lizards. However, we show that geographic range overlap was no different in sibling species pairs with and without follicular epidermal glands. Together, these results imply that either follicular epidermal glands do not primarily function in sexual communications or sexually selected traits in general (here chemical communication) have a limited effect on species diversification. In our additional analysis accounting for sex-specific differences in glands, we again found no detectable effect of follicular epidermal glands on species diversification rates. Thus, our study challenges the general role of sexually selected traits in broad-scale species diversification patterns.
Collapse
Affiliation(s)
- Gopal Murali
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environments and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| | - Shai Meiri
- School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Beersheva, Sede-Boqer Campus, 8499000, Israel
| | - Uri Roll
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environments and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
28
|
Rivera M, Edwards JA, Hauber ME, Woolley SMN. Machine learning and statistical classification of birdsong link vocal acoustic features with phylogeny. Sci Rep 2023; 13:7076. [PMID: 37127781 PMCID: PMC10151348 DOI: 10.1038/s41598-023-33825-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023] Open
Abstract
Birdsong is a longstanding model system for studying evolution and biodiversity. Here, we collected and analyzed high quality song recordings from seven species in the family Estrildidae. We measured the acoustic features of syllables and then used dimensionality reduction and machine learning classifiers to identify features that accurately assigned syllables to species. Species differences were captured by the first 3 principal components, corresponding to basic frequency, power distribution, and spectrotemporal features. We then identified the measured features underlying classification accuracy. We found that fundamental frequency, mean frequency, spectral flatness, and syllable duration were the most informative features for species identification. Next, we tested whether specific acoustic features of species' songs predicted phylogenetic distance. We found significant phylogenetic signal in syllable frequency features, but not in power distribution or spectrotemporal features. Results suggest that frequency features are more constrained by species' genetics than are other features, and are the best signal features for identifying species from song recordings. The absence of phylogenetic signal in power distribution and spectrotemporal features suggests that these song features are labile, reflecting learning processes and individual recognition.
Collapse
Affiliation(s)
- Moises Rivera
- Department of Psychology, Hunter College and the Graduate Center, City University of New York, New York, NY, 10065, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Jacob A Edwards
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Psychology, Columbia University, New York, NY, 10027, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Biological Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarah M N Woolley
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA.
- Department of Psychology, Columbia University, New York, NY, 10027, USA.
- Zuckerman Institute at Columbia University, Jerome L. Greene Science Center, 3227 Broadway, L3.028, New York, NY, 10027, USA.
| |
Collapse
|
29
|
Dickerson AL, Hall ML, Jones TM. Effects of variation in natural and artificial light at night on acoustic communication: a review and prospectus. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
30
|
Taylor KL, Wade EJ, Wells MM, Henry CS. Genomic regions underlying the species-specific mating songs of green lacewings. INSECT MOLECULAR BIOLOGY 2023; 32:79-85. [PMID: 36281633 DOI: 10.1111/imb.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Rapid species radiations provide insight into the process of speciation and diversification. The radiation of Chrysoperla carnea-group lacewings seems to be driven, at least in part, by their species-specific pre-mating vibrational duets. We associated genetic markers from across the genome with courtship song period in the offspring of a laboratory cross between Chrysoperla plorabunda and Chrysoperla adamsi, two species primarily differentiated by their mating songs. Two genomic regions were strongly associated with the song period phenotype. Large regions of chromosomes one and two were associated with song phenotype, as fewer recombination events occurred on these chromosomes relative to the other autosomes. Candidate genes were identified by functional annotation of proteins from the C. carnea reference genome. The majority of genes that are associated with vibrational courtship signals in other insects were found within QTL for lacewing song phenotype. Together these findings suggest that decreased recombination may be acting to keep together loci important to reproductive isolation between these species. Using wild-caught individuals from both species, we identified signals of genomic divergence across the genome. We identified several candidate genes both in song-associated regions and near divergence outliers including nonA, fruitless, paralytic, period, and doublesex. Together these findings bring us one step closer to identifying the genomic basis of a mating song trait critical to the maintenance of species boundaries in green lacewings.
Collapse
Affiliation(s)
- Katherine L Taylor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Entomology, University of Maryland, College Park, Maryland, USA
| | - Elizabeth J Wade
- Department of Natural Sciences and Mathematics, Curry College, Milton, Massachusetts, USA
| | - Marta M Wells
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Charles S Henry
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
31
|
Tan MK, He ZQ, Ingrisch S. A study on the bioacoustics of Oriental scaly crickets (Orthoptera: Mogoplistinae), with a focus on Singaporean species. BIOACOUSTICS 2023. [DOI: 10.1080/09524622.2023.2177887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Ming Kai Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Zhu-Qing He
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Sigfrid Ingrisch
- Zoological Research Museum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Bonn, Germany
| |
Collapse
|
32
|
Using Acoustic Data Repositories to Study Vocal Responses to Playback in a Neotropical Songbird. BIRDS 2023. [DOI: 10.3390/birds4010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Birds may alter song structure in response to territorial challenges to convey information about aggressive intent or fighting ability. Professional and amateur ornithologists upload daily many birdsong recordings into acoustic data repositories, usually scoring whether songs were recorded in response to a conspecific playback or produced spontaneously. We analyzed recordings from these repositories to evaluate if song traits of Rufous-browed Peppershrikes (Cyclarhis gujanensis) vary between playback-elicited songs and spontaneous songs. For each recording after playback, we chose one spatially closer spontaneous recording to avoid geographic bias. Birds recorded after playback produced slightly longer songs than birds that were singing spontaneously. This result was accounted for by increases in the amount of sound and silence within a song after the playback instead of changes in the mean number or duration of elements. Playback did not alter song frequency parameters (bandwidth, minimum, mean, and maximum frequencies) or song rate. These results indicate that song duration might mediate aggressive interactions in Rufous-browed Peppershrikes. Even considering limitations such as unknown playback stimulus identity and possible pseudoreplication, acoustic data repositories give a unique yet unexplored opportunity to gather insights into the evolution of song flexibility during aggressive encounters.
Collapse
|
33
|
Mendes R, Nunes VL, Marabuto E, Costa GJ, Silva SE, Paulo OS, Simões PC. Testing drivers of acoustic divergence in cicadas (Cicadidae: Tettigettalna). J Evol Biol 2023; 36:461-479. [PMID: 36514855 PMCID: PMC10107868 DOI: 10.1111/jeb.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
Divergence in acoustic signals may have a crucial role in the speciation process of animals that rely on sound for intra-specific recognition and mate attraction. The acoustic adaptation hypothesis (AAH) postulates that signals should diverge according to the physical properties of the signalling environment. To be efficient, signals should maximize transmission and decrease degradation. To test which drivers of divergence exert the most influence in a speciose group of insects, we used a phylogenetic approach to the evolution of acoustic signals in the cicada genus Tettigettalna, investigating the relationship between acoustic traits (and their mode of evolution) and body size, climate and micro-/macro-habitat usage. Different traits showed different evolutionary paths. While acoustic divergence was generally independent of phylogenetic history, some temporal variables' divergence was associated with genetic drift. We found support for ecological adaptation at the temporal but not the spectral level. Temporal patterns are correlated with micro- and macro-habitat usage and temperature stochasticity in ways that run against the AAH predictions, degrading signals more easily. These traits are likely to have evolved as an anti-predator strategy in conspicuous environments and low-density populations. Our results support a role of ecological selection, not excluding a likely role of sexual selection in the evolution of Tettigettalna calling songs, which should be further investigated in an integrative approach.
Collapse
Affiliation(s)
- Raquel Mendes
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Vera L Nunes
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Eduardo Marabuto
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Gonçalo J Costa
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Sara E Silva
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Octávio S Paulo
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Paula C Simões
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| |
Collapse
|
34
|
Ohashi TS, Ishikawa Y, Awasaki T, Su MP, Yoneyama Y, Morimoto N, Kamikouchi A. Evolutionary conservation and diversification of auditory neural circuits that process courtship songs in Drosophila. Sci Rep 2023; 13:383. [PMID: 36611081 PMCID: PMC9825394 DOI: 10.1038/s41598-022-27349-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Acoustic communication signals diversify even on short evolutionary time scales. To understand how the auditory system underlying acoustic communication could evolve, we conducted a systematic comparison of the early stages of the auditory neural circuit involved in song information processing between closely-related fruit-fly species. Male Drosophila melanogaster and D. simulans produce different sound signals during mating rituals, known as courtship songs. Female flies from these species selectively increase their receptivity when they hear songs with conspecific temporal patterns. Here, we firstly confirmed interspecific differences in temporal pattern preferences; D. simulans preferred pulse songs with longer intervals than D. melanogaster. Primary and secondary song-relay neurons, JO neurons and AMMC-B1 neurons, shared similar morphology and neurotransmitters between species. The temporal pattern preferences of AMMC-B1 neurons were also relatively similar between species, with slight but significant differences in their band-pass properties. Although the shift direction of the response property matched that of the behavior, these differences are not large enough to explain behavioral differences in song preferences. This study enhances our understanding of the conservation and diversification of the architecture of the early-stage neural circuit which processes acoustic communication signals.
Collapse
Affiliation(s)
- Takuro S. Ohashi
- grid.27476.300000 0001 0943 978XGraduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Yuki Ishikawa
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Takeshi Awasaki
- grid.411205.30000 0000 9340 2869School of Medicine, Kyorin University, Tokyo, 181-8611 Japan
| | - Matthew P. Su
- grid.27476.300000 0001 0943 978XGraduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan ,grid.27476.300000 0001 0943 978XInstitute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601 Japan
| | - Yusuke Yoneyama
- grid.27476.300000 0001 0943 978XGraduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Nao Morimoto
- grid.39158.360000 0001 2173 7691Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815 Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan. .,Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
35
|
Brualla NLM, Wilson LAB, Doube M, Carter RT, McElligott AG, Koyabu D. The vocal apparatus: An understudied tool to reconstruct the evolutionary history of echolocation in bats? J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Beltrán DF, Araya-Salas M, Parra JL, Stiles FG, Rico-Guevara A. The evolution of sexually dimorphic traits in ecological gradients: an interplay between natural and sexual selection in hummingbirds. Proc Biol Sci 2022; 289:20221783. [PMID: 36515116 PMCID: PMC9748779 DOI: 10.1098/rspb.2022.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Traits that exhibit differences between the sexes have been of special interest in the study of phenotypic evolution. Classic hypotheses explain sexually dimorphic traits via intra-sexual competition and mate selection, yet natural selection may also act differentially on the sexes to produce dimorphism. Natural selection can act either through physiological and ecological constraints on one of the sexes, or by modulating the strength of sexual/social selection. This predicts an association between the degree of dimorphism and variation in ecological environments. Here, we characterize the variation in hummingbird dimorphism across ecological gradients using rich databases of morphology, colouration and song. We show that morphological dimorphism decreases with elevation in the understorey and increases with elevation in mixed habitats, that dichromatism increases at high altitudes in open and mixed habitats, and that song is less complex in mixed habitats. Our results are consistent with flight constraints, lower predation pressure at high elevations and with habitat effects on song transmission. We also show that dichromatism and song complexity are positively associated, while tail dimorphism and song complexity are negatively associated. Our results suggest that key ecological factors shape sexually dimorphic traits, and that different communication modalities do not always evolve in tandem.
Collapse
Affiliation(s)
- Diego F. Beltrán
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Marcelo Araya-Salas
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - F. Gary Stiles
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
37
|
Alcocer I, Lima H, Sugai LSM, Llusia D. Acoustic indices as proxies for biodiversity: a meta-analysis. Biol Rev Camb Philos Soc 2022; 97:2209-2236. [PMID: 35978471 DOI: 10.1111/brv.12890] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
As biodiversity decreases worldwide, the development of effective techniques to track changes in ecological communities becomes an urgent challenge. Together with other emerging methods in ecology, acoustic indices are increasingly being used as novel tools for rapid biodiversity assessment. These indices are based on mathematical formulae that summarise the acoustic features of audio samples, with the aim of extracting meaningful ecological information from soundscapes. However, the application of this automated method has revealed conflicting results across the literature, with conceptual and empirical controversies regarding its primary assumption: a correlation between acoustic and biological diversity. After more than a decade of research, we still lack a statistically informed synthesis of the power of acoustic indices that elucidates whether they effectively function as proxies for biological diversity. Here, we reviewed studies testing the relationship between diversity metrics (species abundance, species richness, species diversity, abundance of sounds, and diversity of sounds) and the 11 most commonly used acoustic indices. From 34 studies, we extracted 364 effect sizes that quantified the magnitude of the direct link between acoustic and biological estimates and conducted a meta-analysis. Overall, acoustic indices had a moderate positive relationship with the diversity metrics (r = 0.33, CI [0.23, 0.43]), and showed an inconsistent performance, with highly variable effect sizes both within and among studies. Over time, studies have been increasingly disregarding the validation of the acoustic estimates and those examining this link have been progressively reporting smaller effect sizes. Some of the studied indices [acoustic entropy index (H), normalised difference soundscape index (NDSI), and acoustic complexity index (ACI)] performed better in retrieving biological information, with abundance of sounds (number of sounds from identified or unidentified species) being the best estimated diversity facet of local communities. We found no effect of the type of monitored environment (terrestrial versus aquatic) and the procedure for extracting biological information (acoustic versus non-acoustic) on the performance of acoustic indices, suggesting certain potential to generalise their application across research contexts. We also identified common statistical issues and knowledge gaps that remain to be addressed in future research, such as a high rate of pseudoreplication and multiple unexplored combinations of metrics, taxa, and regions. Our findings confirm the limitations of acoustic indices to efficiently quantify alpha biodiversity and highlight that caution is necessary when using them as surrogates of diversity metrics, especially if employed as single predictors. Although these tools are able partially to capture changes in diversity metrics, endorsing to some extent the rationale behind acoustic indices and suggesting them as promising bases for future developments, they are far from being direct proxies for biodiversity. To guide more efficient use and future research, we review their principal theoretical and practical shortcomings, as well as prospects and challenges of acoustic indices in biodiversity assessment. Altogether, we provide the first comprehensive and statistically based overview on the relation between acoustic indices and biodiversity and pave the way for a more standardised and informed application for biodiversity monitoring.
Collapse
Affiliation(s)
- Irene Alcocer
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, C/ Darwin, 2, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Edificio de Biología, 28049, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, C/ Darwin 2, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Herlander Lima
- Department of Life Sciences, GloCEE Global Change Ecology and Evolution Research Group, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Larissa Sayuri Moreira Sugai
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, C/ Darwin, 2, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Edificio de Biología, 28049, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, C/ Darwin 2, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.,K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY, 14850, USA
| | - Diego Llusia
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, C/ Darwin, 2, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Edificio de Biología, 28049, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, C/ Darwin 2, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.,Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, CEP 74001-970, Goiânia, Goiás, Brazil
| |
Collapse
|
38
|
Bergmann A, Gloza-Rausch F, Wimmer B, Kugelschafter K, Knörnschild M. Similarities in social calls during autumn swarming may facilitate interspecific communication between Myotis bat species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.950951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bats employ a variety of social calls for communication purposes. However, for most species, social calls are far less studied than echolocation calls and their specific function often remains unclear. We investigated the function of in-flight social calls during autumn swarming in front of a large hibernaculum in Northern Germany, whose main inhabitants are two species of Myotis bats, Natterer’s bats (Myotis nattereri) and Daubenton’s bats (Myotis daubentonii). We recorded social calls in nights of high swarming activity and grouped the calls based on their spectro-temporal structure into ten types and verified our visual classification by a discriminant function analysis. Whenever possible, we subsequently assigned social calls to either M. daubentonii or M. nattereri by analyzing the echolocation calls surrounding them. As many bats echolocate at the same time during swarming, we did not analyze single echolocation calls but the “soundscape” surrounding each social call instead, encompassing not only spectral parameters but also the timbre (vocal “color”) of echolocation calls. Both species employ comparatively similar social call types in a swarming context, even though there are subtle differences in call parameters between species. To additionally gain information about the general function of social calls produced in a swarming context, we performed playback experiments with free-flying bats in the vicinity of the roost, using three different call types from both species, respectively. In three out of six treatments, bat activity (approximated as echolocation call rate) increased during and after stimulus presentation, indicating that bats inspected or approached the playback site. Using a camera trap, we were sometimes able to identify the species of approaching bats. Based on the photos taken during playbacks, we assume one call type to support interspecific communication while another call type works for intraspecific group cohesion.
Collapse
|
39
|
Podos J, Webster MS. Ecology and evolution of bird sounds. Curr Biol 2022; 32:R1100-R1104. [DOI: 10.1016/j.cub.2022.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Fichtel C, Kappeler PM. Coevolution of social and communicative complexity in lemurs. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210297. [PMID: 35934963 DOI: 10.1098/rstb.2021.0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The endemic lemurs of Madagascar (Lemuriformes: Primates) exhibit great social and communicative diversity. Given their independent evolutionary history, lemurs provide an excellent opportunity to identify fundamental principles in the coevolution of social and communicative traits. We conducted comparative phylogenetic analyses to examine patterns of interspecific variation among measures of social complexity and repertoire sizes in the vocal, olfactory and visual modality, while controlling for environmental factors such as habitat and number of sympatric species. We also examined potential trade-offs in signal evolution as well as coevolution between body mass or brain size and communicative complexity. Repertoire sizes in the vocal, olfactory and visual modality correlated positively with group size, but not with environmental factors. Evolutionary changes in social complexity presumably antedated corresponding changes in communicative complexity. There was no trade-off in the evolution of signals in different modalities and neither body mass nor brain size correlated with any repertoire size. Hence, communicative complexity coevolved with social complexity across different modalities, possibly to service social relationships flexibly and effectively in pair- and group-living species. Our analyses shed light on the requirements and adaptive possibilities in the coevolution of core elements of social organization and social structure in a basal primate lineage. This article is part of the theme issue 'Cognition, communication and social bonds in primates'.
Collapse
Affiliation(s)
- Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany.,Leibniz-ScienceCampus Primate Cognition, Kellnerweg 4, 37077 Göttingen, Germany.,Department Anthropology/Sociobiology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany.,Leibniz-ScienceCampus Primate Cognition, Kellnerweg 4, 37077 Göttingen, Germany.,Department Anthropology/Sociobiology, University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany
| |
Collapse
|
41
|
Caldwell MS, Britt KA, Mischke LC, Collins HI. Beyond sound: Bimodal acoustic calls used in mate-choice and aggression by red-eyed treefrogs. J Exp Biol 2022; 225:276426. [PMID: 35938394 DOI: 10.1242/jeb.244460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Airborne sound signals function as key mediators of mate-choice, aggression, and other social interactions in a wide range of vertebrate and invertebrate animals. Calling animals produce more than sound, however. When displaying on or near a solid substrate, such as vegetation or soil, they also unavoidably excite substrate vibrations due to the physics of sound production and of acoustic propagation, and these vibrations can propagate to receivers. Despite their near ubiquity, these vibrational signal components have received very little research attention, and in vertebrates it is completely unknown whether they are relevant to mate-choice, an important driver of evolutionary divergence. Here we show that female red-eyed treefrogs are more than twice as likely to choose a male mating call when airborne sound is paired with its corresponding substrate vibrations. Furthermore, males of the same species are more aggressive towards and display a greater range of aggressive behaviors in response to bimodal (sound and vibration) versus unimodal (sound or vibration alone) calls. In aggressive contexts, at least, air- and substrate-borne signal components function non-redundantly. These results are a clear demonstration that vibrations produced by a calling animal can function together with airborne sound to markedly enhance the function of a signal. If this phenomenon proves widespread, this finding has the potential to substantially influence our understanding of the function and evolution of acoustic signals.
Collapse
Affiliation(s)
- Michael S Caldwell
- Gettysburg College, Department of Biology, 300 N. Washington St., Gettysburg, PA 17325, USA.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, República de Panamá, USA
| | - Kayla A Britt
- Gettysburg College, Department of Biology, 300 N. Washington St., Gettysburg, PA 17325, USA
| | - Lilliana C Mischke
- Gettysburg College, Department of Biology, 300 N. Washington St., Gettysburg, PA 17325, USA
| | - Hannah I Collins
- Gettysburg College, Department of Biology, 300 N. Washington St., Gettysburg, PA 17325, USA.,University of Connecticut Avery Point, Department of Marine Sciences, 1080 Shennecossett Rd., Groton, CT 06340, USA
| |
Collapse
|
42
|
Comella I, Tasirin JS, Klinck H, Johnson LM, Clink DJ. Investigating note repertoires and acoustic tradeoffs in the duet contributions of a basal haplorrhine primate. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.910121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acoustic communication serves a crucial role in the social interactions of vocal animals. Duetting—the coordinated singing among pairs of animals—has evolved independently multiple times across diverse taxonomic groups including insects, frogs, birds, and mammals. A crucial first step for understanding how information is encoded and transferred in duets is through quantifying the acoustic repertoire, which can reveal differences and similarities on multiple levels of analysis and provides the groundwork necessary for further studies of the vocal communication patterns of the focal species. Investigating acoustic tradeoffs, such as the tradeoff between the rate of syllable repetition and note bandwidth, can also provide important insights into the evolution of duets, as these tradeoffs may represent the physical and mechanical limits on signal design. In addition, identifying which sex initiates the duet can provide insights into the function of the duets. We have three main goals in the current study: (1) provide a descriptive, fine-scale analysis of Gursky’s spectral tarsier (Tarsius spectrumgurskyae) duets; (2) use unsupervised approaches to investigate sex-specific note repertoires; and (3) test for evidence of acoustic tradeoffs in the rate of note repetition and bandwidth of tarsier duet contributions. We found that both sexes were equally likely to initiate the duets and that pairs differed substantially in the duration of their duets. Our unsupervised clustering analyses indicate that both sexes have highly graded note repertoires. We also found evidence for acoustic tradeoffs in both male and female duet contributions, but the relationship in females was much more pronounced. The prevalence of this tradeoff across diverse taxonomic groups including birds, bats, and primates indicates the constraints that limit the production of rapidly repeating broadband notes may be one of the few ‘universals’ in vocal communication. Future carefully designed playback studies that investigate the behavioral response, and therefore potential information transmitted in duets to conspecifics, will be highly informative.
Collapse
|
43
|
Introgression at the emerging secondary contact zone of magpie Pica pica subspecies (Aves: Corvidae): integrating data on nuclear and mitochondrial markers, vocalizations, and field observations. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Zones of secondary contact provide a good opportunity to investigate the origin and dynamics of reproductive isolation between related populations. We analyzed genetic and phenotypic patterns and gene flow between two subspecies of the Eurasian magpie Pica pica s.l. which recently came into contact after presumably long periods of isolation. We describe the distribution of subspecies in a young contact zone at Argun’ river basin in southern Siberia where populations occur in parapatry and an older hybrid population in eastern Mongolia. Based on genome-wide SNP data, we analyzed patterns and strength of gene flow between the subspecies. Our results indicate occasional hybridization with backcrossing and asymmetric introgression along a wide range in Transbaikalia and locally in eastern Mongolia. Males of P. p. jankowskii apparently exhibit higher dispersal ability towards the west compared to P. p. leucoptera (towards the east). The former occasionally migrates to eastern Mongolia and Transbaikalia where introgression of nuclear, but not mitochondrial DNA was evident. Bioacoustic investigations showed differences between the subspecies in speed and structure of vocalization. We discovered intermediate calls of hybrid magpies and bilingual birds alternating calls that are typical for the two taxa. Furthermore, we found dramatically decreased reproductive success in hybridogeneous populations. By complementing our results with established phylogeographic patterns of P. pica s.l. based on a mitochondrial marker sequence, and considering indications of sterility of hybrids in the contact zone, we propose to elevate the two corresponding subspecies to species level: P. pica for the western form and P. serica for the eastern form.
Collapse
|
44
|
Lin A, Feng J, Kanwal JS. Geographic Variation in Social Vocalizations of the Great Himalayan Leaf-Nosed Bat, Hipposideros armiger: Acoustic Overflow Across Population Boundaries. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.948324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bat populations employ rich vocal repertoires for social communication in addition to emitting sound pulses for echolocation. Acoustic parameters of echolocation pulses can vary with the context in which they are emitted, and also with the individual and across populations as a whole. The acoustic parameters of social vocalizations, or “calls”, also vary with the individual and context, but not much is known about their variation across populations at different geographic locations. Here, we leveraged the detailed acoustic classification of social vocalizations available for the Great Himalayan leaf-nosed bat, Hipposideros armiger, to examine geographic variation in five commonly emitted simple syllable types. We hypothesized that individuals within geographically dispersed populations communicate using spectrographically similar constructs or “syllable types”. We also examined whether call syllables vary discordantly with the correlation pattern observed for echolocation pulses across those same geographic regions. Furthermore, we postulated that the acoustic boundaries of a syllable type are not uniquely constrained to its variation within a particular population of the same subspecies. To test our hypotheses, we obtained recordings of social calls of H. a. armiger from nine locations within the oriental region. These locations were consolidated into five geographic regions based on previously established region-specific differences in the peak frequency of echolocation pulses. A multivariate cluster analysis established that unlike echolocation pulses, syllable types exhibit a relatively large variance. Analysis of this variance showed significant differences in Least Squares Means estimates, establishing significant population-level differences in the multiparametric means of individual syllable types across geographic regions. Multivariate discriminant analysis confirmed the presence of region-specific centroids for different syllable constructs, but also showed a large overlap of their multiparametric boundaries across geographic regions. We propose that despite differences in the population-specific core construct of a syllable type, bats maximize acoustic variation across individuals within a population irrespective of its overflow and overlap with other populations.
Collapse
|
45
|
Hopkins JM, Edwards W, Schwarzkopf L. Invading the soundscape: exploring the effects of invasive species’ calls on acoustic signals of native wildlife. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe transmission and reception of sound, both between conspecifics and among individuals of different species, play a crucial role in individual fitness, because correct interpretation of meaning encoded in acoustic signals enables important context-appropriate behaviours, such as predator avoidance, foraging, and mate location and identification. Novel noise introduced into a soundscape can disrupt the processes of receiving and recognising sounds. When species persist in the presence of novel noise, it may mask the production and reception of sounds important to fitness, and can reduce population size, species richness, or relative abundances, and thus influence community structure. In the past, most investigations into the effects of novel noise have focused on noises generated by anthropogenic sources. The few studies that have explored the effects of calls from invasive species suggest native species alter behaviours (particularly their vocal behaviour) in the presence of noise generated by invasive species. These effects may differ from responses to anthropogenic noises, because noises made by invasive species are biotic in origin, and may therefore be more spectrally similar to the calls of native species, and occur at similar times. Thus, in some cases, negative fitness consequences for native species, associated with noises generated by invasive species, may constitute interspecific competition. Possible negative consequences of invasive species calls represent an overlooked, and underappreciated, class of competitive interactions. We are far from understanding the full extent of the effects of invasive species on native ones. Further investigation of the contribution of noise interference to native species’ decline in the presence of invasive species will significantly increase our understanding of an important class of interactions between invasive and native species.
Collapse
|
46
|
Fan B, Wang Y, Huang X, Zhang X, Yang J, Jiang T. The Potential to Encode Detailed Information About Parasites in the Acoustic Signals of Chinese Horseshoe Bats (Rhinolophus sinicus). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.908209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Condition-dependent acoustic signals that potentially reveal information about the signaler’s physical or physiological condition are common and important in the animal kingdom. Given the negative effects of parasites on the health and fitness of their hosts, it is reasonable to expect animal acoustic signals to reflect detailed information concerning parasite infection. However, despite previous studies having verified the potential of sexually selected vocalizations to provide information on parasitism based on the correlations between call acoustic properties and parasitism in some animal taxa, less is known about whether acoustic signals used in a non-sexual context also reflect parasite infection especially for highly vocal bats. We thus investigated the relationships between the acoustic properties of distress calls and echolocation pulses and the infestation intensity of gamasid mites and bat flies in Chinese horseshoe bats (Rhinolophus sinicus) to determine whether acoustic signals potentially contain information about parasite infection. We found that bats infected with more gamasid mites uttered significantly shorter echolocation pulses, suggesting that echolocation pulses may contain information on the intensity of mite infection. Additionally, bats infected with more gamasid mites emitted distress calls with narrower bandwidth, while bats with more bat flies emitted calls with longer pause duration. These results suggest that distress calls may not only reflect a signaler’s parasite infection intensity but also may provide information concerning infection with specific parasites. In short, our findings suggest that acoustic signals of bats potentially reflect detailed information about parasite infection.
Collapse
|
47
|
Torrent frogs emit acoustic signals of a narrower spectral range in habitats with longer-lasting biotic background noise. Behav Processes 2022; 200:104700. [DOI: 10.1016/j.beproc.2022.104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
|
48
|
Investigating temporal coordination in the duet contributions of a pair-living small ape. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
49
|
Gómez-Catasús J, Barrero A, Llusia D, Iglesias-Merchan C, Traba J. Wind farm noise shifts vocalizations of a threatened shrub-steppe passerine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119144. [PMID: 35301031 DOI: 10.1016/j.envpol.2022.119144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Wind energy has experienced a notable development during the last decades, driving new challenges for animal communities. Although bird collisions with wind turbines and spatial displacement due to disturbance have been widely described in the literature, other potential impacts remain unclear. In this study, we addressed the effect of turbine noise on the vocal behaviour of a threatened shrub-steppe passerine highly dependent on acoustic communication, the Dupont's lark Chersophilus duponti. Based on directional recordings of 49 calling and singing males exposed to a gradient of turbine noise level (from 15 up to 51 dBA), we tested for differences in signal diversity, redundancy, and complexity, as well as temporal and spectral characteristics of their vocalizations (particularly the characteristic whistle). Our results unveiled that Dupont's lark males varied the vocal structure when subject to turbine noise, by increasing the probability of emitting more complex whistles (with increased number of notes) and shifting the dominant note (emphasizing the longest and higher-pitched note). In addition, males increased duration and minimum frequency of specific notes of the whistle, while repertoire size and signal redundancy remain constant. To our knowledge, this is the first study reporting multiple and complex responses on the vocal repertoire of animals exposed to turbine noise and unveiling a shift of the dominant note in response to anthropogenic noise in general. These findings suggest that the Dupont's lark exhibits some level of phenotypic plasticity, which might enable the species to cope with noisy environments, although the vocal adjustments observed might have associated costs or alter the functionality of the signal. Future wind energy projects must include fine-scale noise assessments to quantify the consequences of chronic noise exposure.
Collapse
Affiliation(s)
- Julia Gómez-Catasús
- Terrestrial Ecology Group, Department of Ecology, Universidad Autónoma de Madrid (TEG-UAM), Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain; Novia University of Applied Sciences, Raseborgvägen 9, FI-10600, Ekenäs, Finland.
| | - Adrián Barrero
- Terrestrial Ecology Group, Department of Ecology, Universidad Autónoma de Madrid (TEG-UAM), Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain
| | - Diego Llusia
- Terrestrial Ecology Group, Department of Ecology, Universidad Autónoma de Madrid (TEG-UAM), Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain; Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, CEP 74001-970, Goiânia, Goiás, Brazil
| | - Carlos Iglesias-Merchan
- CENERIC Research Centre, Tres Cantos, Spain; Escuela Ingeniería de Montes, Forestal y Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Traba
- Terrestrial Ecology Group, Department of Ecology, Universidad Autónoma de Madrid (TEG-UAM), Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain
| |
Collapse
|
50
|
Fang K, Tang Y, Zhang B, Fang G. Neural activities in music frogs reveal call variations and phylogenetic relationships within the genus Nidirana. Commun Biol 2022; 5:550. [PMID: 35668095 PMCID: PMC9170687 DOI: 10.1038/s42003-022-03504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
The characteristics of acoustic signals co-evolve with preferences of the auditory sensory system. However, how the brain perceives call variations and whether it can reveal phylogenetic relationships among signalers remains poorly understood. Here, we recorded the neural signals from the Emei music frogs (Nidirana daunchina) in response to broadcasted calls of five different species of the same genus. We found that responses in terms of the different amplitudes of various event-related potential (ERP) components were correlated with diversification trends in acoustic signals, as well as phylogenetic relationships between N. daunchina and heterospecific callers. Specifically, P2 decreased gradually along the ordinal decline of similarities in acoustic characteristics of calls compared with those from conspecifics. Moreover, P3a amplitudes showed increasing trends in correspondence with callers' genetic distances from the subject species. These observations collectively support the view that neural activities in music frogs can reflect call variations and phylogenetic relationships within the genus Nidirana.
Collapse
Affiliation(s)
- Ke Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041, Chengdu, Sichuan, China
- School of Life Science, Anhui University, No. 111 Jiulong Road, 230601, Hefei, Anhui, China
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, 210016, Nanjing, Jiangsu, China
| | - Yezhong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041, Chengdu, Sichuan, China
| | - Baowei Zhang
- School of Life Science, Anhui University, No. 111 Jiulong Road, 230601, Hefei, Anhui, China
| | - Guangzhan Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041, Chengdu, Sichuan, China.
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, No. 1 Shida Road, 637009, Nanchong, Sichuan, China.
| |
Collapse
|