1
|
Vinogradov IM, Zang C, Mahmud-Al-Hasan M, Head ML, Jennions MD. Inbreeding and high developmental temperatures affect cognition and boldness in guppies ( Poecilia reticulata). Proc Biol Sci 2024; 291:20240785. [PMID: 39317321 PMCID: PMC11421933 DOI: 10.1098/rspb.2024.0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/26/2024] Open
Abstract
Inbreeding impairs the cognitive abilities of humans, but its impact on cognition in other animals is poorly studied. For example, environmental stress (e.g. food limitation and extreme temperatures) often amplifies inbreeding depression in morphological traits, but whether cognition is similarly affected is unclear. We, therefore, tested if a higher temperature (30°C versus 26°C) during development exacerbates any difference in inhibitory control between inbred (f = 0.25) and outbred guppies (Poecilia reticulata). Inhibitory control is an aspect of cognition that is often measured in vertebrates using a detour test, in which animals have to navigate around a transparent barrier to reach a reward. We also tested if inbreeding and temperature affect 'boldness', which is a putative personality trait in guppies. Inbreeding lowered inhibitory control of guppies raised at the higher temperature but not those raised at the control temperature. Inbred fish were significantly less bold than outbred fish. In addition, males, but not females, raised at the higher temperature had significantly lower inhibitory control. There was no effect of temperature on the boldness of either sex. Our study is among the first to test if experimentally induced inbreeding impairs cognition in a non-domesticated vertebrate. We show that both inbreeding and higher temperatures during development can affect the behaviour and cognitive abilities of fish. These findings are noteworthy given the twin threats of rising global temperatures and more frequent inbreeding as habitat fragmentation reduces population sizes.
Collapse
Affiliation(s)
- I M Vinogradov
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - C Zang
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - M Mahmud-Al-Hasan
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - M L Head
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - M D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
2
|
Kraft FLH, Crino OL, Adeniran-Obey SO, Moraney RA, Clayton DF, George JM, Buchanan KL. Parental developmental experience affects vocal learning in offspring. Sci Rep 2024; 14:13787. [PMID: 38877207 PMCID: PMC11178867 DOI: 10.1038/s41598-024-64520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Cultural and genetic inheritance combine to enable rapid changes in trait expression, but their relative importance in determining trait expression across generations is not clear. Birdsong is a socially learned cognitive trait that is subject to both cultural and genetic inheritance, as well as being affected by early developmental conditions. We sought to test whether early-life conditions in one generation can affect song acquisition in the next generation. We exposed one generation (F1) of nestlings to elevated corticosterone (CORT) levels, allowed them to breed freely as adults, and quantified their son's (F2) ability to copy the song of their social father. We also quantified the neurogenetic response to song playback through immediate early gene (IEG) expression in the auditory forebrain. F2 males with only one corticosterone-treated parent copied their social father's song less accurately than males with two control parents. Expression of ARC in caudomedial nidopallium (NCM) correlated with father-son song similarity, and patterns of expression levels of several IEGs in caudomedial mesopallium (CMM) in response to father song playback differed between control F2 sons and those with a CORT-treated father only. This is the first study to demonstrate that developmental conditions can affect social learning and neurogenetic responses in a subsequent generation.
Collapse
Affiliation(s)
- Fanny-Linn H Kraft
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Ondi L Crino
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Raven A Moraney
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - David F Clayton
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Julia M George
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
3
|
Das A. Dyadic contagion in cognitive function: A nationally-representative longitudinal study of older U.S. couples. SOCIAL SCIENCE RESEARCH 2024; 120:103011. [PMID: 38763534 DOI: 10.1016/j.ssresearch.2024.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 05/21/2024]
Abstract
Later-life cognitive function is strongly influenced by one's environment. At this life stage, a partner's behaviors and attributes-including their own cognitive status-are a key environmental determinant. A recent "social allostasis" theory also yields specific predictions on patterns of mutual influence-or "contagion"-in cognitive function. Yet, no population representative studies have examined these coupled dynamics. Using recently developed fixed-effects cross-lagged panel modeling (FE-CLPM) methods and ten-year data from the Health and Retirement Study-nationally-representative of U.S. adults over 50-the current study filled this gap. Results supported dyadic cognitive contagion over the long- but not short-run. Short-term associations suggested intriguing "cognitive cycling" possibilities among both men and women that need further investigation. Overall, results supported a theoretical model of coupled "cognitive careers," and relational inducement of allostatic load. Especially among men, recurrent impulses also cumulatively induced substantial path-dependent cognitive improvements, supporting the added value of repeated over one-time interventions. Theoretical and substantive implications are discussed.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Sociology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Johny A, Janczak AM, Nordgreen J, Toscano MJ, Stratmann A. Mind the ramp: Association between early life ramp use and spatial cognition in laying hen pullets. PLoS One 2024; 19:e0302454. [PMID: 38669289 PMCID: PMC11051627 DOI: 10.1371/journal.pone.0302454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Ramps facilitate earlier access to complex environments and increase early life voluntary exercise, which may positively affect the cognitive development of chickens. This study focused on quantifying individual differences in ramp use and its impact on spatial cognition of laying hen pullets. Sixteen identical pens were housed with Lohmann Selected Leghorn (LSL) chicks of which eight chicks from each pen were colour marked from one day of age (DoA) to serve as focal birds. We quantified overall ramp use (walk/run, wing-assisted incline running, and jump/fly to and from ramps) by scan sampling recorded videos for 6, 10, 12, 20, 27, 41, and 55 DoA for all focal birds. From 56 to 95 DoA, long and short-term spatial memory of three focal birds per pen were assessed in a holeboard test in three consecutive phases: cued, uncued and reversal. Mixed model analysis showed that the spatial cognitive abilities of the birds were linked to differences in ramp use frequency averaged across all observation days. Birds with higher ramp use made fewer reference (Estimate ± Confidence Interval = 0.94 [0.88, 0.99], p = 0.08) and working memory errors (Est ± CI = 0.77 [0.59, 1.00], p = 0.06) in the cued phase than birds with lower ramp use. In contrast, birds with higher ramp use made more reference memory errors (Est ± CI = 1.10 [1.01, 1.20], p = 0.05) in the reversal phase. Birds with higher ramp use also made more reference memory errors compared to birds with lower ramp use as the phases changed from cued to uncued (p = 0.001). Our results indicate that there might be a relationship between early life ramp use and spatial cognition of laying hens.
Collapse
Affiliation(s)
- Alex Johny
- VPHI Institute, Centre for Proper Housing of Poultry and Rabbits, University of Bern, Zollikofen, Switzerland
- Graduate school of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew M. Janczak
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Janicke Nordgreen
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Michael J. Toscano
- VPHI Institute, Centre for Proper Housing of Poultry and Rabbits, University of Bern, Zollikofen, Switzerland
| | - Ariane Stratmann
- VPHI Institute, Centre for Proper Housing of Poultry and Rabbits, University of Bern, Zollikofen, Switzerland
| |
Collapse
|
5
|
Cauchard L, Bize P, Doligez B. How to solve novel problems: the role of associative learning in problem-solving performance in wild great tits Parus major. Anim Cogn 2024; 27:32. [PMID: 38607427 PMCID: PMC11014811 DOI: 10.1007/s10071-024-01872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Although problem-solving tasks are frequently used to assess innovative ability, the extent to which problem-solving performance reflects variation in cognitive skills has been rarely formally investigated. Using wild breeding great tits facing a new non-food motivated problem-solving task, we investigated the role of associative learning in finding the solution, compared to multiple other non-cognitive factors. We first examined the role of accuracy (the proportion of contacts made with the opening part of a string-pulling task), neophobia, exploration, activity, age, sex, body condition and participation time on the ability to solve the task. To highlight the effect of associative learning, we then compared accuracy between solvers and non-solvers, before and after the first cue to the solution (i.e., the first time they pulled the string opening the door). We finally compared accuracy over consecutive entrances for solvers. Using 884 observations from 788 great tits tested from 2010 to 2015, we showed that, prior to initial successful entrance, solvers were more accurate and more explorative than non-solvers, and that females were more likely to solve the task than males. The accuracy of solvers, but not of non-solvers, increased significantly after they had the opportunity to associate string pulling with the movement of the door, giving them a first cue to the task solution. The accuracy of solvers also increased over successive entrances. Our results demonstrate that variations in problem-solving performance primarily reflect inherent individual differences in associative learning, and are also to a lesser extent shaped by sex and exploratory behaviour.
Collapse
Affiliation(s)
- Laure Cauchard
- School of Biological Sciences, University of Aberdeen, Aberdeen, U.K..
- Anthropogenic Effects Research Group, Swiss Ornithological Institute, CH-62024, Sempach, Switzerland.
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, U.K
- Anthropogenic Effects Research Group, Swiss Ornithological Institute, CH-62024, Sempach, Switzerland
| | - Blandine Doligez
- Department of Biometry and Evolutionary Biology, CNRS, Univ Lyon, UMR 5558, University of Lyon 1, Villeurbanne, France
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Iribarne J, Brachetta V, Zenuto R, Kittlein M, Schleich C. Navigational experience affect cognition: Spatial learning capabilities in captive and wild-born tuco-tucos. Behav Processes 2024; 214:104981. [PMID: 38065425 DOI: 10.1016/j.beproc.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
There is a growing recognition of the influence of both genetic and ecological context in shaping different cognitive traits. The hippocampal region is identified as a critical area for memory and learning in mammals, susceptible to modification by environmental influences. Although previous studies have identified the effects of various factors on cognitive parameters during early development, comparatively few research was conducted on wild species to analyze the role of natural environmental stimuli in the formation of spatial learning and memory abilities. Thus, to assess the importance of exposure to a complex and challenging environment during early development, we compared spatial learning performance of captive-born tuco-tucos with previous data obtained in our laboratory from wild-born adult tuco-tucos. The results showed that wild-born individuals learned faster, requiring less time to complete a labyrinth and making fewer errors than those who had no experience in their natural environment. These findings underscore the importance of considering ecological factors in understanding the evolution of brains and cognitive abilities.
Collapse
Affiliation(s)
- J Iribarne
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina.
| | - V Brachetta
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| | - R Zenuto
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| | - M Kittlein
- Grupo de Ecologia y Genetica de poblaciones de Mamiferos, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| | - C Schleich
- Grupo Ecología Fisiológica y del Comportamiento, Departamento de Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Argentina
| |
Collapse
|
7
|
Efrat R, Hatzofe O, Mueller T, Sapir N, Berger-Tal O. Early and accumulated experience shape migration and flight in Egyptian vultures. Curr Biol 2023; 33:5526-5532.e4. [PMID: 38042150 DOI: 10.1016/j.cub.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023]
Abstract
Two types of experience affect animals' behavioral proficiencies and, accordingly, their fitness: early-life experience, an animal's environment during its early development, and acquired experience, the repeated practice of a specific task.1,2,3,4,5,6,7,8 Yet, how these two experience types and their interactions affect different proficiencies is still an open question. Here, we study the interactions between these two types of experience during migration, a critical and challenging period.9,10 We do so by comparing migratory proficiencies between birds with different early-life experiences and explain these differences by testing fine-scale flight mechanisms. We used data collected by GPS transmitters during 127 autumn migrations of 65 individuals to study the flight proficiencies of two groups of Egyptian vultures (Neophron percnopterus), a long-distance, soaring raptor.11,12 The two groups differed greatly in their early-life experience, one group being captive bred and the other wild hatched.13 Both groups improved their migratory performance with acquired experience, exhibiting shorter migration times, longer daily progress, and improved flight skills, specifically more efficient soaring-gliding behavior. The observed improvements were mostly apparent for captive-bred vultures, which were the least efficient during their first migration but were able to catch up in their migratory performance already in the second migration. Thus, we show how the strong negative effects of early-life experience were offset by acquired experience. Our findings uncover how the interaction between early-life and acquired experiences may shape animals' proficiencies and shed new light on the ontogeny of animal migration, suggesting possible effects of sensitive periods of learning on the acquisition of migratory skills.
Collapse
Affiliation(s)
- Ron Efrat
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben-Gurion, Israel.
| | - Ohad Hatzofe
- Science Division, Israel Nature and Parks Authority, Am Ve'Olamo 3, 9546303 Jerusalem, Israel
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg Voigt, 60438 Frankfurt am Main, Germany; Department of Biological Sciences, Johann Wolfgang Goethe-University Frankfurt, Max von Laue, 60438 Frankfurt am Main, Germany
| | - Nir Sapir
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 3498838 Haifa, Israel
| | - Oded Berger-Tal
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben-Gurion, Israel
| |
Collapse
|
8
|
Lu C, Gudowska A, Rutkowska J. What do zebra finches learn besides singing? Systematic mapping of the literature and presentation of an efficient associative learning test. Anim Cogn 2023; 26:1489-1503. [PMID: 37300600 PMCID: PMC10442275 DOI: 10.1007/s10071-023-01795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The process of learning in birds has been extensively studied, with a focus on species such as pigeons, parrots, chickens, and crows. In recent years, the zebra finch has emerged as a model species in avian cognition, particularly in song learning. However, other cognitive domains such as spatial memory and associative learning could also be critical to fitness and survival, particularly during the intensive juvenile period. In this systematic review, we provide an overview of cognitive studies on zebra finches, with a focus on domains other than song learning. Our findings indicate that spatial, associative, and social learning are the most frequently studied domains, while motoric learning and inhibitory control have been examined less frequently over 30 years of research. All of the 60 studies included in this review were conducted on captive birds, limiting the generalizability of the findings to wild populations. Moreover, only two of the studies were conducted on juveniles, highlighting the need for more research on this critical period of learning. To address this research gap, we propose a high-throughput method for testing associative learning performance in a large number of both juvenile and adult zebra finches. Our results demonstrate that learning can occur in both age groups, thus encouraging researchers to also perform cognitive tests on juveniles. We also note the heterogeneity of methodologies, protocols, and subject exclusion criteria applied by different researchers, which makes it difficult to compare results across studies. Therefore, we call for better communication among researchers to develop standardised methodologies for studying each cognitive domain at different life stages and also in their natural conditions.
Collapse
Affiliation(s)
- ChuChu Lu
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Gudowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
De Lisle SP, Rowe L. Condition dependence and the paradox of missing plasticity costs. Evol Lett 2023; 7:67-78. [PMID: 37033877 PMCID: PMC10078974 DOI: 10.1093/evlett/qrad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractPhenotypic plasticity plays a key role in adaptation to changing environments. However, plasticity is neither perfect nor ubiquitous, implying that fitness costs may limit the evolution of phenotypic plasticity in nature. The measurement of such costs of plasticity has proved elusive; decades of experiments show that fitness costs of plasticity are often weak or nonexistent. Here, we show that this paradox could potentially be explained by condition dependence. We develop two models differing in their assumptions about how condition dependence arises; both models show that variation in condition can readily mask costs of plasticity even when such costs are substantial. This can be shown simply in a model where plasticity itself evolves condition dependence, which would be expected if costly. Yet similar effects emerge from an alternative model where trait expression itself is condition-dependent. In this more complex model, the average condition in each environment and genetic covariance in condition across environments both determine when costs of plasticity can be revealed. Analogous to the paradox of missing trade-offs between life history traits, our models show that variation in condition can mask costs of plasticity even when costs exist, and suggest this conclusion may be robust to the details of how condition affects trait expression. Our models suggest that condition dependence can also account for the often-observed pattern of elevated plasticity costs inferred in stressful environments, the maintenance of genetic variance in plasticity, and provides insight into experimental and biological scenarios ideal for revealing a cost of phenotypic plasticity.
Collapse
Affiliation(s)
- Stephen P De Lisle
- Corresponding author: Department of Environmental and Life Science, Karlstad University, Universitetsgatan 2, Karlstad 651 88, Sweden.
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Sonnenberg BR, Heinen VK, Pitera AM, Benedict LM, Branch CL, Bridge ES, Ouyang JQ, Pravosudov VV. Natural variation in developmental condition has limited effect on spatial cognition in a wild food-caching bird. Proc Biol Sci 2022; 289:20221169. [PMID: 36196540 PMCID: PMC9532986 DOI: 10.1098/rspb.2022.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Laboratory studies show that increased physiological burden during development results in cognitive impairment. In the wild, animals experience a wide range of developmental conditions, and it is critical to understand how variation in such conditions affects cognitive abilities later in life, especially in species that strongly depend on such abilities for survival. We tested whether variation in developmental condition is associated with differences in spatial cognitive abilities in wild food-caching mountain chickadees. Using tail feathers grown during development in juvenile birds, we measured feather corticosterone (Cortf) levels and growth rates and tested these birds during their first winter on two spatial learning tasks. In only 1 of the 3 years, higher feather Cortf was negatively associated with memory acquisition. No significant associations between feather Cortf and any other measurement of spatial cognition were detected in the other 2 years of the study or between feather growth rate and any measurement of cognition during the entire study. Our results suggest that in the wild, naturally existing variation in developmental condition has only a limited effect on spatial cognitive abilities, at least in a food-caching species. This suggests that there may be compensatory mechanisms to buffer specialized cognitive abilities against developmental perturbations.
Collapse
Affiliation(s)
- Benjamin R. Sonnenberg
- Department of Biology and Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Virginia K. Heinen
- Department of Biology and Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Angela M. Pitera
- Department of Biology and Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Lauren M. Benedict
- Department of Biology and Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Carrie L. Branch
- Department of Psychology, University of Western Ontario, London, ON, Canada
| | | | - Jenny Q. Ouyang
- Department of Biology and Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| | - Vladimir V. Pravosudov
- Department of Biology and Ecology, Evolution and Conservation Biology Graduate Program, University of Nevada, Reno, NV, USA
| |
Collapse
|
11
|
Axelrod CJ, Robinson BW, Laberge F. Evolutionary divergence in phenotypic plasticity shapes brain size variation between coexisting sunfish ecotypes. J Evol Biol 2022; 35:1363-1377. [PMID: 36073994 DOI: 10.1111/jeb.14085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Mechanisms that generate brain size variation and the consequences of such variation on ecological performance are poorly understood in most natural animal populations. We use a reciprocal-transplant common garden experiment and foraging performance trials to test for brain size plasticity and the functional consequences of brain size variation in Pumpkinseed sunfish (Lepomis gibbosus) ecotypes that have diverged between nearshore littoral and offshore pelagic lake habitats. Different age-classes of wild-caught juveniles from both habitats were exposed for 6 months to treatments that mimicked littoral and pelagic foraging. Plastic responses in oral jaw size suggested that treatments mimicked natural habitat-specific foraging conditions. Plastic brain size responses to foraging manipulations differed between ecotypes, as only pelagic sourced fish showed brain size plasticity. Only pelagic juveniles under 1 year-old expressed this plastic response, suggesting that plastic brain size responses decline with age and so may be irreversible. Finally, larger brain size was associated with enhanced foraging performance on live benthic but not pelagic prey, providing the first experimental evidence of a relationship between brain size and prey-specific foraging performance in fishes. The recent post-glacial origin of these ecotypes suggests that brain size plasticity can rapidly evolve and diverge in fish under contrasting ecological conditions.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Beren W Robinson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Rice MA, Wong GH, Ophir AG. Impacts of spatial learning on male prairie vole mating tactics in seminatural field enclosures are context dependent. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Townsend AK, Sewall KB, Leonard AS, Hawley DM. Infectious disease and cognition in wild populations. Trends Ecol Evol 2022; 37:899-910. [PMID: 35872026 DOI: 10.1016/j.tree.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Infectious disease is linked to impaired cognition across a breadth of host taxa and cognitive abilities, potentially contributing to variation in cognitive performance within and among populations. Impaired cognitive performance can stem from direct damage by the parasite, the host immune response, or lost opportunities for learning. Moreover, cognitive impairment could be compounded by factors that simultaneously increase infection risk and impair cognition directly, such as stress and malnutrition. As highlighted in this review, however, answers to fundamental questions remain unresolved, including the frequency, duration, and fitness consequences of infection-linked cognitive impairment in wild animal populations, the cognitive abilities most likely to be affected, and the potential for adaptive evolution of cognition in response to accelerating emergence of infectious disease.
Collapse
Affiliation(s)
- Andrea K Townsend
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA.
| | - Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Gérard M, Amiri A, Cariou B, Baird E. Short-term exposure to heatwave-like temperatures affects learning and memory in bumblebees. GLOBAL CHANGE BIOLOGY 2022; 28:4251-4259. [PMID: 35429217 PMCID: PMC9541601 DOI: 10.1111/gcb.16196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Global warming has been identified as a key driver of bee declines around the world. While it is clear that elevated temperatures during the spring and summer months-the principal activity period of many bee species-is a factor in this decline, exactly how temperature affects bee survival is unknown. In vertebrates, there is clear evidence that elevated ambient temperatures impair cognition but whether and how heat affects the cognitive abilities of invertebrates remains unclear. Cognitive skills in bees are essential for their survival as, to supply the hive with nutrition, workers must be able to learn and remember the location of the most rewarding floral resources. Here, we investigate whether temperature-related cognitive impairments could be a driver of bee declines by exploring the effect of short-term increases in ambient temperature on learning and memory. We found that, in comparison to bees that were tested at 25°C (a temperature that they would typically experience in summer), bees that were exposed to 32°C (a temperature that they will becoming increasingly exposed to during heatwave events) were significantly worse at forming an association between a coloured light and a sucrose reward and that their capacity to remember this association after just 1 h was abolished. This study provides novel experimental evidence that even just a few hours of exposure to heatwave-like temperatures can severely impair the cognitive performance of insects. Such temperature-induced cognitive deficits could play an important role in explaining recent and future bee population declines.
Collapse
Affiliation(s)
- Maxence Gérard
- INSECT LabDivision of Functional MorphologyDepartment of ZoologyStockholm UniversityStockholmSweden
| | - Anahit Amiri
- INSECT LabDivision of Functional MorphologyDepartment of ZoologyStockholm UniversityStockholmSweden
- Faculté des Sciences et IngénierieSorbonne UniversitéParisFrance
| | - Bérénice Cariou
- INSECT LabDivision of Functional MorphologyDepartment of ZoologyStockholm UniversityStockholmSweden
- Faculté des Sciences et IngénierieSorbonne UniversitéParisFrance
| | - Emily Baird
- INSECT LabDivision of Functional MorphologyDepartment of ZoologyStockholm UniversityStockholmSweden
| |
Collapse
|
15
|
Crino OL, Falk S, Katsis AC, Kraft FLOH, Buchanan KL. Mitochondria as the powerhouses of sexual selection: Testing mechanistic links between development, cellular respiration, and bird song. Horm Behav 2022; 142:105184. [PMID: 35596967 DOI: 10.1016/j.yhbeh.2022.105184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
The developmental environment can affect the expression of sexually selected traits in adulthood. The physiological mechanisms that modulate such effects remain a matter of intense debate. Here, we test the role of the developmental environment in shaping adult mitochondrial function and link mitochondrial function to expression of a sexually selected trait in males (bird song). We exposed male zebra finches (Taeniopygia guttata) to corticosterone (CORT) treatment during development. After males reached adulthood, we quantified mitochondrial function from whole red blood cells and measured baseline CORT and testosterone levels, body condition/composition, and song structure. CORT-treated males had mitochondria that were less efficient (FCRL/R) and used a lower proportion of maximum capacity (FCRR/ETS) than control males. Additionally, CORT-treated males had higher baseline levels of CORT as adults compared to control males. Using structural equation modelling, we found that the effects of CORT treatment during development on adult mitochondrial function were indirect and modulated by baseline CORT levels, which are programmed by CORT treatment during development. Developmental treatment also had an indirect effect on song peak frequency. Males treated with CORT during development sang songs with higher peak frequency than control males, but this effect was modulated through increased CORT levels and by a decrease in FCRR/ETS. CORT-treated males had smaller tarsi compared to control males; however, there were no associations between body size and measures of song frequency. Here, we provide the first evidence supporting links between the developmental environment, mitochondrial function, and the expression of a sexually selected trait (bird song).
Collapse
Affiliation(s)
- Ondi L Crino
- Research School of Biology, Australian National University, Canberra, ACT, Australia; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.
| | - Steph Falk
- School of Biological Science Monash University, Melbourne, VIC, Australia; Institute of Immunology and Epigenetics, Max Planck Institute, Baden-Württemberg, Germany
| | - Andrew C Katsis
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Fanny-Linn O H Kraft
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
16
|
|
17
|
|
18
|
Naug D, Tait C. Slow-Fast Cognitive Phenotypes and Their Significance for Social Behavior: What Can We Learn From Honeybees? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.766414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognitive variation is proposed to be the fundamental underlying factor that drives behavioral variation, yet it is still to be fully integrated with the observed variation at other phenotypic levels that has recently been unified under the common pace-of-life framework. This cognitive and the resulting behavioral diversity is especially significant in the context of a social group, the performance of which is a collective outcome of this diversity. In this review, we argue about the utility of classifying cognitive traits along a slow-fast continuum in the larger context of the pace-of-life framework. Using Tinbergen’s explanatory framework for different levels of analyses and drawing from the large body of knowledge about honeybee behavior, we discuss the observed interindividual variation in cognitive traits and slow-fast cognitive phenotypes from an adaptive, evolutionary, mechanistic and developmental perspective. We discuss the challenges in this endeavor and suggest possible next steps in terms of methodological, statistical and theoretical approaches to move the field forward for an integrative understanding of how slow-fast cognitive differences, by influencing collective behavior, impact social evolution.
Collapse
|
19
|
Ruiz-Raya F. Ecophysiology of egg rejection in hosts of avian brood parasites: new insights and perspectives. Curr Zool 2021; 67:631-638. [PMID: 34805540 PMCID: PMC8599070 DOI: 10.1093/cz/zoab042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Egg rejection is the most effective and widespread defense used by host species to counteract the extreme fitness costs frequently imposed by obligate avian brood parasites. Yet, the proximate mechanisms underlying between- and within-individual variation in host responses remain poorly explored. Emerging evidence suggests that egg rejection is dependent on individual physiological states, and draws attention to the role of hormones as mediators of flexible antiparasitic responses. In this perspective article, I outline recent advances in our understanding of the proximate factors that mediate egg rejection. I also point out some areas where knowledge remains still lacking, especially those related to the development and maintenance of effective cognitive functions, the potential role of oxidative stress, immunological state, and developmental stressors. I propose new hypotheses that stimulate future research on behavioral host responses toward brood parasitism.
Collapse
Affiliation(s)
- Francisco Ruiz-Raya
- Centro de Investigación Mariña, Universidade de Vigo, GEA, Vigo 36310, Spain
| |
Collapse
|
20
|
Avilés JM, Precioso M, Molina‐Morales M, Martínez JG. Early‐life environmental conditions influence parasitism at adulthood and life‐history of a cuckoo host. OIKOS 2021. [DOI: 10.1111/oik.08876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús Miguel Avilés
- Depto de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC Almería Spain
| | - Marta Precioso
- Depto de Zoología, Facultad de Ciencias, Univ. de Granada Granada Spain
| | | | | |
Collapse
|
21
|
Heinen VK, Benedict LM, Pitera AM, Sonnenberg BR, Bridge ES, Pravosudov VV. Social dominance has limited effects on spatial cognition in a wild food-caching bird. Proc Biol Sci 2021; 288:20211784. [PMID: 34784764 PMCID: PMC8596002 DOI: 10.1098/rspb.2021.1784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Social dominance has long been used as a model to investigate social stress. However, many studies using such comparisons have been performed in captive environments. These environments may produce unnaturally high antagonistic interactions, exaggerating the stress of social subordination and any associated adverse consequences. One such adverse effect concerns impaired cognitive ability, often thought to be associated with social subordination. Here, we tested whether social dominance rank is associated with differences in spatial learning and memory, and in reversal spatial learning (flexibility) abilities in wild food-caching mountain chickadees at different montane elevations. Higher dominance rank was associated with higher spatial cognitive flexibility in harsh environments at higher elevations, but not at lower, milder elevations. By contrast, there were no consistent differences in spatial learning and memory ability associated with dominance rank. Our results suggest that spatial learning and memory ability in specialized food-caching species is a stable trait resilient to social influences. Spatial cognitive flexibility, on the other hand, appears to be more sensitive to environmental influences, including social dominance. These findings contradict those from laboratory studies and suggest that it is critical to investigate the biological consequences of social dominance under natural conditions.
Collapse
Affiliation(s)
| | | | - Angela M. Pitera
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | | | - Eli S. Bridge
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
22
|
Hanley D, Rutledge SL, Villa J. The Perceptual and Cognitive Processes That Govern Egg Rejection in Hosts of Avian Brood Parasites. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.702934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hosts of avian brood parasites are under intense selective pressure to prevent or reduce the cost of parasitism. Many have evolved refined egg discrimination abilities, which can select for eggshell mimicry in their parasite. A classic assumption underlying these coevolutionary dynamics is that host egg recognition depends on the perceivable difference between their own eggs and those of their parasite. Over the past two decades, the receptor noise-limited (RNL) model has contributed to our understanding of these coevolutionary interactions by providing researchers a method to predict a host’s ability to discriminate a parasite’s egg from its own. Recent research has shown that some hosts are more likely to reject brown eggs than blue eggs, regardless of the perceived differences to their own. Such responses suggest that host egg recognition may be due to perceptual or cognitive processes not currently predictable by the RNL model. In this perspective, we discuss the potential value of using the RNL model as a null model to explore alternative perceptual processes and higher-order cognitive processes that could explain how and why some hosts make seemingly counter-intuitive decisions. Further, we outline experiments that should be fruitful for determining the perceptual and cognitive processing used by hosts for egg recognition tasks.
Collapse
|
23
|
Operant conditioning in antlion larvae and its impairment following exposure to elevated temperatures. Anim Cogn 2021; 25:509-518. [PMID: 34689302 PMCID: PMC9107435 DOI: 10.1007/s10071-021-01570-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 10/31/2022]
Abstract
Although ambush predators were previously considered limited in their cognitive abilities compared to their widely foraging relatives, there is accumulating evidence it does not hold true. Pit-building antlions are already known to associate vibrations in the sand with the arrival of prey. We used a T-maze and successfully trained antlions to turn right or left against their initial turning bias, leading to a suitable substrate for digging traps. We present here the first evidence for operant conditioning and T-maze solving in antlions. Furthermore, we show that exposure of second instar larvae to an elevated temperature led to impaired retention of what was learned in a T-maze when tested after moulting into the third instar, compared to larvae raised under a more benign temperature. We suggest that climate change, involving an increase in mean temperatures as well as rare events (e.g., heatwaves) might negatively affect the retention of operant conditioning in antlions, alongside known, more frequently studied effects, such as changes in body size and distribution.
Collapse
|
24
|
Rochais C, Hotte H, Pillay N. Seasonal variation in reversal learning reveals greater female cognitive flexibility in African striped mice. Sci Rep 2021; 11:20061. [PMID: 34625648 PMCID: PMC8501043 DOI: 10.1038/s41598-021-99619-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Cognitive flexibility describes the ability of animals to alter cognitively mediated behaviour in response to changing situational demands, and can vary according to prevailing environemental conditions and individual caracteristics. In the present study, we investigated (1) how learning and reversal learning performance changes between seasons, and (2) how cognitive flexibility is related to sex in a free-living small mammal. We studied 107 African striped mice, Rhabdomys pumilio, in an arid semi-desert, 58 during the hot dry summer with low food availability, and 49 during the cold wet winter with higher food availability. We used an escape box task to test for learning and reversal learning performance. We found that learning and reversal learning efficiency varied seasonally by sex: females tested in summer were faster at solving both learning and reversal tasks than males tested in winter. Performance varied within sex: males tested in winter showed faster learning compared to males tested in summer. During reversal learning, females tested in summer were more efficient and solve the task faster compared to females tested in winter. We suggest that seasonal cognitive performance could be related to sex-specific behavioural characteristics of the species, resulting in adaptation for living in harsh environmental conditions.
Collapse
Affiliation(s)
- Céline Rochais
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Hoël Hotte
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.,ANSES, Plant Health Laboratory - Nematology Unit, Domaine de la Motte Au Vicomte, BP 35327, 35653, Le Rheu Cédex, France
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
McLean SL, Yun H, Tedder A, Helfer G. The effect of photoperiod and high fat diet on the cognitive response in photoperiod-sensitive F344 rats. Physiol Behav 2021; 239:113496. [PMID: 34118272 DOI: 10.1016/j.physbeh.2021.113496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022]
Abstract
In many species, seasonal changes in day length (photoperiod) have profound effects on physiology and behavior. In humans, these include cognitive function and mood. Here we investigated the effect of photoperiod and high fat diets on cognitive deficits, as measured by novel object recognition, in the photoperiod-sensitive F344 rat, which exhibits marked natural changes in growth, body weight and food intake in response to photoperiod. 32 male juvenile F344 rats were housed in either long or short photoperiod and fed either a high fat or nutrient-matched chow diet. Rats were tested in the novel object recognition test before photoperiod and diet intervention and re-tested 28 days after intervention. In both tests during the acquisition trials there was no significant difference in exploration levels of the left and right objects in the groups. Before intervention, all groups showed a significant increase in exploration of the novel object compared to the familiar object. However, following the photoperiod and diet interventions the retention trial revealed that only rats in the long photoperiod-chow group explored the novel object significantly more than the familiar object, whereas all other groups showed no significant preference. These results suggest that changing rats to short photoperiod impairs their memory regardless of diet. The cognitive performance of rats on long photoperiod-chow remained intact, whereas the high fat diet in the long photoperiod group induced a memory impairment. In conclusion, our study suggests that photoperiod and high fat diet have an impact on object recognition in photoperiod-sensitive F344 rats.
Collapse
Affiliation(s)
- Samantha L McLean
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Haesung Yun
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Andrew Tedder
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Gisela Helfer
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK.
| |
Collapse
|
26
|
Seasonal changes in problem-solving in wild African striped mice. Anim Cogn 2021; 25:401-413. [PMID: 34591197 DOI: 10.1007/s10071-021-01559-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/20/2021] [Accepted: 09/04/2021] [Indexed: 10/20/2022]
Abstract
Innovative problem-solving ability is a predictor of whether animals can successfully cope with environmental changes. These environmental changes can test the limits of animals, for example when energy availability decreases seasonally and, hence, problem-solving performance decreases because less energy is available for cognitive processes. Here, we investigated: (1) how problem-solving performance changed between seasons that differed significantly in food availability; (2) whether these changes were related to environmentally induced physiological changes in blood glucose and ketone levels, indicators of energy availability; and (3) whether individual variation in problem-solving was related to sex differences. We studied 99 free-ranging African striped mice, Rhabdomys pumilio, in the Succulent Karoo, South Africa, 55 during the hot dry summer with low food availability and 44 during the cold wet winter with higher food availability. We measured their problem-solving abilities using a food extraction task and found no seasonal differences in problem-solving success. However, mice solved the problem faster in summer versus winter. In summer, food availability was reduced and blood ketones increased but there was no seasonal difference in blood glucose levels. There were no correlation between problem-solving performance and blood glucose or ketone levels. Overall, more males solved the task than females. It appears that in striped mice cognitive functions can be maintained under harsh environmental conditions.
Collapse
|
27
|
Kahnau P, Guenther A, Boon MN, Terzenbach JD, Hanitzsch E, Lewejohann L, Brust V. Lifetime Observation of Cognition and Physiological Parameters in Male Mice. Front Behav Neurosci 2021; 15:709775. [PMID: 34539359 PMCID: PMC8442583 DOI: 10.3389/fnbeh.2021.709775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
Laboratory mice are predominantly used for one experiment only, i.e., new mice are ordered or bred for every new experiment. Moreover, most experiments use relatively young mice in the range of late adolescence to early adulthood. As a consequence, little is known about the day-to-day life of adult and aged laboratory mice. Here we present a long-term data set with three consecutive phases conducted with the same male mice over their lifetime in order to shed light on possible long-term effects of repeated cognitive stimulation. One third of the animals was trained by a variety of learning tasks conducted up to an age of 606 days. The mice were housed in four cages with 12 animals per cage; only four mice per cage had to repeatedly solve cognitive tasks for getting access to water using the IntelliCage system. In addition, these learner mice were tested in standard cognitive tests outside their home-cage. The other eight mice served as two control groups living in the same environment but without having to solve tasks for getting access to water. One control group was additionally placed on the test set-ups without having to learn the tasks. Next to the cognitive tasks, we took physiological measures (body mass, resting metabolic rate) and tested for dominance behavior, and attractivity in a female choice experiment. Overall, the mice were under surveillance until they died a natural death, providing a unique data set over the course of virtually their entire lives. Our data showed treatment differences during the first phase of our lifetime data set. Young learner mice showed a higher activity, less growth and resting metabolic rate, and were less attractive for female mice. These effects, however, were not preserved over the long-term. We also did not find differences in dominance or effects on longevity. However, we generated a unique and valuable set of long-term behavioral and physiological data from a single group of male mice and note that our long-term data contribute to a better understanding of the behavioral and physiological processes in male C57Bl/6J mice.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Anja Guenther
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Marcus Nicolaas Boon
- Department for Electrical Engineering and Computer Science, Modeling of Cognitive Processes, Technische Universität Berlin, Berlin, Germany
- Exzellenzcluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
| | | | - Eric Hanitzsch
- Behavioral Phenotyping Unit, University of Osnabrück, Osnabrück, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Animal Behavior and Laboratory Animal Science, Institute of Animal Welfare, Freie Universität Berlin, Berlin, Germany
| | - Vera Brust
- Behavioral Phenotyping Unit, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
28
|
Clegg MR, Wacker A, Spijkerman E. Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates. FRONTIERS IN PLANT SCIENCE 2021; 12:707541. [PMID: 34512692 PMCID: PMC8424187 DOI: 10.3389/fpls.2021.707541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics.
Collapse
Affiliation(s)
- Mark R. Clegg
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alexander Wacker
- Department of Theoretical Aquatic Ecology and Ecophysiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Animal Ecology Group, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Elly Spijkerman
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
29
|
Lambert CT, Guillette LM. The impact of environmental and social factors on learning abilities: a meta-analysis. Biol Rev Camb Philos Soc 2021; 96:2871-2889. [PMID: 34342125 DOI: 10.1111/brv.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Since the 1950s, researchers have examined how differences in the social and asocial environment affect learning in rats, mice, and, more recently, a variety of other species. Despite this large body of research, little has been done to synthesize these findings and to examine if social and asocial environmental factors have consistent effects on cognitive abilities, and if so, what aspects of these factors have greater or lesser impact. Here, we conducted a systematic review and meta-analysis examining how different external environmental features, including the social environment, impact learning (both speed of acquisition and performance). Using 531 mean-differences from 176 published articles across 27 species (with studies on rats and mice being most prominent) we conducted phylogenetically corrected mixed-effects models that reveal: (i) an average absolute effect size |d| = 0.55 and directional effect size d = 0.34; (ii) interventions manipulating the asocial environment result in larger effects than social interventions alone; and (iii) the length of the intervention is a significant predictor of effect size, with longer interventions resulting in larger effects. Additionally, much of the variation in effect size remained unexplained, possibly suggesting that species differ widely in how they are affected by environmental interventions due to varying ecological and evolutionary histories. Overall our results suggest that social and asocial environmental factors do significantly affect learning, but these effects are highly variable and perhaps not always as predicted. Most notably, the type (social or asocial) and length of interventions are important in determining the strength of the effect.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
30
|
Abstract
The search for human cognitive uniqueness often relied on low ecological tests with subjects experiencing unnatural ontogeny. Recently, neuroscience demonstrated the significance of a rich environment on the development of brain structures and cognitive abilities. This stresses the importance to consider the prior knowledge that subjects bring in any experiment. Second, recent developments in multivariate statistics control precisely for a number of factors and their interactions. Making controls in natural observations equivalent and sometimes superior to captive experimental studies without the drawbacks of the latter methods. Thus, we can now investigate complex cognition by accounting for many different factors, as required when solving tasks in nature. Combining both progresses allows us to move toward an “experience-specific cognition”, recognizing that cognition varies extensively in nature as individuals adapt to the precise challenges they experience in life. Such cognitive specialization makes cross-species comparisons more complex, while potentially identifying human cognitive uniqueness.
Collapse
|
31
|
Moran NP, Sánchez‐Tójar A, Schielzeth H, Reinhold K. Poor nutritional condition promotes high‐risk behaviours: a systematic review and meta‐analysis. Biol Rev Camb Philos Soc 2020; 96:269-288. [DOI: 10.1111/brv.12655] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Nicholas P. Moran
- Evolutionary Biology Bielefeld University Morgenbreede 45 Bielefeld 33615 Germany
- Centre for Ocean Life DTU‐Aqua Technical University of Denmark Building 201, Kemitorvet Kgs. Lyngby 2800 Denmark
| | | | - Holger Schielzeth
- Institute of Ecology and Evolution Friedrich Schiller University Jena Dornburger Straße 159 Jena 07743 Germany
| | - Klaus Reinhold
- Evolutionary Biology Bielefeld University Morgenbreede 45 Bielefeld 33615 Germany
| |
Collapse
|
32
|
Álvarez-Quintero N, Velando A, Kim SY. Long-Lasting Negative Effects of Learning Tasks During Early Life in the Three-Spined Stickleback. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.562404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
33
|
Abstract
Human decisions are based on finite information, which makes them inherently imprecise. But what determines the degree of such imprecision? Here, we develop an efficient coding framework for higher-level cognitive processes in which information is represented by a finite number of discrete samples. We characterize the sampling process that maximizes perceptual accuracy or fitness under the often-adopted assumption that full adaptation to an environmental distribution is possible, and show how the optimal process differs when detailed information about the current contextual distribution is costly. We tested this theory on a numerosity discrimination task, and found that humans efficiently adapt to contextual distributions, but in the way predicted by the model in which people must economize on environmental information. Thus, understanding decision behavior requires that we account for biological restrictions on information coding, challenging the often-adopted assumption of precise prior knowledge in higher-level decision systems.
Collapse
Affiliation(s)
- Joseph A Heng
- Department of Health Sciences and Technology, Federal Institute of Technology (ETH)ZurichSwitzerland
| | - Michael Woodford
- Department of Economics, Columbia UniversityNew YorkUnited States
| | - Rafael Polania
- Department of Health Sciences and Technology, Federal Institute of Technology (ETH)ZurichSwitzerland
| |
Collapse
|
34
|
Chimpanzees' technical reasoning: Taking fieldwork and ontogeny seriously. Behav Brain Sci 2020; 43:e158. [PMID: 32772999 DOI: 10.1017/s0140525x2000028x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Following the tradition of comparing humans with chimpanzees placed under unfavorable conditions, the authors suggest many uniquely human technological abilities. However, chimpanzees use spontaneously tools in nature to achieve many different goals demonstrating technological skills and reasoning contradicting the authors contrast. Chimpanzees and humans develop skills through the experiences faced during their upbringing and neglecting this leads to fake conclusions.
Collapse
|
35
|
Burns MP, Cavallaro FD, Saltz JB. Does Divergence in Habitat Breadth Associate with Species Differences in Decision Making in Drosophila Sechellia and Drosophila Simulans? Genes (Basel) 2020; 11:genes11050528. [PMID: 32397481 PMCID: PMC7288451 DOI: 10.3390/genes11050528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
Decision making is involved in many behaviors contributing to fitness, such as habitat choice, mate selection, and foraging. Because of this, high decision-making accuracy (i.e., selecting the option most beneficial for fitness) should be under strong selection. However, decision making is energetically costly, often involving substantial time and energy to survey the environment to obtain high-quality information. Thus, for high decision making accuracy to evolve, its benefits should outweigh its costs. Inconsistency in the net benefits of decision making across environments is hypothesized to be an important means for maintaining variation in this trait. However, very little is known about how environmental factors influence the evolution of decision making to produce variation among individuals, genotypes, and species. Here, we compared two recently diverged species of Drosophila differing substantially in habitat breadth and degree of environmental predictability and variability: Drosophilasechellia and Drosophilasimulans. We found that the species evolving under higher environmental unpredictability and variability showed higher decision-making accuracy, but not higher environmental sampling.
Collapse
|
36
|
Cauchoix M, Chaine AS, Barragan-Jason G. Cognition in Context: Plasticity in Cognitive Performance in Response to Ongoing Environmental Variables. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
37
|
|
38
|
Spatial learning in captive and wild-born lizards: heritability and environmental effects. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2805-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Bircher N, Naguib M. How Songbird Females Sample Male Song: Communication Networks and Mate Choice. CODING STRATEGIES IN VERTEBRATE ACOUSTIC COMMUNICATION 2020. [DOI: 10.1007/978-3-030-39200-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
How does cognitive performance change in relation to seasonal and experimental changes in blood glucose levels? Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
|
42
|
Rice MA, Sanín G, Ophir AG. Social context alters spatial memory performance in free-living male prairie voles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190743. [PMID: 31827827 PMCID: PMC6894606 DOI: 10.1098/rsos.190743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Spatial memory is crucial for mating success because it enables males to locate potential mates and potential competitors in space. Intraspecific competition and its varying intensity under certain conditions are potentially important for shaping spatial memory. For example, spatial memory could enable males to know where competitors are (contest competition), it could help males find mating partners (scramble competition) or both. We manipulated the intensity of intraspecific competition in two distinct contexts by altering the operational sex ratio of prairie voles (Microtus ochrogaster) living in outdoor enclosures by creating male- and female-biased sex ratios. After living freely under these contexts for four weeks, we compared males' performance in a laboratory spatial memory test. Males in the male-biased context demonstrated better spatial memory performance than males in the female-biased context. Notably, these data show that in spite of experiencing equally complex spatial contexts (i.e. natural outdoor enclosures), it was the social context that influenced spatial cognition, and it did so in a manner consistent with the hypothesis that spatial memory is particularly relevant for male-male interactions.
Collapse
Affiliation(s)
- Marissa A. Rice
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Gloria Sanín
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alexander G. Ophir
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
43
|
Mazza V, Dammhahn M, Eccard JA, Palme R, Zaccaroni M, Jacob J. Coping with style: individual differences in responses to environmental variation. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2760-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Boogert NJ, Madden JR, Morand-Ferron J, Thornton A. Measuring and understanding individual differences in cognition. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0280. [PMID: 30104425 DOI: 10.1098/rstb.2017.0280] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Individuals vary in their cognitive performance. While this variation forms the foundation of the study of human psychometrics, its broader importance is only recently being recognized. Explicitly acknowledging this individual variation found in both humans and non-human animals provides a novel opportunity to understand the mechanisms, development and evolution of cognition. The papers in this special issue highlight the growing emphasis on individual cognitive differences from fields as diverse as neurobiology, experimental psychology and evolutionary biology. Here, we synthesize this body of work. We consider the distinct challenges in quantifying individual differences in cognition and provide concrete methodological recommendations. In particular, future studies would benefit from using multiple task variants to ensure they target specific, clearly defined cognitive traits and from conducting repeated testing to assess individual consistency. We then consider how neural, genetic, developmental and behavioural factors may generate individual differences in cognition. Finally, we discuss the potential fitness consequences of individual cognitive variation and place these into an evolutionary framework with testable hypotheses. We intend for this special issue to stimulate researchers to position individual variation at the centre of the cognitive sciences.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Neeltje J Boogert
- Centre for Ecology and Conservation, Daphne du Maurier Building, University of Exeter, Penryn TR10 9FE, UK
| | - Joah R Madden
- Department of Psychology, Washington Singer Labs, University of Exeter, Exeter EX4 4QG, UK
| | - Julie Morand-Ferron
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada, K1N 6N5
| | - Alex Thornton
- Centre for Ecology and Conservation, Daphne du Maurier Building, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
45
|
Herrera-Ferrá K, Saruwatari Zavala G, Nicolini Sánchez H, Pinedo Rivas H. Neuroética en México: Reflexiones médicas, legales y socioculturales. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bioet.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Macario A, Croft DP, Darden SK. Male phenotypic diversity experienced during ontogeny mediates female mate choice in guppies. Behav Ecol 2019. [DOI: 10.1093/beheco/ary186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alessandro Macario
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Exeter, UK
| | - Darren P Croft
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Exeter, UK
| | - Safi K Darden
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Exeter, UK
| |
Collapse
|
47
|
Munch KL, Noble DWA, Botterill-James T, Koolhof IS, Halliwell B, Wapstra E, While GM. Maternal effects impact decision-making in a viviparous lizard. Biol Lett 2019; 14:rsbl.2017.0556. [PMID: 29643218 DOI: 10.1098/rsbl.2017.0556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/21/2018] [Indexed: 11/12/2022] Open
Abstract
Stressful conditions experienced during early development can have deleterious effects on offspring morphology, physiology and behaviour. However, few studies have examined how developmental stress influences an individual's cognitive phenotype. Using a viviparous lizard, we show that the availability of food resources to a mother during gestation influences a key component of her offspring's cognitive phenotype: their decision-making. Offspring from females who experienced low resource availability during gestation did better in an anti-predatory task that relied on spatial associations to guide their decisions, whereas offspring from females who experienced high resource availability during gestation did better in a foraging task that relied on colour associations to inform their decisions. This shows that the prenatal environment can influence decision-making in animals, a cognitive trait with functional implications later in life.
Collapse
Affiliation(s)
- Kirke L Munch
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Daniel W A Noble
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia.,School of Biological, Earth, and Environmental Sciences, Ecology and Evolution Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Iain S Koolhof
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Ben Halliwell
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Erik Wapstra
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Geoffrey M While
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
48
|
Kriengwatana BP. Learning strategies and the social brain: Missing elements in the link between developmental stress, song and cognition? Integr Zool 2019; 14:158-171. [PMID: 30688022 DOI: 10.1111/1749-4877.12379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bird songs may advertise aspects of cognition because song learning and learning speed in cognitive tasks are both affected by early-life environments. However, such relationships remain ambiguous in the literature. Here, I discuss 2 lines of research that may help to demystify links between song learning and cognition. First, learning strategies should be considered when assessing performance to ensure that individual differences in learning ability are not masked by individual differences in learning strategies. Second, song characteristics should be associated with social behavior because songs have a social purpose and, consequently, should be strongly related at functional and neural levels. Finally, if song learning and cognitive abilities are correlated because they develop concurrently and/or share or compete for the same resources, I discuss ways glucocorticoids may link early-life stress, song learning and cognitive ability, focusing particularly on oxidative stress as a potential mechanism.
Collapse
|
49
|
Eyck HJ, Buchanan KL, Crino OL, Jessop TS. Effects of developmental stress on animal phenotype and performance: a quantitative review. Biol Rev Camb Philos Soc 2019; 94:1143-1160. [DOI: 10.1111/brv.12496] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Harrison J.F. Eyck
- Centre for Integrative Ecology, Deakin University, School of Life and Environmental Sciences, 75 Pigdons rd; Geelong VIC 3216 Australia
| | - Katherine L. Buchanan
- Centre for Integrative Ecology, Deakin University, School of Life and Environmental Sciences, 75 Pigdons rd; Geelong VIC 3216 Australia
| | - Ondi L. Crino
- Centre for Integrative Ecology, Deakin University, School of Life and Environmental Sciences, 75 Pigdons rd; Geelong VIC 3216 Australia
| | - Tim S. Jessop
- Centre for Integrative Ecology, Deakin University, School of Life and Environmental Sciences, 75 Pigdons rd; Geelong VIC 3216 Australia
| |
Collapse
|
50
|
Bell BA, Phan ML, Meillère A, Evans JK, Leitner S, Vicario DS, Buchanan KL. Influence of early-life nutritional stress on songbird memory formation. Proc Biol Sci 2018; 285:rspb.2018.1270. [PMID: 30257911 DOI: 10.1098/rspb.2018.1270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/31/2018] [Indexed: 11/12/2022] Open
Abstract
In birds, vocal learning enables the production of sexually selected complex songs, dialects and song copy matching. But stressful conditions during development have been shown to affect song production and complexity, mediated by changes in neural development. However, to date, no studies have tested whether early-life stress affects the neural processes underlying vocal learning, in contrast to song production. Here, we hypothesized that developmental stress alters auditory memory formation and neural processing of song stimuli. We experimentally stressed male nestling zebra finches and, in two separate experiments, tested their neural responses to song playbacks as adults, using either immediate early gene (IEG) expression or electrophysiological response. Once adult, nutritionally stressed males exhibited a reduced response to tutor song playback, as demonstrated by reduced expressions of two IEGs (Arc and ZENK) and reduced neuronal response, in both the caudomedial nidopallium (NCM) and mesopallium (CMM). Furthermore, nutritionally stressed males also showed impaired neuronal memory for novel songs heard in adulthood. These findings demonstrate, for the first time, that developmental conditions affect auditory memories that subserve vocal learning. Although the fitness consequences of such memory impairments remain to be determined, this study highlights the lasting impact early-life experiences can have on cognitive abilities.
Collapse
Affiliation(s)
- B A Bell
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - M L Phan
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - A Meillère
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - J K Evans
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - S Leitner
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - D S Vicario
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - K L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|