1
|
Slotte A, Salthaug A, Vatnehol S, Johnsen E, Mousing EA, Høines Å, Broms CT, Bjarnason S, Homrum EÍ, Skagseth Ø, Stenevik EK. Herring spawned poleward following fishery-induced collective memory loss. Nature 2025:10.1038/s41586-025-08983-3. [PMID: 40335699 DOI: 10.1038/s41586-025-08983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
Entrainment is a process in schooling migratory fish whereby routes to suitable habitats are transferred from repeat spawners to recruits over generations through social learning1. Selective fisheries targeting older fish may therefore result in collective memory loss and disrupted migration culture2. The world's largest herring (Clupea harengus) population has traditionally migrated up to 1,300 km southward from wintering areas in northern Norwegian waters to spawn at the west coast. This conservative strategy is proposed to be a trade-off between high energetic swimming costs and enhanced larval survival under improved growth conditions3. Here an analysis of extensive data from fisheries, scientific surveys and tagging experiments demonstrates an abrupt approximately 800-km poleward shift in main spawning. The new migration was established by a large cohort recruiting when the abundance of older fish was critically low due to age-selective fisheries. The threshold of memory required for cultural transfer was probably not met-a situation that was further exacerbated by reduced spatiotemporal overlap between older fish and recruits driven by migration constraints and climate change. Finally, a minority of survivors from older generations adopted the migration culture from the recruits instead of the historically opposite. This may have profound consequences for production and coastal ecology, challenging the management of migratory schooling fish.
Collapse
Affiliation(s)
- Aril Slotte
- Institute of Marine Research (IMR), Bergen, Norway.
| | - Are Salthaug
- Institute of Marine Research (IMR), Bergen, Norway
| | | | | | - Erik Askov Mousing
- Institute of Marine Research (IMR), Bergen, Norway
- Norwegian Meteorological Institute (NMI), Oslo, Norway
| | - Åge Høines
- Institute of Marine Research (IMR), Bergen, Norway
| | | | | | - Eydna Í Homrum
- Faroe Marine Research Institute (FAMRI), Tórshavn, Faroe Islands
| | | | | |
Collapse
|
2
|
Georgiou F, Buhl C, Green JEF, Lamichhane B, Thamwattana N. Including population and environmental dynamic heterogeneities in continuum models of collective behaviour with applications to locust foraging and group structure. PLoS Comput Biol 2025; 21:e1011469. [PMID: 40233299 PMCID: PMC11999712 DOI: 10.1371/journal.pcbi.1011469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/09/2025] [Indexed: 04/17/2025] Open
Abstract
Collective behaviour occurs at all levels of the natural world, from cells aggregating to form tissues, to locusts interacting to form large and destructive plagues. These complex behaviours arise from relatively simple interactions amongst individuals and between individuals and their environment. For simplicity, mathematical models of these phenomena often assume that the population is homogeneous. However, population heterogeneity arising due to the internal state of individuals can affect these interactions and thus plays a role in the dynamics of group formation. In this paper, we present a partial differential equation model that accounts for this heterogeneity by introducing a state space that models an individual's internal state (e.g. age, level of hunger) which affects its movement characteristics. We then apply the model to a concrete example of locust foraging to investigate the dynamic interplay of food availability, hunger, and degree of gregarisation (level of sociability) on locust group formation and structure. We find that including hunger lowers group density and raises the percentage of the population that needs to be gregarious for group formation. Within the group structure itself we find that the most gregarious and satiated locusts tend to be located towards the centre with hunger driving locusts towards the edges of the group. These two effects may combine to give a simple mechanism for locust group dispersal, in that hunger lowers the group density, which in turn lowers the gregarisation, further lowering density and creating a feedback loop. We also note that a previously found optimal food patch size for group formation may be driven by hunger. In addition to our locust results, we provide more general results and methods in the attached appendices.
Collapse
Affiliation(s)
- Fillipe Georgiou
- Institute for Mathematical Innovation, University of Bath, Bath, United Kingdom
| | - Camille Buhl
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - J. E. F. Green
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Bishnu Lamichhane
- School of Information and Physical Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Ngamta Thamwattana
- School of Information and Physical Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
3
|
Bernardi S, Painter KJ. The Impact of Different Degrees of Leadership on Collective Navigation in Follower-Leader Systems. Bull Math Biol 2025; 87:64. [PMID: 40192893 PMCID: PMC11976358 DOI: 10.1007/s11538-025-01435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025]
Abstract
In both animal and cell populations, the presence of leaders often underlies the success of collective migration processes, which we characterise by a group maintaining a cohesive configuration that consistently moves toward a target. We extend a recent non-local hyperbolic model for follower-leader systems to investigate different degrees of leadership. Specifically, we consider three levels of leadership: indifferent leaders, who do not alter their movement according to followers; observant leaders, who attempt to remain connected with the followers, but do not allow followers to affect their desired alignment; and persuadable leaders, who integrate their attempt to reach some target with the alignment of all neighbours, both followers and leaders. A combination of analysis and numerical simulations is used to investigate under which conditions each degree of leadership allows successful collective movement to a destination. We find that the indifferent leaders' strategy can result in a cohesive and target-directed migration only for short times. Observant and persuadable leaders instead provide robust guidance, showing that the optimal leader behavior depends on the connection between the migrating individuals: if alignment is low, greater follower influence on leaders is beneficial for successful guidance; otherwise, it can be detrimental and may generate various unsuccessful swarming dynamics.
Collapse
Affiliation(s)
- Sara Bernardi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
- Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Corso Fiume 4, 10133, Turin, Italy.
| | - Kevin J Painter
- Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Viale Pier Andrea Mattioli 39, 10125, Turin, Italy
| |
Collapse
|
4
|
Taborsky M. The evolution of division of labour: preconditions and evolutionary feedback. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230262. [PMID: 40109117 PMCID: PMC11923618 DOI: 10.1098/rstb.2023.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 03/22/2025] Open
Abstract
Division of Labour (DoL) among group members reflects the pinnacle of social complexity. The synergistic effects created by task specialization and the sharing of duties benefitting the group raise the efficiency of the acquisition, use, management and defence of resources by a fundamental step above the potential of individual agents. At the same time, it may stabilize societies because of the involved interdependence among collaborators. Here, I review the conditions associated with the emergence of DoL, which include the existence of (i) sizeable groups with enduring membership; (ii) individual specialization improving the efficiency of task performance; and (iii) low conflict of interest among group members owing to correlated payoffs. This results in (iv) a combination of intra-individual consistency with inter-individual variance in carrying out different tasks, which creates (v) some degree of mutual interdependence among group members. DoL typically evolves 'bottom-up' without external regulatory forces, but the latter may gain importance at a later stage of the evolution of social complexity. Owing to the involved feedback processes, cause and effect are often difficult to disentangle in the evolutionary trajectory towards structured societies with well-developed DoL among their members. Nevertheless, the emergence of task specialization and DoL may entail a one-way street towards social complexity, with retrogression getting increasingly difficult the more individual agents depend on each other at progressing stages of social evolution.This article is part of the theme issue 'Division of labour as key driver of social evolution'.
Collapse
Affiliation(s)
- Michael Taborsky
- Behavioural Ecology, University of Bern, Hinterkappelen, CH-3032, Switzerland
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, D-78467, Germany
- Institute for Advanced Study Berlin, (Wissenschaftskolleg zu Berlin), Berlin, D-14193, Germany
| |
Collapse
|
5
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The Role of Androgens and Estrogens in Social Interactions and Social Cognition. Neuroscience 2025; 568:476-502. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, Canada; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Canada.
| |
Collapse
|
6
|
Liu L, Liu L, Yuan Z, Zhao W, Huang L, Luo X, Li F, Zheng H. Enantioselective disruption of circadian rhythm behavior in goldfish (Carassius auratus) induced by chiral fungicide triadimefon at environmentally-relevant concentration. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136891. [PMID: 39708603 DOI: 10.1016/j.jhazmat.2024.136891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The pollution of triadimefon (TDF) fungicides significantly hinders the "One Health" frame achievement. However, the enantioselective effects of chiral TDF on the circadian rhythm of fish remained unclear. Herein, TDF enantiomers (R(-)-TDF and S(+)-TDF) and racemic Rac-TDF were selected to investigate their enantioselective effects and mechanisms on circadian rhythm of goldfish (Carassius auratus) at an environmentally-relevant concentration (100 µg L⁻¹). S(+)-TDF reduced the diurnal-nocturnal differences in schooling behavior more strongly than R(-)-TDF, proving the enantioselectively weakened circadian rhythm of goldfish by TDF. S(+)-TDF more preferentially bioaccumulated in goldfish than R(-)-TDF, mainly contributed to the enantioselectively disrupted circadian rhythm. On one hand, TDF enantiomers in brains differentially inhibited neuronal activity, leading to cholinergic system dysfunction. On the other hand, TDF enantiomers in intestines differentially disrupted intestinal barriers, thus potentially dysregulating the "brain-gut" axis. Importantly, the commercial probiotics alleviated the behavioral disorder, indirectly confirming that the dysbiosis of intestinal bacteria contributed to the TDF-induced circadian rhythm disruption. These findings provide novel insights into the enantioselective disruption of fish circadian rhythm behaviors by chiral fungicides at enantiomer levels, and offer novel strategies for early assessing the ecological risks of chiral agrochemicals in aquatic ecosystems.
Collapse
Affiliation(s)
- Linjia Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China.
| | - Zixi Yuan
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Wenting Zhao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Liyan Huang
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
| |
Collapse
|
7
|
Zhang J, Qu Q, Chen X. Understanding collective behavior in biological systems through potential field mechanisms. Sci Rep 2025; 15:3709. [PMID: 39880896 PMCID: PMC11779866 DOI: 10.1038/s41598-025-88440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
Collective behavior in biological systems emerges from local interactions among individuals, enabling groups to adapt to dynamic environments. Traditional modeling approaches, such as bottom-up and top-down models, have limitations in accurately representing these complex interactions. We propose a novel potential field mechanism that integrates local interactions and environmental influences to explain collective behavior. This study introduces dynamic potential fields, where individuals perceive and respond to local potential fields generated by environmental cues and other individuals. We develop a mathematical framework combining distributed learning and swarm control to simulate and analyze collective behavior under varying conditions. Our simulations span a variety of environmental conditions, including standard environments where organisms interact under typical conditions, high noise environments where interactions are disrupted by random fluctuations, high density environments with increased competition for space, high risk environments featuring areas of strong negative potential field, and multiple resource environments with varying degrees of resource availability. These simulations demonstrate the adaptability and resilience of biological groups to changing and challenging conditions. Results reveal how potential fields facilitate the emergence of stable and coordinated behaviors, providing insights into self-organization, cooperation, and competition in nature. This framework enhances our understanding of collective behavior and has implications for bio-robotics, distributed systems, and complex networks.
Collapse
Affiliation(s)
- Junqiao Zhang
- School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Qiang Qu
- School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Xuebo Chen
- School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
| |
Collapse
|
8
|
Fröhlich M, Boeckx C, Tennie C. The role of exploration and exploitation in primate communication. Proc Biol Sci 2025; 292:20241665. [PMID: 39837521 PMCID: PMC11750386 DOI: 10.1098/rspb.2024.1665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
The concepts of social learning and exploration have been central to debates in comparative cognition research. While their roles in the origins of human cumulative culture on the one hand and creativity on the other have been highlighted, the two concepts have mostly been studied separately. In this article, we examine the relationship between adopting similar or different behaviours within a group, focusing on how exploration and exploitation shape primate communication systems. Using a comparative approach, we discuss how similarity and differentiation of communicative behaviour can be viewed as two endpoints on a continuum, impacting both individual- and group-level behavioural variation. While group-level variation is evident in some ape behaviours (e.g. foraging traditions), individual variation in communicative behaviour appears to outweigh group-level differences, making a widespread communicative culture in apes unlikely. Drawing parallels to language acquisition in human infants, we propose that ape communication follows an exploration-exploitation trajectory, with initial exploration gradually giving way to focused exploitation of genetically predisposed and/or individually developed communicative repertoires. By integrating the individual and social learning processes underlying communicative behaviour, we can gain a deeper understanding of how exploration-exploitation tensions shape communication systems across species.
Collapse
Affiliation(s)
- Marlen Fröhlich
- Paleoanthropology, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Rümelinstrasse 23, Tübingen72070, Germany
- DFG Centre for Advanced Studies ‘Words Bones, Genes, Tools’, University of Tübingen, Rümelinstrasse 23, Tübingen72070, Germany
| | - Cedric Boeckx
- Section of General Linguistics, University of Barcelona, Gran Via de les Corts Catalanes 585, Barcelona08007, Spain
- Institute of Complex Systems, University of Barcelona, Gran Via de les Corts Catalanes 585, Barcelona08007, Spain
- Institute of Neurosciences, University of Barcelona, Gran Via de les Corts Catalanes 585, Barcelona08007, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, Barcelona08010, Spain
| | - Claudio Tennie
- DFG Centre for Advanced Studies ‘Words Bones, Genes, Tools’, University of Tübingen, Rümelinstrasse 23, Tübingen72070, Germany
- Early Prehistory and Quaternary Ecology, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Hölderlinstrasse 12, Tübingen72074, Germany
| |
Collapse
|
9
|
Liu L, Li X, Luo X, Wang X, Liu L, Yuan Z, Sun C, Zheng H, Xu EG, Li F. Phthalates esters disrupt demersal fish behavior: Unveiling the brain-gut axis impact. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117470. [PMID: 39647374 DOI: 10.1016/j.ecoenv.2024.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
The widespread use of plasticizers like phthalate esters (PAEs) has led to environmental and health concerns. The neurobehavioral toxicity of these compounds in marine environments, particularly regulated by the "brain-gut" axis, remains unclear, especially concerning wild demersal fish of high ecological value. Our investigation into the behavioral effects of three common PAEs, i.e., dimethyl phthalate (DMP), di-n-butyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), and their molecular mechanisms on juvenile Sebastes schlegelii, revealed alarming results from molecular to population levels. After a 20-day foodborne exposure at a low marine environmental concentration (1.0 μg g-1), we observed that all three PAEs significantly increased the thigmotaxis (behavioral tendency to stay close to physical boundaries) and mobility of juvenile fish by 28.2-59.4 % and 23.3-74.5 %, respectively, indicating anxiety-like behavior of fish. DEHP exhibited the most pronounced effects, followed by DBP and DMP. PAEs accumulated in the juvenile fish in the order of brain > liver > gut > muscle, with DEHP showing the highest brain concentrations (23.2 ± 2.98 μg g-1). This accumulation led to oxidative damage, inflammatory responses, and neurodegenerative changes in the optic tectum, resulting in cholinergic system dysfunction. In the gut, PAEs caused inflammatory lesions, disrupted the gut barrier, and altered the gut microbiome, exacerbating the neurotoxicity via "brain-gut" communication. These findings underscore the significant neurobehavioral toxicity of PAEs, emphasizing their critical impact on fish behavior. We also stress the crucial need for further research on fish and other marine species beyond the laboratory scale to fully understand the broader implications of PAE exposure in marine ecosystems and to guide future conservation efforts.
Collapse
Affiliation(s)
- Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xinyao Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Linjia Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zixi Yuan
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China.
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 57200, China
| |
Collapse
|
10
|
Niizato T, Sakamoto K, Mototake YI, Murakami H, Tomaru T. Information structure of heterogeneous criticality in a fish school. Sci Rep 2024; 14:29758. [PMID: 39613773 DOI: 10.1038/s41598-024-79232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Integrated information theory (IIT) assesses the degree of consciousness in living organisms from an information-theoretic perspective. This theory can be generalised to other systems, including those exhibiting criticality. In this study, we applied IIT to the collective behaviour of Plecoglossus altivelis and observed that the group integrity (Φ) was maximised at the critical state. Multiple levels of criticality were identified within the group, existing as distinct subgroups. Moreover, these fragmented critical subgroups coexisted alongside the overall criticality of the group. The distribution of high-criticality subgroups was heterogeneous across both time and space. Notably, core fish in the high-criticality subgroups were less affected by internal and external stimuli compared to those in low-criticality subgroups. These findings are consistent with previous interpretations of critical phenomena and offer a new perspective on the dynamics of an empirical critical state.
Collapse
Affiliation(s)
- Takayuki Niizato
- Department of Intelligent Interaction Technologies, Institute of Systems and Information Engineering, University of Tsukuba, Ibaraki, Japan.
| | - Kotaro Sakamoto
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yoh-Ichi Mototake
- Graduate School of Social Data Science, Hitotsubashi University, Tokyo, Japan
| | - Hisashi Murakami
- Faculty of Information and Human Science, Kyoto Institute of Technology, Kyoto, Japan
| | - Takenori Tomaru
- Faculty of Information and Human Science, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
11
|
Sampaio E, Sridhar VH, Francisco FA, Nagy M, Sacchi A, Strandburg-Peshkin A, Nührenberg P, Rosa R, Couzin ID, Gingins S. Multidimensional social influence drives leadership and composition-dependent success in octopus-fish hunting groups. Nat Ecol Evol 2024; 8:2072-2084. [PMID: 39313585 PMCID: PMC11541198 DOI: 10.1038/s41559-024-02525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/25/2024] [Indexed: 09/25/2024]
Abstract
Collective behaviour, social interactions and leadership in animal groups are often driven by individual differences. However, most studies focus on same-species groups, in which individual variation is relatively low. Multispecies groups, however, entail interactions among highly divergent phenotypes, ranging from simple exploitative actions to complex coordinated networks. Here we studied hunting groups of otherwise-solitary Octopus cyanea and multiple fish species, to unravel hidden mechanisms of leadership and associated dynamics in functional nature and complexity, when divergence is maximized. Using three-dimensional field-based tracking and field experiments, we found that these groups exhibit complex functional dynamics and composition-dependent properties. Social influence is hierarchically distributed over multiscale dimensions representing role specializations: fish (particularly goatfish) drive environmental exploration, deciding where, while the octopus decides if, and when, the group moves. Thus, 'classical leadership' can be insufficient to describe complex heterogeneous systems, in which leadership instead can be driven by both stimulating and inhibiting movement. Furthermore, group composition altered individual investment and collective action, triggering partner control mechanisms (that is, punching) and benefits for the de facto leader, the octopus. This seemingly non-social invertebrate flexibly adapts to heterospecific actions, showing hallmarks of social competence and cognition. These findings expand our current understanding of what leadership is and what sociality is.
Collapse
Affiliation(s)
- Eduardo Sampaio
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Vivek H Sridhar
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Fritz A Francisco
- Science of Intelligence (SCIoI), Technische University, Berlin, Germany
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Máté Nagy
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- MTA-ELTE 'Lendület' Collective Behaviour Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Ada Sacchi
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Ariana Strandburg-Peshkin
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Paul Nührenberg
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Simon Gingins
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Azadian A, Protopopova A. Exploring breed differences in discrimination, reversal learning, and resistance to extinction in the domestic dog (Canis familiaris). Sci Rep 2024; 14:24143. [PMID: 39407031 PMCID: PMC11480501 DOI: 10.1038/s41598-024-76283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Learning is crucial for shaping domestic dogs' behaviour through life experiences, yet not all breeds exhibit the same learning aptitude towards a particular task. The current study's objective was to identify differences in behaviour and learning performance across and within five breed clades and elucidate the underlying factors contributing into these variations. Dogs (n = 111) from five breed clades (UK Rural, Retrievers, Asian Spitz, European Mastiff, and New World) participated in a virtual learning task with their owners. Owners completed validated questionnaires of Impulsivity and Reward Responsiveness. The learning task comprised of reinforcing an arbitrary behaviour (hand-touch) through multiple sessions of Acquisition (reinforcing the hand-touch), Discrimination (reinforcing the hand-touch on one of two hands) and Reversal Learning (reinforcing the hand-touch on the opposite hand), followed by a single session of Extinction (hand-touch not reinforced). Results showed notable differences across the studied breed clades in certain learning and behavioural components. However, the observed disparities may not be entirely attributed to inherent cognitive differences among the breed clades but rather potentially influenced by contextual factors such as the human-dog communication dynamics associated with breeds' cooperativity. Furthermore, breed clades differed in the contributing factors predicting individual learning performances, which could highlight the potential effect of breeds' historical function.
Collapse
Affiliation(s)
- Amin Azadian
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra Protopopova
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Webber Q, Prokopenko C, Kingdon K, Turner J, Vander Wal E. Effects of the social environment on movement-integrated habitat selection. MOVEMENT ECOLOGY 2024; 12:61. [PMID: 39238061 PMCID: PMC11378598 DOI: 10.1186/s40462-024-00502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Movement links the distribution of habitats with the social environment of animals using those habitats. Despite the links between movement, habitat selection, and socioecology, their integration remains a challenge due to lack of shared vocabulary across fields, methodological gaps, and the implicit (rather than explicit) historical development of theory in the fields of social and spatial ecology. Given these challenges can be addressed, opportunity for further study will provide insight about the links between social, spatial, and movement ecology. Here, our objective was to disentangle the roles of habitat selection and social association as drivers of movement in caribou (Rangifer tarandus). METHODS To accomplish our objective, we modelled the relationship between collective movement and selection of foraging habitats using socially informed integrated step selection function (iSSF). Using iSSF, we modelled the effect of social processes, i.e., nearest neighbour distance and social preference, and movement behaviour on patterns of habitat selection. RESULTS By unifying social network analysis with iSSF, we identified movement-dependent social association, where individuals took shorter steps in lichen habitat and foraged in close proximity to more familiar individuals. CONCLUSIONS Our study demonstrates that social preference is context-dependent based on habitat selection and foraging behaviour. We therefore surmise that habitat selection and social association are drivers of collective movement, such that movement is the glue between habitat selection and social association. Here, we put these concepts into practice to demonstrate that movement is the glue connecting individual habitat selection to the social environment.
Collapse
Affiliation(s)
- Quinn Webber
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada.
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| | - Christina Prokopenko
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katrien Kingdon
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Julie Turner
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eric Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
14
|
Mann RP, Bailey JD, Codling EA. Accuracy, rationality and specialization in a generalized model of collective navigation. J R Soc Interface 2024; 21:20240207. [PMID: 39317330 PMCID: PMC11463233 DOI: 10.1098/rsif.2024.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Animal navigation is a key behavioural process, from localized foraging to global migration. Within groups, individuals may improve their navigational accuracy by following those with more experience or knowledge, by pooling information from many directional estimates ('many wrongs') or some combination of these strategies. Previous agent-based simulations have highlighted that homogeneous leaderless groups can improve their collective navigation accuracy when individuals preferentially copy the movement directions of their neighbours while giving a low weighting to their own navigational knowledge. Meanwhile, other studies have demonstrated how specialized leaders may emerge, and that a small number of such individuals can improve group-level navigation performance. However, in general, these earlier results either lack a full mathematical grounding or do not fully consider the effect of individual self-interest. Here we derive and analyse a mathematically tractable model of collective navigation. We demonstrate that collective navigation is compromised when individuals seek to optimize their own accuracy in both homogeneous groups and those with differing navigational abilities. We further demonstrate how heterogeneous navigational strategies (specialized leaders and followers) may evolve within the model. Our results thus unify different lines of research in collective navigation and highlight the importance of individual selection in determining group composition and performance.
Collapse
Affiliation(s)
- Richard P. Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds, UK
| | - Joseph D. Bailey
- School of Mathematics, Statistics and Actuarial Science, University of Essex, Colchester, UK
| | - Edward A. Codling
- School of Mathematics, Statistics and Actuarial Science, University of Essex, Colchester, UK
| |
Collapse
|
15
|
Miles J, Vowles AS, Kemp PS. The role of collective behaviour in fish response to visual cues. Behav Processes 2024; 220:105079. [PMID: 39025319 DOI: 10.1016/j.beproc.2024.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
This study investigated the influence of group size (individual, groups of five, and 20) on the response of common minnow to visual cues created by vertical black and white stripes over time. The stripes were displayed on a monitor either at one end of an experimental tank, while the other was uniform white, or both ends simultaneously. Reponses were compared with a control (stripes absent). Visual cues were pseudo-randomly presented every 15-minutes over six-hours. Three predictions were made: first, due to more efficient flow of information, larger groups would respond more rapidly (Rate of response) to the visual cues. Second, assuming visual cues provide a proxy for structure and larger groups experience greater benefits of group membership due to reduced predatory risk, there will be stronger association (Strength of association and Final association) with stripes for individuals and smaller groups compared with larger groups. Consequently, the association with visual cues exhibited by larger groups would diminish over time compared to smaller, more risk averse groups. As expected, larger groups exhibited a faster Rate of response to visual cues, and individual fish a greater Strength of association compared with the largest group size. Final association, however, was more common for larger groups compared to both smaller groups and individuals. Contrary to the final prediction, responses to visual cues did not decrease over time for any group size, suggesting innate behaviour or an experimental duration insufficient to observe habituation.
Collapse
Affiliation(s)
- James Miles
- The International Centre for Ecohydraulics Research, University of Southampton, Building 178, Boldrewood Innovation Campus, Burgess Road, SO16 7QF, UK.
| | - Andrew S Vowles
- The International Centre for Ecohydraulics Research, University of Southampton, Building 178, Boldrewood Innovation Campus, Burgess Road, SO16 7QF, UK
| | - Paul S Kemp
- The International Centre for Ecohydraulics Research, University of Southampton, Building 178, Boldrewood Innovation Campus, Burgess Road, SO16 7QF, UK
| |
Collapse
|
16
|
Bousquet CAH, Sueur C, King AJ, O'Bryan LR. Individual and ecological heterogeneity promote complex communication in social vertebrate group decisions. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230204. [PMID: 38768211 PMCID: PMC11391315 DOI: 10.1098/rstb.2023.0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 05/22/2024] Open
Abstract
To receive the benefits of social living, individuals must make effective group decisions that enable them to achieve behavioural coordination and maintain cohesion. However, heterogeneity in the physical and social environments surrounding group decision-making contexts can increase the level of difficulty social organisms face in making decisions. Groups that live in variable physical environments (high ecological heterogeneity) can experience barriers to information transfer and increased levels of ecological uncertainty. In addition, in groups with large phenotypic variation (high individual heterogeneity), individuals can have substantial conflicts of interest regarding the timing and nature of activities, making it difficult for them to coordinate their behaviours or reach a consensus. In such cases, active communication can increase individuals' abilities to achieve coordination, such as by facilitating the transfer and aggregation of information about the environment or individual behavioural preferences. Here, we review the role of communication in vertebrate group decision-making and its relationship to heterogeneity in the ecological and social environment surrounding group decision-making contexts. We propose that complex communication has evolved to facilitate decision-making in specific socio-ecological contexts, and we provide a framework for studying this topic and testing related hypotheses as part of future research in this area. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Christophe A. H. Bousquet
- Department of Psychology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
| | - Cédric Sueur
- Institut pluridisciplinaire Hubert Curien, Strasbourg67000, France
- Institut Universitaire de France, Paris75005, France
| | - Andrew J. King
- Biosciences, Faculty of Science and Engineering, SwanseaSA2 8PP, UK
| | - Lisa R. O'Bryan
- Department of Psychological Sciences, Rice University, Houston, TX77005, USA
| |
Collapse
|
17
|
Lu C, Yi X, Zou Y. Does the new municipal solid waste management regulation promote residents' waste separation behaviour? Evidence from survey data in Beijing, China. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:556-568. [PMID: 37804124 DOI: 10.1177/0734242x231197366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Waste source separation is an essential section of successful municipal solid waste management, and the city governments in China are shifting from building massive waste treatment facilities to regulating residents' waste separation behaviour (WSB). In order to promote residents' WSB, Beijing, the capital of China, implemented the new version of municipal household waste management regulation (NEMAR) and allocated more funds. This article constructs a theoretical framework to analyse the relationship between the NEMAR and residents' WSB from the perspective of policy tools, and uses propensity score matching method to evaluate the NEMAR's effectiveness on promoting residents' WSB, with first-hand data collected by distributing two rounds of questionnaires in Beijing. Results show that the NEMAR in Beijing have significantly improved the frequency and accuracy of residents' WSB. The command-control tools such as fines are effective to enhance WSB. The information guidance tools such as propaganda in community publicity column, banner and brochure could significantly promote residents' WSB frequency. Training seminars could enhance residents' WSB accuracy. The economic incentive tools are ineffective, and the policy of direct material rewards even hampers residents' WSB. This research reveals the effectiveness of the new policy and different tools in promoting residents' WSB. It could provide evidence for policymakers to utilize more effective governing tools and optimize the allocation of public resources.
Collapse
Affiliation(s)
- Chen Lu
- School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodi Yi
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Yurou Zou
- School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Xiao Y, Lei X, Zheng Z, Xiang Y, Liu YY, Peng X. Perception of motion salience shapes the emergence of collective motions. Nat Commun 2024; 15:4779. [PMID: 38839782 PMCID: PMC11153630 DOI: 10.1038/s41467-024-49151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Despite the profound implications of self-organization in animal groups for collective behaviors, understanding the fundamental principles and applying them to swarm robotics remains incomplete. Here we propose a heuristic measure of perception of motion salience (MS) to quantify relative motion changes of neighbors from first-person view. Leveraging three large bird-flocking datasets, we explore how this perception of MS relates to the structure of leader-follower (LF) relations, and further perform an individual-level correlation analysis between past perception of MS and future change rate of velocity consensus. We observe prevalence of the positive correlations in real flocks, which demonstrates that individuals will accelerate the convergence of velocity with neighbors who have higher MS. This empirical finding motivates us to introduce the concept of adaptive MS-based (AMS) interaction in swarm model. Finally, we implement AMS in a swarm of ~102 miniature robots. Swarm experiments show the significant advantage of AMS in enhancing self-organization of the swarm for smooth evacuations from confined environments.
Collapse
Affiliation(s)
- Yandong Xiao
- College of System Engineering, National University of Defense Technology, Changsha, Hunan, China.
| | - Xiaokang Lei
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Zhicheng Zheng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yalun Xiang
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Xingguang Peng
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
Sourisse JM, Schunter C. Neuromolecular mechanisms related to reflex behaviour in Aplysia are affected by ocean acidification. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240329. [PMID: 39100147 PMCID: PMC11296145 DOI: 10.1098/rsos.240329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 08/06/2024]
Abstract
While ocean acidification (OA) impacts the behaviour of marine organisms, the complexity of neurosystems makes linking behavioural impairments to environmental change difficult. Using a simple model, we exposed Aplysia to ambient or elevated CO2 conditions (approx. 1500 µatm) and tested how OA affected the neuromolecular response of the pleural-pedal ganglia and caused tail withdrawal reflex (TWR) impairment. Under OA, Aplysia relax their tails faster with increased sensorin-A expression, an inhibitor of mechanosensory neurons. We further investigate how OA affects habituation training output, which produced a 'sensitization-like' behaviour and affected vesicle transport and stress response gene expression, revealing an influence of OA on learning. Finally, gabazine did not restore normal behaviour and elicited little molecular response with OA, instead, vesicular transport and cellular signalling link other neurotransmitter processes with TWR impairment. Our study shows the effects of OA on neurological tissue parts that control for behaviour.
Collapse
Affiliation(s)
- Jade M. Sourisse
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, , Hong Kong
| | - Celia Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, , Hong Kong
| |
Collapse
|
20
|
Mazocco CC, de Castro Júnior SL, Silveira RMF, Poletto R, da Silva IJO. Laying Hens: Why Smothering and Not Surviving?-A Literature Review. Animals (Basel) 2024; 14:1518. [PMID: 38891565 PMCID: PMC11171085 DOI: 10.3390/ani14111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 06/21/2024] Open
Abstract
The proliferation of rearing systems providing opportunities for birds to engage in natural behaviors can trigger behavioral repertoires that when not manageable compromise animal welfare and the economic viability of the flock. Smothering in laying hens has long been perceived as "natural" or the result of hysteria among birds in the flock. However, the current literature has recognized smothering as an abnormal outcome with the potential to result in significant losses in cage-free poultry systems. Recent studies have specifically aimed to categorize the organization of smothering behavior and highlight its potential causes and consequences. In this study, literature review and bibliographic mapping, drawing on published articles and engagement with poultry farmers through extension and rural technical assistance, were employed. The findings indicate that smothering is a behavior triggered by factors related to the environment in which the laying hens are kept. This study concludes that there is a critical need for more rigorous and detailed research to elucidate the nuances of avian behavioral physiology and assess the impact of production systems on animal welfare and the economic impacts on the flock. This research contributes to a deeper understanding of bird behavior in high-production environments and provides practical insights for the poultry industry.
Collapse
Affiliation(s)
- Caroline Citta Mazocco
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| | - Sérgio Luís de Castro Júnior
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| | - Robson Mateus Freitas Silveira
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| | - Rosangela Poletto
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)-Campus Sertão, Sertão 99170-000, RS, Brazil;
| | - Iran José Oliveira da Silva
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| |
Collapse
|
21
|
Sakurai Y, Ikeda Y. Effect of visual lateralization on the spatial position of individuals within a school of oval squid (Sepioteuthis lessoniana). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:381-398. [PMID: 37515730 DOI: 10.1007/s00359-023-01654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023]
Abstract
The spatial position of individuals within a social group, which provides the group members with benefits and costs, is determined by several physical and physiological factors. Lateralization (left and right asymmetry of morphology and behavior) could also be factors determining the individual's positions within a group. However, this possibility has been documented in some fish species, but never in an invertebrate species. This study investigates the association between spatial positions and lateralization in oval squid, Sepioteuthis lessoniana, which displays social behavior, such as schooling and lateralization for eye use (visual lateralization). The direction and strength of visual lateralization were determined for single squid by observing which eye was used to detect the prey, predators, and conspecifics. The spatial positions of individuals were determined by identifying whether the squids were in the left or right side from the center of the school. When the prey was presented to schooling squids, strongly lateralized squids against prey positioned themselves on the right side, whereas weakly lateralized squids positioned themselves on the left side. When the predator was presented to squids, the strongly lateralized squids against the conspecifics positioned themselves on the right side, and the weakly lateralized squids positioned themselves on the left side. When no targets were presented, the strongly lateralized squids against the predator positioned themselves on the right side, whereas the weakly lateralized squids positioned themselves on the left side. The strength of visual lateralization of oval squid could offer the defensive and offensive functions of schools with specific individual positions.
Collapse
Affiliation(s)
- Yuma Sakurai
- Department of Marine and Environmental Sciences, Graduate School of Engineering and Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yuzuru Ikeda
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|
22
|
Auguin E, Guinet C, Mourier J, Clua E, Gasco N, Tixier P. Behavioural heterogeneity across killer whale social units in their response to feeding opportunities from fisheries. Ecol Evol 2024; 14:e11448. [PMID: 38799391 PMCID: PMC11116761 DOI: 10.1002/ece3.11448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Intra-population heterogeneity in the behavioural response of predators to changes in prey availability caused by human activities can have major evolutionary implications. Among these activities, fisheries, while extracting resources, also provide new feeding opportunities for marine top predators. However, heterogeneity in the extent to which individuals have responded to these opportunities within populations is poorly understood. Here, we used 18 years of photo-identification data paired with statistical models to assess variation in the way killer whale social units within a subantarctic population (Crozet Islands) interact with fisheries to feed on fish caught on fishing gear (i.e., depredation behaviour). Our results indicate large heterogeneity in both the spatial and temporal extents of depredation across social units. While some frequently depredated on fishery catches over large areas, others sporadically did so and in small areas consistently over the years. These findings suggest that killer whale social units are exposed to varying levels of impacts of depredation, both negative (potential retaliation from fishers) and positive (food provisioning), on their life history traits, and may explain the contrasted demographic patterns observed within the declining population at Crozet but also potentially within the many other killer whale populations documented depredating on fisheries catches worldwide.
Collapse
Affiliation(s)
- Erwan Auguin
- UMR MARBECUniversité de Montpellier‐CNRS‐IFREMER‐IRDSèteFrance
- Centre d'Etudes Biologiques de Chizé (CEBC)UMR 7372 CNRS‐La Rochelle Université – CNRSVilliers‐en‐BoisFrance
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé (CEBC)UMR 7372 CNRS‐La Rochelle Université – CNRSVilliers‐en‐BoisFrance
| | - Johann Mourier
- UMR MARBECUniversité de Montpellier‐CNRS‐IFREMER‐IRDSèteFrance
| | - Eric Clua
- Université Paris Sciences & Lettres (PSL), CRIOBE USR3278, EPHE‐CNRS‐UPVDUniversité de PerpignanPerpignanFrance
- Laboratoire D'Excellence LabEX CORAILCRIOBE, Baie OpunohuPapetoaiFrench Polynesia
| | - Nicolas Gasco
- Laboratoire de Biologie Des Organismes et Ecosystèmes Aquatiques (BOREA)UMR 8067 – MNHN, CNRS, IRD, Su, UCN, UAParisFrance
| | - Paul Tixier
- UMR MARBECUniversité de Montpellier‐CNRS‐IFREMER‐IRDSèteFrance
| |
Collapse
|
23
|
Jourdain E, Karoliussen R, Fordyce Martin SL, Langangen Ø, Robeck T, Borgå K, Ruus A, Foote AD. Social and genetic connectivity despite ecological variation in a killer whale network. Proc Biol Sci 2024; 291:20240524. [PMID: 38628123 PMCID: PMC11022014 DOI: 10.1098/rspb.2024.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Philopatric kin-based societies encourage a narrow breadth of conservative behaviours owing to individuals primarily learning from close kin, promoting behavioural homogeneity. However, weaker social ties beyond kin, and across a behaviourally diverse social landscape, could be sufficient to induce variation and a greater ecological niche breadth. We investigated a network of 457 photo-identified killer whales from Norway (548 encounters in 2008-2021) with diet data available (46 mixed-diet individuals feeding on both fish and mammals, and 411 exclusive fish-eaters) to quantify patterns of association within and between diet groups, and to identify underlying correlates. We genotyped a subset of 106 whales to assess patterns of genetic differentiation. Our results suggested kinship as main driver of social bonds within and among cohesive social units, while diet was most likely a consequence reflective of cultural diffusion, rather than a driver. Flexible associations within and between ecologically diverse social units led to a highly connected network, reducing social and genetic differentiation between diet groups. Our study points to a role of social connectivity, in combination with individual behavioural variation, in influencing population ecology in killer whales.
Collapse
Affiliation(s)
- Eve Jourdain
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Norwegian Orca Survey, 8480 Andenes, Norway
| | | | - Sarah L. Fordyce Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technologies (NTNU), 7491 Trondheim, Norway
| | | | - Todd Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL 32819, USA
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Anders Ruus
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Norwegian Institute of Water Research, 32821 Oslo, Norway
| | - Andrew D. Foote
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technologies (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
24
|
Puy A, Gimeno E, Torrents J, Bartashevich P, Miguel MC, Pastor-Satorras R, Romanczuk P. Selective social interactions and speed-induced leadership in schooling fish. Proc Natl Acad Sci U S A 2024; 121:e2309733121. [PMID: 38662546 PMCID: PMC11067465 DOI: 10.1073/pnas.2309733121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Animals moving together in groups are believed to interact among each other with effective social forces, such as attraction, repulsion, and alignment. Such forces can be inferred using "force maps," i.e., by analyzing the dependency of the acceleration of a focal individual on relevant variables. Here, we introduce a force map technique suitable for the analysis of the alignment forces experienced by individuals. After validating it using an agent-based model, we apply the force map to experimental data of schooling fish. We observe signatures of an effective alignment force with faster neighbors and an unexpected antialignment with slower neighbors. Instead of an explicit antialignment behavior, we suggest that the observed pattern is the result of a selective attention mechanism, where fish pay less attention to slower neighbors. This mechanism implies the existence of temporal leadership interactions based on relative speeds between neighbors. We present support for this hypothesis both from agent-based modeling as well as from exploring leader-follower relationships in the experimental data.
Collapse
Affiliation(s)
- Andreu Puy
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona08034, Spain
| | - Elisabet Gimeno
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona08034, Spain
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona08028, Spain
| | - Jordi Torrents
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona08034, Spain
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona08028, Spain
| | - Palina Bartashevich
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Excellence Cluster Science of Intelligence, Technische Universität Berlin, Berlin10587, Germany
| | - M. Carmen Miguel
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona08028, Spain
| | | | - Pawel Romanczuk
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Excellence Cluster Science of Intelligence, Technische Universität Berlin, Berlin10587, Germany
- Bernstein Center for Computational Neuroscience, Berlin10115, Germany
| |
Collapse
|
25
|
Shelton DS, Suriyampola PS, Dinges ZM, Glaholt SP, Shaw JR, Martins EP. Plants buffer some of the effects of a pair of cadmium-exposed zebrafish on the un-exposed majority. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104419. [PMID: 38508506 PMCID: PMC11042042 DOI: 10.1016/j.etap.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Certain individuals have a disproportionate effect on group responses. Characteristics may include susceptibility to pollutants, such as cadmium (Cd), a potent trace metal. Here, we show how a pair of Cd-exposed individuals can impact the behavior of unexposed groups. We used behavioral assessments to characterize the extent of the effects of the Cd-exposed individuals on group boldness, cohesion, foraging, activity, and responses to plants. We found that groups with a pair of Cd-exposed fish remained closer to novel stimuli and plants than did groups with untreated (control) fish. The presence of plants reduced Cd-induced differences in shoal cohesion and delays feeding in male shoals. Shoals with Cd- and water-treated fish were equally active. The results suggest that fish acutely exposed to environmentally relevant Cd concentrations can have profound effects on the un-exposed majority. However, the presence of plants may mitigate the effects of contaminants on some aspects of social behavior.
Collapse
Affiliation(s)
- Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33134, USA.
| | - Piyumika S Suriyampola
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Zoe M Dinges
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Stephen P Glaholt
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Joseph R Shaw
- O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Emília P Martins
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
26
|
MacDowell CJ, Briones BA, Lenzi MJ, Gustison ML, Buschman TJ. Differences in the expression of cortex-wide neural dynamics are related to behavioral phenotype. Curr Biol 2024; 34:1333-1340.e6. [PMID: 38417445 PMCID: PMC10965364 DOI: 10.1016/j.cub.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/12/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
Behavior differs across individuals, ranging from typical to atypical phenotypes.1 Understanding how differences in behavior relate to differences in neural activity is critical for developing treatments of neuropsychiatric and neurodevelopmental disorders. One hypothesis is that differences in behavior reflect individual differences in the dynamics of how information flows through the brain. In support of this, the correlation of neural activity between brain areas, termed "functional connectivity," varies across individuals2 and is disrupted in autism,3 schizophrenia,4 and depression.5 However, the changes in neural activity that underlie altered behavior and functional connectivity remain unclear. Here, we show that individual differences in the expression of different patterns of cortical neural dynamics explain variability in both functional connectivity and behavior. Using mesoscale imaging, we recorded neural activity across the dorsal cortex of behaviorally "typical" and "atypical" mice. All mice shared the same recurring cortex-wide spatiotemporal motifs of neural activity, and these motifs explained the large majority of variance in cortical activity (>75%). However, individuals differed in how frequently different motifs were expressed. These differences in motif expression explained differences in functional connectivity and behavior across both typical and atypical mice. Our results suggest that differences in behavior and functional connectivity are due to changes in the processes that select which pattern of neural activity is expressed at each moment in time.
Collapse
Affiliation(s)
- Camden J MacDowell
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, New Brunswick, NJ 08901, USA
| | - Brandy A Briones
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Department of Psychology, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Anesthesiology and Pain Medicine at University of Washington, Seattle, WA 98105, USA
| | - Michael J Lenzi
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA
| | - Morgan L Gustison
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, Western University, London, ON N6A 3K7, Canada
| | - Timothy J Buschman
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540 USA; Department of Psychology, Princeton University, Washington Road, Princeton, NJ 08540, USA.
| |
Collapse
|
27
|
Lumia G, Modica G, Cushman S. Using simulation modeling to demonstrate the performance of graph theory metrics and connectivity algorithms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120073. [PMID: 38266522 DOI: 10.1016/j.jenvman.2024.120073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
Models and metrics to measure ecological connectivity are now well-developed and widely used in research and applications to mitigate the ecological impacts of climate change and anthropogenic habitat loss. Despite the prevalent application of connectivity models, however, relatively little is known about the performance of these methods in predicting functional connectivity patterns and organism movement. Our goal in this paper was to compare different connectivity models in their abilities to predict a wide range of simulated animal movement patterns. We used the Pathwalker software to evaluate the performance of several connectivity model predictions based on graph theory, resistant kernels, and factorial least-cost paths. In addition, we assessed the efficacy of synoptic and patch-based approaches to defining source points for analysis. In total, we produced 28 different simulations of animal movement. As we expected, we found that the choice of connectivity model used was the variable that most influenced prediction accuracy. Moreover, we found that the resistant kernels approach consistently provided the strongest correlations to the simulated underlying movement processes. The results also suggested that the agent-based simulation approach itself can often be the best analytical framework to map functional connectivity for ecological research and conservation applications, given its biological realism and flexibility to implement combinations of movement mechanism, dispersal threshold, directional bias, destination bias and spatial composition of source locations for analysis. In doing so, we provide novel insights to guide future functional connectivity analyses. In future research, we could use the same model for several different species groups and see how this reliability depends on the species analyzed. This could bring to light other elements that play an essential role in predicting connectivity.
Collapse
Affiliation(s)
- Giovanni Lumia
- Dipartimento di Agraria, Università degli studi 'Mediterranea' di Reggio Calabria, 89122 - Reggio Calabria, Italy.
| | - Giuseppe Modica
- Dipartimento di Scienze Veterinarie, Università degli studi di Messina, 98168 - Messina, Italy.
| | - Samuel Cushman
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Oxon, Tubney, OX13 5QL, United Kingdom.
| |
Collapse
|
28
|
Beshers SN. Regulation of division of labor in insects: a colony-level perspective. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101155. [PMID: 38109969 DOI: 10.1016/j.cois.2023.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Studies of division of labor have focused mainly on individual workers performing tasks. Here I propose a shift in perspective: colonies perform tasks, and task performance should be evaluated at the colony level. I then review studies from the recent literature from this perspective, on topics including evaluating task performance; specialization and efficiency; flexibility and task performance; response threshold models; and variation in behavior arising from diverse sensory experiences and learning. The use of specialized workers is only one of a variety of strategies that colonies may follow in performing tasks. The ability of colonies to produce consistent responses and to compensate for changes in the labor pool supports the idea of a task allocation system that precedes specialization. The colony-level perspective raises new questions about how tasks are done and the strategies used to improve colony task performance.
Collapse
Affiliation(s)
- Samuel N Beshers
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
29
|
Yan X, Wang X, Zhao Y, Zhu Q, Yang L, Li Z. Collective decision-making and spatial patterns in orientation of an endemic ungulate on the Tibetan Plateau. Curr Zool 2024; 70:45-58. [PMID: 38476135 PMCID: PMC10926256 DOI: 10.1093/cz/zoad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2024] Open
Abstract
Group living animals form striking aggregation patterns and display synchronization, polarization, and collective intelligence. Though many collective behavioral studies have been conducted on small animals like insects and fish, research on large animals is still rare due to the limited availability of field collective data. We used drones to record videos and analyzed the decision-making and behavioral spatial patterns in orientation of Kiang (Tibetan wild ass, Equus kiang). Leadership is unevenly distributed among Kiang, with the minority initiating majority behavior-shift decisions. Decisions of individual to join are driven by imitation between group members, and are largely dependent on the number of members who have already joined. Kiang respond to the behavior and position of neighbors through different strategies. They strongly polarize when moving, therefore adopting a linear alignment. When vigilant, orientation deviation increases as they form a tighter group. They remain scattered while feeding and, in that context, adopt a side-by-side alignment. This study reveals partially-shared decision-making among Kiang, whereby copying neighbors provides the wisdom to thrive in harsh conditions. This study also suggests that animals' spatial patterns in orientation depend largely on their behavioral states in achieving synchronization.
Collapse
Affiliation(s)
- Xueting Yan
- Lab of Animal Behavior & Conservation, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xu Wang
- Lab of Animal Behavior & Conservation, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yumeng Zhao
- Lab of Animal Behavior & Conservation, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Qin Zhu
- Lab of Animal Behavior & Conservation, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Le Yang
- Tibet Plateau Institute of Biology, Lhasa, 850000, China
| | - Zhongqiu Li
- Lab of Animal Behavior & Conservation, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
30
|
Chen Z, Ding H, Kollipara PS, Li J, Zheng Y. Synchronous and Fully Steerable Active Particle Systems for Enhanced Mimicking of Collective Motion in Nature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304759. [PMID: 37572374 PMCID: PMC10859548 DOI: 10.1002/adma.202304759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Indexed: 08/14/2023]
Abstract
The collective motion observed in living active matter, such as fish schools and bird flocks, is characterized by its dynamic and complex nature, involving various moving states and transitions. By tailoring physical interactions or incorporating information exchange capabilities, inanimate active particles can exhibit similar behavior. However, the lack of synchronous and arbitrary control over individual particles hinders their use as a test system for the study of more intricate collective motions in living species. Herein, a novel optical feedback control system that enables the mimicry of collective motion observed in living objects using active particles is proposed. This system allows for the experimental investigation of the velocity alignment, a seminal model of collective motion (known as the Vicsek model), in a microscale perturbed environment with controllable and realistic conditions. The spontaneous formation of different moving states and dynamic transitions between these states is observed. Additionally, the high robustness of the active-particle group at the critical density under the influence of different perturbations is quantitatively validated. These findings support the effectiveness of velocity alignment in real perturbed environments, thereby providing a versatile platform for fundamental studies on collective motion and the development of innovative swarm microrobotics.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
31
|
Dongre P, Lanté G, Cantat M, Canteloup C, van de Waal E. Role of immigrant males and muzzle contacts in the uptake of a novel food by wild vervet monkeys. eLife 2024; 13:e76486. [PMID: 38192204 PMCID: PMC10776085 DOI: 10.7554/elife.76486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
The entry into and uptake of information in social groups is critical for behavioral adaptation by long-lived species in rapidly changing environments. We exposed five groups of wild vervet monkeys to a novel food to investigate the innovation of processing and consuming it. We report that immigrant males innovated in two groups, and an infant innovated in one group. In two other groups, immigrant males imported the innovation from their previous groups. We compared uptake between groups with respect to the initial innovator to examine the extent to which dispersing males could introduce an innovation into groups. Uptake of the novel food was faster in groups where immigrant males ate first rather than the infants. Younger individuals were more likely overall, and faster, to subsequently acquire the novel food. We also investigated the role of muzzle contact behavior in information seeking around the novel food. Muzzle contacts decreased in frequency over repeated exposures to the novel food. Muzzle contacts were initiated the most by naïve individuals, high rankers, and juveniles; and were targeted most towards knowledgeable individuals and high rankers, and the least towards infants. We highlight the potential importance of dispersers in rapidly exploiting novel resources among populations.
Collapse
Affiliation(s)
- Pooja Dongre
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
- Inkawu Vervet Project, Mawana Game ReserveKwaZulu NatalSouth Africa
| | - Gaëlle Lanté
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
- University of PoitiersPoitiersFrance
| | - Mathieu Cantat
- Inkawu Vervet Project, Mawana Game ReserveKwaZulu NatalSouth Africa
| | - Charlotte Canteloup
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
- Inkawu Vervet Project, Mawana Game ReserveKwaZulu NatalSouth Africa
- Laboratory of Cognitive & Adaptive Neurosciences, CNRS - UMR 7364, University of StrasbourgStrasbourgFrance
| | - Erica van de Waal
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
- Inkawu Vervet Project, Mawana Game ReserveKwaZulu NatalSouth Africa
| |
Collapse
|
32
|
Hartono AD, Nguyen LTH, Tạ TV. A stochastic differential equation model for predator-avoidance fish schooling. Math Biosci 2024; 367:109112. [PMID: 38043605 DOI: 10.1016/j.mbs.2023.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
This paper presents a mathematical model based on stochastic differential equations (SDEs) to depict the dynamics of a predator-prey system in an aquatic environment characterized by schooling behavior among the prey. The model employs a particle-like approach, incorporating attractive and repulsive forces, akin to phenomena observed in molecular physics, to capture the interactions among the constituent units. Two hunting tactics of the predator, center-attacking and nearest-attacking strategies, are integrated into the model. Numerical simulations of this model unveil four distinct predator-avoidance patterns exhibited by schooling prey: Split and Reunion, Split and Separate into Two Groups, Scattered, and Maintain Formation and Distance. Our results also confirm the effectiveness of large groups of schooling prey in mitigating predation risk, consistent with real-life observations in natural aquatic ecosystems. These findings validate the accuracy and applicability of our model.
Collapse
Affiliation(s)
- Aditya Dewanto Hartono
- Mathematical Modeling Laboratory, Division of Bioproduction Environmental Sciences, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi Ward, Fukuoka, 819-0395, Japan.
| | - Linh Thi Hoai Nguyen
- International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi Ward, Fukuoka, 819-0395, Japan.
| | - Tôn Việt Tạ
- Mathematical Modeling Laboratory, Division of Bioproduction Environmental Sciences, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi Ward, Fukuoka, 819-0395, Japan; Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi Ward, Fukuoka, 819-0395, Japan.
| |
Collapse
|
33
|
Tan P, Miles CE. Intrinsic statistical separation of subpopulations in heterogeneous collective motion via dimensionality reduction. Phys Rev E 2024; 109:014403. [PMID: 38366514 DOI: 10.1103/physreve.109.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024]
Abstract
Collective motion of locally interacting agents is found ubiquitously throughout nature. The inability to probe individuals has driven longstanding interest in the development of methods for inferring the underlying interactions. In the context of heterogeneous collectives, where the population consists of individuals driven by different interactions, existing approaches require some knowledge about the heterogeneities or underlying interactions. Here, we investigate the feasibility of identifying the identities in a heterogeneous collective without such prior knowledge. We numerically explore the behavior of a heterogeneous Vicsek model and find sufficiently long trajectories intrinsically cluster in a principal component analysis-based dimensionally reduced model-agnostic description of the data. We identify how heterogeneities in each parameter in the model (interaction radius, noise, population proportions) dictate this clustering. Finally, we show the generality of this phenomenon by finding similar behavior in a heterogeneous D'Orsogna model. Altogether, our results establish and quantify the intrinsic model-agnostic statistical disentanglement of identities in heterogeneous collectives.
Collapse
Affiliation(s)
- Pei Tan
- Mathematical, Computational, and Systems Biology Graduate Program, University of California, Irvine 92697, USA
| | | |
Collapse
|
34
|
Martin R, Leroy C, Maák I, d'Ettorre P. Group phenotypic composition drives task performances in ants. Biol Lett 2024; 20:20230463. [PMID: 38195057 PMCID: PMC10776233 DOI: 10.1098/rsbl.2023.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Differences in individual behaviour within a group can give rise to functional dissimilarities between groups, particularly in social animals. However, how individual behavioural phenotypes translate into the group phenotype remains unclear. Here, we investigate whether individual behavioural type affects group performance in a eusocial species, the ant Aphaenogaster senilis. We measured individual behavioural traits and created groups of workers with similar behavioural type, either high-exploratory or low-exploratory workers. We tested these groups in four different, ecologically relevant, tasks: reaction to an intruder, prey retrieval from a maze, nest relocation and tool use. We show that, compared to groups of low-exploratory workers, groups of high-exploratory workers were more aggressive towards intruders, more efficient in collecting prey, faster in nest relocation and more likely to perform tool use. Our results demonstrate a strong link between individual and collective behaviour in ants. This supports the 'behavioural type hypothesis' for group dynamics, which suggests that an individual's behaviour in a social environment reflects its own behavioural type. The average behavioural phenotype of a group can therefore be predicted from the behavioural types of individual group members.
Collapse
Affiliation(s)
- Rayanne Martin
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, University Sorbonne Paris Nord, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
| | - Chloé Leroy
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, University Sorbonne Paris Nord, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
| | - István Maák
- Department of Ecology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00679 Warszawa, Poland
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, University Sorbonne Paris Nord, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
35
|
Montgomery TM, Lehmann KDS, Gregg S, Keyser K, McTigue LE, Beehner JC, Holekamp KE. Determinants of hyena participation in risky collective action. Proc Biol Sci 2023; 290:20231390. [PMID: 38018101 PMCID: PMC10685128 DOI: 10.1098/rspb.2023.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Collective action problems arise when cooperating individuals suffer costs of cooperation, while the benefits of cooperation are received by both cooperators and defectors. We address this problem using data from spotted hyenas fighting with lions. Lions are much larger and kill many hyenas, so these fights require cooperative mobbing by hyenas for them to succeed. We identify factors that predict when hyena groups engage in cooperative fights with lions, which individuals choose to participate and how the benefits of victory are distributed among cooperators and non-cooperators. We find that cooperative mobbing is better predicted by lower costs (no male lions, more hyenas) than higher benefits (need for food). Individual participation is facilitated by social factors, both over the long term (close kin, social bond strength) and the short term (greeting interactions prior to cooperation). Finally, we find some direct benefits of participation: after cooperation, participants were more likely to feed at contested carcasses than non-participants. Overall, these results are consistent with the hypothesis that, when animals face dangerous cooperative dilemmas, selection favours flexible strategies that are sensitive to dynamic factors emerging over multiple time scales.
Collapse
Affiliation(s)
- Tracy M. Montgomery
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Mara Hyena Project, PO Box 164-00502, Karen, Nairobi, Kenya
- Department for the Ecology of Animal Societies, Max Planck Institute for Animal Behavior, Bücklestraße 5a, 78467 Konstanz, Germany
- Center for the Advanced Study of Collective Behavior, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Kenna D. S. Lehmann
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Human Biology Program, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Mara Hyena Project, PO Box 164-00502, Karen, Nairobi, Kenya
| | - Samantha Gregg
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
| | - Kathleen Keyser
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
| | - Leah E. McTigue
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Rocky Mountain Research Station, Colorado State University, 240 W Prospect St, Fort Collins, CO 80525, USA
| | - Jacinta C. Beehner
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA
- Department of Anthropology, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA
| | - Kay E. Holekamp
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Mara Hyena Project, PO Box 164-00502, Karen, Nairobi, Kenya
| |
Collapse
|
36
|
Scherer U, Ehlman SM, Bierbach D, Krause J, Wolf M. Reproductive individuality of clonal fish raised in near-identical environments and its link to early-life behavioral individuality. Nat Commun 2023; 14:7652. [PMID: 38001119 PMCID: PMC10673926 DOI: 10.1038/s41467-023-43069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Recent studies have documented among-individual phenotypic variation that emerges in the absence of apparent genetic and environmental differences, but it remains an open question whether such seemingly stochastic variation has fitness consequences. We perform a life-history experiment with naturally clonal fish, separated directly after birth into near-identical (i.e., highly standardized) environments, quantifying 2522 offspring from 152 broods over 280 days. We find that (i) individuals differ consistently in the size of offspring and broods produced over consecutive broods, (ii) these differences are observed even when controlling for trade-offs between brood size, offspring size and reproductive onset, indicating individual differences in life-history productivity and (iii) early-life behavioral individuality in activity and feeding patterns, with among-individual differences in feeding being predictive of growth, and consequently offspring size. Thus, our study provides experimental evidence that even when minimizing genetic and environmental differences, systematic individual differences in life-history measures and ultimately fitness can emerge.
Collapse
Affiliation(s)
- Ulrike Scherer
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany.
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany.
| | - Sean M Ehlman
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - David Bierbach
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - Jens Krause
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| |
Collapse
|
37
|
Shelton DS, Suriyampola PS, Dinges ZM, Glaholt SP, Shaw JR, Martins EP. A Pair of Cadmium-exposed Zebrafish Affect Boldness and Landmark use in the Un-exposed Majority. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566440. [PMID: 38014116 PMCID: PMC10680604 DOI: 10.1101/2023.11.09.566440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Some individuals have a disproportionate effect on group responses. These individuals may possess distinct attributes that differentiate them from others. These characteristics may include susceptibility to contaminant exposure such as cadmium, a potent trace metal present in water and food. Here, we tested whether a pair of cadmium-exposed individuals could exert an impact on the behavior of the unexposed majority. We used behavioral assessments to characterize the extent of the effects of the cadmium-exposed pair on group boldness, cohesion, activity and responses to landmarks. We found that groups with a pair of cadmium-exposed fish approached and remained closer to novel stimuli and landmarks than did groups with pairs of fish treated with uncontaminated water (control). Shoals with cadmium and water treated fish exhibited similar levels of cohesion and activity. The results suggest that fish acutely exposed to environmentally-relevant cadmium concentrations can have profound effects on the un-exposed majority.
Collapse
|
38
|
Occhiuto F, Vázquez-Diosdado JA, King AJ, Kaler J. Evidence of personality-dependent plasticity in dairy calf movement behaviours derived from automated data collection. Sci Rep 2023; 13:18243. [PMID: 37880268 PMCID: PMC10600154 DOI: 10.1038/s41598-023-44957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Individual consistency in behaviour, known as animal personality, and behavioural plasticity in response to environmental changes are important factors shaping individual behaviour. Correlations between them, called personality-dependent plasticity, indicate that personality can affect individual reactions to the environment. In farm animals this could impact the response to management changes or stressors but has not yet been investigated. Here we use ultra-wideband location sensors to measure personality and plasticity in the movement of 90 dairy calves for up to 56 days starting in small pair-housing enclosures, and subsequently moved to larger social housings. For the first time calves were shown to differ in personality and plasticity of movement when changing housing. There were significant correlations between personality and plasticity for distance travelled (0.57), meaning that individuals that travelled the furthest in the pair housing increased their movement more in the social groups, and for residence time (- 0.65) as those that stayed in the same area more decreased more with the change in housing, demonstrating personality-dependent plasticity. Additionally, calves conformed to their pen-mate's behaviour in pairs, but this did not continue in the groups. Therefore, personality, plasticity and social effects impact how farm animals respond to changes and can inform management decisions.
Collapse
Affiliation(s)
- Francesca Occhiuto
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK.
| | - Jorge A Vázquez-Diosdado
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Andrew J King
- Department of Biosciences, Faculty of Science and Engineering, Singleton Park Campus, Swansea University, Swansea, SA2 8PP, UK
| | - Jasmeet Kaler
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
39
|
Capelle JJ, Hartog E, Wilkes T, Bouma TJ. Seasonal variation in the balance and strength of cooperative and competitive behavior in patches of blue mussels. PLoS One 2023; 18:e0293142. [PMID: 37856481 PMCID: PMC10586602 DOI: 10.1371/journal.pone.0293142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Aggregation into groups may affect performance of individuals through the balance and strength of facilitative versus competitive interactions. We studied in situ how seasonal variation in abiotic environment affects this balance for blue mussels, a semi-sessile species. We hypothesize that seasonal variation in stresses and resources affects the strength of the interaction. We expected that, in benign conditions (here: high food availability, medium temperatures, low hydrodynamic stress), performance is dominated by growth and is better at low densities, while at adverse conditions (here: low food availability, low or high temperatures, high hydrodynamic stress), performance is dominated by survival and higher at high densities. Mussels were kept in shallow subtidal exclosures at 10 different densities for a one-month period. This exact procedure was repeated seven times at the same location within a one-year period. We measured development in mussel patch shape, performance, and environmental parameters. Environmental conditions for mussels were most benign in summer and most adverse in winter. Patches developed into less complex shapes at lower densities, but also after stronger hydrodynamic disturbances. Towards summer, mussels became more active, aggregation behavior increased, and interactions became more pronounced. Towards winter, mussels became less active: aggregation behavior and growth rates declined and at the lowest temperatures survival started to decrease with mussel density. Survival and growth (by proxy of mussel condition) were both density-dependent; however, contrary to our expectations we found positive interactions between density and survival at the most benign conditions in summer and negative interactions at the most adverse conditions in winter. In between the two seasons, the strength of the interactions increased towards summer and decreased towards winter following a bell-shaped pattern. This pattern might be explained by the environmental mediated aggregation behavior of the mussels. The obvious seasonal pattern in balance and strength of density-dependent interactions demonstrates that strength and direction of intra-specific interactions are both strongly affected by environmental context.
Collapse
Affiliation(s)
- Jacob J. Capelle
- Wageningen University & Research -Wageningen Marine Research, Yerseke, The Netherlands
| | - Eva Hartog
- HZ University of Applied Sciences, Vlissingen, The Netherlands
| | - Tony Wilkes
- Wageningen University & Research -Wageningen Marine Research, Yerseke, The Netherlands
| | - Tjeerd J. Bouma
- Netherlands Institute for Sea Research, Yerseke, The Netherlands
- Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
40
|
Madrzyk M, Pinter-Wollman N. Colonies of ants allocate exploratory individuals to where they are ecologically needed. Curr Zool 2023; 69:585-591. [PMID: 37637320 PMCID: PMC10449417 DOI: 10.1093/cz/zoac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/11/2022] [Indexed: 08/29/2023] Open
Abstract
Individual differences in behavior have large consequences for the way in which ecology impacts fitness. Individuals differ in how they explore their environment and how exploratory behavior benefits them. In group-living animals, behavioral heterogeneity can be beneficial because different individuals perform different tasks. For example, exploratory individuals may discover new food sources and recruit group members to exploit the food, while less exploratory individuals forgo the risks of exploration. Here we ask how individual variation in exploratory behavior affects the ability of Argentine ant Linepithema humile colonies to (1) locate novel food sources, (2) exploit known food resources, and (3) respond to disruptions while foraging. To address these questions, we conducted field experiments on L. humile foraging trails in which we manipulated food availability near and at the foraging trails and disrupted the foraging trails. We sampled individuals based on their response to the perturbations in the field and tested their exploratory behavior in the lab. We found that exploratory individuals benefit the colony by locating novel foods and increasing resource exploitation, but they do not play an important role in the recovery of a foraging trail after disruption. Thus, the benefits of behavioral heterogeneity to the group, specifically in exploratory behavior, differ across ecological contexts.
Collapse
Affiliation(s)
- Max Madrzyk
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Shelton DS, Dinges ZM, Khemka A, Sykes DJ, Suriyampola PS, Shelton DEP, Boyd P, Kelly JR, Bower M, Amro H, Glaholt SP, Latta MB, Perkins HL, Shaw JR, Martins EP. A pair of cadmium-exposed zebrafish affect social behavior of the un-exposed majority. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104119. [PMID: 37028532 PMCID: PMC10423439 DOI: 10.1016/j.etap.2023.104119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 06/15/2023]
Abstract
To account for global contamination events, we must identify direct and indirect pollutant effects. Although pollutants can have direct effects on individuals, it is unknown how a few contaminated individuals affect groups, a widespread social organization. We show environmentally relevant levels of cadmium (Cd) can have indirect social effects revealed in the social context of a larger group. Cd-contaminated individuals had poor vision and more aggressive responses, but no other behavioral effects. The presence of experienced Cd-exposed pairs in the groups had an indirect effect on the un-exposed individual's social interactions leading to the shoal becoming bolder and moving closer to a novel object than control groups. Because a few directly affected individuals could indirectly affect social behavior of the un-exposed majority, we believe that such acute but potentially important heavy metal toxicity could inform reliable predictions about the consequences of their use in a changing world.
Collapse
Affiliation(s)
- Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL 33134, USA.
| | - Zoe M Dinges
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA
| | - Anuj Khemka
- Department of Biology, Indiana University, 1001 E. 3rd St, Bloomington, IN 47405, USA
| | - Delawrence J Sykes
- Department of Biology, Berry College, 2277 Martha Berry Hwy NW, Mount Berry, GA 30149, USA
| | - Piyumika S Suriyampola
- School of Life Sciences, Arizona State University, 427 East Tyler Hall, Tempe, AZ 85287, USA
| | | | - Ploypenmas Boyd
- Biochemistry and Molecular Biology, Oregon State University, 128 Kidder Hall, Corvallis 97331, OR, USA
| | - Jeffrey R Kelly
- Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, TX 37996, USA
| | - Myra Bower
- Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, TX 37996, USA
| | - Halima Amro
- Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, TX 37996, USA
| | - Stephen P Glaholt
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Mitchell B Latta
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Hannah L Perkins
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Joseph R Shaw
- School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA
| | - Emília P Martins
- School of Life Sciences, Arizona State University, 427 East Tyler Hall, Tempe, AZ 85287, USA
| |
Collapse
|
42
|
Papadopoulou M, Fürtbauer I, O'Bryan LR, Garnier S, Georgopoulou DG, Bracken AM, Christensen C, King AJ. Dynamics of collective motion across time and species. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220068. [PMID: 36802781 PMCID: PMC9939269 DOI: 10.1098/rstb.2022.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 02/21/2023] Open
Abstract
Most studies of collective animal behaviour rely on short-term observations, and comparisons of collective behaviour across different species and contexts are rare. We therefore have a limited understanding of intra- and interspecific variation in collective behaviour over time, which is crucial if we are to understand the ecological and evolutionary processes that shape collective behaviour. Here, we study the collective motion of four species: shoals of stickleback fish (Gasterosteus aculeatus), flocks of homing pigeons (Columba livia), a herd of goats (Capra aegagrus hircus) and a troop of chacma baboons (Papio ursinus). First, we describe how local patterns (inter-neighbour distances and positions), and group patterns (group shape, speed and polarization) during collective motion differ across each system. Based on these, we place data from each species within a 'swarm space', affording comparisons and generating predictions about the collective motion across species and contexts. We encourage researchers to add their own data to update the 'swarm space' for future comparative work. Second, we investigate intraspecific variation in collective motion over time and provide guidance for researchers on when observations made over different time scales can result in confident inferences regarding species collective motion. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Marina Papadopoulou
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| | - Ines Fürtbauer
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| | - Lisa R. O'Bryan
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Dimitra G. Georgopoulou
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
- Institute of Marine Biology, Biotechnology & Aquaculture, HCMR, 71500 Hersonissos, Crete, Greece
| | - Anna M. Bracken
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Charlotte Christensen
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland
| | - Andrew J. King
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| |
Collapse
|
43
|
Ioannou CC, Laskowski KL. A multi-scale review of the dynamics of collective behaviour: from rapid responses to ontogeny and evolution. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220059. [PMID: 36802782 PMCID: PMC9939272 DOI: 10.1098/rstb.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/21/2023] Open
Abstract
Collective behaviours, such as flocking in birds or decision making by bee colonies, are some of the most intriguing behavioural phenomena in the animal kingdom. The study of collective behaviour focuses on the interactions between individuals within groups, which typically occur over close ranges and short timescales, and how these interactions drive larger scale properties such as group size, information transfer within groups and group-level decision making. To date, however, most studies have focused on snapshots, typically studying collective behaviour over short timescales up to minutes or hours. However, being a biological trait, much longer timescales are important in animal collective behaviour, particularly how individuals change over their lifetime (the domain of developmental biology) and how individuals change from one generation to the next (the domain of evolutionary biology). Here, we give an overview of collective behaviour across timescales from the short to the long, illustrating how a full understanding of this behaviour in animals requires much more research attention on its developmental and evolutionary biology. Our review forms the prologue of this special issue, which addresses and pushes forward understanding the development and evolution of collective behaviour, encouraging a new direction for collective behaviour research. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
| | - Kate L. Laskowski
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
44
|
Lukas J, Krause J, Träger AS, Piotrowski JM, Romanczuk P, Sprekeler H, Arias-Rodriguez L, Krause S, Schutz C, Bierbach D. Multispecies collective waving behaviour in fish. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220069. [PMID: 36802783 PMCID: PMC9939262 DOI: 10.1098/rstb.2022.0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 02/21/2023] Open
Abstract
Collective behaviour is widely accepted to provide a variety of antipredator benefits. Acting collectively requires not only strong coordination among group members, but also the integration of among-individual phenotypic variation. Therefore, groups composed of more than one species offer a unique opportunity to look into the evolution of both mechanistic and functional aspects of collective behaviour. Here, we present data on mixed-species fish shoals that perform collective dives. These repeated dives produce water waves capable of delaying and/or reducing the success of piscivorous bird attacks. The large majority of the fish in these shoals consist of the sulphur molly, Poecilia sulphuraria, but we regularly also found a second species, the widemouth gambusia, Gambusia eurystoma, making these shoals mixed-species aggregations. In a set of laboratory experiments, we found that gambusia were much less inclined to dive after an attack as compared with mollies, which almost always dive, though mollies dived less deep when paired with gambusia that did not dive. By contrast, the behaviour of gambusia was not influenced by the presence of diving mollies. The dampening effect of less responsive gambusia on molly diving behaviour can have strong evolutionary consequences on the overall collective waving behaviour as we expect shoals with a high proportion of unresponsive gambusia to be less effective at producing repeated waves. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Juliane Lukas
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Jens Krause
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Cluster of Excellence ‘Science of Intelligence’, Technical University of Berlin, Marchstrasse 23, 10587 Berlin, Germany
| | - Arabella Sophie Träger
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Jonas Marc Piotrowski
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Cluster of Excellence ‘Science of Intelligence’, Technical University of Berlin, Marchstrasse 23, 10587 Berlin, Germany
| | - Pawel Romanczuk
- Cluster of Excellence ‘Science of Intelligence’, Technical University of Berlin, Marchstrasse 23, 10587 Berlin, Germany
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Henning Sprekeler
- Cluster of Excellence ‘Science of Intelligence’, Technical University of Berlin, Marchstrasse 23, 10587 Berlin, Germany
- Institute of Software Engineering and Theoretical Computer Science, Berlin Institute of Technology, 10587 Berlin, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma Tabasco, 86150 Villahermosa, Mexico
| | - Stefan Krause
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, 23562 Lübeck, Germany
| | - Christopher Schutz
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Cluster of Excellence ‘Science of Intelligence’, Technical University of Berlin, Marchstrasse 23, 10587 Berlin, Germany
| | - David Bierbach
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Cluster of Excellence ‘Science of Intelligence’, Technical University of Berlin, Marchstrasse 23, 10587 Berlin, Germany
| |
Collapse
|
45
|
Social consequences of rapid environmental change. Trends Ecol Evol 2023; 38:337-345. [PMID: 36473809 DOI: 10.1016/j.tree.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
While direct influences of the environment on population growth and resilience are well studied, indirect routes linking environmental changes to population consequences are less explored. We suggest that social behavior is key for understanding how anthropogenic environmental changes affect the resilience of animal populations. Social structures of animal groups are evolved and emergent phenotypes that often have demographic consequences for group members. Importantly, environmental drivers may directly influence the consequences of social structure or indirectly influence them through modifications to social interactions, group composition, or group size. We have developed a framework to study these demographic consequences. Estimating the strength of direct and indirect pathways will give us tools to understand, and potentially manage, the effect of human-induced rapid environmental changes.
Collapse
|
46
|
Agent-based modeling of mass shooting case with the counterforce of policemen. COMPLEX INTELL SYST 2023. [DOI: 10.1007/s40747-023-01003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractMass shooting cases have caused large casualties worldwide. The counterforce, such as the policemen, is of great significance to reducing casualties, which is the core issue of social safety governance. Therefore, we model both the killing force and counterforce, to explore the crowd dynamics under the shooting. Taking the “Borderline” shooting in 2018 as the target case, the agent-based modeling is applied to back-calculate this dynamic process and explore key behavior rules of individuals. The real death tolls of three classes of agents (civilians, policemen, & killers) are as the real function, based on which we calculate the gaps between real target case and simulations. Eventually, we obtain three optimal solutions, which achieve the least gap or highest matching degree. Besides, we make counterfactual inferences under the optimal solutions, to explore the strategic interactions between policemen and killers. For strategies of killers, we explore different sizes, positions, and moving patterns of the killers. The optimal size of policemen is four to five, for each one killer. For strategies of policemen, we explore the size, locations, and the response time. It indicates that optimal response time of policemen is thirty to forty shots of the killer, and the death of civilians and policemen can be minimized, and the death probability of the killer can be maximized. These findings help to improve public safety governance for our cities. To effectively deal with sudden shooting terrorist cases, patrol routes, reasonable settings, and swift dispatches of the police (stations) should be considered.
Collapse
|
47
|
Dougherty LR. The effect of individual state on the strength of mate choice in females and males. Behav Ecol 2023; 34:197-209. [PMID: 36998999 PMCID: PMC10047626 DOI: 10.1093/beheco/arac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/27/2022] [Accepted: 10/03/2022] [Indexed: 02/25/2023] Open
Abstract
Animals are thought to gain significant fitness benefits from choosing high-quality or compatible mates. However, there is large within-species variation in how choosy individuals are during mating. This may be because the costs and benefits of being choosy vary according to an individual's state. To test this, I systematically searched for published data relating the strength of animal mate choice in both sexes to individual age, attractiveness, body size, physical condition, mating status, and parasite load. I performed a meta-analysis of 108 studies and 78 animal species to quantify how the strength of mate choice varies according to individual state. In line with the predictions of sexual selection theory, I find that females are significantly choosier when they are large and have a low parasite load, thus supporting the premise that the expression of female mate choice is dependent on the costs and benefits of being choosy. However, female choice was not influenced by female age, attractiveness, physical condition, or mating status. Attractive males were significantly choosier than unattractive males, but male mate choice was not influenced by male age, body size, physical condition, mating status, or parasite load. However, this dataset was limited by a small sample size, and the overall correlation between individual state and the strength of mate choice was similar for both sexes. Nevertheless, in both males and females individual state explained only a small amount of variation in the strength of mate choice.
Collapse
Affiliation(s)
- Liam R Dougherty
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Crown Street, Liverpool L69 7RB, UK
| |
Collapse
|
48
|
McCully FR, Rose PE. Individual personality predicts social network assemblages in a colonial bird. Sci Rep 2023; 13:2258. [PMID: 36859497 PMCID: PMC9977762 DOI: 10.1038/s41598-023-29315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
Animal personalities manifest as consistent individual differences in the performance of specific behavioural expressions. Personality research has implications for zoo animal welfare, as it can further our understanding of how captive individuals may differ in their resource use and provide insight into improving individual and group social health. For group living species, personality may enable assortment based on similar behaviour and influence an individual's interactions with conspecifics (e.g. social support). This research aimed to document how personality traits (aggressive, exploratory, submissive) influenced the social network structure of highly social animals in a captive environment. Data were collected from separate flocks of captive Caribbean (Phoenicopterus ruber) and Chilean flamingos (Phoenicopterus chilensis) to identify relationships between birds and examine opportunities for social support. The flocks associated non-randomly, and in both cases, personality was a substantial predictor of network structure. Personality also predicted key elements of Caribbean flamingo social role (degree, betweenness and average association strength) conflict outcome, and propensity to provide social support, however these patterns were not replicated within the Chilean flamingo network. While both species appear to assort by personality, the broader relationship between personality and social role may vary depending on species and context.
Collapse
Affiliation(s)
- Fionnuala R McCully
- School of Environmental Sciences, University of Liverpool, Liverpool, L3 5DA, UK
| | - Paul E Rose
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, Devon, EX4 4QG, UK. .,WWT, Slimbridge Wetland Centre, Slimbridge, Gloucestershire, GL2 7BT, UK.
| |
Collapse
|
49
|
Beyts C, Cella M, Colegrave N, Downie R, Martin JGA, Walsh P. The effect of heterospecific and conspecific competition on inter-individual differences in tungara frog tadpole ( Engystomops pustulosus) behavior. Behav Ecol 2023; 34:210-222. [PMID: 36998994 PMCID: PMC10047633 DOI: 10.1093/beheco/arac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 01/09/2023] Open
Abstract
Repeated social interactions with conspecifics and/or heterospecifics during early development may drive the differentiation of behavior among individuals. Competition is a major form of social interaction and its impacts can depend on whether interactions occur between conspecifics or heterospecifics and the directionality of a response could be specific to the ecological context that they are measured in. To test this, we reared tungara frog tadpoles (Engystomops pustulosus) either in isolation, with a conspecific tadpole or with an aggressive heterospecific tadpole, the whistling frog tadpole (Leptodactylus fuscus). In each treatment, we measured the body size and distance focal E. pustulosus tadpoles swam in familiar, novel and predator risk contexts six times during development. We used univariate and multivariate hierarchical mixed effect models to investigate the effect of treatment on mean behavior, variance among and within individuals, behavioral repeatability and covariance among individuals in their behavior between contexts. There was a strong effect of competition on behavior, with different population and individual level responses across social treatments. Within a familiar context, the variance in the distance swam within individuals decreased under conspecific competition but heterospecific competition caused more variance in the average distance swam among individuals. Behavioral responses were also context specific as conspecific competition caused an increase in the distance swam within individuals in novel and predator risk contexts. The results highlight that the impact of competition on among and within individual variance in behavior is dependent on both competitor species identity and context.
Collapse
Affiliation(s)
- Cammy Beyts
- The Roslin Institute and R(D)SVS, Easter Bush Campus, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Maddalena Cella
- Digital Futures, Warnford Court, 29 Throngmorton Street, London, EC2N 2AT, UK
| | - Nick Colegrave
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3JT, UK
| | - Roger Downie
- Institute of Biodiversity Animal Health and Comparative Medicine, R205A Level 2, The University of Glasgow, G12 8QQ, UK
| | - Julien G A Martin
- Department of Biology, Marie-Curie Private, University of Ottawa, Ontario, K1N 9A7, Canada
| | - Patrick Walsh
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3JT, UK
| |
Collapse
|
50
|
Burte V, Cointe M, Perez G, Mailleret L, Calcagno V. When complex movement yields simple dispersal: behavioural heterogeneity, spatial spread and parasitism in groups of micro-wasps. MOVEMENT ECOLOGY 2023; 11:13. [PMID: 36859387 PMCID: PMC9976481 DOI: 10.1186/s40462-023-00371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Understanding how behavioural dynamics, inter-individual variability and individual interactions scale-up to shape the spatial spread and dispersal of animal populations is a major challenge in ecology. For biocontrol agents, such as the microscopic Trichogramma parasitic wasps, an understanding of movement strategies is also critical to predict pest-suppression performance in the field. METHODS We experimentally studied the spatial propagation of groups of parasitoids and their patterns of parasitism. We investigated whether population spread is density-dependent, how it is affected by the presence of hosts, and whether the spatial distribution of parasitism (dispersal kernel) can be predicted from the observed spread of individuals. Using a novel experimental device and high-throughput imaging techniques, we continuously tracked the spatial spread of groups of parasitoids over large temporal and spatial scales (8 h; and 6 m, ca. 12,000 body lengths). We could thus study how population density, the presence of hosts and their spatial distribution impacted the rate of population spread, the spatial distribution of individuals during population expansion, the overall rate of parasitism and the dispersal kernel (position of parasitism events). RESULTS Higher population density accelerated population spread, but only transiently: the rate of spread reverted to low values after 4 h, in a "tortoise-hare" effect. Interestingly, the presence of hosts suppressed this transiency and permitted a sustained high rate of population spread. Importantly, we found that population spread did not obey classical diffusion, but involved dynamical switches between resident and explorer movement modes. Population distribution was therefore not Gaussian, though surprisingly the distribution of parasitism (dispersal kernel) was. CONCLUSIONS Even homogenous asexual groups of insects develop behavioural heterogeneities over a few hours, and the latter control patterns of population spread. Behavioural switching between resident and explorer states determined population distribution, density-dependence and dispersal. A simple Gaussian dispersal kernel did not reflect classical diffusion, but rather the interplay of several non-linearities at individual level. These results highlight the need to take into account behaviour and inter-individual heterogeneity to understand population spread in animals.
Collapse
Affiliation(s)
- Victor Burte
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Melina Cointe
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Guy Perez
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Ludovic Mailleret
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore, Sophia Antipolis, France
| | - Vincent Calcagno
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|